research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5-butyl­amino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde obtained from a microwave-assisted reaction using caesium carbonate as catalyst

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Universidad de los Andes, Carrera 1 No. 18A 10, Bogotá, Colombia, and bBioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes, Carrera 1 No. 18A 10, Bogotá, Colombia
*Correspondence e-mail: jportill@uniandes.edu.co

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 30 September 2016; accepted 25 October 2016; online 28 October 2016)

The title compound, C14H18N4O, synthesized from an unconventional microwave-assisted method using caesium carbonate as catalyst, has an approximately planar conformation with the pyridyl and pyrazole rings inclined by a dihedral angle of 7.94 (3)°, allowing the formation of an intra­molecular N—H⋯N hydrogen bond. The supra­molecular assembly has a three-dimensional arrangement controlled mainly by weak C—H⋯O and C—H⋯π inter­actions.

1. Chemical context

Pyrazole derivatives are compounds with notable biological activity (Peng et al., 2013[Peng, X.-M., Cai, G.-X. & Zhou, C.-H. (2013). Curr. Top. Med. Chem. 13, 1963-2010.]) and some derivatives have the capacity to form complexes with metal ions (Budzisz et al., 2009[Budzisz, E., Miernicka, M., Lorenz, I.-P., Mayer, P., Krajewska, U. & Rozalski, M. (2009). Polyhedron, 28, 637-645.]). Currently, 5-amino­pyrazoles have been found to play an important role as biologically active compounds (Zhang et al., 2014[Zhang, Z., Ojo, K. K., Vidadala, R., Huang, W., Geiger, J. A., Scheele, S., Choi, R., Reid, M. C., Keyloun, K. R., Rivas, K., Siddaramaiah, L. K., Comess, K. M., Robinson, K. P., Merta, P. J., Kifle, L., Hol, W. G. J., Parsons, M., Merritt, E. A., Maly, D. J., Verlinde, C. L. M. J., Van Voorhis, W. C. & Fan, E. (2014). ACS Med. Chem. Lett. 5, 40-44.]). As such, they are considered to be building blocks of high inter­est for pharmaceutical agents (Sakya et al., 2006[Sakya, S. M., Lundy DeMello, K. M., Minich, M. L., Rast, B., Shavnya, A., Rafka, R. J., Koss, D. A., Cheng, H., Li, J., Jaynes, B. H., Ziegler, C. B., Mann, D. W., Petras, C. F., Seibel, S. B., Silvia, A. M., George, D. M., Lund, L. A., Denis, S. S., Hickman, A., Haven, M. L. & Lynch, M. P. (2006). Bioorg. Med. Chem. Lett. 16, 288-292.]) and agrochemicals (Yuan et al., 2013[Yuan, J.-G., Wu, H.-X., Lu, M.-L., Song, G.-P. & Xu, H.-H. (2013). J. Agric. Food Chem. 61, 4236-4241.]). Recently, our research group reported the chemoselective synthesis of 5-alkyl­amino-1H-pyrazole-4-carbaldehydes in which C—N bond formation in pyrazole rings were efficiently assisted by using caesium carbonate under microwave irradiation with short reaction times and excellent yields (Orrego-Hernández et al., 2015a[Orrego-Hernández, J., Cobo, J. & Portilla, J. (2015a). Eur. J. Org. Chem. pp. 5064-5069.]). Herein, we report the crystal structure of the new 5-(butylamino)-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde derived from 5-chloro-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde and butyl­amine by using the `caesium effect' and microwave irradiation.

[Scheme 1]

2. Structural commentary

In the mol­ecular structure of the title compound (Fig. 1[link]), the pyridyl and pyrazole rings are nearly coplanar with a dihedral angle between their planes of 7.94 (3)°. The pyridyl ring has an orientation that allows the formation of an intra­molecular N5—H1⋯N11 hydrogen bond (Fig. 1[link] and Table 1[link]) to generate an S(6) motif. This structural feature is also observed in its analog 5-cyclo­hexyl­amino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde, which even shows a smaller dihedral angle between the pyridyl and pyrazole rings [2.47 (5)°; Orrego-Hernández et al., 2015b[Orrego Hernández, J., Portilla, J., Cobo, J. & Glidewell, C. (2015b). Acta Cryst. C71, 363-368.]). In both mol­ecules, the 3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde nucleus presents a similar, but not identical, conformation with a maximum r.m.s. deviation of 0.0906 Å, keeping the atomic distances very similar in the pyrazole ring.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 abd Cg2 are the centroids of the C3–C5/N1/N2 and N11/C12–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1⋯N11 0.88 (1) 2.00 (1) 2.7117 (7) 137 (1)
C15—H15⋯O41i 0.95 2.36 3.2906 (8) 165
C52—H52BCg1ii 0.99 2.77 3.5141 (6) 132
C53—H53ACg2iii 0.99 2.98 3.8761 (6) 152
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing anisotropic displacement ellipsoids drawn at the 50% probability level. The intramolecular N—H⋯N hydrogen bond is shown as a dashed line (see Table 1[link]).

3. Supra­molecular features

In the crystal structure, C15—H15⋯O41i [symmetry code: (i) x − 1, −y + [{3\over 2}], z − [{1\over 2}]] inter­actions link the mol­ecules into C(10) chains running along [201], see Fig. 2[link]. Parallel chains are connected by weak C52—H52BCg1ii [Cg1 is the centroid of the C3–C5/N1/N2 ring; symmetry code: (ii) −x + 1, −y + 1, −z + 2] and C53—H53ACg2iii [Cg2 is the centroid of the N11/C12–C16 ring; symmetry code: (iii) x + 1, y, z] inter­actions, which help to define a three-dimensional array.

[Figure 2]
Figure 2
The crystal structure of the title compound, showing the C—H⋯O and C—H⋯π hydrogen-bond inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.37 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1-(pyridin-2-yl)-1H-pyrazole nucleus with the possibility of any group bonded to C3, C4 or C5 gave 12 hits of which 10 correspond to organometallic compounds, one to 2-(3,5-bis(4-(n-oct­yloxy)phen­yl)pyrazol-1-yl)pyridine and the last to 2,6-bis(pyrazol­yl)pyridine. Any other search considering the presence of the butyl­amino or carbaldehyde groups gave no hits. However, two related compounds 5-cyclo­hexyl­amino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde and (Z)-4-[(cyclo­hexyl­amino)­methyl­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one have been published recently (Orrego-Hernández et al., 2015b[Orrego Hernández, J., Portilla, J., Cobo, J. & Glidewell, C. (2015b). Acta Cryst. C71, 363-368.]). These compounds are pyrazole derivatives which, despite the overall similarities of the mol­ecular geometries and the potentially available donors and acceptors for hydrogen-bonding inter­actions, present different supra­molecular assemblies.

5. Synthesis and crystallization

All reactive and solvents, including caesium carbonate (99%, Aldrich), were purchased from commercial sources and used as received. A mixture of 5-chloro-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde [(I) in Fig. 3[link]; 0.100 g, 0.45 mmol, 1 equiv.], butyl­amine [(II) in Fig. 3[link]; 0.56 mmol, 1.3 equiv.], caesium carbonate (0.029 g, 20% mmol, 0.2 equiv.) and 2 mL of di­methyl­formamide (DMF) were placed in a reaction tube of a CEM DiscoverTM, containing a magnetic stirring bar. The tube was sealed with a plastic microwave septum and was irradiated at 433 K for 25 min at 100 W. The resulting crude product was partitioned between di­chloro­methane and water. The organic layer was washed with water, then brine, and dried over anhydrous sodium sulfate. Subsequently, the solvent was removed under vacuum and the residue was purified by silica gel flash chromatography (DCM) to afford 5-(butyl­amino)-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carb­aldehyde [(III) in Fig. 3[link]]. Yellow crystals of (III) suitable for single-crystal X-ray diffraction were grown in DMF by slow evaporation, at ambient temperature and in air, [94% yield, m.p. 354 K]. HRMS (ESI+): [M + H]+ calculated for C14H19N4O+ 259.1553, found 259.1546. Yield 0.109 g, 94%; m.p. 348–350 K; IR νmax (KBr): 3448, 3211, 3096, 2924, 2858, 1643, 1596, 1563, 1436, 1002 cm−1; 1H NMR (CDCl3): 0.95 (t, J = 7.4, 3H), 1.44 (m, 2H), 1.68 (m, 2H), 2.44 (s, 3H), 3.60 (t, J = 7.1 Hz, 2H), 7.10 (t, J = 5.2 Hz, 1H), 7.78 (t, J = 7.0 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 8.28 (d, J = 4.8 Hz, 1H), 9.82 (s, 1H); 13C NMR (CDCl3): 13.7 (CH3), 14.5 (CH3), 19.9 (CH2), 32.0 (CH2), 46.4 (CH2), 106.6 (C), 114.0 (CH), 119.8 (CH), 138.8 (CH), 145.8 (CH), 152.8 (C), 153.0 (C), 154.3 (C), 182.0 (CH); MS (EI) m/z 258 (M+, 26%), 215 (67), 187 (59), 134 (32), 93 (47), 78 (76), 51 (24), 32 (100); HRMS m/z (ESI) calculated for [C14H18N4O+H]+: 259.1553; found 259.1546 [(M + H)+].

[Figure 3]
Figure 3
Schematic representation of the microwave-assisted reaction using caesium carbonate as catalyst.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and included as riding with isotropic displacement parameters set at 1.2–1.5 times the Ueq value of the parent atom. H atoms belonging to NH groups were located in difference density maps and were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C14H18N4O
Mr 258.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.2854 (2), 7.59144 (18), 19.4452 (5)
β (°) 102.818 (3)
V3) 1336.52 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.10 × 0.10 × 0.05
 
Data collection
Diffractometer Rigaku MicroMax-007HF
Absorption correction Multi-scan [SADABS (Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) and Blessing (1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])]
Tmin, Tmax 0.766, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 14709, 6368, 5580
Rint 0.016
(sin θ/λ)max−1) 0.848
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.05
No. of reflections 6368
No. of parameters 178
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.23
Computer programs: APEX2 andSAINT (Bruker, 2011[Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

5-Butylamino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde top
Crystal data top
C14H18N4OF(000) = 552
Mr = 258.32Dx = 1.284 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2854 (2) ÅCell parameters from 5580 reflections
b = 7.59144 (18) Åθ = 2.2–37.1°
c = 19.4452 (5) ŵ = 0.09 mm1
β = 102.818 (3)°T = 100 K
V = 1336.52 (6) Å3Block, yellow
Z = 40.10 × 0.10 × 0.05 mm
Data collection top
Rigaku MicroMax-007HF
diffractometer
6368 independent reflections
Radiation source: Microfocus rotating anode X-ray tube, Rigaku MicroMax-007HF5580 reflections with I > 2σ(I)
Confocal Max Flux optic monochromatorRint = 0.016
Detector resolution: 512 pixels mm-1θmax = 37.1°, θmin = 2.2°
Fullsphere data collection, phi and ω scansh = 1511
Absorption correction: multi-scan
[SADABS (Bruker, 2008) and Blessing (1995)]
k = 129
Tmin = 0.766, Tmax = 0.996l = 2632
14709 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.1608P]
where P = (Fo2 + 2Fc2)/3
6368 reflections(Δ/σ)max = 0.002
178 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Experimental. It should be noted that the esd's of the cell dimensions are probably too low; they should be multiplied by a factor of 2 to 10

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.36539 (5)0.84047 (6)1.01082 (2)0.01366 (8)
H10.4865 (12)0.6805 (13)0.9303 (5)0.026 (2)*
N20.33841 (5)0.91944 (6)1.07161 (2)0.01495 (9)
C40.56919 (6)0.79751 (7)1.09414 (3)0.01398 (9)
C30.45948 (6)0.89383 (7)1.12030 (3)0.01481 (9)
N50.55256 (5)0.68697 (7)0.97014 (3)0.01577 (9)
C50.50458 (6)0.76672 (7)1.02231 (3)0.01291 (9)
C510.70133 (6)0.62013 (7)0.97538 (3)0.01519 (9)
H51A0.72090.52221.00980.018*
H51B0.77410.71470.99210.018*
C410.70862 (6)0.73665 (8)1.13548 (3)0.01890 (11)
H410.77290.67631.11170.023*
O410.74985 (6)0.75754 (8)1.19936 (3)0.02881 (12)
C310.47057 (7)0.96306 (9)1.19315 (3)0.02071 (11)
H31A0.55491.04351.20540.031*
H31B0.48430.86471.22660.031*
H31C0.37971.02641.19520.031*
C160.16351 (7)0.74104 (9)0.83692 (3)0.02033 (11)
H160.17760.67320.79790.024*
C150.03122 (7)0.83021 (9)0.83065 (3)0.02048 (11)
H150.04370.82340.78860.025*
C140.01147 (6)0.93004 (8)0.88782 (3)0.01946 (11)
H140.07790.99310.88530.023*
C130.12286 (6)0.93706 (8)0.94845 (3)0.01672 (10)
H130.11191.00500.98800.020*
C120.25184 (6)0.84098 (7)0.94950 (3)0.01387 (9)
N110.27354 (6)0.74497 (7)0.89524 (3)0.01754 (9)
C520.71751 (6)0.55527 (8)0.90348 (3)0.01585 (10)
H52A0.70750.65660.87070.019*
H52B0.63660.47150.88470.019*
C530.86547 (6)0.46467 (8)0.90607 (3)0.01637 (10)
H53A0.94650.55040.92140.020*
H53B0.87890.36790.94100.020*
C540.87324 (7)0.39047 (9)0.83406 (3)0.01989 (11)
H54A0.97080.33830.83670.030*
H54B0.85680.48550.79910.030*
H54C0.79710.30000.82020.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.01143 (17)0.01598 (19)0.01227 (17)0.00075 (14)0.00017 (14)0.00018 (14)
N20.01383 (19)0.01611 (19)0.01371 (18)0.00040 (14)0.00052 (14)0.00137 (14)
C40.01133 (19)0.0156 (2)0.0135 (2)0.00096 (15)0.00037 (16)0.00017 (16)
C30.0136 (2)0.0155 (2)0.0140 (2)0.00133 (16)0.00010 (16)0.00071 (16)
N50.01264 (18)0.0202 (2)0.01381 (18)0.00099 (15)0.00157 (14)0.00068 (15)
C50.01084 (19)0.0134 (2)0.01358 (19)0.00073 (15)0.00066 (15)0.00134 (15)
C510.0126 (2)0.0166 (2)0.0161 (2)0.00029 (16)0.00243 (16)0.00001 (16)
C410.0137 (2)0.0238 (3)0.0168 (2)0.00154 (18)0.00179 (18)0.00114 (19)
O410.0213 (2)0.0437 (3)0.0168 (2)0.0072 (2)0.00562 (17)0.00410 (19)
C310.0202 (2)0.0248 (3)0.0153 (2)0.0004 (2)0.00020 (19)0.00476 (19)
C160.0190 (2)0.0280 (3)0.0119 (2)0.0014 (2)0.00112 (18)0.00153 (19)
C150.0163 (2)0.0270 (3)0.0152 (2)0.0032 (2)0.00273 (18)0.00527 (19)
C140.0135 (2)0.0217 (3)0.0204 (2)0.00041 (18)0.00236 (18)0.00482 (19)
C130.0127 (2)0.0171 (2)0.0183 (2)0.00055 (16)0.00094 (17)0.00179 (17)
C120.01192 (19)0.0151 (2)0.0130 (2)0.00119 (15)0.00053 (15)0.00273 (15)
N110.0159 (2)0.0230 (2)0.01223 (18)0.00039 (16)0.00005 (15)0.00079 (15)
C520.0141 (2)0.0184 (2)0.0148 (2)0.00027 (17)0.00264 (16)0.00057 (17)
C530.0143 (2)0.0196 (2)0.0152 (2)0.00035 (17)0.00317 (17)0.00079 (17)
C540.0181 (2)0.0246 (3)0.0172 (2)0.0018 (2)0.00455 (19)0.00125 (19)
Geometric parameters (Å, º) top
N1—C51.3804 (7)C16—N111.3478 (7)
N1—N21.3968 (7)C16—C151.3841 (9)
N1—C121.4056 (7)C16—H160.9500
N2—C31.3137 (7)C15—C141.3909 (9)
C4—C51.4119 (7)C15—H150.9500
C4—C31.4357 (8)C14—C131.3862 (8)
C4—C411.4403 (8)C14—H140.9500
C3—C311.4928 (8)C13—C121.3986 (8)
N5—C51.3396 (7)C13—H130.9500
N5—C511.4539 (7)C12—N111.3340 (8)
N5—H10.876 (10)C52—C531.5272 (8)
C51—C521.5208 (8)C52—H52A0.9900
C51—H51A0.9900C52—H52B0.9900
C51—H51B0.9900C53—C541.5258 (8)
C41—O411.2261 (7)C53—H53A0.9900
C41—H410.9500C53—H53B0.9900
C31—H31A0.9800C54—H54A0.9800
C31—H31B0.9800C54—H54B0.9800
C31—H31C0.9800C54—H54C0.9800
C5—N1—N2111.99 (4)C15—C16—H16118.1
C5—N1—C12129.61 (5)C16—C15—C14117.90 (5)
N2—N1—C12118.37 (4)C16—C15—H15121.1
C3—N2—N1105.12 (4)C14—C15—H15121.1
C5—C4—C3104.82 (5)C13—C14—C15119.67 (6)
C5—C4—C41129.14 (5)C13—C14—H14120.2
C3—C4—C41125.89 (5)C15—C14—H14120.2
N2—C3—C4112.39 (5)C14—C13—C12117.86 (6)
N2—C3—C31119.97 (5)C14—C13—H13121.1
C4—C3—C31127.63 (5)C12—C13—H13121.1
C5—N5—C51125.11 (5)N11—C12—C13123.54 (5)
C5—N5—H1114.2 (7)N11—C12—N1116.94 (5)
C51—N5—H1120.7 (7)C13—C12—N1119.51 (5)
N5—C5—N1121.17 (5)C12—N11—C16117.28 (5)
N5—C5—C4133.17 (5)C51—C52—C53112.78 (5)
N1—C5—C4105.66 (5)C51—C52—H52A109.0
N5—C51—C52109.55 (4)C53—C52—H52A109.0
N5—C51—H51A109.8C51—C52—H52B109.0
C52—C51—H51A109.8C53—C52—H52B109.0
N5—C51—H51B109.8H52A—C52—H52B107.8
C52—C51—H51B109.8C54—C53—C52111.19 (5)
H51A—C51—H51B108.2C54—C53—H53A109.4
O41—C41—C4124.33 (6)C52—C53—H53A109.4
O41—C41—H41117.8C54—C53—H53B109.4
C4—C41—H41117.8C52—C53—H53B109.4
C3—C31—H31A109.5H53A—C53—H53B108.0
C3—C31—H31B109.5C53—C54—H54A109.5
H31A—C31—H31B109.5C53—C54—H54B109.5
C3—C31—H31C109.5H54A—C54—H54B109.5
H31A—C31—H31C109.5C53—C54—H54C109.5
H31B—C31—H31C109.5H54A—C54—H54C109.5
N11—C16—C15123.75 (6)H54B—C54—H54C109.5
N11—C16—H16118.1
C5—N1—N2—C30.35 (6)C5—N5—C51—C52174.43 (5)
C12—N1—N2—C3177.72 (5)C5—C4—C41—O41173.30 (7)
N1—N2—C3—C40.34 (6)C3—C4—C41—O411.38 (10)
N1—N2—C3—C31179.52 (5)N11—C16—C15—C140.30 (10)
C5—C4—C3—N20.88 (6)C16—C15—C14—C130.09 (9)
C41—C4—C3—N2174.85 (5)C15—C14—C13—C120.37 (9)
C5—C4—C3—C31178.97 (6)C14—C13—C12—N110.69 (9)
C41—C4—C3—C315.29 (10)C14—C13—C12—N1178.05 (5)
C51—N5—C5—N1174.02 (5)C5—N1—C12—N116.28 (8)
C51—N5—C5—C45.74 (10)N2—N1—C12—N11171.40 (5)
N2—N1—C5—N5178.93 (5)C5—N1—C12—C13174.90 (5)
C12—N1—C5—N53.28 (9)N2—N1—C12—C137.42 (7)
N2—N1—C5—C40.89 (6)C13—C12—N11—C160.49 (9)
C12—N1—C5—C4176.91 (5)N1—C12—N11—C16178.28 (5)
C3—C4—C5—N5178.77 (6)C15—C16—N11—C120.02 (9)
C41—C4—C5—N55.69 (10)N5—C51—C52—C53173.79 (5)
C3—C4—C5—N11.02 (6)C51—C52—C53—C54176.10 (5)
C41—C4—C5—N1174.53 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 abd Cg2 are the centroids of the C3–C5/N1/N2 and N11/C12–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N5—H1···N110.876 (10)2.004 (11)2.7117 (7)137.0 (9)
C15—H15···O41i0.952.363.2906 (8)165
C52—H52B···Cg1ii0.992.773.5141 (6)132
C53—H53A···Cg2iii0.992.983.8761 (6)152
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y+1, z+2; (iii) x+1, y, z.
 

Acknowledgements

The authors are grateful for financial support from the Universidad de los Andes and the Colombian Institute for Science and Research (COLCIENCIAS).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudzisz, E., Miernicka, M., Lorenz, I.-P., Mayer, P., Krajewska, U. & Rozalski, M. (2009). Polyhedron, 28, 637–645.  CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOrrego-Hernández, J., Cobo, J. & Portilla, J. (2015a). Eur. J. Org. Chem. pp. 5064–5069.  Google Scholar
First citationOrrego Hernández, J., Portilla, J., Cobo, J. & Glidewell, C. (2015b). Acta Cryst. C71, 363–368.  CrossRef IUCr Journals Google Scholar
First citationPeng, X.-M., Cai, G.-X. & Zhou, C.-H. (2013). Curr. Top. Med. Chem. 13, 1963–2010.  CrossRef CAS PubMed Google Scholar
First citationSakya, S. M., Lundy DeMello, K. M., Minich, M. L., Rast, B., Shavnya, A., Rafka, R. J., Koss, D. A., Cheng, H., Li, J., Jaynes, B. H., Ziegler, C. B., Mann, D. W., Petras, C. F., Seibel, S. B., Silvia, A. M., George, D. M., Lund, L. A., Denis, S. S., Hickman, A., Haven, M. L. & Lynch, M. P. (2006). Bioorg. Med. Chem. Lett. 16, 288–292.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYuan, J.-G., Wu, H.-X., Lu, M.-L., Song, G.-P. & Xu, H.-H. (2013). J. Agric. Food Chem. 61, 4236–4241.  CrossRef CAS PubMed Google Scholar
First citationZhang, Z., Ojo, K. K., Vidadala, R., Huang, W., Geiger, J. A., Scheele, S., Choi, R., Reid, M. C., Keyloun, K. R., Rivas, K., Siddaramaiah, L. K., Comess, K. M., Robinson, K. P., Merta, P. J., Kifle, L., Hol, W. G. J., Parsons, M., Merritt, E. A., Maly, D. J., Verlinde, C. L. M. J., Van Voorhis, W. C. & Fan, E. (2014). ACS Med. Chem. Lett. 5, 40–44.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds