research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2′-benzoyl-1′-(4-methyl­phenyl)-1,1′,2,2′,5′,6′,7′,7a′-octa­hydro­spiro­[indole-3,3′-pyrrolizin]-2-one and 2′-(4-bromo­benzoyl)-1′-(2-chloro­phen­yl)-1,1′,2,2′,5′,6′,7′,7a′-octa­hydro­spiro­[indole-3,3′-pyrrolizin]-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamil Nadu, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
*Correspondence e-mail: mailtorvkk@yahoo.co.in

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 19 August 2016; accepted 19 October 2016; online 25 October 2016)

The two title compounds, C28H26N2O2, (I), and C27H22BrClN2O2, (II), differ in their substituents, viz.4-methyl­phenyl and benzoyl rings in (I) replaced by 2-chloro­phenyl and 4- bromo­benzoyl, respectively, in (II). A significant difference between the two mol­ecules is found in the deviation of the benzoyl O atom from the least-squares plane of the ring to which it is attached [0.593 (4) and 0.131 (3) Å, respectively], a fact which may be attributed to the different participation of the benzoyl O atoms as acceptors in their inter­molecular C—H⋯O inter­actions. The chemical modifications in (I) and (II) do not seem to affect the type nor strength of the inter­molecular N—H⋯N and C—H⋯O hydrogen bonds responsible for the two crystal structures, such that the aggregation of mol­ecules appears similar in spite of the mol­ecular changes.

1. Chemical context

Pyrrolizine, a bicyclic ring system containing two fused pyrrole rings, is present in many herbs (Hoang et al., 2015[Hoang, L. S., Tran, M. H., Lee, J. S., To, D. C., Nguyen, V. T., Kim, J. A., Lee, J. H., Woo, M. H. & Min, B. S. (2015). Chem. Pharm. Bull. 63, 481-484.]) and displays a variety of biological activities such as anti­convulsant (Abbas et al., 2011[Abbas, S., Awadallah, F., Ibrahim, N., Gouda, A. & Shehata, B. (2011). Med. Chem. Res. 20, 1015-1023.]), anti­arrhythmic (Miyano et al., 1983[Miyano, S., Morita, M. & Sato, F. (1983). EP patent No. EP89061A2.]), anti­viral (Kadushkin et al., 1990[Kadushkin, A. V., Nesterova, I. N., Golovko, T. V., Nikolaeva, I. S., Pushkina, T. V., Fomina, A. N., Sokolova, A. S., Chernov, V. A. & Granik, V. G. (1990). Pharm. Chem. J. 24, 875-881.]), anti­bacterial (Sing et al., 2002[Singh, B., Sahu, P. M. & Singh, S. (2002). Fitoterapia, 73, 153-155.]) etc. Indole, a pharmacologically significant nucleus, is known for anti-inflammatory (Misra et al., 1996[Misra, U., Hitkari, A., Saxena, A. K., Gurtu, S. & Shanker, K. (1996). Eur. J. Med. Chem. 31, 629-634.]), anti­bacterial (Dandia et al., 1993[Dandia, A., Sehgal, V. & Singh, P. (1993). Indian J. Chem. Sect. B, 32, 1288-1291.]) and anti­viral (Giampieri et al., 2009[Giampieri, M., Balbi, A., Mazzei, M., La Colla, P., Ibba, C. & Loddo, R. (2009). Antiviral Res. 83, 179-185.]) activities.

[Scheme 1]

The title compounds (I)[link] and (II)[link] are ­spiro compounds in which the pyrrolizine and indole rings are spiro-fused, in addition to having respective benzo­yl/methyl­phenyl and bromo­benzo­yl/chloro­phenyl substitutions. In the present work, the mol­ecular and crystal structures of (I)[link] and (II)[link] are presented, and the differences in their mol­ecular conformation and inter­molecular inter­actions is discussed.

2. Structural commentary

Mol­ecular diagrams of (I)[link] and (II)[link] are shown in Figs. 1[link] and 2[link], respectively. Both are di­spiro compounds in which the pyrrolizine and indole rings are spiro-fused, and they differ in the benzo­yl/methyl­phenyl and bromo­benzo­yl/chloro­phenyl substitutions. The Cremer & Pople puckering parameters of the two fused five-membered pyrrole rings of the pyrrolzine ring system in (I)[link] viz. N2–C9–C10–C11–C12 and N2–C2–C14–C13–C12 are, respectively, Q = 0.362 (4) Å, φ = 264.4 (5)° indicating a twist about C10–C11, and Q = 0.408 (3) Å, φ=67.9 (4)° conforming to an envelope on C14. The corresponding values in (II)[link], Q = 0.378 (3) Å, φ = 82.4 (4)° and Q = 0.423 (3) Å, φ = 251.4 (3)°, may differ slightly from those in (I)[link] but they do not show a significant difference in the modes of puckering. The total puckering amplitude Q of the fused eight-membered pyrrolizine and the nine-membered indolone ring systems are respectively, 0.727 (3) and 0.129 (3) Å in (I)[link] and 0.724 (2) and 0.065 (2) Å in (II)[link], indicating that the atoms of the nine-membered indole ring system are nearly coplanar. In addition, the indole atom O1 remains coplanar with the rest of the atoms in both structures.

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability level) of title compound (I)[link], showing the atom-labelling scheme. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability level) of title compound (II)[link], showing the atom-labelling scheme. H atoms have been omitted for clarity.

In both compounds, the spiro-fused ring systems tend to be rigid by remaining nearly perpendicular to each other, whereas the remaining substituted rings appear to be more `compromising' towards hydrogen-bonding requirements, irrespective of their intra- or inter­molecular nature. As an example, the free rotation of the benzoyl group in (II)[link] allows the formation of an intra­molecular C—H⋯O hydrogen bond (Table 2[link], last entry) while the inter­action is absent in (I)[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O2i 0.93 2.60 3.292 (3) 132
C25—H25⋯O2ii 0.93 2.61 3.327 (4) 134
N1—H1⋯N2iii 0.86 2.36 3.198 (3) 164
C7—H7⋯O1iii 0.93 2.47 3.235 (3) 139
C21—H21⋯O1 0.93 2.47 3.337 (3) 155
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+1, -z+2; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

A significant difference between the two structures is observed in the deviation of benzoyl atom O2 from the least-squares plane of the C15–C21 atoms: 0.593 (4) in (I)[link] and 0.131 (3) Å in (II)[link]. The larger deviation in (I)[link] appears to be the result of the participation of O2 in three very weak (but cooperative) inter­molecular C—H⋯O hydrogen bonds, all three coming from the same side of the plane (Table 1[link], three topmost entries and Fig. 3[link]). In the structure of (II)[link], instead, only two (competitive) C—H⋯O bonds involving O2 occur, on opposite side of the plane (Table 2[link], two topmost entries and Fig. 4[link]). These inter­molecular inter­action patterns exemplify a case where weak C—H⋯O hydrogen bonds can have noticeable effects on the mol­ecular conformation.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.65 3.441 (4) 144
C19—H19⋯O2ii 0.93 2.70 3.301 (5) 123
C20—H20⋯O2ii 0.93 2.65 3.278 (4) 125
N1—H1⋯N2iii 0.86 2.40 3.232 (3) 163
C7—H7⋯O1iii 0.93 2.28 3.098 (4) 147
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x+{\script{3\over 4}}, y+{\script{1\over 4}}, z-{\script{1\over 4}}]; (iii) [-x+{\script{1\over 2}}, -y+2, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The three C—H⋯O bonds in (I) involving benzoyl O2 as acceptor (Table 1[link], top three entries) all from the same side of the plane.
[Figure 4]
Figure 4
The two C—H⋯O bonds in (II) involving benzoyl O2 (Table 2[link], top two entries) on opposite sides of the benzoyl plane.

3. Supra­molecular features

Even if the differences in the substituents produce differences in lattice types, space group, cell metrics, etc, these mol­ecular modifications do not seem to affect the type nor strength of the two relevant N—H⋯N and C—H⋯O inter­molecular hydrogen bonds defining the crystal structures (Tables 1[link] and 2[link]), which can thus be considered as essential for the crystal structure layout. In particular, those bonds involving C7 and N1 link glide-related mol­ecules into similar one-dimensional strings along the shortest cell axis (Figs. 5[link] and 6[link]). As already discussed, the other, relatively weaker, inter­molecular C—H⋯O hydrogen bonds involving the benzoyl atom O2 as acceptors have a profound effect on the mol­ecular conformation of the mol­ecules. Finally, a close O1⋯Br1(−x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]) contact [dO⋯Br= 3.192 (2) Å] is present in structure (II)[link], with no further significant Cl⋯Cl, Cl⋯Br, Br⋯Br or C—H⋯π or ππ inter­actions present in either crystal structure.

[Figure 5]
Figure 5
One-dimensional strings of mol­ecules of (I)[link], along the c axis.
[Figure 6]
Figure 6
One-dimensional strings of mol­ecules of (II)[link], along the b axis.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.53, update February 2014; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic non-polymeric single-crystal structures revealed 27 structures of which only two bear a close relationship to the title compound (POXZIL and POXZOR; Fokas et al., 1998[Fokas, D., Ryan, W. J., Casebier, D. S. & Coffen, D. L. (1998). Tetrahedron Lett. 39, 2235-2238.]). There are no other direct analogues of the title compounds, either in coordinated or uncoordinated form. In POXZOR, the deviation of the benzoyl atom O2 from the plane containing the rest of the atoms of the group is about 0.465 Å, similar to the case in (I)[link], but the quality of the H-atom treatment in POXZOR precluded any meaningful comparison.

5. Synthesis and crystallization

The synthesis of (I)[link] involved a mixture of (E)-1-phenyl-3-(p-tol­yl)prop-2-en-1-one (0.4 mmol) [for the synthesis of (II)[link], (E)-1-(4-bromo­phen­yl)-3-(2-chloro­phen­yl)prop-2-en-1-one (0.4 mmol)], isatin (0.4 mmol) and L-proline (0.4 mmol), which was dissolved in 5 ml of methanol, and 1 mol% of CMPTC (Chiral Multisite Phase Transfer Catalyst) was added and stirred at reflux temperature until the completion of reaction as indicated by TLC. After this step, the mixture was poured onto ice; the precipitate was filtered and recrystallized from ethanol solution, to get the pure product without column chromatography.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In both (I)[link] and (II)[link], the carbon-bound H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in a riding-model approximation, with Uiso(H) set at 1.2–1.5Ueq(C). Compound (I)[link] was refined as an inversion twin.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C28H26N2O2 C27H22BrClN2O2
Mr 422.51 521.82
Crystal system, space group Orthorhombic, Fdd2 Monoclinic, P21/n
Temperature (K) 295 295
a, b, c (Å) 36.030 (2), 24.2248 (16), 10.1301 (6) 10.7280 (4), 9.7793 (4), 22.6746 (9)
α, β, γ (°) 90, 90, 90 90, 98.972 (1), 90
V3) 8841.7 (9) 2349.74 (16)
Z 16 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 1.89
Crystal size (mm) 0.26 × 0.18 × 0.15 0.25 × 0.14 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMARTAPEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.98, 0.99 0.89, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 36903, 4649, 3325 22593, 4740, 3446
Rint 0.108 0.029
(sin θ/λ)max−1) 0.636 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.113, 0.98 0.039, 0.106, 1.03
No. of reflections 4649 4740
No. of parameters 291 298
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.14 0.64, −0.63
Absolute structure Refined as a perfect inversion twin
Absolute structure parameter 0.5
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013/1 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLUTON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013/1 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLUTON (Spek, 2009), Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) 2'-Benzoyl-1'-(4-methylphenyl)-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3,3'-pyrrolizin]-2-one top
Crystal data top
C28H26N2O2Dx = 1.270 Mg m3
Mr = 422.51Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 3325 reflections
a = 36.030 (2) Åθ = 2.0–26.8°
b = 24.2248 (16) ŵ = 0.08 mm1
c = 10.1301 (6) ÅT = 295 K
V = 8841.7 (9) Å3Needle, colourless
Z = 160.26 × 0.18 × 0.15 mm
F(000) = 3584
Data collection top
Bruker SMART APEX CCD
diffractometer
3325 reflections with I > 2σ(I)
ω scansRint = 0.108
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 26.9°, θmin = 2.0°
Tmin = 0.98, Tmax = 0.99h = 4545
36903 measured reflectionsk = 3030
4649 independent reflectionsl = 1112
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0652P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max < 0.001
wR(F2) = 0.113Δρmax = 0.18 e Å3
S = 0.98Δρmin = 0.14 e Å3
4649 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
291 parametersExtinction coefficient: 0.00076 (15)
1 restraintAbsolute structure: Refined as a perfect inversion twin
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.5
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component perfect inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27285 (7)1.01345 (8)0.0201 (2)0.0579 (6)
O20.31457 (6)0.81610 (7)0.0631 (2)0.0509 (6)
N10.25279 (7)0.96268 (9)0.1968 (2)0.0418 (6)
H10.25470.98740.25740.050*
N20.23589 (7)0.92646 (10)0.1303 (2)0.0429 (6)
C10.26150 (8)0.97090 (11)0.0689 (3)0.0398 (7)
C20.25557 (8)0.91652 (11)0.0062 (3)0.0362 (6)
C30.23874 (7)0.88025 (11)0.0999 (3)0.0358 (6)
C40.22634 (8)0.82631 (11)0.0999 (3)0.0416 (7)
H40.22470.80670.02120.050*
C50.21643 (9)0.80184 (12)0.2170 (3)0.0502 (8)
H50.20790.76560.21740.060*
C60.21893 (11)0.83025 (13)0.3325 (4)0.0613 (10)
H60.21230.81280.41090.074*
C70.23109 (10)0.88454 (13)0.3362 (3)0.0556 (9)
H70.23300.90380.41540.067*
C80.24016 (8)0.90845 (11)0.2186 (3)0.0385 (6)
C90.19502 (10)0.92472 (16)0.1279 (4)0.0621 (9)
H9A0.18620.90340.05310.074*
H9B0.18480.96170.12270.074*
C100.18444 (10)0.89746 (17)0.2557 (4)0.0717 (11)
H10A0.18280.92430.32650.086*
H10B0.16080.87850.24760.086*
C110.21532 (10)0.85747 (14)0.2801 (4)0.0605 (9)
H11A0.21180.82380.22980.073*
H11B0.21710.84830.37310.073*
C120.24949 (9)0.88832 (12)0.2339 (3)0.0431 (7)
H120.25930.91010.30760.052*
C130.28144 (8)0.85597 (11)0.1704 (3)0.0392 (6)
H130.27070.82270.13090.047*
C140.29306 (7)0.89341 (10)0.0576 (3)0.0358 (6)
H140.30770.92400.09370.043*
C150.31537 (8)0.86578 (11)0.0504 (3)0.0371 (6)
C160.33632 (8)0.90084 (12)0.1443 (3)0.0396 (7)
C170.33895 (12)0.88417 (14)0.2743 (3)0.0659 (10)
H170.32770.85160.30160.079*
C180.35827 (14)0.91583 (17)0.3632 (4)0.0878 (15)
H180.35920.90520.45130.105*
C190.37602 (11)0.96247 (15)0.3241 (4)0.0748 (12)
H190.38950.98320.38490.090*
C200.37413 (10)0.97879 (15)0.1964 (4)0.0646 (10)
H200.38661.01040.16910.078*
C210.35373 (9)0.94869 (13)0.1071 (4)0.0539 (8)
H210.35170.96100.02040.065*
C220.31168 (8)0.83740 (11)0.2623 (3)0.0422 (7)
C230.34826 (9)0.85341 (14)0.2504 (3)0.0528 (8)
H230.35480.87850.18490.063*
C240.37553 (10)0.83296 (15)0.3336 (3)0.0604 (9)
H240.40000.84440.32190.072*
C250.36741 (10)0.79638 (13)0.4324 (4)0.0591 (9)
C260.33129 (12)0.78139 (15)0.4451 (4)0.0812 (13)
H260.32470.75710.51230.097*
C270.30406 (11)0.80081 (15)0.3620 (4)0.0717 (12)
H270.27980.78880.37380.086*
C280.39708 (13)0.77479 (18)0.5240 (5)0.0886 (13)
H28A0.38910.74040.56170.133*
H28B0.40140.80110.59320.133*
H28C0.41960.76910.47530.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0879 (17)0.0324 (11)0.0535 (14)0.0049 (11)0.0031 (12)0.0084 (10)
O20.0626 (14)0.0343 (11)0.0557 (14)0.0041 (9)0.0017 (11)0.0077 (10)
N10.0564 (15)0.0294 (12)0.0396 (14)0.0016 (10)0.0034 (12)0.0051 (11)
N20.0423 (14)0.0501 (14)0.0362 (13)0.0055 (11)0.0054 (11)0.0007 (12)
C10.0459 (17)0.0316 (14)0.0418 (17)0.0040 (12)0.0038 (14)0.0050 (13)
C20.0410 (16)0.0315 (14)0.0363 (15)0.0007 (11)0.0010 (12)0.0033 (12)
C30.0367 (15)0.0341 (14)0.0366 (16)0.0005 (11)0.0011 (12)0.0011 (12)
C40.0475 (17)0.0360 (14)0.0412 (18)0.0057 (13)0.0043 (14)0.0077 (13)
C50.061 (2)0.0368 (15)0.053 (2)0.0125 (14)0.0122 (16)0.0033 (15)
C60.089 (3)0.0481 (18)0.047 (2)0.0194 (17)0.0194 (19)0.0005 (16)
C70.081 (2)0.0445 (17)0.0416 (18)0.0116 (16)0.0134 (17)0.0076 (15)
C80.0418 (16)0.0317 (13)0.0421 (15)0.0025 (12)0.0041 (13)0.0034 (13)
C90.044 (2)0.087 (3)0.055 (2)0.0102 (18)0.0091 (16)0.001 (2)
C100.051 (2)0.095 (3)0.069 (3)0.0107 (19)0.0129 (19)0.005 (2)
C110.061 (2)0.065 (2)0.055 (2)0.0094 (17)0.0143 (18)0.0090 (17)
C120.0486 (17)0.0467 (17)0.0341 (15)0.0052 (14)0.0018 (13)0.0039 (13)
C130.0449 (16)0.0350 (14)0.0378 (15)0.0046 (12)0.0015 (13)0.0005 (12)
C140.0389 (15)0.0325 (13)0.0360 (15)0.0032 (11)0.0007 (12)0.0027 (12)
C150.0369 (15)0.0356 (14)0.0389 (15)0.0012 (12)0.0051 (12)0.0056 (12)
C160.0377 (15)0.0410 (16)0.0402 (16)0.0061 (13)0.0050 (13)0.0038 (12)
C170.094 (3)0.0537 (19)0.050 (2)0.0063 (19)0.020 (2)0.0125 (17)
C180.129 (4)0.080 (3)0.055 (2)0.005 (3)0.043 (3)0.014 (2)
C190.082 (3)0.057 (2)0.085 (3)0.0034 (19)0.037 (2)0.006 (2)
C200.058 (2)0.059 (2)0.077 (3)0.0122 (17)0.0173 (19)0.003 (2)
C210.0531 (19)0.0514 (18)0.0570 (19)0.0089 (16)0.0083 (16)0.0089 (16)
C220.0506 (17)0.0346 (15)0.0414 (16)0.0035 (12)0.0056 (14)0.0020 (13)
C230.051 (2)0.066 (2)0.0412 (18)0.0021 (16)0.0008 (15)0.0062 (15)
C240.050 (2)0.078 (2)0.052 (2)0.0026 (17)0.0111 (16)0.0037 (19)
C250.071 (2)0.0485 (17)0.057 (2)0.0037 (17)0.0218 (19)0.0026 (17)
C260.091 (3)0.067 (2)0.086 (3)0.023 (2)0.033 (2)0.038 (2)
C270.065 (2)0.071 (2)0.079 (3)0.0256 (19)0.024 (2)0.036 (2)
C280.095 (3)0.084 (3)0.086 (3)0.013 (2)0.041 (3)0.004 (2)
Geometric parameters (Å, º) top
O1—C11.214 (3)C13—C221.502 (4)
O2—C151.211 (3)C13—C141.518 (4)
N1—C11.348 (4)C13—H130.9800
N1—C81.408 (3)C14—C151.514 (4)
N1—H10.8600C14—H140.9800
N2—C21.463 (4)C15—C161.481 (4)
N2—C91.473 (4)C16—C211.371 (4)
N2—C121.482 (4)C16—C171.381 (4)
C1—C21.537 (4)C17—C181.372 (5)
C2—C31.515 (4)C17—H170.9300
C2—C141.552 (4)C18—C191.357 (6)
C3—C41.381 (4)C18—H180.9300
C3—C81.384 (4)C19—C201.354 (6)
C4—C51.373 (4)C19—H190.9300
C4—H40.9300C20—C211.375 (5)
C5—C61.360 (5)C20—H200.9300
C5—H50.9300C21—H210.9300
C6—C71.387 (4)C22—C271.371 (5)
C6—H60.9300C22—C231.379 (4)
C7—C81.365 (5)C23—C241.386 (5)
C7—H70.9300C23—H230.9300
C9—C101.503 (5)C24—C251.369 (5)
C9—H9A0.9700C24—H240.9300
C9—H9B0.9700C25—C261.357 (5)
C10—C111.496 (5)C25—C281.509 (5)
C10—H10A0.9700C26—C271.376 (5)
C10—H10B0.9700C26—H260.9300
C11—C121.515 (4)C27—H270.9300
C11—H11A0.9700C28—H28A0.9600
C11—H11B0.9700C28—H28B0.9600
C12—C131.534 (4)C28—H28C0.9600
C12—H120.9800
C1—N1—C8111.3 (2)C22—C13—C14116.5 (2)
C1—N1—H1124.3C22—C13—C12115.9 (2)
C8—N1—H1124.3C14—C13—C12102.6 (2)
C2—N2—C9117.7 (2)C22—C13—H13107.1
C2—N2—C12110.2 (2)C14—C13—H13107.1
C9—N2—C12108.9 (2)C12—C13—H13107.1
O1—C1—N1126.6 (3)C15—C14—C13115.2 (2)
O1—C1—C2124.9 (3)C15—C14—C2112.3 (2)
N1—C1—C2108.5 (2)C13—C14—C2103.2 (2)
N2—C2—C3120.7 (2)C15—C14—H14108.6
N2—C2—C1110.6 (2)C13—C14—H14108.6
C3—C2—C1101.6 (2)C2—C14—H14108.6
N2—C2—C14101.1 (2)O2—C15—C16120.9 (3)
C3—C2—C14112.1 (2)O2—C15—C14120.2 (3)
C1—C2—C14110.7 (2)C16—C15—C14118.7 (2)
C4—C3—C8118.6 (3)C21—C16—C17118.5 (3)
C4—C3—C2132.7 (2)C21—C16—C15122.8 (3)
C8—C3—C2108.4 (2)C17—C16—C15118.6 (3)
C5—C4—C3119.5 (3)C18—C17—C16119.8 (3)
C5—C4—H4120.3C18—C17—H17120.1
C3—C4—H4120.3C16—C17—H17120.1
C6—C5—C4120.5 (3)C19—C18—C17120.8 (4)
C6—C5—H5119.8C19—C18—H18119.6
C4—C5—H5119.8C17—C18—H18119.6
C5—C6—C7121.6 (3)C20—C19—C18119.9 (4)
C5—C6—H6119.2C20—C19—H19120.1
C7—C6—H6119.2C18—C19—H19120.1
C8—C7—C6117.0 (3)C19—C20—C21120.0 (3)
C8—C7—H7121.5C19—C20—H20120.0
C6—C7—H7121.5C21—C20—H20120.0
C7—C8—C3122.7 (3)C16—C21—C20120.8 (3)
C7—C8—N1127.6 (3)C16—C21—H21119.6
C3—C8—N1109.7 (3)C20—C21—H21119.6
N2—C9—C10104.6 (3)C27—C22—C23116.0 (3)
N2—C9—H9A110.8C27—C22—C13120.3 (3)
C10—C9—H9A110.8C23—C22—C13123.7 (3)
N2—C9—H9B110.8C22—C23—C24121.6 (3)
C10—C9—H9B110.8C22—C23—H23119.2
H9A—C9—H9B108.9C24—C23—H23119.2
C11—C10—C9103.8 (3)C25—C24—C23121.7 (3)
C11—C10—H10A111.0C25—C24—H24119.2
C9—C10—H10A111.0C23—C24—H24119.2
C11—C10—H10B111.0C26—C25—C24116.6 (3)
C9—C10—H10B111.0C26—C25—C28121.9 (4)
H10A—C10—H10B109.0C24—C25—C28121.5 (4)
C10—C11—C12103.5 (3)C25—C26—C27122.3 (4)
C10—C11—H11A111.1C25—C26—H26118.8
C12—C11—H11A111.1C27—C26—H26118.8
C10—C11—H11B111.1C22—C27—C26121.9 (4)
C12—C11—H11B111.1C22—C27—H27119.0
H11A—C11—H11B109.0C26—C27—H27119.0
N2—C12—C11104.9 (3)C25—C28—H28A109.5
N2—C12—C13105.6 (2)C25—C28—H28B109.5
C11—C12—C13119.2 (2)H28A—C28—H28B109.5
N2—C12—H12108.9C25—C28—H28C109.5
C11—C12—H12108.9H28A—C28—H28C109.5
C13—C12—H12108.9H28B—C28—H28C109.5
C8—N1—C1—O1179.4 (3)C11—C12—C13—C2292.7 (4)
C8—N1—C1—C21.9 (3)N2—C12—C13—C1421.7 (3)
C9—N2—C2—C328.9 (4)C11—C12—C13—C14139.3 (3)
C12—N2—C2—C396.9 (3)C22—C13—C14—C1571.3 (3)
C9—N2—C2—C189.4 (3)C12—C13—C14—C15161.0 (2)
C12—N2—C2—C1144.8 (2)C22—C13—C14—C2165.9 (2)
C9—N2—C2—C14153.2 (2)C12—C13—C14—C238.3 (3)
C12—N2—C2—C1427.5 (3)N2—C2—C14—C15165.2 (2)
O1—C1—C2—N246.5 (4)C3—C2—C14—C1535.2 (3)
N1—C1—C2—N2134.8 (2)C1—C2—C14—C1577.5 (3)
O1—C1—C2—C3175.9 (3)N2—C2—C14—C1340.5 (2)
N1—C1—C2—C35.4 (3)C3—C2—C14—C1389.5 (3)
O1—C1—C2—C1464.8 (3)C1—C2—C14—C13157.8 (2)
N1—C1—C2—C14113.9 (3)C13—C14—C15—O219.7 (4)
N2—C2—C3—C456.6 (4)C2—C14—C15—O298.0 (3)
C1—C2—C3—C4179.3 (3)C13—C14—C15—C16163.7 (2)
C14—C2—C3—C462.4 (4)C2—C14—C15—C1678.6 (3)
N2—C2—C3—C8129.8 (3)O2—C15—C16—C21146.6 (3)
C1—C2—C3—C87.1 (3)C14—C15—C16—C2136.8 (4)
C14—C2—C3—C8111.2 (3)O2—C15—C16—C1732.3 (4)
C8—C3—C4—C51.2 (4)C14—C15—C16—C17144.3 (3)
C2—C3—C4—C5172.0 (3)C21—C16—C17—C180.9 (6)
C3—C4—C5—C60.3 (5)C15—C16—C17—C18179.9 (4)
C4—C5—C6—C70.7 (6)C16—C17—C18—C192.4 (7)
C5—C6—C7—C80.5 (6)C17—C18—C19—C201.3 (7)
C6—C7—C8—C32.1 (5)C18—C19—C20—C211.2 (6)
C6—C7—C8—N1179.5 (3)C17—C16—C21—C201.6 (5)
C4—C3—C8—C72.4 (5)C15—C16—C21—C20177.3 (3)
C2—C3—C8—C7172.2 (3)C19—C20—C21—C162.6 (6)
C4—C3—C8—N1178.9 (3)C14—C13—C22—C27176.0 (3)
C2—C3—C8—N16.4 (3)C12—C13—C22—C2763.2 (4)
C1—N1—C8—C7175.7 (3)C14—C13—C22—C231.4 (4)
C1—N1—C8—C32.9 (3)C12—C13—C22—C23119.4 (3)
C2—N2—C9—C10141.9 (3)C27—C22—C23—C240.8 (5)
C12—N2—C9—C1015.5 (3)C13—C22—C23—C24176.7 (3)
N2—C9—C10—C1133.1 (4)C22—C23—C24—C250.7 (5)
C9—C10—C11—C1237.9 (4)C23—C24—C25—C260.3 (5)
C2—N2—C12—C11122.7 (3)C23—C24—C25—C28179.2 (3)
C9—N2—C12—C118.0 (3)C24—C25—C26—C271.2 (6)
C2—N2—C12—C134.1 (3)C28—C25—C26—C27179.9 (4)
C9—N2—C12—C13134.7 (3)C23—C22—C27—C260.1 (6)
C10—C11—C12—N228.3 (3)C13—C22—C27—C26177.7 (4)
C10—C11—C12—C13146.2 (3)C25—C26—C27—C221.2 (7)
N2—C12—C13—C22149.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.653.441 (4)144
C19—H19···O2ii0.932.703.301 (5)123
C20—H20···O2ii0.932.653.278 (4)125
N1—H1···N2iii0.862.403.232 (3)163
C7—H7···O1iii0.932.283.098 (4)147
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+3/4, y+1/4, z1/4; (iii) x+1/2, y+2, z1/2.
(II) 2'-(4-Bromobenzoyl)-1'-(2-chlorophenyl)-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3,3'-pyrrolizin]-2-one top
Crystal data top
C27H22BrClN2O2F(000) = 1064
Mr = 521.82Dx = 1.475 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.7280 (4) ÅCell parameters from 3446 reflections
b = 9.7793 (4) Åθ = 2.0–26.0°
c = 22.6746 (9) ŵ = 1.89 mm1
β = 98.972 (1)°T = 295 K
V = 2349.74 (16) Å3Needle, colourless
Z = 40.25 × 0.14 × 0.12 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3446 reflections with I > 2σ(I)
ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 26.3°, θmin = 2.0°
Tmin = 0.89, Tmax = 0.97h = 1313
22593 measured reflectionsk = 1212
4740 independent reflectionsl = 2825
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.9581P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4740 reflectionsΔρmax = 0.64 e Å3
298 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.07782 (3)1.20198 (4)0.80288 (2)0.06695 (15)
Cl10.77846 (8)0.56854 (9)1.02506 (3)0.0637 (2)
O10.63821 (17)0.92263 (17)0.73698 (7)0.0378 (4)
O20.57612 (18)0.8610 (2)0.95502 (8)0.0471 (5)
N10.72258 (19)1.10554 (19)0.79346 (9)0.0312 (5)
H10.70991.16860.76680.037*
N20.82778 (19)0.78758 (19)0.82501 (9)0.0305 (5)
C10.6915 (2)0.9728 (2)0.78339 (10)0.0283 (5)
C20.7382 (2)0.8914 (2)0.84101 (10)0.0266 (5)
C30.7894 (2)1.0043 (2)0.88401 (10)0.0272 (5)
C40.8386 (2)1.0042 (3)0.94381 (11)0.0364 (6)
H40.84520.92300.96540.044*
C50.8783 (3)1.1264 (3)0.97153 (12)0.0419 (7)
H50.91181.12711.01190.050*
C60.8685 (3)1.2472 (3)0.93957 (12)0.0393 (6)
H60.89621.32820.95870.047*
C70.8182 (3)1.2497 (2)0.87969 (11)0.0350 (6)
H70.81151.33090.85810.042*
C80.7784 (2)1.1277 (2)0.85324 (10)0.0278 (5)
C90.9619 (3)0.8258 (3)0.82865 (15)0.0489 (7)
H9A0.98350.89960.85700.059*
H9B0.98030.85430.78990.059*
C101.0337 (3)0.6969 (3)0.84945 (15)0.0517 (8)
H10A1.11730.71830.87040.062*
H10B1.04140.63710.81610.062*
C110.9524 (2)0.6323 (3)0.89115 (13)0.0458 (7)
H11A0.96750.67470.93030.055*
H11B0.96840.53490.89540.055*
C120.8189 (2)0.6601 (2)0.85977 (10)0.0283 (5)
H120.79190.58490.83220.034*
C130.7161 (2)0.6880 (2)0.89799 (10)0.0265 (5)
H130.75620.72820.93580.032*
C140.6354 (2)0.7997 (2)0.86225 (10)0.0262 (5)
H140.58340.75820.82750.031*
C150.5499 (2)0.8689 (2)0.90140 (11)0.0298 (5)
C160.4334 (2)0.9432 (2)0.87449 (11)0.0313 (5)
C170.3551 (2)0.9935 (3)0.91299 (12)0.0406 (6)
H170.37490.97660.95370.049*
C180.2489 (3)1.0680 (3)0.89154 (13)0.0470 (7)
H180.19691.10080.91750.056*
C190.2204 (2)1.0934 (3)0.83125 (13)0.0430 (7)
C200.2941 (3)1.0426 (3)0.79221 (13)0.0510 (8)
H200.27301.05870.75150.061*
C210.4005 (3)0.9672 (3)0.81402 (12)0.0431 (7)
H210.45050.93210.78760.052*
C220.6459 (2)0.5618 (2)0.91200 (11)0.0344 (6)
C230.5596 (3)0.4974 (3)0.86931 (15)0.0517 (7)
H230.54280.53420.83110.062*
C240.4973 (3)0.3791 (4)0.88206 (19)0.0724 (10)
H240.43930.33760.85270.087*
C250.5221 (4)0.3242 (4)0.9380 (2)0.0744 (12)
H250.48040.24500.94660.089*
C260.6058 (3)0.3830 (3)0.98101 (17)0.0630 (10)
H260.62170.34501.01900.076*
C270.6681 (3)0.5007 (3)0.96804 (13)0.0434 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04738 (19)0.0747 (3)0.0810 (3)0.02523 (17)0.01691 (17)0.02584 (19)
Cl10.0790 (6)0.0694 (5)0.0416 (4)0.0123 (4)0.0053 (4)0.0191 (4)
O10.0523 (11)0.0352 (10)0.0250 (10)0.0092 (8)0.0030 (8)0.0001 (8)
O20.0537 (12)0.0633 (13)0.0253 (10)0.0179 (10)0.0087 (8)0.0015 (9)
N10.0468 (12)0.0211 (10)0.0254 (11)0.0009 (9)0.0049 (9)0.0051 (8)
N20.0343 (11)0.0227 (10)0.0366 (12)0.0016 (9)0.0127 (9)0.0015 (9)
C10.0334 (12)0.0286 (13)0.0243 (12)0.0004 (10)0.0087 (10)0.0003 (10)
C20.0339 (12)0.0206 (12)0.0258 (12)0.0011 (10)0.0061 (10)0.0017 (9)
C30.0321 (12)0.0211 (12)0.0280 (12)0.0025 (10)0.0034 (10)0.0002 (10)
C40.0485 (15)0.0274 (13)0.0308 (14)0.0036 (12)0.0015 (11)0.0027 (11)
C50.0513 (16)0.0397 (16)0.0313 (15)0.0010 (13)0.0039 (12)0.0037 (12)
C60.0477 (15)0.0273 (13)0.0426 (16)0.0048 (12)0.0061 (12)0.0099 (12)
C70.0486 (15)0.0203 (12)0.0374 (15)0.0016 (11)0.0103 (12)0.0016 (11)
C80.0333 (12)0.0228 (12)0.0285 (13)0.0020 (10)0.0086 (10)0.0019 (10)
C90.0403 (15)0.0387 (16)0.073 (2)0.0053 (12)0.0263 (15)0.0014 (14)
C100.0353 (14)0.0495 (18)0.071 (2)0.0010 (13)0.0122 (14)0.0018 (15)
C110.0386 (15)0.0458 (17)0.0521 (18)0.0064 (13)0.0042 (13)0.0085 (14)
C120.0351 (13)0.0215 (12)0.0282 (13)0.0005 (10)0.0046 (10)0.0003 (10)
C130.0326 (12)0.0208 (12)0.0263 (12)0.0007 (9)0.0050 (10)0.0017 (9)
C140.0314 (12)0.0232 (12)0.0241 (12)0.0005 (10)0.0051 (9)0.0003 (9)
C150.0350 (13)0.0255 (13)0.0300 (14)0.0014 (10)0.0086 (10)0.0012 (10)
C160.0344 (13)0.0286 (13)0.0316 (14)0.0005 (10)0.0072 (10)0.0026 (10)
C170.0447 (15)0.0470 (16)0.0315 (14)0.0062 (13)0.0106 (11)0.0032 (12)
C180.0455 (16)0.0503 (18)0.0487 (18)0.0137 (14)0.0187 (13)0.0024 (14)
C190.0355 (14)0.0411 (16)0.0534 (18)0.0087 (12)0.0104 (12)0.0103 (13)
C200.0442 (16)0.071 (2)0.0386 (16)0.0147 (15)0.0092 (13)0.0115 (15)
C210.0421 (15)0.0562 (18)0.0330 (15)0.0135 (13)0.0120 (12)0.0020 (13)
C220.0391 (14)0.0252 (13)0.0417 (15)0.0021 (11)0.0147 (12)0.0036 (11)
C230.0572 (18)0.0378 (16)0.0604 (19)0.0119 (14)0.0100 (15)0.0032 (14)
C240.068 (2)0.052 (2)0.099 (3)0.0265 (18)0.017 (2)0.011 (2)
C250.082 (3)0.0393 (19)0.113 (3)0.0122 (18)0.050 (3)0.013 (2)
C260.079 (2)0.0428 (19)0.077 (2)0.0060 (18)0.043 (2)0.0208 (17)
C270.0505 (16)0.0317 (14)0.0530 (18)0.0096 (13)0.0237 (13)0.0100 (13)
Geometric parameters (Å, º) top
Br1—C191.891 (3)C11—H11A0.9700
Cl1—C271.743 (3)C11—H11B0.9700
O1—C11.220 (3)C12—C131.530 (3)
O2—C151.207 (3)C12—H120.9800
N1—C11.351 (3)C13—C221.505 (3)
N1—C81.411 (3)C13—C141.542 (3)
N1—H10.8600C13—H130.9800
N2—C91.476 (3)C14—C151.530 (3)
N2—C21.482 (3)C14—H140.9800
N2—C121.486 (3)C15—C161.492 (3)
C1—C21.545 (3)C16—C211.382 (3)
C2—C31.518 (3)C16—C171.392 (3)
C2—C141.555 (3)C17—C181.375 (4)
C3—C41.376 (3)C17—H170.9300
C3—C81.390 (3)C18—C191.376 (4)
C4—C51.386 (4)C18—H180.9300
C4—H40.9300C19—C201.369 (4)
C5—C61.381 (4)C20—C211.383 (4)
C5—H50.9300C20—H200.9300
C6—C71.381 (4)C21—H210.9300
C6—H60.9300C22—C231.383 (4)
C7—C81.373 (3)C22—C271.391 (4)
C7—H70.9300C23—C241.388 (4)
C9—C101.514 (4)C23—H230.9300
C9—H9A0.9700C24—C251.366 (6)
C9—H9B0.9700C24—H240.9300
C10—C111.520 (4)C25—C261.347 (5)
C10—H10A0.9700C25—H250.9300
C10—H10B0.9700C26—C271.385 (4)
C11—C121.521 (3)C26—H260.9300
C1—N1—C8111.52 (19)N2—C12—H12109.1
C1—N1—H1124.2C11—C12—H12109.1
C8—N1—H1124.2C13—C12—H12109.1
C9—N2—C2118.47 (19)C22—C13—C12113.70 (19)
C9—N2—C12108.97 (19)C22—C13—C14115.66 (19)
C2—N2—C12110.33 (17)C12—C13—C14102.94 (18)
O1—C1—N1127.1 (2)C22—C13—H13108.1
O1—C1—C2124.7 (2)C12—C13—H13108.1
N1—C1—C2108.25 (19)C14—C13—H13108.1
N2—C2—C3118.18 (19)C15—C14—C13110.26 (19)
N2—C2—C1106.45 (18)C15—C14—C2116.27 (18)
C3—C2—C1101.86 (18)C13—C14—C2101.78 (18)
N2—C2—C14101.48 (17)C15—C14—H14109.4
C3—C2—C14115.06 (19)C13—C14—H14109.4
C1—C2—C14114.00 (19)C2—C14—H14109.4
C4—C3—C8119.0 (2)O2—C15—C16119.5 (2)
C4—C3—C2132.6 (2)O2—C15—C14119.3 (2)
C8—C3—C2108.38 (19)C16—C15—C14121.2 (2)
C3—C4—C5119.3 (2)C21—C16—C17118.4 (2)
C3—C4—H4120.3C21—C16—C15123.9 (2)
C5—C4—H4120.3C17—C16—C15117.7 (2)
C6—C5—C4120.4 (2)C18—C17—C16120.9 (3)
C6—C5—H5119.8C18—C17—H17119.6
C4—C5—H5119.8C16—C17—H17119.6
C5—C6—C7121.2 (2)C17—C18—C19119.4 (2)
C5—C6—H6119.4C17—C18—H18120.3
C7—C6—H6119.4C19—C18—H18120.3
C8—C7—C6117.5 (2)C20—C19—C18121.0 (2)
C8—C7—H7121.3C20—C19—Br1120.1 (2)
C6—C7—H7121.3C18—C19—Br1118.8 (2)
C7—C8—C3122.6 (2)C19—C20—C21119.3 (3)
C7—C8—N1127.6 (2)C19—C20—H20120.3
C3—C8—N1109.8 (2)C21—C20—H20120.3
N2—C9—C10104.5 (2)C16—C21—C20121.0 (2)
N2—C9—H9A110.8C16—C21—H21119.5
C10—C9—H9A110.8C20—C21—H21119.5
N2—C9—H9B110.8C23—C22—C27116.4 (3)
C10—C9—H9B110.8C23—C22—C13121.9 (2)
H9A—C9—H9B108.9C27—C22—C13121.7 (2)
C9—C10—C11103.1 (2)C22—C23—C24121.7 (3)
C9—C10—H10A111.1C22—C23—H23119.2
C11—C10—H10A111.1C24—C23—H23119.2
C9—C10—H10B111.1C25—C24—C23119.4 (4)
C11—C10—H10B111.1C25—C24—H24120.3
H10A—C10—H10B109.1C23—C24—H24120.3
C10—C11—C12103.0 (2)C26—C25—C24121.0 (3)
C10—C11—H11A111.2C26—C25—H25119.5
C12—C11—H11A111.2C24—C25—H25119.5
C10—C11—H11B111.2C25—C26—C27119.4 (3)
C12—C11—H11B111.2C25—C26—H26120.3
H11A—C11—H11B109.1C27—C26—H26120.3
N2—C12—C11105.35 (19)C26—C27—C22122.1 (3)
N2—C12—C13105.19 (18)C26—C27—Cl1116.9 (2)
C11—C12—C13118.5 (2)C22—C27—Cl1120.9 (2)
C8—N1—C1—O1177.4 (2)N2—C12—C13—C1424.7 (2)
C8—N1—C1—C24.1 (3)C11—C12—C13—C14142.1 (2)
C9—N2—C2—C325.9 (3)C22—C13—C14—C1571.0 (2)
C12—N2—C2—C3100.6 (2)C12—C13—C14—C15164.34 (18)
C9—N2—C2—C187.7 (3)C22—C13—C14—C2164.97 (19)
C12—N2—C2—C1145.73 (19)C12—C13—C14—C240.4 (2)
C9—N2—C2—C14152.7 (2)N2—C2—C14—C15160.34 (19)
C12—N2—C2—C1426.2 (2)C3—C2—C14—C1531.5 (3)
O1—C1—C2—N258.4 (3)C1—C2—C14—C1585.7 (2)
N1—C1—C2—N2120.2 (2)N2—C2—C14—C1340.5 (2)
O1—C1—C2—C3177.2 (2)C3—C2—C14—C1388.3 (2)
N1—C1—C2—C34.2 (2)C1—C2—C14—C13154.52 (19)
O1—C1—C2—C1452.7 (3)C13—C14—C15—O220.2 (3)
N1—C1—C2—C14128.7 (2)C2—C14—C15—O294.9 (3)
N2—C2—C3—C468.0 (3)C13—C14—C15—C16158.4 (2)
C1—C2—C3—C4175.8 (3)C2—C14—C15—C1686.4 (3)
C14—C2—C3—C452.0 (3)O2—C15—C16—C21174.7 (3)
N2—C2—C3—C8113.3 (2)C14—C15—C16—C216.7 (4)
C1—C2—C3—C82.9 (2)O2—C15—C16—C173.9 (4)
C14—C2—C3—C8126.7 (2)C14—C15—C16—C17174.7 (2)
C8—C3—C4—C51.3 (4)C21—C16—C17—C181.4 (4)
C2—C3—C4—C5179.9 (2)C15—C16—C17—C18177.3 (2)
C3—C4—C5—C60.1 (4)C16—C17—C18—C190.3 (4)
C4—C5—C6—C70.5 (4)C17—C18—C19—C201.8 (5)
C5—C6—C7—C80.0 (4)C17—C18—C19—Br1177.5 (2)
C6—C7—C8—C31.3 (4)C18—C19—C20—C211.4 (5)
C6—C7—C8—N1178.9 (2)Br1—C19—C20—C21177.8 (2)
C4—C3—C8—C71.9 (4)C17—C16—C21—C201.7 (4)
C2—C3—C8—C7179.2 (2)C15—C16—C21—C20176.8 (3)
C4—C3—C8—N1178.2 (2)C19—C20—C21—C160.4 (5)
C2—C3—C8—N10.7 (3)C12—C13—C22—C2373.0 (3)
C1—N1—C8—C7177.9 (2)C14—C13—C22—C2345.8 (3)
C1—N1—C8—C32.2 (3)C12—C13—C22—C27104.4 (3)
C2—N2—C9—C10144.5 (2)C14—C13—C22—C27136.8 (2)
C12—N2—C9—C1017.3 (3)C27—C22—C23—C240.9 (4)
N2—C9—C10—C1134.6 (3)C13—C22—C23—C24178.4 (3)
C9—C10—C11—C1238.6 (3)C22—C23—C24—C250.3 (5)
C9—N2—C12—C116.9 (3)C23—C24—C25—C260.0 (6)
C2—N2—C12—C11124.8 (2)C24—C25—C26—C270.3 (5)
C9—N2—C12—C13132.8 (2)C25—C26—C27—C220.9 (5)
C2—N2—C12—C131.2 (2)C25—C26—C27—Cl1178.2 (3)
C10—C11—C12—N228.2 (3)C23—C22—C27—C261.2 (4)
C10—C11—C12—C13145.4 (2)C13—C22—C27—C26178.7 (2)
N2—C12—C13—C22150.6 (2)C23—C22—C27—Cl1177.9 (2)
C11—C12—C13—C2292.0 (3)C13—C22—C27—Cl10.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···O2i0.932.603.292 (3)132
C25—H25···O2ii0.932.613.327 (4)134
N1—H1···N2iii0.862.363.198 (3)164
C7—H7···O1iii0.932.473.235 (3)139
C21—H21···O10.932.473.337 (3)155
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instrumental Facility (SAIF), Indian Institute of Technology, Chennai, for the data collection and the School of Physics, Madurai Kamaraj University, Madurai, for access to the Cambridge Structural Database.

References

First citationAbbas, S., Awadallah, F., Ibrahim, N., Gouda, A. & Shehata, B. (2011). Med. Chem. Res. 20, 1015–1023.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDandia, A., Sehgal, V. & Singh, P. (1993). Indian J. Chem. Sect. B, 32, 1288–1291.  Google Scholar
First citationFokas, D., Ryan, W. J., Casebier, D. S. & Coffen, D. L. (1998). Tetrahedron Lett. 39, 2235–2238.  CSD CrossRef CAS Google Scholar
First citationGiampieri, M., Balbi, A., Mazzei, M., La Colla, P., Ibba, C. & Loddo, R. (2009). Antiviral Res. 83, 179–185.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoang, L. S., Tran, M. H., Lee, J. S., To, D. C., Nguyen, V. T., Kim, J. A., Lee, J. H., Woo, M. H. & Min, B. S. (2015). Chem. Pharm. Bull. 63, 481–484.  CrossRef CAS PubMed Google Scholar
First citationKadushkin, A. V., Nesterova, I. N., Golovko, T. V., Nikolaeva, I. S., Pushkina, T. V., Fomina, A. N., Sokolova, A. S., Chernov, V. A. & Granik, V. G. (1990). Pharm. Chem. J. 24, 875–881.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMisra, U., Hitkari, A., Saxena, A. K., Gurtu, S. & Shanker, K. (1996). Eur. J. Med. Chem. 31, 629–634.  CrossRef CAS Google Scholar
First citationMiyano, S., Morita, M. & Sato, F. (1983). EP patent No. EP89061A2.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, B., Sahu, P. M. & Singh, S. (2002). Fitoterapia, 73, 153–155.  CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds