research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a mixed-ligand silver(I) complex of the non-steroidal anti-inflammatory drug diclofenac and pyrimidine

CROSSMARK_Color_square_no_text.svg

aDepartment of Materials Science and Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun 55139, Turkey, and bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun 55139, Turkey
*Correspondence e-mail: sevimh@omu.edu.tr

Edited by G. Smith, Queensland University of Technology, Australia (Received 1 September 2016; accepted 18 September 2016; online 27 September 2016)

In the title mixed-ligand silver(I) coordination polymeric complex with the non-steroidal anti-inflammatory drug diclofenac (C14H11Cl2NO2) (diclH) and pyrimidine (pym), namely poly[{μ2-2-[2-(2,6-di­chloro­anilino)phen­yl]acetato-κ2O:O′}(μ2-pyrimidine-κ2N1:N3)silver(I)], [Ag(C14H10Cl2NO2)(C4H4N2)]n or [Ag(μ-dicl)(μ-pym)]n, the very distorted tetra­hedral AgN2O2 coordination centres comprise two N-atom donors from bridging pym ligands [Ag—N = 2.381 (3) and 2.412 (3) Å] and two carboxyl­ate O-atom donors from dicl ligands [Ag—O = 2.279 (2) and 2.280 (2) Å], which bridge Ag atoms, giving a centrosymmetric dinuclear units with a short Ag⋯Ag separation [2.8931 (5) Å]. Within the units are short intra­ligand C—Cl⋯π(pym) inter­actions [3.6409 (15) Å]. The units are linked through the bridging N atoms of the pym ligand into a two-dimensional sheet–polymer structure lying parallel to (100) and stabilized by inter-ring ππ inter­actions between the pym ligands [CgCg = 3.4199 (17) Å]. Additional inter-unit C—H⋯O and C—H⋯Cg hydrogen-bonding inter­actions between the sheets give an overall three-dimensional structure.

1. Chemical context

The design of coordination polymers based on silver(I) has been studied extensively in recent years because of their various structural topologies as well as photoluminescent properties and anti­microbial activity. These studies have shown that short Ag⋯Ag separations are one of the most important factors for the manifestation of such properties [Yam & Lo, 1999[Yam, V. W. & Lo, K. (1999). Chem. Soc. Rev. 28, 323-334.]; Pyykkö et al., 1997[Pyykkö, P. (1997). Chem. Rev. 97, 597-636.]; Wang & Cohen, 2009[Wang, Z. & Cohen, S. M. (2009). Chem. Soc. Rev. 38, 1315-1329.]; Zhang et al., 2009[Zhang, J. P., Huang, X. C. & Chen, X. M. (2009). Chem. Soc. Rev. 38, 2385-2396.], Njogu et al., 2015[Njogu, E. M., Omondı, B. & Nyamorı, V. O. (2015). J. Coord. Chem. 68, 3389-3431.]; Nomiya et al., 2000[Nomiya, K., Takahashi, S. & Noguchi, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2091-2097.]]. On the other hand, it is known that to construct extended coordination networks with polynuclear metal-based structures, ligands of various binding sites and shapes have to be taken into account. At this stage, confidence in accomplishing this goal is based upon the sophisticated selection and utilization of suitable multifunctional organic ligands with certain features, such as being a multiple donor and having versatile bonding modes or the ability to take part in hydrogen bonding. Aromatic carboxyl­ate derivatives have therefore been of inter­est in coordination and supra­molecular chemistry.

The chemical classes of non-steroidal anti-inflammatory drugs (NSAIDs) consist of salicylate derivatives, phenyl­alkanoic acids, oxicams, anthranilic acids, sulfonamides and furan­ones (Weder et al., 2002[Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95-126.]). These compounds are some of the most commonly used medications to reduce pain, and diclofenac (dicl), [2-(2,6-dicholoroanilino)phenyl­acetic acid], is a member of the group of phenyl­alkanoic acids. Additionally, NSAIDs are used as anti-inflammatories, anti­pyretics and anti­tumor drugs. (Kim et al., 2004[Kim, K., Yoon, J., Kim, J. K., Baek, S. J., Eling, T. E., Lee, W. J., Ryu, J., Lee, J. G., Lee, J. & Yoo, J. (2004). Biochem. Biophys. Res. Commun. 325, 1298-1303.]; Ribeiro et al., 2008[Ribeiro, G., Benadiba, M., Colquhoun, A. & de Oliveira Silva, D. (2008). Polyhedron, 27, 1131-1137.]; Duffy et al., 1998[Duffy, C. P., Elliott, C. J., O'Connor, R. A., Heenan, M. M., Coyle, S., Cleary, I. M., Kavanagh, K., Verhaegen, S., O'Loughlin, C. M., NicAmhlaoibh, R. & Clynes, M. (1998). Eur. J. Cancer, 34, 1250-1259.]). In previous publications, the crystal structures of metal complexes of diclofenac have been reported (Caglar et al., 2013[Caglar, S., Aydemir, I. E., Adıgüzel, E., Caglar, B., Demir, S. & Büyükgüngör, O. (2013). Inorg. Chim. Acta, 408, 131-138.], 2014[Caglar, S., Aydemir, I. E., Cankaya, M., Kuzucu, M., Temel, E. & Büyükgüngör, O. (2014). J. Coord. Chem. 67, 969-985.]; Ali & Jabali, 2016[Ali, H. A. & Jabali, B. (2016). Polyhedron, 107, 97-106.]; Dimiza et al., 2011[Dimiza, F., Perdih, F., Tangoulis, V., Turel, I., Kessissoglou, D. P. & Psomas, G. (2011). J. Inorg. Biochem. 105, 476-489.]; Kovala-Demertzi et al., 1997[Kovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151-157.]; Castellari et al., 1999[Castellari, C., Feroci, G. & Ottani, S. (1999). Acta Cryst. C55, 907-910.]; Kourkoumelis et al., 2004[Kourkoumelis, N., Demertzis, M. A., Kovala-Demertzi, D., Koutsodimou, A. & Moukarika, A. (2004). Spectrochim. Acta Part A, 60, 2253-2259.]) and in addition its mol­ecular structure has been characterized by various techniques (Iliescu et al., 2004[Iliescu, T., Baia, M. & Kiefer, W. (2004). Chem. Phys. 298, 167-174.]). Based on the above-mentioned points, we report herein the synthesis and structural characterization of a new mixed-ligand silver(I) complex with dicl and pyrimidine (pym), namely [Ag(μ-dicl)(μ-pym)]n, (I)[link].

[Scheme 1]

2. Structural commentary

In (I)[link], Ag1 atoms are four-coordinated by two carboxyl­ate oxygen atoms [O2 and O1i; symmetry code: (i) −x + 1, −y + 1, −z + 2] from separate dicl ligands and two nitro­gen atoms [N2 and N3ii; symmetry code: (ii) x, −y + [{1\over 2}], −z + [{1\over 2}]] from two separate pym ligands (Fig. 1[link]). The discrimination parameter for the AgN2O2 core {τ4 = [(360° − (α + β)]/141°}, where α and β are the largest angles around the metal atom) is 0.732 and indicates substantial deviation from ideal tetra­hedral geometry (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). The Ag—N bond lengths [2.381 (3) and 2.412 (3) Å] (Table 1[link]) are similar to those found in the polymeric mixed-ligand silver(I) complex with 3,5-pyridinedi­carboxyl­ate (pydc) and (pym), [Ag4(μ-pydc)2(μ-pym)2]n [2.313 (5), 2.436 (5) and 2.490 (5) Å; Hamamci Alisir et al., 2015[Hamamci Alisir, S., Demir, S., Sariboga, B. & Buyukgungor, O. (2015). J. Coord. Chem. 68, 155-168.]). The Ag—O bond lengths in (I)[link] [2.279 (2) and 2.280 (2) Å] are longer than those in [Ag2(sal)2]n (sal = salicylate; 2.1887–2.2043 Å; Azócar et al., 2013[Azócar, M., Muñoz, H., Levin, P., Dinamarca, N., Gomez, G., Ibanez, A., Garland, M. T. & Paez, M. A. (2013). Commun. Inorg. Synth. 1, 19-21.]) but shorter than those found in other silver carboxyl­ate complexes (Wu & Mak, 1995[Wu, D. D. & Mak, T. C. W. (1995). J. Chem. Soc. Dalton Trans. pp. 2671-2678.]; Zhang et al., 2015[Zhang, T., Huang, H. Q., Mei, H. X., Wang, D. F., Wang, X., Huang, R. & Zheng, L. (2015). J. Mol. Struct. 1100, 237-244.]; Olson et al., 2006[Olson, L., Whitcomb, D. R., Rajeswaran, M., Blanton, T. N. & Stwertka, B. J. (2006). Chem. Mater. 18, 1667-1674.]). Each pair of silver(I) atoms in the title complex is bridged by the μ2-carboxyl­ato-O,O′ groups of dicl, forming centrosymmetric dinuclear [Ag2(μ-dicl)2] units (Fig. 2[link]). Within the units are short intra­ligand C1—Cl1⋯π inter­actions to the pym ligands [3.6409 (15) Å]. The Ag1⋯Ag1i separation in the unit [2.8931 (5) Å] is significantly shorter than the sum of the van der Waals radii for two silver atoms (3.44 Å), indicating weak inter­actions between adjacent AgI ions, forming an [Ag2(COO)2] units. If coexisting strong argentophilic Ag1⋯Ag1i inter­actions are considered as coordinative, it could be reasoned that the coordination around Ag1 is slightly distorted trigonal–bipyramidal [the structural distortion index tau (τ) was calculated to be 0.06] (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

Table 1
Selected geometric parameters (Å, °)

Ag1—O2 2.279 (2) Ag1—N3ii 2.412 (3)
Ag1—O1i 2.280 (2) Ag1—Ag1i 2.8931 (5)
Ag1—N2 2.381 (3)    
       
O2—Ag1—O1i 148.04 (10) O2—Ag1—Ag1i 81.70 (6)
O2—Ag1—N2 99.71 (8) O1i—Ag1—Ag1i 76.19 (6)
O1i—Ag1—N2 89.58 (8) N2—Ag1—Ag1i 151.80 (6)
O1i—Ag1—N3ii 108.69 (9) N3ii—Ag1—Ag1i 99.73 (6)
N2—Ag1—N3ii 107.93 (9)    
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular configuration and atom-labelling scheme for the title complex, (I)[link], with displacement ellipsoids drawn at the 30% level. For symmetry codes (i) and (ii), see Table 1[link].
[Figure 2]
Figure 2
A view of the centrosymmetric caboxylate-bridged dinuclear [Ag2(μ-dicl)2] unit in (I)[link]. H atoms have been omitted.

As illustrated in Fig. 3[link], in the title complex, the pym ligand acts as a μ2-N,N1-bridging ligand between neighboring [Ag2(COO)2] units, leading to the formation of a two-dimensional coordination polymer, extending along (100) (Fig. 4[link]). In other words, [Ag2(COO)2] units, which comprise eight-membered rings, can be defined as the nodes of the structure. Connection of the four different pym ligands to these nodes provides continuity of the structure (Fig. 4[link]).

[Figure 3]
Figure 3
A partial expansion of the dinuclear unit in (I)[link] through the pym ligands, also showing the pym⋯pym ππ ring inter­actions.
[Figure 4]
Figure 4
The layered structure of (I)[link]. H atoms and part of the dicl ligands have been omitted.

In the dicl ligand, the two benzene rings form a dihedral angle of 61.42 (5)°, the conformation of the ligand being stabilized by an intra­molecular N1—H1⋯O2carbox­yl hydrogen-bonding inter­action [2.971 (3) Å] (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 2.43 2.971 (3) 122
C16—H16⋯O1iii 0.93 2.51 3.248 (4) 136
C13—H13BCg6iv 0.97 3.30 3.983 (3) 129
Symmetry codes: (iii) x, y, z-1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

3. Supra­molecular features

In the crystal, a C16—H16⋯O1iii hydrogen-bonding inter­action stabilizes the crystal packing (Table 2[link]). In addition, there is a weak C13—H13⋯Cg6iv inter­action to a pym ring [3.983 Å] and a strong ππ stacking inter­action between aromatic rings of the pym ligands [Cg3⋯Cg3v = 3.4199 (17) Å; Cg3 is the centroid of the N2/C15/N3/C216–C18 ring; symmetry code (v): −x + 1, −y + 1, −z + 1], shown in Fig. 3[link]. These inter­actions are significant for holding layers together in the solid state and generating an overall three-dimensional framework structure (Fig. 5[link]).

[Figure 5]
Figure 5
The packing of (I)[link] in the unit cell viewed along the b axis.

4. Synthesis and crystallization

All reactions were performed with commercially available reagents and used without further purification. Solid sodium 2-(2,6-dicholoroanilino)phenyl­acetate (Nadicl) (0.32 g, 1 mmol) and pyrimidine (0.08 g, 1 mol) were added to an aqueous solution (10 cm3) of AgNO3 (0.17 g, 1 mmol) with stirring. A white suspension with a white precipitate formed and the addition of aceto­nitrile (10 cm3) to this resulted in a clear solution which was left to stand for slow evaporation in darkness at room temperature. Single crystals of (I)[link] suitable for X-ray analysis were obtained within a few days.

5. Spectroscopy

The infrared spectrum was obtained using a Perkin Elmer Spectrum Two FTIR with a diamond Attenuated Total Reflectance attachment (ATR) in the frequency range 4000–600 cm−1. The sample was placed on the ATR crystal and pressure exerted by screwing the pressure clamp onto the sample to ensure maximum contact with the ATR crystal. The characteristic absorption bands of Nadicl and the title complex are listed in Table 3[link]. The spectrum is deposited as a supplementary Fig. S1.

Table 3
Selected comparative IR spectral data for Nadicl and the dicl ligand in (I)

Frequencies in cm−1; w, weak; m, medium; s, strong; vs, very strong. Nadicl = sodium 2-(2,6-di­chloro­anilino)phenyl­acetate.

Assignment Nadicl (I)  
ν(NH) 3250 (m) 3307 (m)  
νar(CH) 3060 (vw) 3064–3029 (vw)  
νal(CH) 2980 (vw) 2956–2890 (vw)  
νas(COO) 1572 (vs) 1548 (vs)  
νs(COO) 1399 (w) 1365 (vs)  
ν(CCl) 768 (s) 768 (vs)  

The characteristic absorption band in the FT–IR spectra of the carboxyl­ate complexes is the asymmetric (υas) and symmetric (υs) vibrations of the carboxyl­ate group. The difference between the asymmetric and symmetric carboxyl­ate stretching [Δν = υas(COO) - υs(COO)] is often used to correlate the infrared spectra of metal carboxyl­ate structures. When Δν < 200 cm−1, the carboxyl­ate groups of the complexes can be considered bidentate (Azócar et al., 2013[Azócar, M., Muñoz, H., Levin, P., Dinamarca, N., Gomez, G., Ibanez, A., Garland, M. T. & Paez, M. A. (2013). Commun. Inorg. Synth. 1, 19-21.]). The value of Δν is calculated as 183 cm−1 for 1. Based on the above-mentioned points, it is suggested that carboxyl­ate groups in the complex exhibit a bidentate coordination mode, as revealed by the structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All C-bound hydrogen atoms in (I)[link] were included in calculated positions with C—H = 0.93 Å (aromatic) or 0.97 Å (methyl­ene) and allowed to ride, with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference-Fourier map but was also allowed to ride in the refinement with Uiso(H) = 1.2Ueq(N).

Table 4
Experimental details

Crystal data
Chemical formula [Ag(C14H10Cl2NO2)(C4H4N2)]
Mr 483.09
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 18.5886 (4), 9.3071 (4), 10.6646 (8)
β (°) 105.644 (3)
V3) 1776.69 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.45
Crystal size (mm) 0.60 × 0.46 × 0.27
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.471, 0.693
No. of measured, independent and observed [I > 2σ(I)] reflections 13090, 4538, 3672
Rint 0.088
(sin θ/λ)max−1) 0.675
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.04
No. of reflections 4538
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −1.14
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[{µ2-2-[2-(2,6-dichloroanilino)phenyl]acetato-κ2O:O'}(µ2-pyrimidine-κ2N1:N3)silver(I)] top
Crystal data top
[Ag(C14H10Cl2NO2)(C4H4N2)]F(000) = 960
Mr = 483.09Dx = 1.806 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.5886 (4) ÅCell parameters from 13681 reflections
b = 9.3071 (4) Åθ = 2.0–29.1°
c = 10.6646 (8) ŵ = 1.45 mm1
β = 105.644 (3)°T = 293 K
V = 1776.69 (16) Å3Prism, colorless
Z = 40.60 × 0.46 × 0.27 mm
Data collection top
Stoe IPDS2
diffractometer
3672 reflections with I > 2σ(I)
ω–scan rotation methodRint = 0.088
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
θmax = 28.7°, θmin = 2.3°
Tmin = 0.471, Tmax = 0.693h = 2424
13090 measured reflectionsk = 1212
4538 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.57 e Å3
4538 reflectionsΔρmin = 1.14 e Å3
236 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0206 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17222 (14)0.3200 (3)0.6246 (3)0.0419 (6)
C20.12206 (16)0.2364 (3)0.5353 (3)0.0496 (7)
H20.13870.16950.48470.060*
C30.04629 (16)0.2541 (4)0.5223 (4)0.0546 (8)
H30.01160.20090.46070.065*
C40.02263 (15)0.3495 (4)0.5995 (3)0.0505 (7)
H40.02820.36030.59120.061*
C50.07381 (14)0.4302 (3)0.6904 (3)0.0406 (6)
C60.15110 (13)0.4220 (3)0.7029 (3)0.0381 (5)
C70.19762 (12)0.6542 (3)0.8068 (3)0.0377 (5)
C80.15520 (14)0.7377 (3)0.7067 (3)0.0451 (6)
H80.13120.69530.62750.054*
C90.14820 (16)0.8839 (4)0.7235 (4)0.0529 (8)
H90.11970.93970.65580.063*
C100.18355 (17)0.9463 (3)0.8408 (4)0.0573 (9)
H100.17851.04430.85350.069*
C110.22657 (15)0.8624 (3)0.9396 (4)0.0501 (7)
H110.25020.90541.01870.060*
C120.23575 (12)0.7165 (3)0.9249 (3)0.0391 (6)
C130.28437 (13)0.6294 (4)1.0340 (3)0.0437 (6)
H13A0.25750.54291.04480.052*
H13B0.29300.68431.11400.052*
C140.36042 (13)0.5857 (3)1.0147 (3)0.0367 (5)
C150.44153 (16)0.3069 (3)0.5812 (3)0.0444 (6)
H150.45770.22510.63100.053*
C160.40626 (15)0.4123 (3)0.3828 (3)0.0461 (6)
H160.39680.40800.29260.055*
C170.39630 (16)0.5399 (4)0.4394 (3)0.0489 (7)
H170.38070.62200.38990.059*
C180.41040 (15)0.5417 (3)0.5740 (3)0.0461 (6)
H180.40380.62660.61540.055*
Ag10.46373 (2)0.43353 (3)0.87652 (2)0.04354 (10)
Cl10.26694 (4)0.29612 (9)0.63922 (10)0.0610 (2)
Cl20.03984 (4)0.54045 (9)0.79226 (9)0.05280 (19)
N10.20327 (12)0.5025 (3)0.7931 (3)0.0443 (5)
H10.24090.45880.84340.053*
N20.43318 (12)0.4245 (3)0.6450 (2)0.0425 (5)
N30.42916 (13)0.2935 (3)0.4527 (2)0.0457 (5)
O10.41252 (11)0.5735 (3)1.1157 (2)0.0586 (6)
O20.36494 (11)0.5641 (3)0.9022 (2)0.0590 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0374 (11)0.0372 (13)0.0497 (15)0.0009 (10)0.0092 (11)0.0018 (13)
C20.0522 (15)0.0425 (15)0.0518 (17)0.0023 (12)0.0097 (13)0.0065 (14)
C30.0458 (14)0.0469 (16)0.063 (2)0.0076 (12)0.0001 (13)0.0057 (16)
C40.0350 (12)0.0496 (17)0.062 (2)0.0056 (11)0.0045 (12)0.0027 (15)
C50.0362 (11)0.0378 (13)0.0472 (15)0.0012 (10)0.0104 (11)0.0046 (12)
C60.0341 (10)0.0344 (12)0.0430 (14)0.0025 (9)0.0055 (10)0.0047 (11)
C70.0293 (10)0.0376 (13)0.0472 (14)0.0020 (9)0.0119 (10)0.0004 (12)
C80.0339 (11)0.0495 (15)0.0504 (16)0.0006 (11)0.0090 (11)0.0030 (14)
C90.0402 (13)0.0480 (16)0.072 (2)0.0062 (12)0.0182 (14)0.0166 (17)
C100.0468 (15)0.0384 (15)0.089 (3)0.0036 (12)0.0230 (16)0.0026 (17)
C110.0383 (12)0.0468 (16)0.067 (2)0.0010 (11)0.0167 (13)0.0129 (15)
C120.0267 (10)0.0422 (14)0.0502 (15)0.0005 (9)0.0135 (10)0.0046 (12)
C130.0319 (11)0.0561 (17)0.0432 (15)0.0005 (11)0.0102 (10)0.0061 (14)
C140.0303 (10)0.0338 (12)0.0445 (14)0.0008 (9)0.0074 (10)0.0019 (11)
C150.0539 (14)0.0419 (14)0.0395 (14)0.0020 (12)0.0159 (12)0.0026 (13)
C160.0441 (13)0.0577 (18)0.0356 (13)0.0024 (12)0.0094 (11)0.0018 (13)
C170.0451 (13)0.0503 (16)0.0493 (16)0.0086 (12)0.0096 (12)0.0110 (14)
C180.0404 (12)0.0432 (15)0.0522 (17)0.0056 (11)0.0084 (12)0.0035 (13)
Ag10.04020 (13)0.05477 (15)0.03712 (13)0.00513 (8)0.01297 (8)0.00042 (10)
Cl10.0401 (3)0.0555 (4)0.0877 (6)0.0068 (3)0.0176 (3)0.0087 (5)
Cl20.0458 (3)0.0534 (4)0.0647 (5)0.0013 (3)0.0243 (3)0.0020 (4)
N10.0344 (10)0.0402 (12)0.0504 (14)0.0065 (9)0.0019 (9)0.0026 (11)
N20.0401 (10)0.0500 (14)0.0375 (11)0.0031 (9)0.0104 (9)0.0026 (11)
N30.0534 (13)0.0460 (13)0.0392 (12)0.0014 (10)0.0149 (10)0.0015 (11)
O10.0334 (9)0.0967 (19)0.0426 (11)0.0109 (10)0.0049 (8)0.0071 (12)
O20.0412 (10)0.0880 (18)0.0456 (12)0.0186 (10)0.0080 (9)0.0133 (12)
Geometric parameters (Å, º) top
C1—C21.379 (4)C12—C131.504 (4)
C1—C61.390 (4)C13—C141.537 (3)
C1—Cl11.739 (3)C13—H13A0.9700
C2—C31.387 (4)C13—H13B0.9700
C2—H20.9300C14—O21.242 (4)
C3—C41.362 (5)C14—O11.244 (3)
C3—H30.9300C15—N21.320 (4)
C4—C51.382 (4)C15—N31.333 (4)
C4—H40.9300C15—H150.9300
C5—C61.409 (3)C16—N31.338 (4)
C5—Cl21.733 (3)C16—C171.367 (5)
C6—N11.387 (3)C16—H160.9300
C7—C81.382 (4)C17—C181.388 (5)
C7—C121.394 (4)C17—H170.9300
C7—N11.426 (4)C18—N21.330 (4)
C8—C91.383 (5)C18—H180.9300
C8—H80.9300Ag1—O22.279 (2)
C9—C101.375 (6)Ag1—O1i2.280 (2)
C9—H90.9300Ag1—N22.381 (3)
C10—C111.380 (5)Ag1—N3ii2.412 (3)
C10—H100.9300Ag1—Ag1i2.8931 (5)
C11—C121.383 (4)N1—H10.8600
C11—H110.9300
C2—C1—C6123.5 (2)C12—C13—H13B108.5
C2—C1—Cl1118.0 (2)C14—C13—H13B108.5
C6—C1—Cl1118.5 (2)H13A—C13—H13B107.5
C1—C2—C3118.8 (3)O2—C14—O1125.6 (2)
C1—C2—H2120.6O2—C14—C13118.5 (2)
C3—C2—H2120.6O1—C14—C13115.9 (3)
C4—C3—C2120.1 (3)N2—C15—N3126.6 (3)
C4—C3—H3119.9N2—C15—H15116.7
C2—C3—H3119.9N3—C15—H15116.7
C3—C4—C5120.3 (3)N3—C16—C17122.1 (3)
C3—C4—H4119.9N3—C16—H16118.9
C5—C4—H4119.9C17—C16—H16118.9
C4—C5—C6122.0 (3)C16—C17—C18117.2 (3)
C4—C5—Cl2117.6 (2)C16—C17—H17121.4
C6—C5—Cl2120.5 (2)C18—C17—H17121.4
N1—C6—C1121.9 (2)N2—C18—C17121.4 (3)
N1—C6—C5122.8 (3)N2—C18—H18119.3
C1—C6—C5115.2 (2)C17—C18—H18119.3
C8—C7—C12120.6 (3)O2—Ag1—O1i148.04 (10)
C8—C7—N1121.4 (3)O2—Ag1—N299.71 (8)
C12—C7—N1118.1 (2)O1i—Ag1—N289.58 (8)
C7—C8—C9120.5 (3)O2—Ag1—N3ii97.48 (9)
C7—C8—H8119.8O1i—Ag1—N3ii108.69 (9)
C9—C8—H8119.8N2—Ag1—N3ii107.93 (9)
C10—C9—C8119.7 (3)O2—Ag1—Ag1i81.70 (6)
C10—C9—H9120.2O1i—Ag1—Ag1i76.19 (6)
C8—C9—H9120.2N2—Ag1—Ag1i151.80 (6)
C9—C10—C11119.4 (3)N3ii—Ag1—Ag1i99.73 (6)
C9—C10—H10120.3C6—N1—C7123.3 (2)
C11—C10—H10120.3C6—N1—H1118.4
C10—C11—C12122.2 (3)C7—N1—H1118.4
C10—C11—H11118.9C15—N2—C18116.7 (3)
C12—C11—H11118.9C15—N2—Ag1122.4 (2)
C11—C12—C7117.6 (3)C18—N2—Ag1120.8 (2)
C11—C12—C13120.6 (3)C15—N3—C16115.9 (3)
C7—C12—C13121.9 (2)C15—N3—Ag1iii116.2 (2)
C12—C13—C14114.9 (2)C16—N3—Ag1iii127.6 (2)
C12—C13—H13A108.5C14—O1—Ag1i125.2 (2)
C14—C13—H13A108.5C14—O2—Ag1117.96 (17)
C6—C1—C2—C30.1 (5)N1—C7—C12—C132.6 (4)
Cl1—C1—C2—C3180.0 (3)C11—C12—C13—C14105.3 (3)
C1—C2—C3—C42.0 (5)C7—C12—C13—C1475.6 (3)
C2—C3—C4—C50.7 (5)C12—C13—C14—O231.7 (4)
C3—C4—C5—C62.7 (5)C12—C13—C14—O1149.1 (3)
C3—C4—C5—Cl2175.9 (3)N3—C16—C17—C180.5 (4)
C2—C1—C6—N1179.0 (3)C16—C17—C18—N20.5 (4)
Cl1—C1—C6—N11.2 (4)C1—C6—N1—C7133.5 (3)
C2—C1—C6—C53.2 (4)C5—C6—N1—C751.1 (4)
Cl1—C1—C6—C5176.9 (2)C8—C7—N1—C621.6 (4)
C4—C5—C6—N1179.8 (3)C12—C7—N1—C6157.8 (3)
Cl2—C5—C6—N11.6 (4)N3—C15—N2—C180.3 (4)
C4—C5—C6—C14.5 (4)N3—C15—N2—Ag1176.8 (2)
Cl2—C5—C6—C1174.0 (2)C17—C18—N2—C150.1 (4)
C12—C7—C8—C91.8 (4)C17—C18—N2—Ag1176.4 (2)
N1—C7—C8—C9177.6 (3)N2—C15—N3—C160.3 (4)
C7—C8—C9—C100.2 (4)N2—C15—N3—Ag1iii173.7 (2)
C8—C9—C10—C111.0 (5)C17—C16—N3—C150.2 (4)
C9—C10—C11—C120.2 (5)C17—C16—N3—Ag1iii172.4 (2)
C10—C11—C12—C72.1 (4)O2—C14—O1—Ag1i17.1 (4)
C10—C11—C12—C13178.7 (3)C13—C14—O1—Ag1i163.8 (2)
C8—C7—C12—C113.0 (4)O1—C14—O2—Ag118.3 (4)
N1—C7—C12—C11176.5 (2)C13—C14—O2—Ag1160.8 (2)
C8—C7—C12—C13177.9 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the [please define] ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.432.971 (3)122
C16—H16···O1iv0.932.513.248 (4)136
C13—H13B···Cg6iii0.973.303.983 (3)129
Symmetry codes: (iii) x, y+1/2, z1/2; (iv) x, y, z1.
Selected comparative IR spectral data for Nadicl and the dicl ligand in (I) top
Frequencies in cm-1; w, weak; m, medium; s, strong; vs, very strong. Nadicl = sodium 2-(2,6-dichloroanilino)phenylacetate.
AssignmentNadicl(I)
ν(NH)3250 (m)3307 (m)
νar(CH)3060 (vw)3064–3029 (vw)
νal(CH)2980 (vw)2956–2890 (vw)
νas(COO)1572 (vs)1548 (vs)
νs(COO)1399 (w)1365 (vs)
ν(CCl)768 (s)768 (vs)
 

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAli, H. A. & Jabali, B. (2016). Polyhedron, 107, 97–106.  Google Scholar
First citationAzócar, M., Muñoz, H., Levin, P., Dinamarca, N., Gomez, G., Ibanez, A., Garland, M. T. & Paez, M. A. (2013). Commun. Inorg. Synth. 1, 19–21.  Google Scholar
First citationCaglar, S., Aydemir, I. E., Adıgüzel, E., Caglar, B., Demir, S. & Büyükgüngör, O. (2013). Inorg. Chim. Acta, 408, 131–138.  CSD CrossRef CAS Google Scholar
First citationCaglar, S., Aydemir, I. E., Cankaya, M., Kuzucu, M., Temel, E. & Büyükgüngör, O. (2014). J. Coord. Chem. 67, 969–985.  CSD CrossRef CAS Google Scholar
First citationCastellari, C., Feroci, G. & Ottani, S. (1999). Acta Cryst. C55, 907–910.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDimiza, F., Perdih, F., Tangoulis, V., Turel, I., Kessissoglou, D. P. & Psomas, G. (2011). J. Inorg. Biochem. 105, 476–489.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDuffy, C. P., Elliott, C. J., O'Connor, R. A., Heenan, M. M., Coyle, S., Cleary, I. M., Kavanagh, K., Verhaegen, S., O'Loughlin, C. M., NicAmhlaoibh, R. & Clynes, M. (1998). Eur. J. Cancer, 34, 1250–1259.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamamci Alisir, S., Demir, S., Sariboga, B. & Buyukgungor, O. (2015). J. Coord. Chem. 68, 155–168.  Google Scholar
First citationIliescu, T., Baia, M. & Kiefer, W. (2004). Chem. Phys. 298, 167–174.  CrossRef CAS Google Scholar
First citationKim, K., Yoon, J., Kim, J. K., Baek, S. J., Eling, T. E., Lee, W. J., Ryu, J., Lee, J. G., Lee, J. & Yoo, J. (2004). Biochem. Biophys. Res. Commun. 325, 1298–1303.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKourkoumelis, N., Demertzis, M. A., Kovala-Demertzi, D., Koutsodimou, A. & Moukarika, A. (2004). Spectrochim. Acta Part A, 60, 2253–2259.  Web of Science CrossRef Google Scholar
First citationKovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151–157.  CAS Google Scholar
First citationNjogu, E. M., Omondı, B. & Nyamorı, V. O. (2015). J. Coord. Chem. 68, 3389–3431.  CrossRef CAS Google Scholar
First citationNomiya, K., Takahashi, S. & Noguchi, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2091–2097.  Web of Science CSD CrossRef Google Scholar
First citationOlson, L., Whitcomb, D. R., Rajeswaran, M., Blanton, T. N. & Stwertka, B. J. (2006). Chem. Mater. 18, 1667–1674.  Web of Science CSD CrossRef CAS Google Scholar
First citationPyykkö, P. (1997). Chem. Rev. 97, 597–636.  CrossRef PubMed Web of Science Google Scholar
First citationRibeiro, G., Benadiba, M., Colquhoun, A. & de Oliveira Silva, D. (2008). Polyhedron, 27, 1131–1137.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, Z. & Cohen, S. M. (2009). Chem. Soc. Rev. 38, 1315–1329.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWeder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95–126.  Web of Science CrossRef CAS Google Scholar
First citationWu, D. D. & Mak, T. C. W. (1995). J. Chem. Soc. Dalton Trans. pp. 2671–2678.  CSD CrossRef Web of Science Google Scholar
First citationYam, V. W. & Lo, K. (1999). Chem. Soc. Rev. 28, 323–334.  Web of Science CrossRef CAS Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J. P., Huang, X. C. & Chen, X. M. (2009). Chem. Soc. Rev. 38, 2385–2396.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, T., Huang, H. Q., Mei, H. X., Wang, D. F., Wang, X., Huang, R. & Zheng, L. (2015). J. Mol. Struct. 1100, 237–244.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds