research communications
Halogen-bonded network of trinuclear copper(II) 4-iodopyrazolate complexes formed by mutual breakdown of chloroform and nanojars
aDepartment of Chemistry, Western Michigan University, Kalamazoo, MI 49006 USA
*Correspondence e-mail: gellert.mezei@wmich.edu
Crystals of bis(tetrabutylammonium) di-μ3-chlorido-tris(μ2-4-iodopyrazolato-κ2N:N′)tris[chloridocuprate(II)] 1,4-dioxane hemisolvate, (C16H36N)2[Cu3(C3H2IN2)3Cl5]·0.5C4H8O or (Bu4N)2[CuII3(μ3-Cl)2(μ-4-I-pz)3Cl3]·0.5C4H8O, were obtained by evaporating a solution of (Bu4N)2[{CuII(μ-OH)(μ-4-I-pz)}nCO3] (n = 27–31) nanojars in chloroform/1,4-dioxane. The decomposition of chloroform in the presence of oxygen and moisture provides HCl, which leads to the breakdown of nanojars to the title trinuclear copper(II) pyrazolate complex, and possibly CuII ions and free 4-iodopyrazole. CuII ions, in turn, act as catalyst for the accelerated decomposition of chloroform, ultimately leading to the complete breakdown of nanojars. The presented here provides the first structural description of a trinuclear copper(II) pyrazolate complex with iodine-substituted pyrazoles. In contrast to related trinuclear complexes based on differently substituted 4-R-pyrazoles (R = H, Cl, Br, Me), the [Cu3(μ-4-I-pz)3Cl3] core in the title complex is nearly planar. This difference is likely a result of the presence of the iodine substituent, which provides a unique, novel feature in copper pyrazolate chemistry. Thus, the iodine atoms form halogen bonds with the terminal chlorido ligands of the surrounding complexes [mean length of I⋯Cl contacts = 3.48 (1) Å], leading to an extended two-dimensional, halogen-bonded network along (-110). The cavities within this framework are filled by centrosymmetric 1,4-dioxane solvent molecules, which create further bridges via C—H⋯Cl hydrogen bonds with terminal chlorido ligands of the trinuclear complex not involved in halogen bonding.
Keywords: crystal structure; copper pyrazolate; trinuclear complex; nanojar; halogen bonding.
CCDC reference: 1507382
1. Chemical context
Nanojars, supramolecular coordination complexes of the formula [{Cu(μ-OH)(μ-pz)}nanion] (pz = pyrazolate anion; n = 27–36), have emerged as a new class of anion encapsulation agents of unparalleled efficiency, which allow the extraction of anions with large hydration energies, such as phosphate, carbonate and sulfate, from water into organic solvents (Mezei, Baran et al., 2004; Fernando et al., 2012; Mezei, 2015; Ahmed, Szymczyna et al., 2016; Ahmed, Calco & Mezei, 2016; Ahmed & Mezei, 2016; Ahmed, Hartman & Mezei, 2016). Trinuclear copper pyrazolate complexes have been identified as key intermediates in the self-assembly mechanism of nanojars from copper(II) nitrate, pyrazole and NaOH (1:1:2 molar ratio) in the presence of carbonate (Ahmed & Mezei, 2016). The trinuclear intermediate can be isolated if the amount of available base is reduced (copper:pyrazole:base molar ratio 3:3:4), and can subsequently be converted to nanojars by adding an additional amount of base to reach a 1:1:2 molar ratio. Moreover, nanojars can be broken down to the trinuclear complex by acids, which easily protonate the OH groups of the nanojar. As a consequence, nanojars and the trinuclear pyrazolate complex are in a pH-dependent equilibrium. The sensitivity of nanojars to even very weak acids is further demonstrated by the fact that a weak base, such as Et3N, is unable to convert the trinuclear complex to nanojars in solution (e.g., DMF, THF), despite its ability to provide the hydroxide ions needed by the nanojar, in the presence of moisture (Et3N + H2O Et3NH+ + HO−). This is due to the acidity of the conjugate acid, the triethylammonium cation (pKa = 10.75 in H2O), which would form in the process (Mezei, 2016). Nevertheless, nanojars can be obtained using Et3N if the solution is diluted with excess water, which leads to the precipitation of hydrophobic nanojars (Fernando et al., 2012).
New evidence supporting the vulnerability of nanojars to acids emerges from an unexpected source. An attempt to grow single crystals from a solution of (Bu4N)2[{Cu(μ-OH)(μ-4-I-pz)}nCO3] (n = 27–31) (Ahmed, Calco et al., 2016) in chloroform/1,4-dioxane provided, instead of the expected nanojars, crystals of (Bu4N)2[Cu3(μ3-Cl)2(μ-4-I-pz)3Cl3]·0.5dioxane (Mezei & Raptis, 2004), accompanied by a color change of the solution from blue to green. The chloride ions originating from CHCl3 is not surprising, as chloroform has long been known to slowly decompose in the presence of air and moisture producing HCl and phosgene (CHCl3 + ½O2 → COCl2 + HCl) (Baskerville & Hamor, 1912). The latter can hydrolyze to provide further amounts of HCl, and CO2 (COCl2 + H2O → 2HCl + CO2). What is surprising though is the large amount of chloride formed in a relatively short period of time (ca 48 chloride ions per nanojar). Chloroform preserved with ethanol (0.5–1%), such as the one used here for crystal growing, is much more stable than the pure form and it does not decompose at a significant rate. This points to a decomposition catalyzed by the dissolved nanojars, possibly aided by light. A search of the literature shows that various classes of compounds have been found to catalyze the photodecomposition of chloroform (Semeluk & Unger, 1963; Peña & Hoggard, 2010; Muñoz et al., 2008; Peña et al., 2014; Peña et al., 2009), including simple copper(II) complexes (Harvey & Hoggard, 2014). A balanced equation of the reaction between nanojars of different sizes and HCl, producing the title trinuclear complex, is given below:
3[{Cu(μ-OH)(μ-4-Ipz)nCO3]2– + 5nHCl → n[Cu3(μ3-Cl)2(μ-4-Ipz)3Cl3]2– + (2n − 6) H3O+ + (n + 9) H2O + 3CO2 (n = 27–31).
2. Structural commentary
The title compound contains a nearly planar Cu3(μ-4-I-pz)3 core (Fig. 1): the best-fit planes of the three 4-iodopyrazolate units form dihedral angles of 2.1 (2), 2.0 (1) and 6.5 (1)°, respectively, with the Cu3-plane. Each Cu atom has a distorted trigonal–bipyramidal coordination geometry and is bound to a terminal Cl atom (one Cl atom disordered over two positions, 60/40 occupancy) at an average Cu—Cl distance of 2.32 (3) Å. The Cu3 unit is additionally capped by two Cl atoms, one on each side of the complex, at distances of 1.683 (1) and 1.799 (1) Å from the Cu3-plane, respectively [average Cu—Cl distances = 2.58 (7) and 2.66 (9) Å]. The two capping Cl atoms impart an overall 2– charge to the complex, which is balanced by two tetrabutylammonium counter-ions. Other bond lengths and angles within the Cu3(μ3-Cl)2(μ-4-I-pz)3Cl3 complex are similar to the ones found in related complexes (Angaridis et al., 2002; Mezei & Raptis, 2004; Mezei et al., 2006): Cu—N bond lengths average 1.936 (10) Å, N—Cu—N angles average 173 (3)°, Cl—Cu—Cl angles average 125 (9) and 152 (9)°, respectively, and intramolecular Cu⋯Cu distances are 3.378 (1), 3.419 (1) and 3.390 (1) Å.
3. Supramolecular features
The intermolecular distances between iodine substituents of the pyrazole units and the terminal chlorine atoms of adjacent complexes are less than the sum of the van der Waals radii (Bondi, 1964) of iodine and chlorine atoms (3.73 Å). Thus, a halogen-bonded (Cavallo et al., 2016; Gilday et al., 2015) sheet based on C—I⋯Cl—Cu interactions (Fig. 2) is generated parallel to the (10) plane (and c axis); I⋯Cl distances and C–I⋯Cl angles are shown in Table 1. Bifurcated halogen bonds are noted between Cl1A/Cl1B and I1′ and I3′. The formation of the extended halogen-bonded network might account for the near-planarity of the title complex, as opposed to related complexes with unsubstituted or differently substituted 4-R-pyrazoles (R = H, Cl, Br, Me; Angaridis et al., 2002; Mezei & Raptis, 2004), which do not form intermolecular halogen bonds and are severely distorted from planarity. Additionally, the dioxane solvent molecule, which is located around an inversion center, forms C—H⋯Cl hydrogen bonds with terminal chlorido ligands of the trinuclear complex [C43⋯Cl2: 3.751 (10); H43B⋯Cl2: 2.83; C43—H43B: 0.97 Å; C43—H43b⋯Cl2: 160 (5)°], creating further bridges within the two-dimensional framework.
4. Database survey
A search of the Cambridge Structural Database (Groom et al., 2016) reveals only seven metal complexes that contain a 4-iodopyrazole moiety, either in its neutral, monodentate form (Guzei & Winter, 1997; Govor et al., 2012; Song et al., 2013; da Silva et al., 2015), or in its deprotonated, bidentate form (Heeg et al., 2010; Song et al., 2013). Of these, only one is a CuII complex (Song et al., 2013). Hence, the presented here offers the first solid-state structural description of a trinuclear copper(II) pyrazolate complex bearing 4-iodopyrazolate ligands.
5. Synthesis and crystallization
The synthesis of (Bu4N)2[{Cu(μ-OH)(μ-4-I-pz)}nCO3] (n = 27–31) was described earlier (Ahmed Calco & Mezei, 2016). Green plate-like crystals of the title compound were obtained by slow evaporation of a chloroform/1,4-dioxane (1 mL each) solution of (Bu4N)2[{Cu(μ-OH)(μ-4-I-pz)}nCO3] (20 mg).
6. Refinement
Crystal data, data collection and structure . C—H hydrogen atoms were placed in idealized positions and refined using a riding model. One of the three terminal Cl-atoms is disordered over two positions (60/40). Two terminal CH2CH3 groups of one tetrabutylammonium counter-ion and another CH2CH3 group of the other counter-ion are disordered over two positions (60/40); C—H bond-length restraints were used for the disordered C atoms. Residual electron density of 3.52 eÅ−3 is found at 0.83 Å from heavy atom I3, due to Fourier truncation ripples.
details are summarized in Table 2Supporting information
CCDC reference: 1507382
https://doi.org/10.1107/S205698901601536X/gk2666sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901601536X/gk2666Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901601536X/gk2666Isup3.cdx
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2014); software used to prepare material for publication: CrystalMaker (Palmer, 2014).(C16H36N)2[Cu3Cl5(C3H2IN2)3Cl5]·0.5C4H8O | Z = 2 |
Mr = 1475.73 | F(000) = 1470 |
Triclinic, P1 | Dx = 1.657 Mg m−3 |
a = 11.3604 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.5688 (2) Å | Cell parameters from 9763 reflections |
c = 23.2200 (3) Å | θ = 2.2–28.1° |
α = 103.707 (1)° | µ = 2.90 mm−1 |
β = 90.409 (1)° | T = 100 K |
γ = 93.654 (1)° | Plate, green |
V = 2958.00 (8) Å3 | 0.65 × 0.43 × 0.03 mm |
Bruker APEXII CCD diffractometer | 11845 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.056 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.3°, θmin = 0.9° |
Tmin = 0.486, Tmax = 0.746 | h = −15→15 |
136857 measured reflections | k = −15→15 |
14685 independent reflections | l = −30→30 |
Refinement on F2 | 12 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.153 | w = 1/[σ2(Fo2) + (0.0646P)2 + 28.784P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
14685 reflections | Δρmax = 3.54 e Å−3 |
642 parameters | Δρmin = −2.89 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
I1 | 1.03331 (4) | 1.16081 (4) | 0.94854 (2) | 0.03491 (11) | |
I2 | 0.60033 (4) | 0.67453 (3) | 0.48116 (2) | 0.02938 (10) | |
I3 | 0.33478 (5) | 0.37443 (5) | 0.92175 (2) | 0.05065 (15) | |
Cu1 | 0.68348 (7) | 0.74045 (8) | 0.86260 (3) | 0.03445 (19) | |
Cu2 | 0.76595 (6) | 0.82666 (6) | 0.73883 (3) | 0.02209 (14) | |
Cu3 | 0.54352 (6) | 0.60997 (6) | 0.73172 (3) | 0.01939 (14) | |
Cl1A | 0.7088 (4) | 0.7605 (4) | 0.96245 (14) | 0.0517 (10) | 0.6 |
Cl1B | 0.7610 (5) | 0.7019 (5) | 0.9490 (2) | 0.0456 (13) | 0.4 |
Cl2 | 0.91814 (10) | 0.91245 (10) | 0.69157 (5) | 0.0170 (2) | |
Cl3 | 0.43631 (10) | 0.44226 (10) | 0.67503 (5) | 0.0154 (2) | |
Cl4 | 0.55813 (9) | 0.82369 (10) | 0.78789 (5) | 0.0150 (2) | |
Cl5 | 0.77907 (9) | 0.62234 (9) | 0.76421 (4) | 0.01119 (19) | |
O1 | 0.9089 (5) | 0.0637 (5) | 0.5297 (2) | 0.0456 (12) | |
N1 | 0.7933 (4) | 0.8756 (5) | 0.8653 (2) | 0.0274 (10) | |
N2 | 0.8247 (4) | 0.9129 (4) | 0.81648 (19) | 0.0208 (9) | |
N3 | 0.6824 (4) | 0.7512 (4) | 0.66521 (19) | 0.0213 (9) | |
N4 | 0.5915 (4) | 0.6671 (4) | 0.66256 (19) | 0.0207 (9) | |
N5 | 0.5023 (4) | 0.5613 (4) | 0.80432 (19) | 0.0223 (9) | |
N6 | 0.5610 (4) | 0.6148 (5) | 0.8565 (2) | 0.0269 (10) | |
N7 | 0.1835 (4) | 0.7648 (5) | 0.8299 (3) | 0.0336 (12) | |
N8 | 0.7491 (5) | 0.2456 (5) | 0.6678 (3) | 0.0338 (12) | |
C1 | 0.9002 (5) | 1.0111 (5) | 0.8331 (2) | 0.0219 (10) | |
H1 | 0.9350 | 1.0540 | 0.8078 | 0.026* | |
C2 | 0.9171 (5) | 1.0369 (5) | 0.8945 (2) | 0.0232 (11) | |
C3 | 0.8487 (5) | 0.9500 (6) | 0.9130 (3) | 0.0295 (13) | |
H3 | 0.8418 | 0.9436 | 0.9520 | 0.035* | |
C4 | 0.5500 (5) | 0.6341 (5) | 0.6066 (2) | 0.0227 (11) | |
H4 | 0.4874 | 0.5782 | 0.5929 | 0.027* | |
C5 | 0.6150 (5) | 0.6965 (5) | 0.5720 (2) | 0.0233 (11) | |
C6 | 0.6974 (5) | 0.7683 (5) | 0.6107 (2) | 0.0232 (11) | |
H6 | 0.7545 | 0.8206 | 0.6004 | 0.028* | |
C7 | 0.5171 (5) | 0.5648 (6) | 0.8991 (3) | 0.0294 (12) | |
H7 | 0.5424 | 0.5846 | 0.9386 | 0.035* | |
C8 | 0.4282 (6) | 0.4787 (6) | 0.8748 (3) | 0.0314 (13) | |
C9 | 0.4229 (5) | 0.4791 (5) | 0.8146 (2) | 0.0260 (11) | |
H9 | 0.3721 | 0.4299 | 0.7863 | 0.031* | |
C10 | 0.0713 (6) | 0.7144 (9) | 0.8526 (4) | 0.056 (2) | |
H10A | 0.0536 | 0.7664 | 0.8905 | 0.067* | |
H10B | 0.0069 | 0.7160 | 0.8252 | 0.067* | |
C11 | 0.0750 (8) | 0.5893 (13) | 0.8606 (7) | 0.104 (5) | |
H11A | 0.1434 | 0.5818 | 0.8844 | 0.125* | 0.6 |
H11B | 0.0769 | 0.5321 | 0.8226 | 0.125* | 0.6 |
H11C | 0.1322 | 0.5965 | 0.8927 | 0.125* | 0.4 |
H11D | 0.1128 | 0.5470 | 0.8252 | 0.125* | 0.4 |
C12A | −0.0422 (11) | 0.5702 (14) | 0.8934 (7) | 0.047 (3) | 0.6 |
H12A | −0.1102 | 0.5837 | 0.8710 | 0.056* | 0.6 |
H12B | −0.0415 | 0.6233 | 0.9326 | 0.056* | 0.6 |
C13A | −0.0432 (18) | 0.4346 (17) | 0.8972 (12) | 0.112 (10) | 0.6 |
H13A | −0.0392 | 0.3843 | 0.8580 | 0.168* | 0.6 |
H13B | −0.1146 | 0.4136 | 0.9153 | 0.168* | 0.6 |
H13C | 0.0235 | 0.4241 | 0.9206 | 0.168* | 0.6 |
C12B | −0.020 (3) | 0.500 (3) | 0.8721 (10) | 0.077 (9) | 0.4 |
H12C | −0.0074 | 0.4199 | 0.8491 | 0.093* | 0.4 |
H12D | −0.0977 | 0.5209 | 0.8630 | 0.093* | 0.4 |
C13B | −0.002 (3) | 0.510 (3) | 0.9386 (10) | 0.087 (9) | 0.4 |
H13D | 0.0684 | 0.4729 | 0.9453 | 0.131* | 0.4 |
H13E | −0.0687 | 0.4705 | 0.9530 | 0.131* | 0.4 |
H13F | 0.0047 | 0.5924 | 0.9593 | 0.131* | 0.4 |
C14 | 0.2866 (6) | 0.7694 (7) | 0.8727 (3) | 0.0363 (14) | |
H14A | 0.3572 | 0.7979 | 0.8556 | 0.044* | |
H14B | 0.2980 | 0.6886 | 0.8758 | 0.044* | |
C15 | 0.2755 (7) | 0.8467 (9) | 0.9350 (3) | 0.056 (2) | |
H15A | 0.2121 | 0.8136 | 0.9552 | 0.067* | 0.6 |
H15B | 0.2575 | 0.9267 | 0.9332 | 0.067* | 0.6 |
H15C | 0.1961 | 0.8357 | 0.9489 | 0.067* | 0.4 |
H15D | 0.2903 | 0.9301 | 0.9348 | 0.067* | 0.4 |
C16A | 0.394 (2) | 0.851 (4) | 0.9692 (11) | 0.16 (2) | 0.6 |
H16A | 0.4103 | 0.7700 | 0.9698 | 0.192* | 0.6 |
H16B | 0.4560 | 0.8815 | 0.9473 | 0.192* | 0.6 |
C17A | 0.400 (2) | 0.926 (3) | 1.0325 (9) | 0.172 (18) | 0.6 |
H17A | 0.3964 | 1.0084 | 1.0323 | 0.258* | 0.6 |
H17B | 0.4719 | 0.9143 | 1.0513 | 0.258* | 0.6 |
H17C | 0.3340 | 0.9018 | 1.0538 | 0.258* | 0.6 |
C16B | 0.367 (2) | 0.811 (3) | 0.9773 (13) | 0.058 (8) | 0.4 |
H16C | 0.4381 | 0.7876 | 0.9565 | 0.069* | 0.4 |
H16D | 0.3867 | 0.8774 | 1.0109 | 0.069* | 0.4 |
C17B | 0.306 (3) | 0.705 (3) | 0.9983 (12) | 0.086 (9) | 0.4 |
H17D | 0.2298 | 0.7260 | 1.0136 | 0.130* | 0.4 |
H17E | 0.3536 | 0.6868 | 1.0288 | 0.130* | 0.4 |
H17F | 0.2965 | 0.6367 | 0.9654 | 0.130* | 0.4 |
C18 | 0.2168 (6) | 0.6875 (6) | 0.7706 (3) | 0.0341 (13) | |
H18A | 0.2361 | 0.6105 | 0.7763 | 0.041* | |
H18B | 0.2872 | 0.7241 | 0.7571 | 0.041* | |
C19 | 0.1213 (7) | 0.6679 (7) | 0.7222 (4) | 0.0442 (17) | |
H19A | 0.0830 | 0.7414 | 0.7245 | 0.053* | |
H19B | 0.0622 | 0.6076 | 0.7279 | 0.053* | |
C20 | 0.1771 (9) | 0.6273 (9) | 0.6606 (4) | 0.067 (3) | |
H20A | 0.1148 | 0.5955 | 0.6312 | 0.080* | |
H20B | 0.2281 | 0.5636 | 0.6615 | 0.080* | |
C21 | 0.2499 (11) | 0.7297 (13) | 0.6413 (5) | 0.088 (4) | |
H21A | 0.2812 | 0.6998 | 0.6027 | 0.133* | |
H21B | 0.3137 | 0.7596 | 0.6693 | 0.133* | |
H21C | 0.1999 | 0.7928 | 0.6400 | 0.133* | |
C22 | 0.1610 (6) | 0.8890 (6) | 0.8236 (3) | 0.0389 (15) | |
H22A | 0.1364 | 0.9351 | 0.8616 | 0.047* | |
H22B | 0.0957 | 0.8826 | 0.7956 | 0.047* | |
C23 | 0.2649 (7) | 0.9579 (7) | 0.8031 (4) | 0.051 (2) | |
H23A | 0.3226 | 0.9837 | 0.8354 | 0.062* | |
H23B | 0.3024 | 0.9058 | 0.7705 | 0.062* | |
C24 | 0.2266 (8) | 1.0655 (7) | 0.7835 (5) | 0.056 (2) | |
H24A | 0.1927 | 1.1197 | 0.8167 | 0.067* | |
H24B | 0.1663 | 1.0404 | 0.7525 | 0.067* | |
C25 | 0.3294 (10) | 1.1297 (9) | 0.7607 (6) | 0.075 (3) | |
H25A | 0.3846 | 1.1634 | 0.7927 | 0.112* | |
H25B | 0.3012 | 1.1922 | 0.7445 | 0.112* | |
H25C | 0.3676 | 1.0744 | 0.7303 | 0.112* | |
C26 | 0.6939 (6) | 0.2858 (7) | 0.7279 (3) | 0.0408 (16) | |
H26A | 0.6140 | 0.3061 | 0.7219 | 0.049* | |
H26B | 0.7377 | 0.3579 | 0.7497 | 0.049* | |
C27 | 0.6901 (9) | 0.1948 (11) | 0.7660 (4) | 0.072 (3) | |
H27A | 0.7708 | 0.1779 | 0.7729 | 0.087* | 0.4 |
H27B | 0.6509 | 0.1216 | 0.7426 | 0.087* | 0.4 |
H27C | 0.7676 | 0.1668 | 0.7704 | 0.087* | 0.6 |
H27D | 0.6354 | 0.1270 | 0.7493 | 0.087* | 0.6 |
C28A | 0.630 (2) | 0.224 (2) | 0.8267 (8) | 0.039 (6) | 0.4 |
H28A | 0.5561 | 0.2594 | 0.8246 | 0.047* | 0.4 |
H28B | 0.6172 | 0.1530 | 0.8421 | 0.047* | 0.4 |
C29A | 0.7227 (19) | 0.312 (2) | 0.8636 (10) | 0.061 (6) | 0.4 |
H29A | 0.7973 | 0.2768 | 0.8612 | 0.091* | 0.4 |
H29B | 0.6991 | 0.3324 | 0.9042 | 0.091* | 0.4 |
H29C | 0.7300 | 0.3827 | 0.8487 | 0.091* | 0.4 |
C28B | 0.6464 (17) | 0.268 (2) | 0.8264 (7) | 0.080 (9) | 0.6 |
H28C | 0.7048 | 0.3318 | 0.8441 | 0.096* | 0.6 |
H28D | 0.5733 | 0.3034 | 0.8206 | 0.096* | 0.6 |
C29B | 0.627 (2) | 0.181 (3) | 0.8667 (11) | 0.172 (18) | 0.6 |
H29D | 0.5565 | 0.1306 | 0.8540 | 0.258* | 0.6 |
H29E | 0.6188 | 0.2251 | 0.9069 | 0.258* | 0.6 |
H29F | 0.6932 | 0.1328 | 0.8644 | 0.258* | 0.6 |
C30 | 0.8787 (6) | 0.2231 (6) | 0.6741 (4) | 0.0404 (16) | |
H30A | 0.8842 | 0.1626 | 0.6965 | 0.049* | |
H30B | 0.9086 | 0.1912 | 0.6350 | 0.049* | |
C31 | 0.9577 (7) | 0.3320 (9) | 0.7044 (5) | 0.069 (3) | |
H31A | 0.9315 | 0.3628 | 0.7444 | 0.082* | |
H31B | 0.9525 | 0.3940 | 0.6829 | 0.082* | |
C32 | 1.0857 (7) | 0.2986 (9) | 0.7062 (5) | 0.068 (3) | |
H32A | 1.1326 | 0.3662 | 0.7301 | 0.082* | |
H32B | 1.0886 | 0.2334 | 0.7257 | 0.082* | |
C33 | 1.1404 (9) | 0.2630 (11) | 0.6472 (6) | 0.093 (4) | |
H33A | 1.1033 | 0.1884 | 0.6255 | 0.139* | |
H33B | 1.2231 | 0.2546 | 0.6524 | 0.139* | |
H33C | 1.1303 | 0.3230 | 0.6256 | 0.139* | |
C34 | 0.6902 (6) | 0.1279 (6) | 0.6335 (3) | 0.0347 (14) | |
H34A | 0.7049 | 0.0675 | 0.6549 | 0.042* | |
H34B | 0.7279 | 0.1055 | 0.5954 | 0.042* | |
C35 | 0.5576 (6) | 0.1257 (6) | 0.6223 (3) | 0.0369 (14) | |
H35A | 0.5188 | 0.1534 | 0.6597 | 0.044* | |
H35B | 0.5417 | 0.1791 | 0.5971 | 0.044* | |
C36 | 0.5090 (7) | 0.0014 (7) | 0.5931 (4) | 0.0478 (18) | |
H36A | 0.5227 | −0.0507 | 0.6192 | 0.057* | |
H36B | 0.5513 | −0.0272 | 0.5569 | 0.057* | |
C37 | 0.3771 (7) | −0.0056 (7) | 0.5782 (4) | 0.052 (2) | |
H37A | 0.3340 | 0.0151 | 0.6142 | 0.078* | |
H37B | 0.3521 | −0.0852 | 0.5569 | 0.078* | |
H37C | 0.3622 | 0.0491 | 0.5540 | 0.078* | |
C38 | 0.7337 (6) | 0.3428 (6) | 0.6346 (3) | 0.0383 (15) | |
H38A | 0.7721 | 0.4167 | 0.6577 | 0.046* | |
H38B | 0.6502 | 0.3545 | 0.6321 | 0.046* | |
C39 | 0.7830 (8) | 0.3177 (8) | 0.5717 (4) | 0.059 (2) | |
H39A | 0.8636 | 0.2949 | 0.5728 | 0.071* | |
H39B | 0.7364 | 0.2517 | 0.5463 | 0.071* | |
C40 | 0.7805 (8) | 0.4279 (9) | 0.5459 (5) | 0.068 (3) | |
H40A | 0.7857 | 0.4021 | 0.5031 | 0.081* | |
H40B | 0.7046 | 0.4613 | 0.5543 | 0.081* | |
C41 | 0.8687 (11) | 0.5185 (12) | 0.5664 (8) | 0.111 (5) | |
H41A | 0.8663 | 0.5439 | 0.6088 | 0.166* | |
H41B | 0.8560 | 0.5847 | 0.5493 | 0.166* | |
H41C | 0.9443 | 0.4891 | 0.5550 | 0.166* | |
C42 | 0.9468 (8) | 0.0777 (8) | 0.4729 (3) | 0.053 (2) | |
H42A | 0.9359 | 0.1585 | 0.4697 | 0.063* | |
H42B | 0.8994 | 0.0234 | 0.4419 | 0.063* | |
C43 | 0.9270 (8) | −0.0530 (7) | 0.5351 (3) | 0.050 (2) | |
H43A | 0.8791 | −0.1102 | 0.5054 | 0.060* | |
H43B | 0.9027 | −0.0618 | 0.5739 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0304 (2) | 0.0365 (2) | 0.0282 (2) | −0.01134 (16) | −0.00065 (15) | −0.00781 (16) |
I2 | 0.0451 (2) | 0.02683 (19) | 0.01655 (16) | −0.00402 (16) | −0.00845 (14) | 0.00788 (13) |
I3 | 0.0544 (3) | 0.0603 (3) | 0.0397 (3) | −0.0281 (2) | 0.0047 (2) | 0.0250 (2) |
Cu1 | 0.0394 (4) | 0.0449 (5) | 0.0183 (3) | −0.0246 (4) | −0.0077 (3) | 0.0133 (3) |
Cu2 | 0.0263 (3) | 0.0242 (3) | 0.0158 (3) | −0.0093 (3) | −0.0060 (2) | 0.0080 (2) |
Cu3 | 0.0208 (3) | 0.0208 (3) | 0.0159 (3) | −0.0045 (2) | −0.0005 (2) | 0.0046 (2) |
Cl1A | 0.057 (2) | 0.078 (3) | 0.0226 (14) | −0.046 (2) | −0.0200 (14) | 0.0287 (17) |
Cl1B | 0.057 (3) | 0.058 (3) | 0.022 (2) | −0.039 (3) | −0.020 (2) | 0.021 (2) |
Cl2 | 0.0199 (5) | 0.0198 (5) | 0.0127 (5) | −0.0122 (4) | −0.0068 (4) | 0.0101 (4) |
Cl3 | 0.0186 (5) | 0.0145 (5) | 0.0119 (5) | −0.0028 (4) | −0.0028 (4) | 0.0022 (4) |
Cl4 | 0.0096 (5) | 0.0206 (5) | 0.0122 (5) | −0.0027 (4) | 0.0013 (4) | −0.0001 (4) |
Cl5 | 0.0114 (4) | 0.0122 (5) | 0.0115 (4) | −0.0058 (4) | −0.0040 (3) | 0.0075 (4) |
O1 | 0.046 (3) | 0.051 (3) | 0.042 (3) | 0.014 (2) | 0.018 (2) | 0.013 (2) |
N1 | 0.029 (2) | 0.034 (3) | 0.018 (2) | −0.012 (2) | −0.0026 (18) | 0.0065 (19) |
N2 | 0.022 (2) | 0.024 (2) | 0.017 (2) | −0.0027 (17) | −0.0029 (16) | 0.0074 (17) |
N3 | 0.025 (2) | 0.022 (2) | 0.018 (2) | −0.0056 (18) | −0.0021 (17) | 0.0081 (17) |
N4 | 0.024 (2) | 0.019 (2) | 0.017 (2) | −0.0049 (17) | −0.0018 (16) | 0.0041 (16) |
N5 | 0.022 (2) | 0.027 (2) | 0.016 (2) | −0.0041 (18) | −0.0009 (16) | 0.0036 (17) |
N6 | 0.028 (2) | 0.034 (3) | 0.019 (2) | −0.010 (2) | −0.0032 (18) | 0.0087 (19) |
N7 | 0.020 (2) | 0.039 (3) | 0.043 (3) | 0.002 (2) | 0.003 (2) | 0.010 (2) |
N8 | 0.028 (3) | 0.033 (3) | 0.041 (3) | 0.010 (2) | 0.000 (2) | 0.007 (2) |
C1 | 0.022 (2) | 0.020 (2) | 0.023 (3) | −0.002 (2) | −0.004 (2) | 0.005 (2) |
C2 | 0.021 (2) | 0.024 (3) | 0.021 (2) | 0.000 (2) | −0.0027 (19) | −0.002 (2) |
C3 | 0.028 (3) | 0.039 (3) | 0.019 (3) | −0.013 (2) | −0.003 (2) | 0.006 (2) |
C4 | 0.027 (3) | 0.022 (3) | 0.020 (2) | −0.003 (2) | −0.009 (2) | 0.008 (2) |
C5 | 0.032 (3) | 0.022 (3) | 0.016 (2) | 0.000 (2) | −0.005 (2) | 0.005 (2) |
C6 | 0.028 (3) | 0.024 (3) | 0.020 (2) | −0.002 (2) | −0.003 (2) | 0.010 (2) |
C7 | 0.033 (3) | 0.036 (3) | 0.022 (3) | −0.009 (2) | 0.001 (2) | 0.014 (2) |
C8 | 0.036 (3) | 0.038 (3) | 0.022 (3) | −0.012 (3) | 0.004 (2) | 0.014 (2) |
C9 | 0.024 (3) | 0.030 (3) | 0.023 (3) | −0.006 (2) | 0.001 (2) | 0.008 (2) |
C10 | 0.026 (3) | 0.091 (7) | 0.059 (5) | −0.008 (4) | 0.001 (3) | 0.038 (5) |
C11 | 0.046 (5) | 0.138 (11) | 0.168 (13) | −0.027 (6) | −0.026 (7) | 0.125 (11) |
C12A | 0.039 (7) | 0.059 (9) | 0.052 (8) | −0.011 (6) | −0.011 (6) | 0.036 (7) |
C13A | 0.081 (13) | 0.119 (18) | 0.18 (2) | −0.053 (13) | −0.055 (14) | 0.13 (2) |
C12B | 0.08 (2) | 0.08 (2) | 0.054 (15) | −0.053 (18) | −0.005 (13) | 0.006 (14) |
C13B | 0.12 (3) | 0.077 (19) | 0.057 (16) | 0.021 (19) | 0.001 (16) | 0.002 (14) |
C14 | 0.027 (3) | 0.047 (4) | 0.031 (3) | 0.005 (3) | 0.002 (2) | 0.001 (3) |
C15 | 0.046 (4) | 0.074 (6) | 0.039 (4) | 0.014 (4) | 0.007 (3) | −0.005 (4) |
C16A | 0.23 (4) | 0.18 (4) | 0.046 (14) | 0.15 (3) | −0.06 (2) | −0.043 (18) |
C17A | 0.077 (15) | 0.33 (5) | 0.062 (13) | 0.07 (2) | −0.019 (11) | −0.06 (2) |
C16B | 0.067 (16) | 0.071 (18) | 0.024 (11) | −0.005 (14) | −0.015 (10) | −0.008 (10) |
C17B | 0.071 (17) | 0.12 (3) | 0.053 (15) | 0.003 (17) | 0.008 (13) | 0.001 (16) |
C18 | 0.033 (3) | 0.029 (3) | 0.040 (3) | 0.006 (3) | −0.004 (3) | 0.008 (3) |
C19 | 0.041 (4) | 0.037 (4) | 0.054 (4) | 0.003 (3) | −0.019 (3) | 0.010 (3) |
C20 | 0.073 (6) | 0.068 (6) | 0.049 (5) | 0.033 (5) | −0.029 (4) | −0.013 (4) |
C21 | 0.081 (8) | 0.139 (12) | 0.051 (6) | 0.033 (8) | 0.012 (5) | 0.026 (7) |
C22 | 0.027 (3) | 0.035 (3) | 0.053 (4) | 0.010 (3) | 0.003 (3) | 0.004 (3) |
C23 | 0.034 (4) | 0.033 (4) | 0.086 (6) | 0.005 (3) | 0.003 (4) | 0.008 (4) |
C24 | 0.052 (5) | 0.034 (4) | 0.080 (6) | −0.002 (3) | −0.006 (4) | 0.011 (4) |
C25 | 0.071 (7) | 0.046 (5) | 0.109 (9) | −0.009 (5) | 0.007 (6) | 0.024 (5) |
C26 | 0.034 (3) | 0.050 (4) | 0.036 (3) | 0.016 (3) | −0.001 (3) | 0.002 (3) |
C27 | 0.058 (5) | 0.125 (9) | 0.048 (5) | 0.058 (6) | 0.011 (4) | 0.035 (5) |
C28A | 0.047 (13) | 0.032 (9) | 0.031 (11) | −0.017 (8) | −0.004 (8) | −0.005 (8) |
C29A | 0.054 (13) | 0.072 (15) | 0.052 (12) | 0.010 (11) | −0.003 (10) | 0.003 (11) |
C28B | 0.025 (8) | 0.18 (3) | 0.054 (12) | 0.036 (13) | 0.009 (7) | 0.048 (14) |
C29B | 0.14 (2) | 0.34 (4) | 0.121 (18) | 0.19 (3) | 0.102 (17) | 0.17 (3) |
C30 | 0.024 (3) | 0.037 (4) | 0.057 (4) | 0.015 (3) | 0.002 (3) | 0.001 (3) |
C31 | 0.032 (4) | 0.061 (5) | 0.092 (7) | 0.013 (4) | −0.015 (4) | −0.024 (5) |
C32 | 0.031 (4) | 0.060 (6) | 0.103 (8) | 0.011 (4) | −0.010 (4) | −0.003 (5) |
C33 | 0.040 (5) | 0.080 (7) | 0.125 (10) | −0.017 (5) | 0.012 (6) | −0.037 (7) |
C34 | 0.039 (3) | 0.026 (3) | 0.039 (3) | 0.010 (3) | −0.002 (3) | 0.006 (3) |
C35 | 0.038 (3) | 0.029 (3) | 0.047 (4) | 0.007 (3) | −0.001 (3) | 0.013 (3) |
C36 | 0.045 (4) | 0.033 (4) | 0.061 (5) | 0.008 (3) | −0.003 (4) | 0.002 (3) |
C37 | 0.046 (4) | 0.045 (4) | 0.064 (5) | −0.004 (3) | −0.011 (4) | 0.015 (4) |
C38 | 0.032 (3) | 0.025 (3) | 0.060 (4) | 0.011 (3) | 0.004 (3) | 0.013 (3) |
C39 | 0.061 (5) | 0.057 (5) | 0.070 (6) | 0.030 (4) | 0.020 (4) | 0.033 (5) |
C40 | 0.049 (5) | 0.064 (6) | 0.106 (8) | 0.017 (4) | 0.008 (5) | 0.047 (6) |
C41 | 0.068 (8) | 0.079 (8) | 0.200 (18) | 0.003 (6) | −0.021 (9) | 0.063 (10) |
C42 | 0.075 (6) | 0.052 (5) | 0.038 (4) | 0.026 (4) | 0.007 (4) | 0.019 (3) |
C43 | 0.066 (5) | 0.045 (4) | 0.039 (4) | −0.013 (4) | 0.019 (4) | 0.014 (3) |
I1—C2 | 2.063 (5) | C17B—H17E | 0.9600 |
I2—C5 | 2.069 (5) | C17B—H17F | 0.9600 |
I3—C8 | 2.060 (6) | C18—C19 | 1.523 (9) |
Cu1—N1 | 1.926 (5) | C18—H18A | 0.9700 |
Cu1—N6 | 1.926 (5) | C18—H18B | 0.9700 |
Cu1—Cl1A | 2.289 (3) | C19—C20 | 1.550 (13) |
Cu1—Cl1B | 2.335 (5) | C19—H19A | 0.9700 |
Cu1—Cl4 | 2.6258 (14) | C19—H19B | 0.9700 |
Cu1—Cl5 | 2.6478 (14) | C20—C21 | 1.555 (17) |
Cu2—N2 | 1.933 (4) | C20—H20A | 0.9700 |
Cu2—N3 | 1.936 (4) | C20—H20B | 0.9700 |
Cu2—Cl2 | 2.3458 (12) | C21—H21A | 0.9600 |
Cu2—Cl5 | 2.5808 (12) | C21—H21B | 0.9600 |
Cu2—Cl4 | 2.6306 (13) | C21—H21C | 0.9600 |
Cu3—N4 | 1.945 (4) | C22—C23 | 1.524 (10) |
Cu3—N5 | 1.951 (5) | C22—H22A | 0.9700 |
Cu3—Cl3 | 2.3337 (12) | C22—H22B | 0.9700 |
Cu3—Cl4 | 2.5016 (13) | C23—C24 | 1.510 (11) |
Cu3—Cl5 | 2.7607 (12) | C23—H23A | 0.9700 |
O1—C43 | 1.412 (10) | C23—H23B | 0.9700 |
O1—C42 | 1.433 (9) | C24—C25 | 1.510 (13) |
N1—N2 | 1.347 (6) | C24—H24A | 0.9700 |
N1—C3 | 1.353 (7) | C24—H24B | 0.9700 |
N2—C1 | 1.356 (7) | C25—H25A | 0.9600 |
N3—C6 | 1.337 (7) | C25—H25B | 0.9600 |
N3—N4 | 1.364 (6) | C25—H25C | 0.9600 |
N4—C4 | 1.339 (7) | C26—C27 | 1.526 (12) |
N5—C9 | 1.333 (7) | C26—H26A | 0.9700 |
N5—N6 | 1.369 (6) | C26—H26B | 0.9700 |
N6—C7 | 1.344 (7) | C27—C28A | 1.542 (17) |
N7—C22 | 1.516 (9) | C27—C28B | 1.560 (16) |
N7—C18 | 1.518 (9) | C27—H27A | 0.9700 |
N7—C10 | 1.519 (9) | C27—H27B | 0.9700 |
N7—C14 | 1.521 (8) | C27—H27C | 0.9700 |
N8—C34 | 1.517 (8) | C27—H27D | 0.9700 |
N8—C26 | 1.517 (9) | C28A—C29A | 1.522 (17) |
N8—C38 | 1.523 (9) | C28A—H28A | 0.9600 |
N8—C30 | 1.523 (8) | C28A—H28B | 0.9700 |
C1—C2 | 1.394 (7) | C29A—H29A | 0.9600 |
C1—H1 | 0.9300 | C29A—H29B | 0.9600 |
C2—C3 | 1.382 (8) | C29A—H29C | 0.9600 |
C3—H3 | 0.9300 | C28B—C29B | 1.538 (18) |
C4—C5 | 1.387 (8) | C28B—H28C | 0.9700 |
C4—H4 | 0.9300 | C28B—H28D | 0.9700 |
C5—C6 | 1.381 (7) | C29B—H29D | 0.9600 |
C6—H6 | 0.9300 | C29B—H29E | 0.9600 |
C7—C8 | 1.389 (8) | C29B—H29F | 0.9600 |
C7—H7 | 0.9300 | C30—C31 | 1.521 (11) |
C8—C9 | 1.401 (8) | C30—H30A | 0.9700 |
C9—H9 | 0.9300 | C30—H30B | 0.9700 |
C10—C11 | 1.506 (14) | C31—C32 | 1.531 (11) |
C10—H10A | 0.9700 | C31—H31A | 0.9700 |
C10—H10B | 0.9700 | C31—H31B | 0.9700 |
C11—C12B | 1.514 (16) | C32—C33 | 1.486 (16) |
C11—C12A | 1.567 (14) | C32—H32A | 0.9700 |
C11—H11A | 0.9700 | C32—H32B | 0.9700 |
C11—H11B | 0.9700 | C33—H33A | 0.9600 |
C11—H11C | 0.9700 | C33—H33B | 0.9600 |
C11—H11D | 0.9700 | C33—H33C | 0.9600 |
C12A—C13A | 1.592 (15) | C34—C35 | 1.525 (9) |
C12A—H12A | 0.9700 | C34—H34A | 0.9700 |
C12A—H12B | 0.9700 | C34—H34B | 0.9700 |
C13A—H13A | 0.9600 | C35—C36 | 1.504 (10) |
C13A—H13B | 0.9600 | C35—H35A | 0.9700 |
C13A—H13C | 0.9600 | C35—H35B | 0.9700 |
C12B—C13B | 1.533 (18) | C36—C37 | 1.529 (11) |
C12B—H12C | 0.9700 | C36—H36A | 0.9700 |
C12B—H12D | 0.9600 | C36—H36B | 0.9700 |
C13B—H13D | 0.9600 | C37—H37A | 0.9600 |
C13B—H13E | 0.9600 | C37—H37B | 0.9600 |
C13B—H13F | 0.9600 | C37—H37C | 0.9600 |
C14—C15 | 1.522 (10) | C38—C39 | 1.538 (11) |
C14—H14A | 0.9700 | C38—H38A | 0.9700 |
C14—H14B | 0.9700 | C38—H38B | 0.9700 |
C15—C16A | 1.548 (17) | C39—C40 | 1.534 (12) |
C15—C16B | 1.561 (18) | C39—H39A | 0.9700 |
C15—H15A | 0.9700 | C39—H39B | 0.9700 |
C15—H15B | 0.9700 | C40—C41 | 1.397 (16) |
C15—H15C | 0.9700 | C40—H40A | 0.9700 |
C15—H15D | 0.9700 | C40—H40B | 0.9700 |
C16A—C17A | 1.517 (18) | C41—H41A | 0.9600 |
C16A—H16A | 0.9700 | C41—H41B | 0.9600 |
C16A—H16B | 0.9700 | C41—H41C | 0.9600 |
C17A—H17A | 0.9600 | C42—C43i | 1.484 (12) |
C17A—H17B | 0.9600 | C42—H42A | 0.9700 |
C17A—H17C | 0.9600 | C42—H42B | 0.9700 |
C16B—C17B | 1.548 (19) | C43—C42i | 1.484 (12) |
C16B—H16C | 0.9600 | C43—H43A | 0.9700 |
C16B—H16D | 0.9700 | C43—H43B | 0.9700 |
C17B—H17D | 0.9600 | ||
N1—Cu1—N6 | 173.7 (2) | H17D—C17B—H17E | 109.5 |
N1—Cu1—Cl1A | 90.85 (16) | C16B—C17B—H17F | 109.5 |
N6—Cu1—Cl1A | 92.47 (16) | H17D—C17B—H17F | 109.5 |
N1—Cu1—Cl1B | 93.60 (18) | H17E—C17B—H17F | 109.5 |
N6—Cu1—Cl1B | 91.57 (18) | N7—C18—C19 | 114.6 (6) |
N1—Cu1—Cl4 | 86.25 (15) | N7—C18—H18A | 108.6 |
N6—Cu1—Cl4 | 87.74 (15) | C19—C18—H18A | 108.6 |
Cl1A—Cu1—Cl4 | 140.10 (15) | N7—C18—H18B | 108.6 |
Cl1B—Cu1—Cl4 | 163.21 (19) | C19—C18—H18B | 108.6 |
N1—Cu1—Cl5 | 90.42 (15) | H18A—C18—H18B | 107.6 |
N6—Cu1—Cl5 | 90.84 (16) | C18—C19—C20 | 109.7 (6) |
Cl1A—Cu1—Cl5 | 136.96 (15) | C18—C19—H19A | 109.7 |
Cl1B—Cu1—Cl5 | 113.90 (19) | C20—C19—H19A | 109.7 |
Cl4—Cu1—Cl5 | 82.89 (4) | C18—C19—H19B | 109.7 |
N2—Cu2—N3 | 170.5 (2) | C20—C19—H19B | 109.7 |
N2—Cu2—Cl2 | 92.12 (14) | H19A—C19—H19B | 108.2 |
N3—Cu2—Cl2 | 93.63 (13) | C19—C20—C21 | 113.1 (8) |
N2—Cu2—Cl5 | 92.75 (14) | C19—C20—H20A | 109.0 |
N3—Cu2—Cl5 | 90.56 (14) | C21—C20—H20A | 109.0 |
Cl2—Cu2—Cl5 | 122.39 (5) | C19—C20—H20B | 109.0 |
N2—Cu2—Cl4 | 85.89 (14) | C21—C20—H20B | 109.0 |
N3—Cu2—Cl4 | 85.60 (14) | H20A—C20—H20B | 107.8 |
Cl2—Cu2—Cl4 | 153.50 (5) | C20—C21—H21A | 109.5 |
Cl5—Cu2—Cl4 | 84.10 (4) | C20—C21—H21B | 109.5 |
N4—Cu3—N5 | 176.18 (19) | H21A—C21—H21B | 109.5 |
N4—Cu3—Cl3 | 93.20 (13) | C20—C21—H21C | 109.5 |
N5—Cu3—Cl3 | 90.59 (14) | H21A—C21—H21C | 109.5 |
N4—Cu3—Cl4 | 86.82 (14) | H21B—C21—H21C | 109.5 |
N5—Cu3—Cl4 | 90.04 (14) | N7—C22—C23 | 115.8 (5) |
Cl3—Cu3—Cl4 | 151.28 (5) | N7—C22—H22A | 108.3 |
N4—Cu3—Cl5 | 88.00 (14) | C23—C22—H22A | 108.3 |
N5—Cu3—Cl5 | 89.45 (14) | N7—C22—H22B | 108.3 |
Cl3—Cu3—Cl5 | 125.75 (5) | C23—C22—H22B | 108.3 |
Cl4—Cu3—Cl5 | 82.96 (4) | H22A—C22—H22B | 107.4 |
Cu3—Cl4—Cu1 | 82.74 (4) | C24—C23—C22 | 111.7 (6) |
Cu3—Cl4—Cu2 | 83.50 (4) | C24—C23—H23A | 109.3 |
Cu1—Cl4—Cu2 | 79.97 (4) | C22—C23—H23A | 109.3 |
Cu2—Cl5—Cu1 | 80.47 (4) | C24—C23—H23B | 109.3 |
Cu2—Cl5—Cu3 | 79.51 (3) | C22—C23—H23B | 109.3 |
Cu1—Cl5—Cu3 | 77.60 (4) | H23A—C23—H23B | 107.9 |
C43—O1—C42 | 109.8 (6) | C23—C24—C25 | 111.2 (8) |
N2—N1—C3 | 108.4 (5) | C23—C24—H24A | 109.4 |
N2—N1—Cu1 | 122.7 (4) | C25—C24—H24A | 109.4 |
C3—N1—Cu1 | 128.8 (4) | C23—C24—H24B | 109.4 |
N1—N2—C1 | 108.5 (4) | C25—C24—H24B | 109.4 |
N1—N2—Cu2 | 120.7 (3) | H24A—C24—H24B | 108.0 |
C1—N2—Cu2 | 130.7 (4) | C24—C25—H25A | 109.5 |
C6—N3—N4 | 108.1 (4) | C24—C25—H25B | 109.5 |
C6—N3—Cu2 | 129.9 (4) | H25A—C25—H25B | 109.5 |
N4—N3—Cu2 | 122.0 (3) | C24—C25—H25C | 109.5 |
C4—N4—N3 | 108.2 (4) | H25A—C25—H25C | 109.5 |
C4—N4—Cu3 | 129.9 (4) | H25B—C25—H25C | 109.5 |
N3—N4—Cu3 | 121.9 (3) | N8—C26—C27 | 115.2 (6) |
C9—N5—N6 | 108.6 (4) | N8—C26—H26A | 108.5 |
C9—N5—Cu3 | 131.5 (4) | C27—C26—H26A | 108.5 |
N6—N5—Cu3 | 119.9 (3) | N8—C26—H26B | 108.5 |
C7—N6—N5 | 108.1 (5) | C27—C26—H26B | 108.5 |
C7—N6—Cu1 | 128.9 (4) | H26A—C26—H26B | 107.5 |
N5—N6—Cu1 | 122.9 (4) | C26—C27—C28A | 119.7 (14) |
C22—N7—C18 | 110.2 (5) | C26—C27—C28B | 102.4 (11) |
C22—N7—C10 | 107.2 (5) | C26—C27—H27A | 107.4 |
C18—N7—C10 | 111.3 (6) | C28A—C27—H27A | 107.4 |
C22—N7—C14 | 110.6 (5) | C26—C27—H27B | 107.4 |
C18—N7—C14 | 106.9 (5) | C28A—C27—H27B | 107.4 |
C10—N7—C14 | 110.7 (5) | H27A—C27—H27B | 106.9 |
C34—N8—C26 | 110.9 (5) | C26—C27—H27C | 111.3 |
C34—N8—C38 | 110.5 (5) | C28B—C27—H27C | 111.3 |
C26—N8—C38 | 107.2 (5) | C26—C27—H27D | 111.3 |
C34—N8—C30 | 105.6 (5) | C28B—C27—H27D | 111.3 |
C26—N8—C30 | 111.2 (5) | H27C—C27—H27D | 109.2 |
C38—N8—C30 | 111.5 (5) | C29A—C28A—C27 | 100.9 (15) |
N2—C1—C2 | 108.6 (5) | C29A—C28A—H28A | 111.6 |
N2—C1—H1 | 125.7 | C27—C28A—H28A | 111.6 |
C2—C1—H1 | 125.7 | C29A—C28A—H28B | 111.6 |
C3—C2—C1 | 105.2 (5) | C27—C28A—H28B | 111.6 |
C3—C2—I1 | 124.5 (4) | H28A—C28A—H28B | 109.4 |
C1—C2—I1 | 129.8 (4) | C28A—C29A—H29A | 109.5 |
N1—C3—C2 | 109.2 (5) | C28A—C29A—H29B | 109.5 |
N1—C3—H3 | 125.4 | H29A—C29A—H29B | 109.5 |
C2—C3—H3 | 125.4 | C28A—C29A—H29C | 109.5 |
N4—C4—C5 | 109.2 (5) | H29A—C29A—H29C | 109.5 |
N4—C4—H4 | 125.4 | H29B—C29A—H29C | 109.5 |
C5—C4—H4 | 125.4 | C29B—C28B—C27 | 106.9 (15) |
C6—C5—C4 | 105.0 (5) | C29B—C28B—H28C | 110.3 |
C6—C5—I2 | 127.8 (4) | C27—C28B—H28C | 110.4 |
C4—C5—I2 | 127.0 (4) | C29B—C28B—H28D | 110.4 |
N3—C6—C5 | 109.6 (5) | C27—C28B—H28D | 110.4 |
N3—C6—H6 | 125.2 | H28C—C28B—H28D | 108.6 |
C5—C6—H6 | 125.2 | C28B—C29B—H29D | 109.5 |
N6—C7—C8 | 109.2 (5) | C28B—C29B—H29E | 109.5 |
N6—C7—H7 | 125.4 | H29D—C29B—H29E | 109.5 |
C8—C7—H7 | 125.4 | C28B—C29B—H29F | 109.5 |
C7—C8—C9 | 105.0 (5) | H29D—C29B—H29F | 109.5 |
C7—C8—I3 | 124.3 (4) | H29E—C29B—H29F | 109.5 |
C9—C8—I3 | 130.7 (4) | C31—C30—N8 | 115.1 (6) |
N5—C9—C8 | 109.1 (5) | C31—C30—H30A | 108.5 |
N5—C9—H9 | 125.5 | N8—C30—H30A | 108.5 |
C8—C9—H9 | 125.5 | C31—C30—H30B | 108.5 |
C11—C10—N7 | 115.4 (7) | N8—C30—H30B | 108.5 |
C11—C10—H10A | 108.4 | H30A—C30—H30B | 107.5 |
N7—C10—H10A | 108.4 | C30—C31—C32 | 110.0 (7) |
C11—C10—H10B | 108.4 | C30—C31—H31A | 109.7 |
N7—C10—H10B | 108.4 | C32—C31—H31A | 109.7 |
H10A—C10—H10B | 107.5 | C30—C31—H31B | 109.7 |
C10—C11—C12B | 132.7 (18) | C32—C31—H31B | 109.7 |
C10—C11—C12A | 103.6 (10) | H31A—C31—H31B | 108.2 |
C10—C11—H11A | 111.0 | C33—C32—C31 | 114.8 (10) |
C12A—C11—H11A | 111.0 | C33—C32—H32A | 108.6 |
C10—C11—H11B | 111.0 | C31—C32—H32A | 108.6 |
C12A—C11—H11B | 111.0 | C33—C32—H32B | 108.6 |
H11A—C11—H11B | 109.0 | C31—C32—H32B | 108.6 |
C10—C11—H11C | 104.1 | H32A—C32—H32B | 107.6 |
C12B—C11—H11C | 104.1 | C32—C33—H33A | 109.5 |
C10—C11—H11D | 104.1 | C32—C33—H33B | 109.5 |
C12B—C11—H11D | 104.1 | H33A—C33—H33B | 109.5 |
H11C—C11—H11D | 105.5 | C32—C33—H33C | 109.5 |
C11—C12A—C13A | 103.6 (12) | H33A—C33—H33C | 109.5 |
C11—C12A—H12A | 111.1 | H33B—C33—H33C | 109.5 |
C13A—C12A—H12A | 111.1 | N8—C34—C35 | 116.1 (5) |
C11—C12A—H12B | 111.0 | N8—C34—H34A | 108.3 |
C13A—C12A—H12B | 111.0 | C35—C34—H34A | 108.3 |
H12A—C12A—H12B | 109.0 | N8—C34—H34B | 108.3 |
C12A—C13A—H13A | 109.5 | C35—C34—H34B | 108.3 |
C12A—C13A—H13B | 109.5 | H34A—C34—H34B | 107.4 |
H13A—C13A—H13B | 109.5 | C36—C35—C34 | 110.5 (6) |
C12A—C13A—H13C | 109.5 | C36—C35—H35A | 109.5 |
H13A—C13A—H13C | 109.5 | C34—C35—H35A | 109.5 |
H13B—C13A—H13C | 109.5 | C36—C35—H35B | 109.5 |
C11—C12B—C13B | 102.0 (19) | C34—C35—H35B | 109.5 |
C11—C12B—H12C | 111.4 | H35A—C35—H35B | 108.1 |
C13B—C12B—H12C | 111.4 | C35—C36—C37 | 113.0 (6) |
C11—C12B—H12D | 111.4 | C35—C36—H36A | 109.0 |
C13B—C12B—H12D | 111.4 | C37—C36—H36A | 109.0 |
H12C—C12B—H12D | 109.2 | C35—C36—H36B | 109.0 |
C12B—C13B—H13D | 109.5 | C37—C36—H36B | 109.0 |
C12B—C13B—H13E | 109.5 | H36A—C36—H36B | 107.8 |
H13D—C13B—H13E | 109.5 | C36—C37—H37A | 109.5 |
C12B—C13B—H13F | 109.5 | C36—C37—H37B | 109.5 |
H13D—C13B—H13F | 109.5 | H37A—C37—H37B | 109.5 |
H13E—C13B—H13F | 109.5 | C36—C37—H37C | 109.5 |
N7—C14—C15 | 116.5 (6) | H37A—C37—H37C | 109.5 |
N7—C14—H14A | 108.2 | H37B—C37—H37C | 109.5 |
C15—C14—H14A | 108.2 | N8—C38—C39 | 115.2 (5) |
N7—C14—H14B | 108.2 | N8—C38—H38A | 108.5 |
C15—C14—H14B | 108.2 | C39—C38—H38A | 108.5 |
H14A—C14—H14B | 107.3 | N8—C38—H38B | 108.5 |
C14—C15—C16A | 108.5 (11) | C39—C38—H38B | 108.5 |
C14—C15—C16B | 109.2 (15) | H38A—C38—H38B | 107.5 |
C14—C15—H15A | 110.0 | C40—C39—C38 | 111.0 (7) |
C16A—C15—H15A | 110.0 | C40—C39—H39A | 109.4 |
C14—C15—H15B | 110.0 | C38—C39—H39A | 109.4 |
C16A—C15—H15B | 110.0 | C40—C39—H39B | 109.4 |
H15A—C15—H15B | 108.4 | C38—C39—H39B | 109.4 |
C14—C15—H15C | 109.8 | H39A—C39—H39B | 108.0 |
C16B—C15—H15C | 109.8 | C41—C40—C39 | 116.4 (10) |
C14—C15—H15D | 109.8 | C41—C40—H40A | 108.2 |
C16B—C15—H15D | 109.8 | C39—C40—H40A | 108.2 |
H15C—C15—H15D | 108.3 | C41—C40—H40B | 108.2 |
C17A—C16A—C15 | 115.9 (18) | C39—C40—H40B | 108.2 |
C17A—C16A—H16A | 108.3 | H40A—C40—H40B | 107.3 |
C15—C16A—H16A | 108.3 | C40—C41—H41A | 109.5 |
C17A—C16A—H16B | 108.3 | C40—C41—H41B | 109.5 |
C15—C16A—H16B | 108.3 | H41A—C41—H41B | 109.5 |
H16A—C16A—H16B | 107.4 | C40—C41—H41C | 109.5 |
C16A—C17A—H17A | 109.5 | H41A—C41—H41C | 109.5 |
C16A—C17A—H17B | 109.5 | H41B—C41—H41C | 109.5 |
H17A—C17A—H17B | 109.5 | O1—C42—C43i | 110.4 (6) |
C16A—C17A—H17C | 109.5 | O1—C42—H42A | 109.6 |
H17A—C17A—H17C | 109.5 | C43i—C42—H42A | 109.6 |
H17B—C17A—H17C | 109.5 | O1—C42—H42B | 109.6 |
C17B—C16B—C15 | 106.0 (19) | C43i—C42—H42B | 109.6 |
C17B—C16B—H16C | 110.5 | H42A—C42—H42B | 108.1 |
C15—C16B—H16C | 110.5 | O1—C43—C42i | 110.5 (6) |
C17B—C16B—H16D | 110.5 | O1—C43—H43A | 109.6 |
C15—C16B—H16D | 110.5 | C42i—C43—H43A | 109.6 |
H16C—C16B—H16D | 108.7 | O1—C43—H43B | 109.6 |
C16B—C17B—H17D | 109.5 | C42i—C43—H43B | 109.6 |
C16B—C17B—H17E | 109.5 | H43A—C43—H43B | 108.1 |
Symmetry code: (i) −x+2, −y, −z+1. |
D—X···Y | X···Y | D—X···Y |
C2—I1···Cl1Ai | 3.516 (4) | 152.0 (2) |
C2—I1···Cl1Bi | 3.362 (5) | 164.3 (2) |
C5—I2···Cl3iii | 3.569 (1) | 165.2 (2) |
C8—I3···Cl1Aiv | 3.438 (4) | 154.4 (2) |
C8—I3···Cl1Biv | 3.486 (5) | 154.2 (2) |
Symmetry codes: (i) -x + 2, -y, -z; (ii) -x + 1, -y - 1, -z + 1; (iii) -x + 1, -y - 1, -z + 1; (iv) -x + 1, -y - 1, -z. |
Acknowledgements
This material is based on work supported by the National Science Foundation under Grant No. CHE-1404730.
References
Ahmed, B. M., Calco, B. & Mezei, G. (2016). Dalton Trans. 45, 8327–8339. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ahmed, B. M., Hartman, C. K. & Mezei, G. (2016). Inorg. Chem. 55, doi:10.1021/acs.inorgchem.6b01909. Web of Science CSD CrossRef Google Scholar
Ahmed, B. M. & Mezei, G. (2016). Inorg. Chem. 55, 7717–7728. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ahmed, B. M., Szymczyna, B. R., Jianrattanasawat, S., Surmann, S. A. & Mezei, G. (2016). Chem. Eur. J. 22, 5499–5503. Web of Science CSD CrossRef CAS PubMed Google Scholar
Angaridis, P. A., Baran, P., Boča, R., Cervantes-Lee, F., Haase, W., Mezei, G., Raptis, R. G. & Werner, R. (2002). Inorg. Chem. 41, 2219–2228. Web of Science CSD CrossRef PubMed CAS Google Scholar
Baskerville, C. & Hamor, W. A. (1912). J. Ind. Eng. Chem. 4, 278–288. CrossRef Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. Web of Science CrossRef CAS PubMed Google Scholar
Fernando, I. R., Surmann, S. A., Urech, A. A., Poulsen, A. M. & Mezei, G. (2012). Chem. Commun. 48, 6860–6862. Web of Science CSD CrossRef CAS Google Scholar
Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R. & Beer, P. D. (2015). Chem. Rev. 115, 7118–7195. Web of Science CrossRef CAS PubMed Google Scholar
Govor, E. V., Chakraborty, I., Piñero, D. M., Baran, P., Sanakis, Y. & Raptis, R. G. (2012). Polyhedron, 45, 55–60. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Guzei, I. A. & Winter, C. H. (1997). Inorg. Chem. 36, 4415–4420. CSD CrossRef PubMed CAS Web of Science Google Scholar
Harvey, B. M. & Hoggard, P. E. (2014). Photochem. Photobiol. 90, 1234–1242. Web of Science CrossRef CAS PubMed Google Scholar
Heeg, M. J., Yu, Z. & Winter, C. H. (2010). Private Communication (refcode DAGDUM). CCDC, Cambridge, England. Google Scholar
Mezei, G. (2015). Chem. Commun. 51, 10341–10344. Web of Science CSD CrossRef CAS Google Scholar
Mezei, G. (2016). Acta Cryst. E72, 1064–1067. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mezei, G., Baran, P. & Raptis, R. G. (2004). Angew. Chem. Int. Ed. 43, 574–577. Web of Science CSD CrossRef CAS Google Scholar
Mezei, G. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3279–3288. Web of Science CSD CrossRef CAS Google Scholar
Mezei, G., Raptis, R. G. & Telser, J. (2006). Inorg. Chem. 45, 8841–8843. Web of Science CSD CrossRef PubMed CAS Google Scholar
Muñoz, Z., Cohen, A. S., Nguyen, L. M., McIntosh, T. A. & Hoggard, P. E. (2008). Photochem. Photobiol. Sci. 7, 337–343. Web of Science PubMed Google Scholar
Palmer, D. C. (2014). CrystalMaker. CrystalMaker Software Ltd, Begbroke, England. Google Scholar
Peña, L. A., Chan, A. M., Cohen, L. R., Hou, K., Harvey, B. M. & Hoggard, P. E. (2014). Photochem. Photobiol. 90, 760–766. Web of Science PubMed Google Scholar
Peña, L. A. & Hoggard, P. E. (2010). J. Mol. Catal. A Chem. 327, 20–24. Google Scholar
Peña, L. A., Seidl, A. J., Cohen, L. R. & Hoggard, P. E. (2009). Transition Met. Chem. 34, 135–141. Google Scholar
Semeluk, G. P. & Unger, I. (1963). Nature, 198, 853–855. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, C. da, Ribeiro, L. B., Furuno, C. C., da Cunha, G. A., de Souza, R. F. F., Netto, A. V. G., Mauro, A. E., Frem, R. C. G., Fernandes, J. A., Almeida Paz, F. A., Marino, L. B., Pavan, F. R. & Leite, C. Q. F. (2015). Polyhedron, 100, 10–16. Google Scholar
Song, G., Sun, Q., Hou, Y.-N., Zhan, R., Wei, D.-M., Shi, Z. & Xing, Y.-H. (2013). Chin. J. Inorg. Chem. 29, 2150–2156. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.