research communications
of a mixed-ligand silver(I) complex of the non-steroidal anti-inflammatory drug diclofenac and pyrimidine
aDepartment of Materials Science and Engineering, Faculty of Engineering, Ondokuz Mayis University, Samsun 55139, Turkey, and bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun 55139, Turkey
*Correspondence e-mail: sevimh@omu.edu.tr
In the title mixed-ligand silver(I) coordination polymeric complex with the non-steroidal anti-inflammatory drug diclofenac (C14H11Cl2NO2) (diclH) and pyrimidine (pym), namely poly[{μ2-2-[2-(2,6-dichloroanilino)phenyl]acetato-κ2O:O′}(μ2-pyrimidine-κ2N1:N3)silver(I)], [Ag(C14H10Cl2NO2)(C4H4N2)]n or [Ag(μ-dicl)(μ-pym)]n, the very distorted tetrahedral AgN2O2 coordination centres comprise two N-atom donors from bridging pym ligands [Ag—N = 2.381 (3) and 2.412 (3) Å] and two carboxylate O-atom donors from dicl ligands [Ag—O = 2.279 (2) and 2.280 (2) Å], which bridge Ag atoms, giving a centrosymmetric dinuclear units with a short Ag⋯Ag separation [2.8931 (5) Å]. Within the units are short intraligand C—Cl⋯π(pym) interactions [3.6409 (15) Å]. The units are linked through the bridging N atoms of the pym ligand into a two-dimensional sheet–polymer structure lying parallel to (100) and stabilized by inter-ring π–π interactions between the pym ligands [Cg⋯Cg = 3.4199 (17) Å]. Additional inter-unit C—H⋯O and C—H⋯Cg hydrogen-bonding interactions between the sheets give an overall three-dimensional structure.
Keywords: crystal structure; silver(I) complex; non-steroidal anti-inflammatory drug; diclofenac; two-dimensional coordination polymer.
CCDC reference: 1500646
1. Chemical context
The design of coordination polymers based on silver(I) has been studied extensively in recent years because of their various structural topologies as well as photoluminescent properties and antimicrobial activity. These studies have shown that short Ag⋯Ag separations are one of the most important factors for the manifestation of such properties [Yam & Lo, 1999; Pyykkö et al., 1997; Wang & Cohen, 2009; Zhang et al., 2009, Njogu et al., 2015; Nomiya et al., 2000]. On the other hand, it is known that to construct extended coordination networks with polynuclear metal-based structures, ligands of various binding sites and shapes have to be taken into account. At this stage, confidence in accomplishing this goal is based upon the sophisticated selection and utilization of suitable multifunctional organic ligands with certain features, such as being a multiple donor and having versatile bonding modes or the ability to take part in hydrogen bonding. Aromatic carboxylate derivatives have therefore been of interest in coordination and supramolecular chemistry.
The chemical classes of non-steroidal anti-inflammatory drugs (NSAIDs) consist of salicylate derivatives, phenylalkanoic acids, oxicams, anthranilic acids, et al., 2002). These compounds are some of the most commonly used medications to reduce pain, and diclofenac (dicl), [2-(2,6-dicholoroanilino)phenylacetic acid], is a member of the group of phenylalkanoic acids. Additionally, NSAIDs are used as anti-inflammatories, antipyretics and antitumor drugs. (Kim et al., 2004; Ribeiro et al., 2008; Duffy et al., 1998). In previous publications, the crystal structures of metal complexes of diclofenac have been reported (Caglar et al., 2013, 2014; Ali & Jabali, 2016; Dimiza et al., 2011; Kovala-Demertzi et al., 1997; Castellari et al., 1999; Kourkoumelis et al., 2004) and in addition its molecular structure has been characterized by various techniques (Iliescu et al., 2004). Based on the above-mentioned points, we report herein the synthesis and structural characterization of a new mixed-ligand silver(I) complex with dicl and pyrimidine (pym), namely [Ag(μ-dicl)(μ-pym)]n, (I).
and furanones (Weder2. Structural commentary
In (I), Ag1 atoms are four-coordinated by two carboxylate oxygen atoms [O2 and O1i; symmetry code: (i) −x + 1, −y + 1, −z + 2] from separate dicl ligands and two nitrogen atoms [N2 and N3ii; symmetry code: (ii) x, −y + , −z + ] from two separate pym ligands (Fig. 1). The discrimination parameter for the AgN2O2 core {τ4 = [(360° − (α + β)]/141°}, where α and β are the largest angles around the metal atom) is 0.732 and indicates substantial deviation from ideal tetrahedral geometry (Yang et al., 2007). The Ag—N bond lengths [2.381 (3) and 2.412 (3) Å] (Table 1) are similar to those found in the polymeric mixed-ligand silver(I) complex with 3,5-pyridinedicarboxylate (pydc) and (pym), [Ag4(μ-pydc)2(μ-pym)2]n [2.313 (5), 2.436 (5) and 2.490 (5) Å; Hamamci Alisir et al., 2015). The Ag—O bond lengths in (I) [2.279 (2) and 2.280 (2) Å] are longer than those in [Ag2(sal)2]n (sal = salicylate; 2.1887–2.2043 Å; Azócar et al., 2013) but shorter than those found in other silver carboxylate complexes (Wu & Mak, 1995; Zhang et al., 2015; Olson et al., 2006). Each pair of silver(I) atoms in the title complex is bridged by the μ2-carboxylato-O,O′ groups of dicl, forming centrosymmetric dinuclear [Ag2(μ-dicl)2] units (Fig. 2). Within the units are short intraligand C1—Cl1⋯π interactions to the pym ligands [3.6409 (15) Å]. The Ag1⋯Ag1i separation in the unit [2.8931 (5) Å] is significantly shorter than the sum of the van der Waals radii for two silver atoms (3.44 Å), indicating weak interactions between adjacent AgI ions, forming an [Ag2(COO)2] units. If coexisting strong argentophilic Ag1⋯Ag1i interactions are considered as coordinative, it could be reasoned that the coordination around Ag1 is slightly distorted trigonal–bipyramidal [the structural distortion index tau (τ) was calculated to be 0.06] (Addison et al., 1984).
As illustrated in Fig. 3, in the title complex, the pym ligand acts as a μ2-N,N1-bridging ligand between neighboring [Ag2(COO)2] units, leading to the formation of a two-dimensional coordination polymer, extending along (100) (Fig. 4). In other words, [Ag2(COO)2] units, which comprise eight-membered rings, can be defined as the nodes of the structure. Connection of the four different pym ligands to these nodes provides continuity of the structure (Fig. 4).
In the dicl ligand, the two benzene rings form a dihedral angle of 61.42 (5)°, the conformation of the ligand being stabilized by an intramolecular N1—H1⋯O2carboxyl hydrogen-bonding interaction [2.971 (3) Å] (Table 2).
3. Supramolecular features
In the crystal, a C16—H16⋯O1iii hydrogen-bonding interaction stabilizes the crystal packing (Table 2). In addition, there is a weak C13—H13⋯Cg6iv interaction to a pym ring [3.983 Å] and a strong π–π stacking interaction between aromatic rings of the pym ligands [Cg3⋯Cg3v = 3.4199 (17) Å; Cg3 is the centroid of the N2/C15/N3/C216–C18 ring; symmetry code (v): −x + 1, −y + 1, −z + 1], shown in Fig. 3. These interactions are significant for holding layers together in the solid state and generating an overall three-dimensional framework structure (Fig. 5).
4. Synthesis and crystallization
All reactions were performed with commercially available reagents and used without further purification. Solid sodium 2-(2,6-dicholoroanilino)phenylacetate (Nadicl) (0.32 g, 1 mmol) and pyrimidine (0.08 g, 1 mol) were added to an aqueous solution (10 cm3) of AgNO3 (0.17 g, 1 mmol) with stirring. A white suspension with a white precipitate formed and the addition of acetonitrile (10 cm3) to this resulted in a clear solution which was left to stand for slow evaporation in darkness at room temperature. Single crystals of (I) suitable for X-ray analysis were obtained within a few days.
5. Spectroscopy
The infrared spectrum was obtained using a Perkin Elmer Spectrum Two FTIR with a diamond Attenuated Total Reflectance attachment (ATR) in the frequency range 4000–600 cm−1. The sample was placed on the ATR crystal and pressure exerted by screwing the pressure clamp onto the sample to ensure maximum contact with the ATR crystal. The characteristic absorption bands of Nadicl and the title complex are listed in Table 3. The spectrum is deposited as a supplementary Fig. S1.
|
The characteristic absorption band in the FT–IR spectra of the carboxylate complexes is the asymmetric (υas) and symmetric (υs) vibrations of the carboxylate group. The difference between the asymmetric and symmetric carboxylate stretching [Δν = υas(COO−) - υs(COO−)] is often used to correlate the infrared spectra of metal carboxylate structures. When Δν < 200 cm−1, the carboxylate groups of the complexes can be considered bidentate (Azócar et al., 2013). The value of Δν is calculated as 183 cm−1 for 1. Based on the above-mentioned points, it is suggested that carboxylate groups in the complex exhibit a bidentate coordination mode, as revealed by the structural analysis.
6. Refinement
Crystal data, data collection and structure . All C-bound hydrogen atoms in (I) were included in calculated positions with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and allowed to ride, with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located in a difference-Fourier map but was also allowed to ride in the with Uiso(H) = 1.2Ueq(N).
details are summarized in Table 4
|
Supporting information
CCDC reference: 1500646
https://doi.org/10.1107/S2056989016014730/zs2370sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016014730/zs2370Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016014730/zs2370sup3.tif
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ag(C14H10Cl2NO2)(C4H4N2)] | F(000) = 960 |
Mr = 483.09 | Dx = 1.806 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 18.5886 (4) Å | Cell parameters from 13681 reflections |
b = 9.3071 (4) Å | θ = 2.0–29.1° |
c = 10.6646 (8) Å | µ = 1.45 mm−1 |
β = 105.644 (3)° | T = 293 K |
V = 1776.69 (16) Å3 | Prism, colorless |
Z = 4 | 0.60 × 0.46 × 0.27 mm |
Stoe IPDS2 diffractometer | 3672 reflections with I > 2σ(I) |
ω–scan rotation method | Rint = 0.088 |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | θmax = 28.7°, θmin = 2.3° |
Tmin = 0.471, Tmax = 0.693 | h = −24→24 |
13090 measured reflections | k = −12→12 |
4538 independent reflections | l = −14→14 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0488P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.095 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.57 e Å−3 |
4538 reflections | Δρmin = −1.14 e Å−3 |
236 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0206 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.17222 (14) | 0.3200 (3) | 0.6246 (3) | 0.0419 (6) | |
C2 | 0.12206 (16) | 0.2364 (3) | 0.5353 (3) | 0.0496 (7) | |
H2 | 0.1387 | 0.1695 | 0.4847 | 0.060* | |
C3 | 0.04629 (16) | 0.2541 (4) | 0.5223 (4) | 0.0546 (8) | |
H3 | 0.0116 | 0.2009 | 0.4607 | 0.065* | |
C4 | 0.02263 (15) | 0.3495 (4) | 0.5995 (3) | 0.0505 (7) | |
H4 | −0.0282 | 0.3603 | 0.5912 | 0.061* | |
C5 | 0.07381 (14) | 0.4302 (3) | 0.6904 (3) | 0.0406 (6) | |
C6 | 0.15110 (13) | 0.4220 (3) | 0.7029 (3) | 0.0381 (5) | |
C7 | 0.19762 (12) | 0.6542 (3) | 0.8068 (3) | 0.0377 (5) | |
C8 | 0.15520 (14) | 0.7377 (3) | 0.7067 (3) | 0.0451 (6) | |
H8 | 0.1312 | 0.6953 | 0.6275 | 0.054* | |
C9 | 0.14820 (16) | 0.8839 (4) | 0.7235 (4) | 0.0529 (8) | |
H9 | 0.1197 | 0.9397 | 0.6558 | 0.063* | |
C10 | 0.18355 (17) | 0.9463 (3) | 0.8408 (4) | 0.0573 (9) | |
H10 | 0.1785 | 1.0443 | 0.8535 | 0.069* | |
C11 | 0.22657 (15) | 0.8624 (3) | 0.9396 (4) | 0.0501 (7) | |
H11 | 0.2502 | 0.9054 | 1.0187 | 0.060* | |
C12 | 0.23575 (12) | 0.7165 (3) | 0.9249 (3) | 0.0391 (6) | |
C13 | 0.28437 (13) | 0.6294 (4) | 1.0340 (3) | 0.0437 (6) | |
H13A | 0.2575 | 0.5429 | 1.0448 | 0.052* | |
H13B | 0.2930 | 0.6843 | 1.1140 | 0.052* | |
C14 | 0.36042 (13) | 0.5857 (3) | 1.0147 (3) | 0.0367 (5) | |
C15 | 0.44153 (16) | 0.3069 (3) | 0.5812 (3) | 0.0444 (6) | |
H15 | 0.4577 | 0.2251 | 0.6310 | 0.053* | |
C16 | 0.40626 (15) | 0.4123 (3) | 0.3828 (3) | 0.0461 (6) | |
H16 | 0.3968 | 0.4080 | 0.2926 | 0.055* | |
C17 | 0.39630 (16) | 0.5399 (4) | 0.4394 (3) | 0.0489 (7) | |
H17 | 0.3807 | 0.6220 | 0.3899 | 0.059* | |
C18 | 0.41040 (15) | 0.5417 (3) | 0.5740 (3) | 0.0461 (6) | |
H18 | 0.4038 | 0.6266 | 0.6154 | 0.055* | |
Ag1 | 0.46373 (2) | 0.43353 (3) | 0.87652 (2) | 0.04354 (10) | |
Cl1 | 0.26694 (4) | 0.29612 (9) | 0.63922 (10) | 0.0610 (2) | |
Cl2 | 0.03984 (4) | 0.54045 (9) | 0.79226 (9) | 0.05280 (19) | |
N1 | 0.20327 (12) | 0.5025 (3) | 0.7931 (3) | 0.0443 (5) | |
H1 | 0.2409 | 0.4588 | 0.8434 | 0.053* | |
N2 | 0.43318 (12) | 0.4245 (3) | 0.6450 (2) | 0.0425 (5) | |
N3 | 0.42916 (13) | 0.2935 (3) | 0.4527 (2) | 0.0457 (5) | |
O1 | 0.41252 (11) | 0.5735 (3) | 1.1157 (2) | 0.0586 (6) | |
O2 | 0.36494 (11) | 0.5641 (3) | 0.9022 (2) | 0.0590 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0374 (11) | 0.0372 (13) | 0.0497 (15) | 0.0009 (10) | 0.0092 (11) | 0.0018 (13) |
C2 | 0.0522 (15) | 0.0425 (15) | 0.0518 (17) | −0.0023 (12) | 0.0097 (13) | −0.0065 (14) |
C3 | 0.0458 (14) | 0.0469 (16) | 0.063 (2) | −0.0076 (12) | 0.0001 (13) | −0.0057 (16) |
C4 | 0.0350 (12) | 0.0496 (17) | 0.062 (2) | −0.0056 (11) | 0.0045 (12) | 0.0027 (15) |
C5 | 0.0362 (11) | 0.0378 (13) | 0.0472 (15) | 0.0012 (10) | 0.0104 (11) | 0.0046 (12) |
C6 | 0.0341 (10) | 0.0344 (12) | 0.0430 (14) | 0.0025 (9) | 0.0055 (10) | 0.0047 (11) |
C7 | 0.0293 (10) | 0.0376 (13) | 0.0472 (14) | 0.0020 (9) | 0.0119 (10) | 0.0004 (12) |
C8 | 0.0339 (11) | 0.0495 (15) | 0.0504 (16) | 0.0006 (11) | 0.0090 (11) | 0.0030 (14) |
C9 | 0.0402 (13) | 0.0480 (16) | 0.072 (2) | 0.0062 (12) | 0.0182 (14) | 0.0166 (17) |
C10 | 0.0468 (15) | 0.0384 (15) | 0.089 (3) | 0.0036 (12) | 0.0230 (16) | −0.0026 (17) |
C11 | 0.0383 (12) | 0.0468 (16) | 0.067 (2) | −0.0010 (11) | 0.0167 (13) | −0.0129 (15) |
C12 | 0.0267 (10) | 0.0422 (14) | 0.0502 (15) | 0.0005 (9) | 0.0135 (10) | −0.0046 (12) |
C13 | 0.0319 (11) | 0.0561 (17) | 0.0432 (15) | 0.0005 (11) | 0.0102 (10) | −0.0061 (14) |
C14 | 0.0303 (10) | 0.0338 (12) | 0.0445 (14) | 0.0008 (9) | 0.0074 (10) | −0.0019 (11) |
C15 | 0.0539 (14) | 0.0419 (14) | 0.0395 (14) | 0.0020 (12) | 0.0159 (12) | 0.0026 (13) |
C16 | 0.0441 (13) | 0.0577 (18) | 0.0356 (13) | −0.0024 (12) | 0.0094 (11) | 0.0018 (13) |
C17 | 0.0451 (13) | 0.0503 (16) | 0.0493 (16) | 0.0086 (12) | 0.0096 (12) | 0.0110 (14) |
C18 | 0.0404 (12) | 0.0432 (15) | 0.0522 (17) | 0.0056 (11) | 0.0084 (12) | −0.0035 (13) |
Ag1 | 0.04020 (13) | 0.05477 (15) | 0.03712 (13) | 0.00513 (8) | 0.01297 (8) | −0.00042 (10) |
Cl1 | 0.0401 (3) | 0.0555 (4) | 0.0877 (6) | 0.0068 (3) | 0.0176 (3) | −0.0087 (5) |
Cl2 | 0.0458 (3) | 0.0534 (4) | 0.0647 (5) | 0.0013 (3) | 0.0243 (3) | −0.0020 (4) |
N1 | 0.0344 (10) | 0.0402 (12) | 0.0504 (14) | 0.0065 (9) | −0.0019 (9) | −0.0026 (11) |
N2 | 0.0401 (10) | 0.0500 (14) | 0.0375 (11) | 0.0031 (9) | 0.0104 (9) | −0.0026 (11) |
N3 | 0.0534 (13) | 0.0460 (13) | 0.0392 (12) | −0.0014 (10) | 0.0149 (10) | −0.0015 (11) |
O1 | 0.0334 (9) | 0.0967 (19) | 0.0426 (11) | 0.0109 (10) | 0.0049 (8) | 0.0071 (12) |
O2 | 0.0412 (10) | 0.0880 (18) | 0.0456 (12) | 0.0186 (10) | 0.0080 (9) | −0.0133 (12) |
C1—C2 | 1.379 (4) | C12—C13 | 1.504 (4) |
C1—C6 | 1.390 (4) | C13—C14 | 1.537 (3) |
C1—Cl1 | 1.739 (3) | C13—H13A | 0.9700 |
C2—C3 | 1.387 (4) | C13—H13B | 0.9700 |
C2—H2 | 0.9300 | C14—O2 | 1.242 (4) |
C3—C4 | 1.362 (5) | C14—O1 | 1.244 (3) |
C3—H3 | 0.9300 | C15—N2 | 1.320 (4) |
C4—C5 | 1.382 (4) | C15—N3 | 1.333 (4) |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C5—C6 | 1.409 (3) | C16—N3 | 1.338 (4) |
C5—Cl2 | 1.733 (3) | C16—C17 | 1.367 (5) |
C6—N1 | 1.387 (3) | C16—H16 | 0.9300 |
C7—C8 | 1.382 (4) | C17—C18 | 1.388 (5) |
C7—C12 | 1.394 (4) | C17—H17 | 0.9300 |
C7—N1 | 1.426 (4) | C18—N2 | 1.330 (4) |
C8—C9 | 1.383 (5) | C18—H18 | 0.9300 |
C8—H8 | 0.9300 | Ag1—O2 | 2.279 (2) |
C9—C10 | 1.375 (6) | Ag1—O1i | 2.280 (2) |
C9—H9 | 0.9300 | Ag1—N2 | 2.381 (3) |
C10—C11 | 1.380 (5) | Ag1—N3ii | 2.412 (3) |
C10—H10 | 0.9300 | Ag1—Ag1i | 2.8931 (5) |
C11—C12 | 1.383 (4) | N1—H1 | 0.8600 |
C11—H11 | 0.9300 | ||
C2—C1—C6 | 123.5 (2) | C12—C13—H13B | 108.5 |
C2—C1—Cl1 | 118.0 (2) | C14—C13—H13B | 108.5 |
C6—C1—Cl1 | 118.5 (2) | H13A—C13—H13B | 107.5 |
C1—C2—C3 | 118.8 (3) | O2—C14—O1 | 125.6 (2) |
C1—C2—H2 | 120.6 | O2—C14—C13 | 118.5 (2) |
C3—C2—H2 | 120.6 | O1—C14—C13 | 115.9 (3) |
C4—C3—C2 | 120.1 (3) | N2—C15—N3 | 126.6 (3) |
C4—C3—H3 | 119.9 | N2—C15—H15 | 116.7 |
C2—C3—H3 | 119.9 | N3—C15—H15 | 116.7 |
C3—C4—C5 | 120.3 (3) | N3—C16—C17 | 122.1 (3) |
C3—C4—H4 | 119.9 | N3—C16—H16 | 118.9 |
C5—C4—H4 | 119.9 | C17—C16—H16 | 118.9 |
C4—C5—C6 | 122.0 (3) | C16—C17—C18 | 117.2 (3) |
C4—C5—Cl2 | 117.6 (2) | C16—C17—H17 | 121.4 |
C6—C5—Cl2 | 120.5 (2) | C18—C17—H17 | 121.4 |
N1—C6—C1 | 121.9 (2) | N2—C18—C17 | 121.4 (3) |
N1—C6—C5 | 122.8 (3) | N2—C18—H18 | 119.3 |
C1—C6—C5 | 115.2 (2) | C17—C18—H18 | 119.3 |
C8—C7—C12 | 120.6 (3) | O2—Ag1—O1i | 148.04 (10) |
C8—C7—N1 | 121.4 (3) | O2—Ag1—N2 | 99.71 (8) |
C12—C7—N1 | 118.1 (2) | O1i—Ag1—N2 | 89.58 (8) |
C7—C8—C9 | 120.5 (3) | O2—Ag1—N3ii | 97.48 (9) |
C7—C8—H8 | 119.8 | O1i—Ag1—N3ii | 108.69 (9) |
C9—C8—H8 | 119.8 | N2—Ag1—N3ii | 107.93 (9) |
C10—C9—C8 | 119.7 (3) | O2—Ag1—Ag1i | 81.70 (6) |
C10—C9—H9 | 120.2 | O1i—Ag1—Ag1i | 76.19 (6) |
C8—C9—H9 | 120.2 | N2—Ag1—Ag1i | 151.80 (6) |
C9—C10—C11 | 119.4 (3) | N3ii—Ag1—Ag1i | 99.73 (6) |
C9—C10—H10 | 120.3 | C6—N1—C7 | 123.3 (2) |
C11—C10—H10 | 120.3 | C6—N1—H1 | 118.4 |
C10—C11—C12 | 122.2 (3) | C7—N1—H1 | 118.4 |
C10—C11—H11 | 118.9 | C15—N2—C18 | 116.7 (3) |
C12—C11—H11 | 118.9 | C15—N2—Ag1 | 122.4 (2) |
C11—C12—C7 | 117.6 (3) | C18—N2—Ag1 | 120.8 (2) |
C11—C12—C13 | 120.6 (3) | C15—N3—C16 | 115.9 (3) |
C7—C12—C13 | 121.9 (2) | C15—N3—Ag1iii | 116.2 (2) |
C12—C13—C14 | 114.9 (2) | C16—N3—Ag1iii | 127.6 (2) |
C12—C13—H13A | 108.5 | C14—O1—Ag1i | 125.2 (2) |
C14—C13—H13A | 108.5 | C14—O2—Ag1 | 117.96 (17) |
C6—C1—C2—C3 | −0.1 (5) | N1—C7—C12—C13 | 2.6 (4) |
Cl1—C1—C2—C3 | −180.0 (3) | C11—C12—C13—C14 | −105.3 (3) |
C1—C2—C3—C4 | −2.0 (5) | C7—C12—C13—C14 | 75.6 (3) |
C2—C3—C4—C5 | 0.7 (5) | C12—C13—C14—O2 | −31.7 (4) |
C3—C4—C5—C6 | 2.7 (5) | C12—C13—C14—O1 | 149.1 (3) |
C3—C4—C5—Cl2 | −175.9 (3) | N3—C16—C17—C18 | −0.5 (4) |
C2—C1—C6—N1 | 179.0 (3) | C16—C17—C18—N2 | 0.5 (4) |
Cl1—C1—C6—N1 | −1.2 (4) | C1—C6—N1—C7 | 133.5 (3) |
C2—C1—C6—C5 | 3.2 (4) | C5—C6—N1—C7 | −51.1 (4) |
Cl1—C1—C6—C5 | −176.9 (2) | C8—C7—N1—C6 | −21.6 (4) |
C4—C5—C6—N1 | 179.8 (3) | C12—C7—N1—C6 | 157.8 (3) |
Cl2—C5—C6—N1 | −1.6 (4) | N3—C15—N2—C18 | −0.3 (4) |
C4—C5—C6—C1 | −4.5 (4) | N3—C15—N2—Ag1 | −176.8 (2) |
Cl2—C5—C6—C1 | 174.0 (2) | C17—C18—N2—C15 | −0.1 (4) |
C12—C7—C8—C9 | −1.8 (4) | C17—C18—N2—Ag1 | 176.4 (2) |
N1—C7—C8—C9 | 177.6 (3) | N2—C15—N3—C16 | 0.3 (4) |
C7—C8—C9—C10 | −0.2 (4) | N2—C15—N3—Ag1iii | 173.7 (2) |
C8—C9—C10—C11 | 1.0 (5) | C17—C16—N3—C15 | 0.2 (4) |
C9—C10—C11—C12 | 0.2 (5) | C17—C16—N3—Ag1iii | −172.4 (2) |
C10—C11—C12—C7 | −2.1 (4) | O2—C14—O1—Ag1i | 17.1 (4) |
C10—C11—C12—C13 | 178.7 (3) | C13—C14—O1—Ag1i | −163.8 (2) |
C8—C7—C12—C11 | 3.0 (4) | O1—C14—O2—Ag1 | 18.3 (4) |
N1—C7—C12—C11 | −176.5 (2) | C13—C14—O2—Ag1 | −160.8 (2) |
C8—C7—C12—C13 | −177.9 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x, −y+1/2, z+1/2; (iii) x, −y+1/2, z−1/2. |
Cg6 is the centroid of the [please define] ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.43 | 2.971 (3) | 122 |
C16—H16···O1iv | 0.93 | 2.51 | 3.248 (4) | 136 |
C13—H13B···Cg6iii | 0.97 | 3.30 | 3.983 (3) | 129 |
Symmetry codes: (iii) x, −y+1/2, z−1/2; (iv) x, y, z−1. |
Frequencies in cm-1; w, weak; m, medium; s, strong; vs, very strong. Nadicl = sodium 2-(2,6-dichloroanilino)phenylacetate. |
Assignment | Nadicl | (I) | |
ν(NH) | 3250 (m) | 3307 (m) | |
νar(CH) | 3060 (vw) | 3064–3029 (vw) | |
νal(CH) | 2980 (vw) | 2956–2890 (vw) | |
νas(COO) | 1572 (vs) | 1548 (vs) | |
νs(COO) | 1399 (w) | 1365 (vs) | |
ν(CCl) | 768 (s) | 768 (vs) |
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Ali, H. A. & Jabali, B. (2016). Polyhedron, 107, 97–106. Google Scholar
Azócar, M., Muñoz, H., Levin, P., Dinamarca, N., Gomez, G., Ibanez, A., Garland, M. T. & Paez, M. A. (2013). Commun. Inorg. Synth. 1, 19–21. Google Scholar
Caglar, S., Aydemir, I. E., Adıgüzel, E., Caglar, B., Demir, S. & Büyükgüngör, O. (2013). Inorg. Chim. Acta, 408, 131–138. CSD CrossRef CAS Google Scholar
Caglar, S., Aydemir, I. E., Cankaya, M., Kuzucu, M., Temel, E. & Büyükgüngör, O. (2014). J. Coord. Chem. 67, 969–985. CSD CrossRef CAS Google Scholar
Castellari, C., Feroci, G. & Ottani, S. (1999). Acta Cryst. C55, 907–910. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Dimiza, F., Perdih, F., Tangoulis, V., Turel, I., Kessissoglou, D. P. & Psomas, G. (2011). J. Inorg. Biochem. 105, 476–489. Web of Science CSD CrossRef CAS PubMed Google Scholar
Duffy, C. P., Elliott, C. J., O'Connor, R. A., Heenan, M. M., Coyle, S., Cleary, I. M., Kavanagh, K., Verhaegen, S., O'Loughlin, C. M., NicAmhlaoibh, R. & Clynes, M. (1998). Eur. J. Cancer, 34, 1250–1259. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hamamci Alisir, S., Demir, S., Sariboga, B. & Buyukgungor, O. (2015). J. Coord. Chem. 68, 155–168. Google Scholar
Iliescu, T., Baia, M. & Kiefer, W. (2004). Chem. Phys. 298, 167–174. CrossRef CAS Google Scholar
Kim, K., Yoon, J., Kim, J. K., Baek, S. J., Eling, T. E., Lee, W. J., Ryu, J., Lee, J. G., Lee, J. & Yoo, J. (2004). Biochem. Biophys. Res. Commun. 325, 1298–1303. Web of Science CrossRef PubMed CAS Google Scholar
Kourkoumelis, N., Demertzis, M. A., Kovala-Demertzi, D., Koutsodimou, A. & Moukarika, A. (2004). Spectrochim. Acta Part A, 60, 2253–2259. Web of Science CrossRef Google Scholar
Kovala-Demertzi, D., Theodorou, A., Demertzis, M. A., Raptopoulou, C. P. & Terzis, A. (1997). J. Inorg. Biochem. 65, 151–157. CAS Google Scholar
Njogu, E. M., Omondı, B. & Nyamorı, V. O. (2015). J. Coord. Chem. 68, 3389–3431. CrossRef CAS Google Scholar
Nomiya, K., Takahashi, S. & Noguchi, R. (2000). J. Chem. Soc. Dalton Trans. pp. 2091–2097. Web of Science CSD CrossRef Google Scholar
Olson, L., Whitcomb, D. R., Rajeswaran, M., Blanton, T. N. & Stwertka, B. J. (2006). Chem. Mater. 18, 1667–1674. Web of Science CSD CrossRef CAS Google Scholar
Pyykkö, P. (1997). Chem. Rev. 97, 597–636. CrossRef PubMed Web of Science Google Scholar
Ribeiro, G., Benadiba, M., Colquhoun, A. & de Oliveira Silva, D. (2008). Polyhedron, 27, 1131–1137. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Wang, Z. & Cohen, S. M. (2009). Chem. Soc. Rev. 38, 1315–1329. Web of Science CrossRef PubMed CAS Google Scholar
Weder, J. E., Dillon, C. T., Hambley, T. W., Kennedy, B. J., Lay, P. A., Biffin, J. R., Regtop, H. L. & Davies, N. M. (2002). Coord. Chem. Rev. 232, 95–126. Web of Science CrossRef CAS Google Scholar
Wu, D. D. & Mak, T. C. W. (1995). J. Chem. Soc. Dalton Trans. pp. 2671–2678. CSD CrossRef Web of Science Google Scholar
Yam, V. W. & Lo, K. (1999). Chem. Soc. Rev. 28, 323–334. Web of Science CrossRef CAS Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, J. P., Huang, X. C. & Chen, X. M. (2009). Chem. Soc. Rev. 38, 2385–2396. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, T., Huang, H. Q., Mei, H. X., Wang, D. F., Wang, X., Huang, R. & Zheng, L. (2015). J. Mol. Struct. 1100, 237–244. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.