research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Halogen-bonded network of trinuclear copper(II) 4-iodo­pyrazolate complexes formed by mutual breakdown of chloro­form and nanojars

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Western Michigan University, Kalamazoo, MI 49006 USA
*Correspondence e-mail: gellert.mezei@wmich.edu

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 18 August 2016; accepted 29 September 2016; online 4 October 2016)

Crystals of bis­(tetra­butyl­ammonium) di-μ3-chlorido-­tris­(μ2-4-iodo­pyrazolato-κ2N:N′)tris­[chlorido­cuprate(II)] 1,4-dioxane hemisolvate, (C16H36N)2[Cu3(C3H2IN2)3Cl5]·0.5C4H8O or (Bu4N)2[CuII3(μ3-Cl)2(μ-4-I-pz)3Cl3]·0.5C4H8O, were obtained by evaporating a solution of (Bu4N)2[{CuII(μ-OH)(μ-4-I-pz)}nCO3] (n = 27–31) nanojars in chloro­form/1,4-dioxane. The decomposition of chloro­form in the presence of oxygen and moisture provides HCl, which leads to the breakdown of nanojars to the title trinuclear copper(II) pyrazolate complex, and possibly CuII ions and free 4-iodo­pyrazole. CuII ions, in turn, act as catalyst for the accelerated decomposition of chloro­form, ultimately leading to the complete breakdown of nanojars. The crystal structure presented here provides the first structural description of a trinuclear copper(II) pyrazolate complex with iodine-substituted pyrazoles. In contrast to related trinuclear complexes based on differently substituted 4-R-pyrazoles (R = H, Cl, Br, Me), the [Cu3(μ-4-I-pz)3Cl3] core in the title complex is nearly planar. This difference is likely a result of the presence of the iodine substituent, which provides a unique, novel feature in copper pyrazolate chemistry. Thus, the iodine atoms form halogen bonds with the terminal chlorido ligands of the surrounding complexes [mean length of I⋯Cl contacts = 3.48 (1) Å], leading to an extended two-dimensional, halogen-bonded network along (-110). The cavities within this framework are filled by centrosymmetric 1,4-dioxane solvent mol­ecules, which create further bridges via C—H⋯Cl hydrogen bonds with terminal chlorido ligands of the trinuclear complex not involved in halogen bonding.

1. Chemical context

Nanojars, supra­molecular coordination complexes of the formula [{Cu(μ-OH)(μ-pz)}nanion] (pz = pyrazolate anion; n = 27–36), have emerged as a new class of anion encapsulation agents of unparalleled efficiency, which allow the extraction of anions with large hydration energies, such as phosphate, carbonate and sulfate, from water into organic solvents (Mezei, Baran et al., 2004[Mezei, G., Baran, P. & Raptis, R. G. (2004). Angew. Chem. Int. Ed. 43, 574-577.]; Fernando et al., 2012[Fernando, I. R., Surmann, S. A., Urech, A. A., Poulsen, A. M. & Mezei, G. (2012). Chem. Commun. 48, 6860-6862.]; Mezei, 2015[Mezei, G. (2015). Chem. Commun. 51, 10341-10344.]; Ahmed, Szymczyna et al., 2016[Ahmed, B. M., Szymczyna, B. R., Jianrattanasawat, S., Surmann, S. A. & Mezei, G. (2016). Chem. Eur. J. 22, 5499-5503.]; Ahmed, Calco & Mezei, 2016[Ahmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327-8339.]; Ahmed & Mezei, 2016[Ahmed, B. M. & Mezei, G. (2016). Inorg. Chem. 55, 7717-7728.]; Ahmed, Hartman & Mezei, 2016[Ahmed, B. M., Hartman, C. K. & Mezei, G. (2016). Inorg. Chem. 55, doi:10.1021/acs.inorgchem.6b01909.]). Trinuclear copper pyrazolate complexes have been identified as key inter­mediates in the self-assembly mechanism of nanojars from copper(II) nitrate, pyrazole and NaOH (1:1:2 molar ratio) in the presence of carbonate (Ahmed & Mezei, 2016[Ahmed, B. M. & Mezei, G. (2016). Inorg. Chem. 55, 7717-7728.]). The trinuclear inter­mediate can be isolated if the amount of available base is reduced (copper:pyrazole:base molar ratio 3:3:4), and can subsequently be converted to nanojars by adding an additional amount of base to reach a 1:1:2 molar ratio. Moreover, nanojars can be broken down to the trinuclear complex by acids, which easily proton­ate the OH groups of the nanojar. As a consequence, nanojars and the trinuclear pyrazolate complex are in a pH-dependent equilibrium. The sensitivity of nanojars to even very weak acids is further demonstrated by the fact that a weak base, such as Et3N, is unable to convert the trinuclear complex to nanojars in solution (e.g., DMF, THF), despite its ability to provide the hydroxide ions needed by the nanojar, in the presence of moisture (Et3N + H2[\rightleftharpoons] Et3NH+ + HO). This is due to the acidity of the conjugate acid, the tri­ethyl­ammonium cation (pKa = 10.75 in H2O), which would form in the process (Mezei, 2016[Mezei, G. (2016). Acta Cryst. E72, 1064-1067.]). Nevertheless, nanojars can be obtained using Et3N if the solution is diluted with excess water, which leads to the precipitation of hydro­phobic nanojars (Fernando et al., 2012[Fernando, I. R., Surmann, S. A., Urech, A. A., Poulsen, A. M. & Mezei, G. (2012). Chem. Commun. 48, 6860-6862.]).

[Scheme 1]

New evidence supporting the vulnerability of nanojars to acids emerges from an unexpected source. An attempt to grow single crystals from a solution of (Bu4N)2[{Cu(μ-OH)(μ-4-I-pz)}nCO3] (n = 27–31) (Ahmed, Calco et al., 2016[Ahmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327-8339.]) in chloro­form/1,4-dioxane provided, instead of the expected nanojars, crystals of (Bu4N)2[Cu3(μ3-Cl)2(μ-4-I-pz)3Cl3]·0.5dioxane (Mezei & Raptis, 2004[Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279-3288.]), accompanied by a color change of the solution from blue to green. The chloride ions originating from CHCl3 is not surprising, as chloro­form has long been known to slowly decompose in the presence of air and moisture producing HCl and phosgene (CHCl3 + ½O2 → COCl2 + HCl) (Baskerville & Hamor, 1912[Baskerville, C. & Hamor, W. A. (1912). J. Ind. Eng. Chem. 4, 278-288.]). The latter can hydrolyze to provide further amounts of HCl, and CO2 (COCl2 + H2O → 2HCl + CO2). What is surprising though is the large amount of chloride formed in a relatively short period of time (ca 48 chloride ions per nanojar). Chloro­form preserved with ethanol (0.5–1%), such as the one used here for crystal growing, is much more stable than the pure form and it does not decompose at a significant rate. This points to a decomposition catalyzed by the dissolved nanojars, possibly aided by light. A search of the literature shows that various classes of compounds have been found to catalyze the photodecomposition of chloro­form (Semeluk & Unger, 1963[Semeluk, G. P. & Unger, I. (1963). Nature, 198, 853-855.]; Peña & Hoggard, 2010[Peña, L. A. & Hoggard, P. E. (2010). J. Mol. Catal. A Chem. 327, 20-24.]; Muñoz et al., 2008[Muñoz, Z., Cohen, A. S., Nguyen, L. M., McIntosh, T. A. & Hoggard, P. E. (2008). Photochem. Photobiol. Sci. 7, 337-343.]; Peña et al., 2014[Peña, L. A., Chan, A. M., Cohen, L. R., Hou, K., Harvey, B. M. & Hoggard, P. E. (2014). Photochem. Photobiol. 90, 760-766.]; Peña et al., 2009[Peña, L. A., Seidl, A. J., Cohen, L. R. & Hoggard, P. E. (2009). Transition Met. Chem. 34, 135-141.]), including simple copper(II) complexes (Harvey & Hoggard, 2014[Harvey, B. M. & Hoggard, P. E. (2014). Photochem. Photobiol. 90, 1234-1242.]). A balanced equation of the reaction between nanojars of different sizes and HCl, producing the title trinuclear complex, is given below:

3[{Cu(μ-OH)(μ-4-Ipz)nCO3]2– + 5nHCl → n[Cu3(μ3-Cl)2(μ-4-Ipz)3Cl3]2– + (2n − 6) H3O+ + (n + 9) H2O + 3CO2 (n = 27–31).

2. Structural commentary

The title compound contains a nearly planar Cu3(μ-4-I-pz)3 core (Fig. 1[link]): the best-fit planes of the three 4-iodo­pyrazolate units form dihedral angles of 2.1 (2), 2.0 (1) and 6.5 (1)°, respectively, with the Cu3-plane. Each Cu atom has a distorted trigonal–bipyramidal coordination geometry and is bound to a terminal Cl atom (one Cl atom disordered over two positions, 60/40 occupancy) at an average Cu—Cl distance of 2.32 (3) Å. The Cu3 unit is additionally capped by two Cl atoms, one on each side of the complex, at distances of 1.683 (1) and 1.799 (1) Å from the Cu3-plane, respectively [average Cu—Cl distances = 2.58 (7) and 2.66 (9) Å]. The two capping Cl atoms impart an overall 2– charge to the complex, which is balanced by two tetra­butyl­ammonium counter-ions. Other bond lengths and angles within the Cu3(μ3-Cl)2(μ-4-I-pz)3Cl3 complex are similar to the ones found in related complexes (Angaridis et al., 2002[Angaridis, P. A., Baran, P., Boča, R., Cervantes-Lee, F., Haase, W., Mezei, G., Raptis, R. G. & Werner, R. (2002). Inorg. Chem. 41, 2219-2228.]; Mezei & Raptis, 2004[Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279-3288.]; Mezei et al., 2006[Mezei, G., Raptis, R. G. & Telser, J. (2006). Inorg. Chem. 45, 8841-8843.]): Cu—N bond lengths average 1.936 (10) Å, N—Cu—N angles average 173 (3)°, Cl—Cu—Cl angles average 125 (9) and 152 (9)°, respectively, and intra­molecular Cu⋯Cu distances are 3.378 (1), 3.419 (1) and 3.390 (1) Å.

[Figure 1]
Figure 1
Displacement ellipsoid plot (50% probability level) of the title trinuclear copper pyrazolate complex anion, showing the atom-labeling scheme (counter-ions and solvent mol­ecule omitted).

3. Supra­molecular features

The inter­molecular distances between iodine substituents of the pyrazole units and the terminal chlorine atoms of adjacent complexes are less than the sum of the van der Waals radii (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]) of iodine and chlorine atoms (3.73 Å). Thus, a halogen-bonded (Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]; Gilday et al., 2015[Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118-7195.]) sheet based on C—I⋯Cl—Cu inter­actions (Fig. 2[link]) is generated parallel to the ([\overline{1}]10) plane (and c axis); I⋯Cl distances and C–I⋯Cl angles are shown in Table 1[link]. Bifurcated halogen bonds are noted between Cl1A/Cl1B and I1′ and I3′. The formation of the extended halogen-bonded network might account for the near-planarity of the title complex, as opposed to related complexes with unsubstituted or differently substituted 4-R-pyrazoles (R = H, Cl, Br, Me; Angaridis et al., 2002[Angaridis, P. A., Baran, P., Boča, R., Cervantes-Lee, F., Haase, W., Mezei, G., Raptis, R. G. & Werner, R. (2002). Inorg. Chem. 41, 2219-2228.]; Mezei & Raptis, 2004[Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279-3288.]), which do not form inter­molecular halogen bonds and are severely distorted from planarity. Additionally, the dioxane solvent mol­ecule, which is located around an inversion center, forms C—H⋯Cl hydrogen bonds with terminal chlorido ligands of the trinuclear complex [C43⋯Cl2: 3.751 (10); H43B⋯Cl2: 2.83; C43—H43B: 0.97 Å; C43—H43b⋯Cl2: 160 (5)°], creating further bridges within the two-dimensional framework.

Table 1
Halogen-bond geometry (Å, °)

DXY XY DXY
C2—I1⋯Cl1Ai 3.516 (4) 152.0 (2)
C2—I1⋯Cl1Bi 3.362 (5) 164.3 (2)
C5—I2⋯Cl3iii 3.569 (1) 165.2 (2)
C8—I3⋯Cl1Aiv 3.438 (4) 154.4 (2)
C8—I3⋯Cl1Biv 3.486 (5) 154.2 (2)
Symmetry codes: (i) −x + 2, −y, −z; (ii) −x + 1, −y − 1, −z + 1; (iii) −x + 1, −y − 1, −z + 1; (iv) −x + 1, −y − 1, −z.
[Figure 2]
Figure 2
Two-dimensional sheet [along ([\overline{1}]10)] formed by inter­molecular iodine–chlorine halogen bonding (only one dioxane solvent mol­ecule and no counter-ions are shown). Halogen bonds and C—H⋯Cl hydrogen bonds are indicated by dotted lines.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals only seven metal complexes that contain a 4-iodo­pyrazole moiety, either in its neutral, monodentate form (Guzei & Winter, 1997[Guzei, I. A. & Winter, C. H. (1997). Inorg. Chem. 36, 4415-4420.]; Govor et al., 2012[Govor, E. V., Chakraborty, I., Piñero, D. M., Baran, P., Sanakis, Y. & Raptis, R. G. (2012). Polyhedron, 45, 55-60.]; Song et al., 2013[Song, G., Sun, Q., Hou, Y.-N., Zhan, R., Wei, D.-M., Shi, Z. & Xing, Y.-H. (2013). Chin. J. Inorg. Chem. 29, 2150-2156.]; da Silva et al., 2015[Silva, C. da, Ribeiro, L. B., Furuno, C. C., da Cunha, G. A., de Souza, R. F. F., Netto, A. V. G., Mauro, A. E., Frem, R. C. G., Fernandes, J. A., Almeida Paz, F. A., Marino, L. B., Pavan, F. R. & Leite, C. Q. F. (2015). Polyhedron, 100, 10-16.]), or in its deprotonated, bidentate form (Heeg et al., 2010[Heeg, M. J., Yu, Z. & Winter, C. H. (2010). Private Communication (refcode DAGDUM). CCDC, Cambridge, England.]; Song et al., 2013[Song, G., Sun, Q., Hou, Y.-N., Zhan, R., Wei, D.-M., Shi, Z. & Xing, Y.-H. (2013). Chin. J. Inorg. Chem. 29, 2150-2156.]). Of these, only one is a CuII complex (Song et al., 2013[Song, G., Sun, Q., Hou, Y.-N., Zhan, R., Wei, D.-M., Shi, Z. & Xing, Y.-H. (2013). Chin. J. Inorg. Chem. 29, 2150-2156.]). Hence, the crystal structure presented here offers the first solid-state structural description of a trinuclear copper(II) pyrazolate complex bearing 4-iodo­pyrazolate ligands.

5. Synthesis and crystallization

The synthesis of (Bu4N)2[{Cu(μ-OH)(μ-4-I-pz)}nCO3] (n = 27–31) was described earlier (Ahmed Calco & Mezei, 2016[Ahmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327-8339.]). Green plate-like crystals of the title compound were obtained by slow evaporation of a chloro­form/1,4-dioxane (1 mL each) solution of (Bu4N)2[{Cu(μ-OH)(μ-4-I-pz)}nCO3] (20 mg).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C—H hydrogen atoms were placed in idealized positions and refined using a riding model. One of the three terminal Cl-atoms is disordered over two positions (60/40). Two terminal CH2CH3 groups of one tetra­butyl­ammonium counter-ion and another CH2CH3 group of the other counter-ion are disordered over two positions (60/40); C—H bond-length restraints were used for the disordered C atoms. Residual electron density of 3.52 eÅ−3 is found at 0.83 Å from heavy atom I3, due to Fourier truncation ripples.

Table 2
Experimental details

Crystal data
Chemical formula (C16H36N)2[Cu3(C3H2IN2)3Cl5]·0.5C4H8O
Mr 1475.73
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.3604 (2), 11.5688 (2), 23.2200 (3)
α, β, γ (°) 103.707 (1), 90.409 (1), 93.654 (1)
V3) 2958.00 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.90
Crystal size (mm) 0.65 × 0.43 × 0.03
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.486, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 136857, 14685, 11845
Rint 0.056
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.153, 1.02
No. of reflections 14685
No. of parameters 642
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.54, −2.89
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CrystalMaker (Palmer, 2014[Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2014); software used to prepare material for publication: CrystalMaker (Palmer, 2014).

Bis(tetrabutylammonium) di-µ3-chlorido-tris(µ-4-iodopyrazolato-κ2N:N')tris[chloridocuprate(II)] 1,4-dioxane hemisolvate top
Crystal data top
(C16H36N)2[Cu3Cl5(C3H2IN2)3Cl5]·0.5C4H8OZ = 2
Mr = 1475.73F(000) = 1470
Triclinic, P1Dx = 1.657 Mg m3
a = 11.3604 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5688 (2) ÅCell parameters from 9763 reflections
c = 23.2200 (3) Åθ = 2.2–28.1°
α = 103.707 (1)°µ = 2.90 mm1
β = 90.409 (1)°T = 100 K
γ = 93.654 (1)°Plate, green
V = 2958.00 (8) Å30.65 × 0.43 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
11845 reflections with I > 2σ(I)
φ and ω scansRint = 0.056
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 0.9°
Tmin = 0.486, Tmax = 0.746h = 1515
136857 measured reflectionsk = 1515
14685 independent reflectionsl = 3030
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0646P)2 + 28.784P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
14685 reflectionsΔρmax = 3.54 e Å3
642 parametersΔρmin = 2.89 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I11.03331 (4)1.16081 (4)0.94854 (2)0.03491 (11)
I20.60033 (4)0.67453 (3)0.48116 (2)0.02938 (10)
I30.33478 (5)0.37443 (5)0.92175 (2)0.05065 (15)
Cu10.68348 (7)0.74045 (8)0.86260 (3)0.03445 (19)
Cu20.76595 (6)0.82666 (6)0.73883 (3)0.02209 (14)
Cu30.54352 (6)0.60997 (6)0.73172 (3)0.01939 (14)
Cl1A0.7088 (4)0.7605 (4)0.96245 (14)0.0517 (10)0.6
Cl1B0.7610 (5)0.7019 (5)0.9490 (2)0.0456 (13)0.4
Cl20.91814 (10)0.91245 (10)0.69157 (5)0.0170 (2)
Cl30.43631 (10)0.44226 (10)0.67503 (5)0.0154 (2)
Cl40.55813 (9)0.82369 (10)0.78789 (5)0.0150 (2)
Cl50.77907 (9)0.62234 (9)0.76421 (4)0.01119 (19)
O10.9089 (5)0.0637 (5)0.5297 (2)0.0456 (12)
N10.7933 (4)0.8756 (5)0.8653 (2)0.0274 (10)
N20.8247 (4)0.9129 (4)0.81648 (19)0.0208 (9)
N30.6824 (4)0.7512 (4)0.66521 (19)0.0213 (9)
N40.5915 (4)0.6671 (4)0.66256 (19)0.0207 (9)
N50.5023 (4)0.5613 (4)0.80432 (19)0.0223 (9)
N60.5610 (4)0.6148 (5)0.8565 (2)0.0269 (10)
N70.1835 (4)0.7648 (5)0.8299 (3)0.0336 (12)
N80.7491 (5)0.2456 (5)0.6678 (3)0.0338 (12)
C10.9002 (5)1.0111 (5)0.8331 (2)0.0219 (10)
H10.93501.05400.80780.026*
C20.9171 (5)1.0369 (5)0.8945 (2)0.0232 (11)
C30.8487 (5)0.9500 (6)0.9130 (3)0.0295 (13)
H30.84180.94360.95200.035*
C40.5500 (5)0.6341 (5)0.6066 (2)0.0227 (11)
H40.48740.57820.59290.027*
C50.6150 (5)0.6965 (5)0.5720 (2)0.0233 (11)
C60.6974 (5)0.7683 (5)0.6107 (2)0.0232 (11)
H60.75450.82060.60040.028*
C70.5171 (5)0.5648 (6)0.8991 (3)0.0294 (12)
H70.54240.58460.93860.035*
C80.4282 (6)0.4787 (6)0.8748 (3)0.0314 (13)
C90.4229 (5)0.4791 (5)0.8146 (2)0.0260 (11)
H90.37210.42990.78630.031*
C100.0713 (6)0.7144 (9)0.8526 (4)0.056 (2)
H10A0.05360.76640.89050.067*
H10B0.00690.71600.82520.067*
C110.0750 (8)0.5893 (13)0.8606 (7)0.104 (5)
H11A0.14340.58180.88440.125*0.6
H11B0.07690.53210.82260.125*0.6
H11C0.13220.59650.89270.125*0.4
H11D0.11280.54700.82520.125*0.4
C12A0.0422 (11)0.5702 (14)0.8934 (7)0.047 (3)0.6
H12A0.11020.58370.87100.056*0.6
H12B0.04150.62330.93260.056*0.6
C13A0.0432 (18)0.4346 (17)0.8972 (12)0.112 (10)0.6
H13A0.03920.38430.85800.168*0.6
H13B0.11460.41360.91530.168*0.6
H13C0.02350.42410.92060.168*0.6
C12B0.020 (3)0.500 (3)0.8721 (10)0.077 (9)0.4
H12C0.00740.41990.84910.093*0.4
H12D0.09770.52090.86300.093*0.4
C13B0.002 (3)0.510 (3)0.9386 (10)0.087 (9)0.4
H13D0.06840.47290.94530.131*0.4
H13E0.06870.47050.95300.131*0.4
H13F0.00470.59240.95930.131*0.4
C140.2866 (6)0.7694 (7)0.8727 (3)0.0363 (14)
H14A0.35720.79790.85560.044*
H14B0.29800.68860.87580.044*
C150.2755 (7)0.8467 (9)0.9350 (3)0.056 (2)
H15A0.21210.81360.95520.067*0.6
H15B0.25750.92670.93320.067*0.6
H15C0.19610.83570.94890.067*0.4
H15D0.29030.93010.93480.067*0.4
C16A0.394 (2)0.851 (4)0.9692 (11)0.16 (2)0.6
H16A0.41030.77000.96980.192*0.6
H16B0.45600.88150.94730.192*0.6
C17A0.400 (2)0.926 (3)1.0325 (9)0.172 (18)0.6
H17A0.39641.00841.03230.258*0.6
H17B0.47190.91431.05130.258*0.6
H17C0.33400.90181.05380.258*0.6
C16B0.367 (2)0.811 (3)0.9773 (13)0.058 (8)0.4
H16C0.43810.78760.95650.069*0.4
H16D0.38670.87741.01090.069*0.4
C17B0.306 (3)0.705 (3)0.9983 (12)0.086 (9)0.4
H17D0.22980.72601.01360.130*0.4
H17E0.35360.68681.02880.130*0.4
H17F0.29650.63670.96540.130*0.4
C180.2168 (6)0.6875 (6)0.7706 (3)0.0341 (13)
H18A0.23610.61050.77630.041*
H18B0.28720.72410.75710.041*
C190.1213 (7)0.6679 (7)0.7222 (4)0.0442 (17)
H19A0.08300.74140.72450.053*
H19B0.06220.60760.72790.053*
C200.1771 (9)0.6273 (9)0.6606 (4)0.067 (3)
H20A0.11480.59550.63120.080*
H20B0.22810.56360.66150.080*
C210.2499 (11)0.7297 (13)0.6413 (5)0.088 (4)
H21A0.28120.69980.60270.133*
H21B0.31370.75960.66930.133*
H21C0.19990.79280.64000.133*
C220.1610 (6)0.8890 (6)0.8236 (3)0.0389 (15)
H22A0.13640.93510.86160.047*
H22B0.09570.88260.79560.047*
C230.2649 (7)0.9579 (7)0.8031 (4)0.051 (2)
H23A0.32260.98370.83540.062*
H23B0.30240.90580.77050.062*
C240.2266 (8)1.0655 (7)0.7835 (5)0.056 (2)
H24A0.19271.11970.81670.067*
H24B0.16631.04040.75250.067*
C250.3294 (10)1.1297 (9)0.7607 (6)0.075 (3)
H25A0.38461.16340.79270.112*
H25B0.30121.19220.74450.112*
H25C0.36761.07440.73030.112*
C260.6939 (6)0.2858 (7)0.7279 (3)0.0408 (16)
H26A0.61400.30610.72190.049*
H26B0.73770.35790.74970.049*
C270.6901 (9)0.1948 (11)0.7660 (4)0.072 (3)
H27A0.77080.17790.77290.087*0.4
H27B0.65090.12160.74260.087*0.4
H27C0.76760.16680.77040.087*0.6
H27D0.63540.12700.74930.087*0.6
C28A0.630 (2)0.224 (2)0.8267 (8)0.039 (6)0.4
H28A0.55610.25940.82460.047*0.4
H28B0.61720.15300.84210.047*0.4
C29A0.7227 (19)0.312 (2)0.8636 (10)0.061 (6)0.4
H29A0.79730.27680.86120.091*0.4
H29B0.69910.33240.90420.091*0.4
H29C0.73000.38270.84870.091*0.4
C28B0.6464 (17)0.268 (2)0.8264 (7)0.080 (9)0.6
H28C0.70480.33180.84410.096*0.6
H28D0.57330.30340.82060.096*0.6
C29B0.627 (2)0.181 (3)0.8667 (11)0.172 (18)0.6
H29D0.55650.13060.85400.258*0.6
H29E0.61880.22510.90690.258*0.6
H29F0.69320.13280.86440.258*0.6
C300.8787 (6)0.2231 (6)0.6741 (4)0.0404 (16)
H30A0.88420.16260.69650.049*
H30B0.90860.19120.63500.049*
C310.9577 (7)0.3320 (9)0.7044 (5)0.069 (3)
H31A0.93150.36280.74440.082*
H31B0.95250.39400.68290.082*
C321.0857 (7)0.2986 (9)0.7062 (5)0.068 (3)
H32A1.13260.36620.73010.082*
H32B1.08860.23340.72570.082*
C331.1404 (9)0.2630 (11)0.6472 (6)0.093 (4)
H33A1.10330.18840.62550.139*
H33B1.22310.25460.65240.139*
H33C1.13030.32300.62560.139*
C340.6902 (6)0.1279 (6)0.6335 (3)0.0347 (14)
H34A0.70490.06750.65490.042*
H34B0.72790.10550.59540.042*
C350.5576 (6)0.1257 (6)0.6223 (3)0.0369 (14)
H35A0.51880.15340.65970.044*
H35B0.54170.17910.59710.044*
C360.5090 (7)0.0014 (7)0.5931 (4)0.0478 (18)
H36A0.52270.05070.61920.057*
H36B0.55130.02720.55690.057*
C370.3771 (7)0.0056 (7)0.5782 (4)0.052 (2)
H37A0.33400.01510.61420.078*
H37B0.35210.08520.55690.078*
H37C0.36220.04910.55400.078*
C380.7337 (6)0.3428 (6)0.6346 (3)0.0383 (15)
H38A0.77210.41670.65770.046*
H38B0.65020.35450.63210.046*
C390.7830 (8)0.3177 (8)0.5717 (4)0.059 (2)
H39A0.86360.29490.57280.071*
H39B0.73640.25170.54630.071*
C400.7805 (8)0.4279 (9)0.5459 (5)0.068 (3)
H40A0.78570.40210.50310.081*
H40B0.70460.46130.55430.081*
C410.8687 (11)0.5185 (12)0.5664 (8)0.111 (5)
H41A0.86630.54390.60880.166*
H41B0.85600.58470.54930.166*
H41C0.94430.48910.55500.166*
C420.9468 (8)0.0777 (8)0.4729 (3)0.053 (2)
H42A0.93590.15850.46970.063*
H42B0.89940.02340.44190.063*
C430.9270 (8)0.0530 (7)0.5351 (3)0.050 (2)
H43A0.87910.11020.50540.060*
H43B0.90270.06180.57390.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0304 (2)0.0365 (2)0.0282 (2)0.01134 (16)0.00065 (15)0.00781 (16)
I20.0451 (2)0.02683 (19)0.01655 (16)0.00402 (16)0.00845 (14)0.00788 (13)
I30.0544 (3)0.0603 (3)0.0397 (3)0.0281 (2)0.0047 (2)0.0250 (2)
Cu10.0394 (4)0.0449 (5)0.0183 (3)0.0246 (4)0.0077 (3)0.0133 (3)
Cu20.0263 (3)0.0242 (3)0.0158 (3)0.0093 (3)0.0060 (2)0.0080 (2)
Cu30.0208 (3)0.0208 (3)0.0159 (3)0.0045 (2)0.0005 (2)0.0046 (2)
Cl1A0.057 (2)0.078 (3)0.0226 (14)0.046 (2)0.0200 (14)0.0287 (17)
Cl1B0.057 (3)0.058 (3)0.022 (2)0.039 (3)0.020 (2)0.021 (2)
Cl20.0199 (5)0.0198 (5)0.0127 (5)0.0122 (4)0.0068 (4)0.0101 (4)
Cl30.0186 (5)0.0145 (5)0.0119 (5)0.0028 (4)0.0028 (4)0.0022 (4)
Cl40.0096 (5)0.0206 (5)0.0122 (5)0.0027 (4)0.0013 (4)0.0001 (4)
Cl50.0114 (4)0.0122 (5)0.0115 (4)0.0058 (4)0.0040 (3)0.0075 (4)
O10.046 (3)0.051 (3)0.042 (3)0.014 (2)0.018 (2)0.013 (2)
N10.029 (2)0.034 (3)0.018 (2)0.012 (2)0.0026 (18)0.0065 (19)
N20.022 (2)0.024 (2)0.017 (2)0.0027 (17)0.0029 (16)0.0074 (17)
N30.025 (2)0.022 (2)0.018 (2)0.0056 (18)0.0021 (17)0.0081 (17)
N40.024 (2)0.019 (2)0.017 (2)0.0049 (17)0.0018 (16)0.0041 (16)
N50.022 (2)0.027 (2)0.016 (2)0.0041 (18)0.0009 (16)0.0036 (17)
N60.028 (2)0.034 (3)0.019 (2)0.010 (2)0.0032 (18)0.0087 (19)
N70.020 (2)0.039 (3)0.043 (3)0.002 (2)0.003 (2)0.010 (2)
N80.028 (3)0.033 (3)0.041 (3)0.010 (2)0.000 (2)0.007 (2)
C10.022 (2)0.020 (2)0.023 (3)0.002 (2)0.004 (2)0.005 (2)
C20.021 (2)0.024 (3)0.021 (2)0.000 (2)0.0027 (19)0.002 (2)
C30.028 (3)0.039 (3)0.019 (3)0.013 (2)0.003 (2)0.006 (2)
C40.027 (3)0.022 (3)0.020 (2)0.003 (2)0.009 (2)0.008 (2)
C50.032 (3)0.022 (3)0.016 (2)0.000 (2)0.005 (2)0.005 (2)
C60.028 (3)0.024 (3)0.020 (2)0.002 (2)0.003 (2)0.010 (2)
C70.033 (3)0.036 (3)0.022 (3)0.009 (2)0.001 (2)0.014 (2)
C80.036 (3)0.038 (3)0.022 (3)0.012 (3)0.004 (2)0.014 (2)
C90.024 (3)0.030 (3)0.023 (3)0.006 (2)0.001 (2)0.008 (2)
C100.026 (3)0.091 (7)0.059 (5)0.008 (4)0.001 (3)0.038 (5)
C110.046 (5)0.138 (11)0.168 (13)0.027 (6)0.026 (7)0.125 (11)
C12A0.039 (7)0.059 (9)0.052 (8)0.011 (6)0.011 (6)0.036 (7)
C13A0.081 (13)0.119 (18)0.18 (2)0.053 (13)0.055 (14)0.13 (2)
C12B0.08 (2)0.08 (2)0.054 (15)0.053 (18)0.005 (13)0.006 (14)
C13B0.12 (3)0.077 (19)0.057 (16)0.021 (19)0.001 (16)0.002 (14)
C140.027 (3)0.047 (4)0.031 (3)0.005 (3)0.002 (2)0.001 (3)
C150.046 (4)0.074 (6)0.039 (4)0.014 (4)0.007 (3)0.005 (4)
C16A0.23 (4)0.18 (4)0.046 (14)0.15 (3)0.06 (2)0.043 (18)
C17A0.077 (15)0.33 (5)0.062 (13)0.07 (2)0.019 (11)0.06 (2)
C16B0.067 (16)0.071 (18)0.024 (11)0.005 (14)0.015 (10)0.008 (10)
C17B0.071 (17)0.12 (3)0.053 (15)0.003 (17)0.008 (13)0.001 (16)
C180.033 (3)0.029 (3)0.040 (3)0.006 (3)0.004 (3)0.008 (3)
C190.041 (4)0.037 (4)0.054 (4)0.003 (3)0.019 (3)0.010 (3)
C200.073 (6)0.068 (6)0.049 (5)0.033 (5)0.029 (4)0.013 (4)
C210.081 (8)0.139 (12)0.051 (6)0.033 (8)0.012 (5)0.026 (7)
C220.027 (3)0.035 (3)0.053 (4)0.010 (3)0.003 (3)0.004 (3)
C230.034 (4)0.033 (4)0.086 (6)0.005 (3)0.003 (4)0.008 (4)
C240.052 (5)0.034 (4)0.080 (6)0.002 (3)0.006 (4)0.011 (4)
C250.071 (7)0.046 (5)0.109 (9)0.009 (5)0.007 (6)0.024 (5)
C260.034 (3)0.050 (4)0.036 (3)0.016 (3)0.001 (3)0.002 (3)
C270.058 (5)0.125 (9)0.048 (5)0.058 (6)0.011 (4)0.035 (5)
C28A0.047 (13)0.032 (9)0.031 (11)0.017 (8)0.004 (8)0.005 (8)
C29A0.054 (13)0.072 (15)0.052 (12)0.010 (11)0.003 (10)0.003 (11)
C28B0.025 (8)0.18 (3)0.054 (12)0.036 (13)0.009 (7)0.048 (14)
C29B0.14 (2)0.34 (4)0.121 (18)0.19 (3)0.102 (17)0.17 (3)
C300.024 (3)0.037 (4)0.057 (4)0.015 (3)0.002 (3)0.001 (3)
C310.032 (4)0.061 (5)0.092 (7)0.013 (4)0.015 (4)0.024 (5)
C320.031 (4)0.060 (6)0.103 (8)0.011 (4)0.010 (4)0.003 (5)
C330.040 (5)0.080 (7)0.125 (10)0.017 (5)0.012 (6)0.037 (7)
C340.039 (3)0.026 (3)0.039 (3)0.010 (3)0.002 (3)0.006 (3)
C350.038 (3)0.029 (3)0.047 (4)0.007 (3)0.001 (3)0.013 (3)
C360.045 (4)0.033 (4)0.061 (5)0.008 (3)0.003 (4)0.002 (3)
C370.046 (4)0.045 (4)0.064 (5)0.004 (3)0.011 (4)0.015 (4)
C380.032 (3)0.025 (3)0.060 (4)0.011 (3)0.004 (3)0.013 (3)
C390.061 (5)0.057 (5)0.070 (6)0.030 (4)0.020 (4)0.033 (5)
C400.049 (5)0.064 (6)0.106 (8)0.017 (4)0.008 (5)0.047 (6)
C410.068 (8)0.079 (8)0.200 (18)0.003 (6)0.021 (9)0.063 (10)
C420.075 (6)0.052 (5)0.038 (4)0.026 (4)0.007 (4)0.019 (3)
C430.066 (5)0.045 (4)0.039 (4)0.013 (4)0.019 (4)0.014 (3)
Geometric parameters (Å, º) top
I1—C22.063 (5)C17B—H17E0.9600
I2—C52.069 (5)C17B—H17F0.9600
I3—C82.060 (6)C18—C191.523 (9)
Cu1—N11.926 (5)C18—H18A0.9700
Cu1—N61.926 (5)C18—H18B0.9700
Cu1—Cl1A2.289 (3)C19—C201.550 (13)
Cu1—Cl1B2.335 (5)C19—H19A0.9700
Cu1—Cl42.6258 (14)C19—H19B0.9700
Cu1—Cl52.6478 (14)C20—C211.555 (17)
Cu2—N21.933 (4)C20—H20A0.9700
Cu2—N31.936 (4)C20—H20B0.9700
Cu2—Cl22.3458 (12)C21—H21A0.9600
Cu2—Cl52.5808 (12)C21—H21B0.9600
Cu2—Cl42.6306 (13)C21—H21C0.9600
Cu3—N41.945 (4)C22—C231.524 (10)
Cu3—N51.951 (5)C22—H22A0.9700
Cu3—Cl32.3337 (12)C22—H22B0.9700
Cu3—Cl42.5016 (13)C23—C241.510 (11)
Cu3—Cl52.7607 (12)C23—H23A0.9700
O1—C431.412 (10)C23—H23B0.9700
O1—C421.433 (9)C24—C251.510 (13)
N1—N21.347 (6)C24—H24A0.9700
N1—C31.353 (7)C24—H24B0.9700
N2—C11.356 (7)C25—H25A0.9600
N3—C61.337 (7)C25—H25B0.9600
N3—N41.364 (6)C25—H25C0.9600
N4—C41.339 (7)C26—C271.526 (12)
N5—C91.333 (7)C26—H26A0.9700
N5—N61.369 (6)C26—H26B0.9700
N6—C71.344 (7)C27—C28A1.542 (17)
N7—C221.516 (9)C27—C28B1.560 (16)
N7—C181.518 (9)C27—H27A0.9700
N7—C101.519 (9)C27—H27B0.9700
N7—C141.521 (8)C27—H27C0.9700
N8—C341.517 (8)C27—H27D0.9700
N8—C261.517 (9)C28A—C29A1.522 (17)
N8—C381.523 (9)C28A—H28A0.9600
N8—C301.523 (8)C28A—H28B0.9700
C1—C21.394 (7)C29A—H29A0.9600
C1—H10.9300C29A—H29B0.9600
C2—C31.382 (8)C29A—H29C0.9600
C3—H30.9300C28B—C29B1.538 (18)
C4—C51.387 (8)C28B—H28C0.9700
C4—H40.9300C28B—H28D0.9700
C5—C61.381 (7)C29B—H29D0.9600
C6—H60.9300C29B—H29E0.9600
C7—C81.389 (8)C29B—H29F0.9600
C7—H70.9300C30—C311.521 (11)
C8—C91.401 (8)C30—H30A0.9700
C9—H90.9300C30—H30B0.9700
C10—C111.506 (14)C31—C321.531 (11)
C10—H10A0.9700C31—H31A0.9700
C10—H10B0.9700C31—H31B0.9700
C11—C12B1.514 (16)C32—C331.486 (16)
C11—C12A1.567 (14)C32—H32A0.9700
C11—H11A0.9700C32—H32B0.9700
C11—H11B0.9700C33—H33A0.9600
C11—H11C0.9700C33—H33B0.9600
C11—H11D0.9700C33—H33C0.9600
C12A—C13A1.592 (15)C34—C351.525 (9)
C12A—H12A0.9700C34—H34A0.9700
C12A—H12B0.9700C34—H34B0.9700
C13A—H13A0.9600C35—C361.504 (10)
C13A—H13B0.9600C35—H35A0.9700
C13A—H13C0.9600C35—H35B0.9700
C12B—C13B1.533 (18)C36—C371.529 (11)
C12B—H12C0.9700C36—H36A0.9700
C12B—H12D0.9600C36—H36B0.9700
C13B—H13D0.9600C37—H37A0.9600
C13B—H13E0.9600C37—H37B0.9600
C13B—H13F0.9600C37—H37C0.9600
C14—C151.522 (10)C38—C391.538 (11)
C14—H14A0.9700C38—H38A0.9700
C14—H14B0.9700C38—H38B0.9700
C15—C16A1.548 (17)C39—C401.534 (12)
C15—C16B1.561 (18)C39—H39A0.9700
C15—H15A0.9700C39—H39B0.9700
C15—H15B0.9700C40—C411.397 (16)
C15—H15C0.9700C40—H40A0.9700
C15—H15D0.9700C40—H40B0.9700
C16A—C17A1.517 (18)C41—H41A0.9600
C16A—H16A0.9700C41—H41B0.9600
C16A—H16B0.9700C41—H41C0.9600
C17A—H17A0.9600C42—C43i1.484 (12)
C17A—H17B0.9600C42—H42A0.9700
C17A—H17C0.9600C42—H42B0.9700
C16B—C17B1.548 (19)C43—C42i1.484 (12)
C16B—H16C0.9600C43—H43A0.9700
C16B—H16D0.9700C43—H43B0.9700
C17B—H17D0.9600
N1—Cu1—N6173.7 (2)H17D—C17B—H17E109.5
N1—Cu1—Cl1A90.85 (16)C16B—C17B—H17F109.5
N6—Cu1—Cl1A92.47 (16)H17D—C17B—H17F109.5
N1—Cu1—Cl1B93.60 (18)H17E—C17B—H17F109.5
N6—Cu1—Cl1B91.57 (18)N7—C18—C19114.6 (6)
N1—Cu1—Cl486.25 (15)N7—C18—H18A108.6
N6—Cu1—Cl487.74 (15)C19—C18—H18A108.6
Cl1A—Cu1—Cl4140.10 (15)N7—C18—H18B108.6
Cl1B—Cu1—Cl4163.21 (19)C19—C18—H18B108.6
N1—Cu1—Cl590.42 (15)H18A—C18—H18B107.6
N6—Cu1—Cl590.84 (16)C18—C19—C20109.7 (6)
Cl1A—Cu1—Cl5136.96 (15)C18—C19—H19A109.7
Cl1B—Cu1—Cl5113.90 (19)C20—C19—H19A109.7
Cl4—Cu1—Cl582.89 (4)C18—C19—H19B109.7
N2—Cu2—N3170.5 (2)C20—C19—H19B109.7
N2—Cu2—Cl292.12 (14)H19A—C19—H19B108.2
N3—Cu2—Cl293.63 (13)C19—C20—C21113.1 (8)
N2—Cu2—Cl592.75 (14)C19—C20—H20A109.0
N3—Cu2—Cl590.56 (14)C21—C20—H20A109.0
Cl2—Cu2—Cl5122.39 (5)C19—C20—H20B109.0
N2—Cu2—Cl485.89 (14)C21—C20—H20B109.0
N3—Cu2—Cl485.60 (14)H20A—C20—H20B107.8
Cl2—Cu2—Cl4153.50 (5)C20—C21—H21A109.5
Cl5—Cu2—Cl484.10 (4)C20—C21—H21B109.5
N4—Cu3—N5176.18 (19)H21A—C21—H21B109.5
N4—Cu3—Cl393.20 (13)C20—C21—H21C109.5
N5—Cu3—Cl390.59 (14)H21A—C21—H21C109.5
N4—Cu3—Cl486.82 (14)H21B—C21—H21C109.5
N5—Cu3—Cl490.04 (14)N7—C22—C23115.8 (5)
Cl3—Cu3—Cl4151.28 (5)N7—C22—H22A108.3
N4—Cu3—Cl588.00 (14)C23—C22—H22A108.3
N5—Cu3—Cl589.45 (14)N7—C22—H22B108.3
Cl3—Cu3—Cl5125.75 (5)C23—C22—H22B108.3
Cl4—Cu3—Cl582.96 (4)H22A—C22—H22B107.4
Cu3—Cl4—Cu182.74 (4)C24—C23—C22111.7 (6)
Cu3—Cl4—Cu283.50 (4)C24—C23—H23A109.3
Cu1—Cl4—Cu279.97 (4)C22—C23—H23A109.3
Cu2—Cl5—Cu180.47 (4)C24—C23—H23B109.3
Cu2—Cl5—Cu379.51 (3)C22—C23—H23B109.3
Cu1—Cl5—Cu377.60 (4)H23A—C23—H23B107.9
C43—O1—C42109.8 (6)C23—C24—C25111.2 (8)
N2—N1—C3108.4 (5)C23—C24—H24A109.4
N2—N1—Cu1122.7 (4)C25—C24—H24A109.4
C3—N1—Cu1128.8 (4)C23—C24—H24B109.4
N1—N2—C1108.5 (4)C25—C24—H24B109.4
N1—N2—Cu2120.7 (3)H24A—C24—H24B108.0
C1—N2—Cu2130.7 (4)C24—C25—H25A109.5
C6—N3—N4108.1 (4)C24—C25—H25B109.5
C6—N3—Cu2129.9 (4)H25A—C25—H25B109.5
N4—N3—Cu2122.0 (3)C24—C25—H25C109.5
C4—N4—N3108.2 (4)H25A—C25—H25C109.5
C4—N4—Cu3129.9 (4)H25B—C25—H25C109.5
N3—N4—Cu3121.9 (3)N8—C26—C27115.2 (6)
C9—N5—N6108.6 (4)N8—C26—H26A108.5
C9—N5—Cu3131.5 (4)C27—C26—H26A108.5
N6—N5—Cu3119.9 (3)N8—C26—H26B108.5
C7—N6—N5108.1 (5)C27—C26—H26B108.5
C7—N6—Cu1128.9 (4)H26A—C26—H26B107.5
N5—N6—Cu1122.9 (4)C26—C27—C28A119.7 (14)
C22—N7—C18110.2 (5)C26—C27—C28B102.4 (11)
C22—N7—C10107.2 (5)C26—C27—H27A107.4
C18—N7—C10111.3 (6)C28A—C27—H27A107.4
C22—N7—C14110.6 (5)C26—C27—H27B107.4
C18—N7—C14106.9 (5)C28A—C27—H27B107.4
C10—N7—C14110.7 (5)H27A—C27—H27B106.9
C34—N8—C26110.9 (5)C26—C27—H27C111.3
C34—N8—C38110.5 (5)C28B—C27—H27C111.3
C26—N8—C38107.2 (5)C26—C27—H27D111.3
C34—N8—C30105.6 (5)C28B—C27—H27D111.3
C26—N8—C30111.2 (5)H27C—C27—H27D109.2
C38—N8—C30111.5 (5)C29A—C28A—C27100.9 (15)
N2—C1—C2108.6 (5)C29A—C28A—H28A111.6
N2—C1—H1125.7C27—C28A—H28A111.6
C2—C1—H1125.7C29A—C28A—H28B111.6
C3—C2—C1105.2 (5)C27—C28A—H28B111.6
C3—C2—I1124.5 (4)H28A—C28A—H28B109.4
C1—C2—I1129.8 (4)C28A—C29A—H29A109.5
N1—C3—C2109.2 (5)C28A—C29A—H29B109.5
N1—C3—H3125.4H29A—C29A—H29B109.5
C2—C3—H3125.4C28A—C29A—H29C109.5
N4—C4—C5109.2 (5)H29A—C29A—H29C109.5
N4—C4—H4125.4H29B—C29A—H29C109.5
C5—C4—H4125.4C29B—C28B—C27106.9 (15)
C6—C5—C4105.0 (5)C29B—C28B—H28C110.3
C6—C5—I2127.8 (4)C27—C28B—H28C110.4
C4—C5—I2127.0 (4)C29B—C28B—H28D110.4
N3—C6—C5109.6 (5)C27—C28B—H28D110.4
N3—C6—H6125.2H28C—C28B—H28D108.6
C5—C6—H6125.2C28B—C29B—H29D109.5
N6—C7—C8109.2 (5)C28B—C29B—H29E109.5
N6—C7—H7125.4H29D—C29B—H29E109.5
C8—C7—H7125.4C28B—C29B—H29F109.5
C7—C8—C9105.0 (5)H29D—C29B—H29F109.5
C7—C8—I3124.3 (4)H29E—C29B—H29F109.5
C9—C8—I3130.7 (4)C31—C30—N8115.1 (6)
N5—C9—C8109.1 (5)C31—C30—H30A108.5
N5—C9—H9125.5N8—C30—H30A108.5
C8—C9—H9125.5C31—C30—H30B108.5
C11—C10—N7115.4 (7)N8—C30—H30B108.5
C11—C10—H10A108.4H30A—C30—H30B107.5
N7—C10—H10A108.4C30—C31—C32110.0 (7)
C11—C10—H10B108.4C30—C31—H31A109.7
N7—C10—H10B108.4C32—C31—H31A109.7
H10A—C10—H10B107.5C30—C31—H31B109.7
C10—C11—C12B132.7 (18)C32—C31—H31B109.7
C10—C11—C12A103.6 (10)H31A—C31—H31B108.2
C10—C11—H11A111.0C33—C32—C31114.8 (10)
C12A—C11—H11A111.0C33—C32—H32A108.6
C10—C11—H11B111.0C31—C32—H32A108.6
C12A—C11—H11B111.0C33—C32—H32B108.6
H11A—C11—H11B109.0C31—C32—H32B108.6
C10—C11—H11C104.1H32A—C32—H32B107.6
C12B—C11—H11C104.1C32—C33—H33A109.5
C10—C11—H11D104.1C32—C33—H33B109.5
C12B—C11—H11D104.1H33A—C33—H33B109.5
H11C—C11—H11D105.5C32—C33—H33C109.5
C11—C12A—C13A103.6 (12)H33A—C33—H33C109.5
C11—C12A—H12A111.1H33B—C33—H33C109.5
C13A—C12A—H12A111.1N8—C34—C35116.1 (5)
C11—C12A—H12B111.0N8—C34—H34A108.3
C13A—C12A—H12B111.0C35—C34—H34A108.3
H12A—C12A—H12B109.0N8—C34—H34B108.3
C12A—C13A—H13A109.5C35—C34—H34B108.3
C12A—C13A—H13B109.5H34A—C34—H34B107.4
H13A—C13A—H13B109.5C36—C35—C34110.5 (6)
C12A—C13A—H13C109.5C36—C35—H35A109.5
H13A—C13A—H13C109.5C34—C35—H35A109.5
H13B—C13A—H13C109.5C36—C35—H35B109.5
C11—C12B—C13B102.0 (19)C34—C35—H35B109.5
C11—C12B—H12C111.4H35A—C35—H35B108.1
C13B—C12B—H12C111.4C35—C36—C37113.0 (6)
C11—C12B—H12D111.4C35—C36—H36A109.0
C13B—C12B—H12D111.4C37—C36—H36A109.0
H12C—C12B—H12D109.2C35—C36—H36B109.0
C12B—C13B—H13D109.5C37—C36—H36B109.0
C12B—C13B—H13E109.5H36A—C36—H36B107.8
H13D—C13B—H13E109.5C36—C37—H37A109.5
C12B—C13B—H13F109.5C36—C37—H37B109.5
H13D—C13B—H13F109.5H37A—C37—H37B109.5
H13E—C13B—H13F109.5C36—C37—H37C109.5
N7—C14—C15116.5 (6)H37A—C37—H37C109.5
N7—C14—H14A108.2H37B—C37—H37C109.5
C15—C14—H14A108.2N8—C38—C39115.2 (5)
N7—C14—H14B108.2N8—C38—H38A108.5
C15—C14—H14B108.2C39—C38—H38A108.5
H14A—C14—H14B107.3N8—C38—H38B108.5
C14—C15—C16A108.5 (11)C39—C38—H38B108.5
C14—C15—C16B109.2 (15)H38A—C38—H38B107.5
C14—C15—H15A110.0C40—C39—C38111.0 (7)
C16A—C15—H15A110.0C40—C39—H39A109.4
C14—C15—H15B110.0C38—C39—H39A109.4
C16A—C15—H15B110.0C40—C39—H39B109.4
H15A—C15—H15B108.4C38—C39—H39B109.4
C14—C15—H15C109.8H39A—C39—H39B108.0
C16B—C15—H15C109.8C41—C40—C39116.4 (10)
C14—C15—H15D109.8C41—C40—H40A108.2
C16B—C15—H15D109.8C39—C40—H40A108.2
H15C—C15—H15D108.3C41—C40—H40B108.2
C17A—C16A—C15115.9 (18)C39—C40—H40B108.2
C17A—C16A—H16A108.3H40A—C40—H40B107.3
C15—C16A—H16A108.3C40—C41—H41A109.5
C17A—C16A—H16B108.3C40—C41—H41B109.5
C15—C16A—H16B108.3H41A—C41—H41B109.5
H16A—C16A—H16B107.4C40—C41—H41C109.5
C16A—C17A—H17A109.5H41A—C41—H41C109.5
C16A—C17A—H17B109.5H41B—C41—H41C109.5
H17A—C17A—H17B109.5O1—C42—C43i110.4 (6)
C16A—C17A—H17C109.5O1—C42—H42A109.6
H17A—C17A—H17C109.5C43i—C42—H42A109.6
H17B—C17A—H17C109.5O1—C42—H42B109.6
C17B—C16B—C15106.0 (19)C43i—C42—H42B109.6
C17B—C16B—H16C110.5H42A—C42—H42B108.1
C15—C16B—H16C110.5O1—C43—C42i110.5 (6)
C17B—C16B—H16D110.5O1—C43—H43A109.6
C15—C16B—H16D110.5C42i—C43—H43A109.6
H16C—C16B—H16D108.7O1—C43—H43B109.6
C16B—C17B—H17D109.5C42i—C43—H43B109.6
C16B—C17B—H17E109.5H43A—C43—H43B108.1
Symmetry code: (i) x+2, y, z+1.
Halogen-bond geometry (Å, °) top
DX···YX···YDX···Y
C2—I1···Cl1Ai3.516 (4)152.0 (2)
C2—I1···Cl1Bi3.362 (5)164.3 (2)
C5—I2···Cl3iii3.569 (1)165.2 (2)
C8—I3···Cl1Aiv3.438 (4)154.4 (2)
C8—I3···Cl1Biv3.486 (5)154.2 (2)
Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y - 1, -z + 1; (iii) -x + 1, -y - 1, -z + 1; (iv) -x + 1, -y - 1, -z.
 

Acknowledgements

This material is based on work supported by the National Science Foundation under Grant No. CHE-1404730.

References

First citationAhmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327–8339.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAhmed, B. M., Hartman, C. K. & Mezei, G. (2016). Inorg. Chem. 55, doi:10.1021/acs.inorgchem.6b01909.  Web of Science CSD CrossRef Google Scholar
First citationAhmed, B. M. & Mezei, G. (2016). Inorg. Chem. 55, 7717–7728.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAhmed, B. M., Szymczyna, B. R., Jianrattanasawat, S., Surmann, S. A. & Mezei, G. (2016). Chem. Eur. J. 22, 5499–5503.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationAngaridis, P. A., Baran, P., Boča, R., Cervantes-Lee, F., Haase, W., Mezei, G., Raptis, R. G. & Werner, R. (2002). Inorg. Chem. 41, 2219–2228.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBaskerville, C. & Hamor, W. A. (1912). J. Ind. Eng. Chem. 4, 278–288.  CrossRef Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFernando, I. R., Surmann, S. A., Urech, A. A., Poulsen, A. M. & Mezei, G. (2012). Chem. Commun. 48, 6860–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationGilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGovor, E. V., Chakraborty, I., Piñero, D. M., Baran, P., Sanakis, Y. & Raptis, R. G. (2012). Polyhedron, 45, 55–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuzei, I. A. & Winter, C. H. (1997). Inorg. Chem. 36, 4415–4420.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationHarvey, B. M. & Hoggard, P. E. (2014). Photochem. Photobiol. 90, 1234–1242.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHeeg, M. J., Yu, Z. & Winter, C. H. (2010). Private Communication (refcode DAGDUM). CCDC, Cambridge, England.  Google Scholar
First citationMezei, G. (2015). Chem. Commun. 51, 10341–10344.  Web of Science CSD CrossRef CAS Google Scholar
First citationMezei, G. (2016). Acta Cryst. E72, 1064–1067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMezei, G., Baran, P. & Raptis, R. G. (2004). Angew. Chem. Int. Ed. 43, 574–577.  Web of Science CSD CrossRef CAS Google Scholar
First citationMezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationMezei, G., Raptis, R. G. & Telser, J. (2006). Inorg. Chem. 45, 8841–8843.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMuñoz, Z., Cohen, A. S., Nguyen, L. M., McIntosh, T. A. & Hoggard, P. E. (2008). Photochem. Photobiol. Sci. 7, 337–343.  Web of Science PubMed Google Scholar
First citationPalmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England.  Google Scholar
First citationPeña, L. A., Chan, A. M., Cohen, L. R., Hou, K., Harvey, B. M. & Hoggard, P. E. (2014). Photochem. Photobiol. 90, 760–766.  Web of Science PubMed Google Scholar
First citationPeña, L. A. & Hoggard, P. E. (2010). J. Mol. Catal. A Chem. 327, 20–24.  Google Scholar
First citationPeña, L. A., Seidl, A. J., Cohen, L. R. & Hoggard, P. E. (2009). Transition Met. Chem. 34, 135–141.  Google Scholar
First citationSemeluk, G. P. & Unger, I. (1963). Nature, 198, 853–855.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. da, Ribeiro, L. B., Furuno, C. C., da Cunha, G. A., de Souza, R. F. F., Netto, A. V. G., Mauro, A. E., Frem, R. C. G., Fernandes, J. A., Almeida Paz, F. A., Marino, L. B., Pavan, F. R. & Leite, C. Q. F. (2015). Polyhedron, 100, 10–16.  Google Scholar
First citationSong, G., Sun, Q., Hou, Y.-N., Zhan, R., Wei, D.-M., Shi, Z. & Xing, Y.-H. (2013). Chin. J. Inorg. Chem. 29, 2150–2156.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds