research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure determination as part of an undergraduate laboratory experiment: 1′,3′,3′-tri­methyl­spiro­[chromene-2,2′-indoline] and 1′,3′,3′-tri­methyl-4-[(E)-(1,3,3-tri­methyl­indolin-2-yl­­idene)meth­yl]spiro­[chroman-2,2′-indoline]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
*Correspondence e-mail: mjmascal@ucdavis.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 11 August 2016; accepted 10 October 2016; online 28 October 2016)

The crystal structures of the title compounds, C19H19NO and C31H34N2O, were determined as part of an experiment in an undergraduate teaching laboratory that demonstrates the relationship between mol­ecular structure and function. 1′,3′,3′-Tri­methyl­spiro­[chromene-2,2′-indoline] is both a photoswitch and thermochromic mol­ecule. Students synthesized it and a bis-indoline adduct and compared the crystallographically determined structures to computed gas-phase models.

1. Chemical context

In an ever evolving pursuit to improve the educational experience in undergraduate organic chemistry laboratory courses, we introduced an experiment in which students prepare a `functional mol­ecule,' in this case spiro­pyran 1. Compounds such as 1 are broadly characterized as `responsive,' due to their ability to be actuated by a range of stimuli, including light, heat, metal ions, pH, mechanical force, and changes in solvent polarity (Klajn, 2014[Klajn, R. (2014). Chem. Soc. Rev. 43, 148-184.]). An advantage of the spiro­pyran system over other photochromic/thermochromic materials is the strongly differentiated electronic forms between which equilibrium is shifted. The closed-ring isomer of 1 comprises an indoline and a chromene ring bound together at a spiro junction, while the open-ring form is a zwitterionic merocyanine 1a (Scheme 1).

[Scheme 1]

Although a variety of substituted spiro­pyran derivatives are known in the literature, for simplicity, we elected to focus on the unsubstituted parent compound, which is colorless in its closed form and red in its open form. The mol­ecule was synthesized in a single step by condensation of 1,3,3-trimethyl-2-methyl­eneindoline with salicyl­aldehyde (Koelsch & Workman, 1952[Koelsch, C. F. & Workman, W. R. (1952). J. Am. Chem. Soc. 74, 6288-6289.]). The methyl­eneindoline nucleophile can also react a second time with 1 to give the bis adduct 2 as a side product (Scheme 2).

Since this experiment was oriented around the functional attributes of 1, it presented an ideal opportunity to introduce structural characterization methods into the laboratory course, since the function of 1 is directly linked to its structure. Students first model the two forms of 1 using both mol­ecular mechanics and semi-empirical quantum mechanical methods. These calculations indicate that the spiro­pyran form of 1 is more stable than the open form 1a. They then grow crystals of 1 by slow evaporation from acetone, resulting in most cases in large (up to 10 mm × 10 mm), thin pink plates. Although the students do not themselves determine the X-ray crystal structure, crystallographic characterization of 1 has allowed students to compare gas-phase models with condensed-state empirical data.

[Scheme 2]
2

2. Structural commentary

Crystals of the parent spiro­pyran, 1′,3′,3′-tri­methyl­spiro[chro­mene-2,2′-indoline] 1, are colorless at low temperature (90 K). Fig. 1[link] depicts the low-temperature crystal structure. There is one mol­ecule in the asymmetric unit. The central sp3 carbon atom, C1, has a tetra­hedral geometry. The dihedral angle between O1/C1/C12 and N1/C1/C8 is 89.33 (12)°. The C12—C13 bond is a double bond with a length of 1.330 (3) Å. The substituted spiro­pyran, 1′,3′,3′-trimethyl-4-[(E)-(1,3,3-trimethyl­indolin-2-yl­idene)meth­yl]spiro­[chroman-2,2′-indoline] 2, is also colorless at low temperature. It differs from 1 by virtue of substitution at C13 with a methyl­eneindoline group (Fig. 2[link]). Consequently, C12 and C13 are now singly bonded, with a distance of 1.5367 (14) Å. The central carbon atom remains tetra­hedral with the value of the dihedral angle at 89.69 (5), comparable to 1. The atoms C1 and C13 have the same chirality, either RR or SS.

[Figure 1]
Figure 1
The mol­ecular structure of 1. Displacement parameters are shown at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of 2. Displacement parameters are shown at the 50% probability level.

Differences between mol­ecular mechanics force field MM2 calculations and the semi-empirical quantum mechanical methods PM6 and PDDG versus experimental X-ray values for selected bond lengths and angles can be seen in Table 1[link]. A clear trend in the data is reflected in the fact that thermal motion in low-temperature X-ray diffraction experiments tends to lead to an apparent bond shortening. Considering only those distances not involving phenyl carbon atoms, the data indicate that MM2 shows the poorest mean agreement with X-ray in bond lengths (±0.043 Å), while PDDG (±0.021 Å) and PM6 (±0.017 Å) perform better. The most serious modeling failure was in the MM2 N1—C2 bond which, at 1.270 Å, was inter­preted by mol­ecular mechanics to be a double bond, but which was clearly a single bond in the X-ray structure at 1.405 (2) Å. As a consequence, the sum of the angles at N1 was 360° in the MM2 calculation, whereas the experimental value was 348.36°. PM6 and PDDG again performed better here, with sums of 345.4 and 344.5°, respectively. The dihedral angle between the O1/C1/C2 plane and the N1/C1/C8 plane was 89.3° for X-ray, compared to 92.7° for MM2, 91.3° for PM6 and 91.4° for PDDG. Bond angle deviations ranged from 0 to 5° and averaged ca 2° for all three methods. Inter­estingly, if the two angles in poor agreement around C1 are discarded, MM2 actually performs somewhat better than the semi-empirical models for angle data. If all data in Table 1[link] are taken into account, PM6 is seen to outperform both PDDG and MM2.

Table 1
Comparison of modeled (MM2, PDDG, PM6) bond lengths, angles, and dihedral angles (Å, °) with X-ray crystallographic data

  X-ray MM2 Δ PDDG Δ PM6 Δ
C1—O1 1.471 1.415 0.056 1.423 0.048 1.484 −0.013
C1—N1 1.447 1.488 −0.041 1.515 −0.068 1.493 −0.046
C1—C8 1.580 1.588 −0.008 1.589 −0.009 1.599 −0.019
C1—C12 1.496 1.508 −0.012 1.504 −0.008 1.497 −0.001
N1—C2 1.405 1.270 0.135 1.428 −0.023 1.430 −0.025
N1—C9 1.457 1.475 −0.018 1.468 −0.011 1.481 −0.024
C12—C13 1.330 1.338 −0.008 1.340 −0.010 1.340 −0.010
C13—C14 1.453 1.343 0.110 1.448 0.005 1.455 −0.002
O1—C19 1.370 1.368 0.002 1.366 0.004 1.362 0.008
               
|mean|     0.043   0.021   0.017
               
Dihedral angle O1/C1/C12 and N1/C1/C8 89.33 92.7 −3.370 91.4 −2.070 91.3 −1.970
Sum of angles at N1 348.36 360.0 −11.640 345.4 2.960 344.5 3.860
               
C1—O1—C19 121.03 119.1 1.93 118.4 2.63 121.3 −0.27
O1—C1—C12 111.35 111.3 0.05 115.4 −4.05 113.7 −2.35
O1—C1—C8 108.57 109.1 −0.53 110.2 −1.63 104.8 3.77
N1—C1—C8 102.85 104.3 −1.45 104.9 −2.05 105.3 −2.45
N1—C1—O1 105.75 110.3 −4.55 103.9 1.85 104.5 1.25
N1—C1—C12 112.92 107.6 5.32 109.1 3.82 111.0 1.92
C8—C1—C12 114.70 114.0 0.70 112.3 2.40 116.6 −1.90
               
|mean|     2.08   2.63   1.99

3. Supra­molecular features

The KPI of 1 is 68.7% and that of 2 is 69.6% (van der Sluis & Spek, 1990[Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.]). Neither structure has significant directional inter­molecular inter­actions.

4. Database survey

There are 67 structures in the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the basic skeleton of compound 1. All of these are substituted in one way or another. There are no unusual differences among these structures. Since the C1—O1 bond is broken in the transformation to the merocyanine form, it is of inter­est to examine this bond length. Of the 82 hits with similar geometry, the mean C—O distance in the CSD is 1.479 (15)°. For 1, this distance is 1.4708 (19) Å. For 2, the same distance is 1.4648 (12) Å. There are five structures in the CSD that involve further methyl­eneindoline substitution, similar to 2. In all cases, the structures are racemic and the chirality is either RR or SS. Two of the deposits (NESZOC and NESZOC01; Ashraf et al., 2012[Ashraf, M., Gainsford, G. J. & Kay, A. J. (2012). Aust. J. Chem. 65, 779-784.]) describe the results from two different crystals, two different radiations (Cu Kα and Mo Kα), and two different temperatures (153 and 113 K), respectively. Structurally, there is no significant difference between them, but the higher temperature crystal is described as a red prism while the lower temperature crystal is a pink plate. This feature was not discussed, but it raises the possibility of a merocyanine impurity arising due to the thermochromic effect.

5. Synthesis and crystallization

A solution of 1,3,3-trimethyl-2-methyl­eneindoline (3.37 g, 19.5 mmol) and salicyl­aldehyde (2.53 g, 20.7 mmol) in absolute ethanol (15 mL) was heated at reflux with stirring for 1 h. A white precipitate was filtered from the hot solution and washed with cold absolute ethanol. The solid was recrystallized from acetone to give 1′,3′,3′-trimethyl-4-[(E)-(1,3,3-tri­methyl­indolin-2-yl­idene)meth­yl]spiro­[chroman-2,2′-indoline] 2 (0.49 g, 11%), m.p. 474–477 K. The filtrate/wash was then evaporated and the residue was recrystallized from 90% ethanol to give 1′,3′,3′-tri­methyl­spiro­[chromene-2,2′-indoline] 1 (2.58 g, 48%), m.p. 366-368 K. Crystals of 1 and 2 suitable for X-ray diffraction were obtained by slow evaporation from acetone solutions.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms bonded to carbon were located by geometry and refined using a riding model. Distances were fixed at 0.95 Å for C—H bonds in phenyl rings and 0.98 Å in methyl groups. In structure 2, primary C—H bonds were assigned C—H distances of 1.00 Å while secondary C—H distances were given values of 0.99 Å. The Uiso(H) parameters were set equal to 1.5Ueq for the methyl groups and to 1.2Ueq of the parent carbon for all others.

Table 2
Experimental details

  1 2
Crystal data
Chemical formula C19H19NO C31H34N2O
Mr 277.35 450.60
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 90 90
a, b, c (Å) 11.530 (7), 10.938 (6), 13.013 (7) 14.1774 (11), 11.6019 (9), 16.2847 (17)
β (°) 115.614 (7) 115.6129 (12)
V3) 1479.9 (15) 2415.4 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.07
Crystal size (mm) 0.52 × 0.36 × 0.35 0.48 × 0.26 × 0.08
 
Data collection
Diffractometer Bruker SMART 1000 Bruker DUO
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.811, 0.983 0.713, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12543, 3358, 2672 39237, 7680, 6549
Rint 0.029 0.026
(sin θ/λ)max−1) 0.650 0.725
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.139, 1.05 0.046, 0.124, 1.03
No. of reflections 3358 7680
No. of parameters 193 313
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.23 0.61, −0.22
Computer programs: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.], 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2002) for (1); APEX2 (Bruker, 2014) for (2). Cell refinement: SAINT (Bruker, 2013) for (1); SAINT (Bruker, 2014) for (2). Data reduction: SAINT (Bruker, 2013) for (1); SAINT (Bruker, 2014) for (2). For both compounds, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b).

(1) 1',3',3'-Trimethylspiro[chromene-2,2'-indoline] top
Crystal data top
C19H19NOF(000) = 592
Mr = 277.35Dx = 1.245 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.530 (7) ÅCell parameters from 9931 reflections
b = 10.938 (6) Åθ = 2.6–27.4°
c = 13.013 (7) ŵ = 0.08 mm1
β = 115.614 (7)°T = 90 K
V = 1479.9 (15) Å3Block, colorless
Z = 40.52 × 0.36 × 0.35 mm
Data collection top
Bruker SMART 1000
diffractometer
3358 independent reflections
Radiation source: fine-focus sealed tube2672 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.029
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1414
Tmin = 0.811, Tmax = 0.983k = 1414
12543 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0554P)2 + 1.046P]
where P = (Fo2 + 2Fc2)/3
3358 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80339 (11)0.34663 (10)0.35758 (9)0.0279 (3)
N10.80594 (13)0.55031 (13)0.30705 (12)0.0296 (3)
C10.73425 (15)0.43762 (14)0.26886 (13)0.0271 (3)
C20.76732 (15)0.60633 (14)0.38435 (14)0.0284 (3)
C30.83102 (17)0.69436 (16)0.46624 (15)0.0362 (4)
H30.91370.72300.47840.043*
C40.76958 (19)0.73941 (16)0.53015 (16)0.0392 (4)
H40.81100.80020.58630.047*
C50.64926 (19)0.69733 (16)0.51348 (15)0.0373 (4)
H50.60890.72980.55760.045*
C60.58729 (16)0.60716 (15)0.43184 (14)0.0310 (4)
H60.50500.57770.42030.037*
C70.64723 (15)0.56145 (14)0.36826 (13)0.0267 (3)
C80.60256 (14)0.46823 (14)0.27321 (13)0.0261 (3)
C90.93940 (16)0.55554 (18)0.32437 (17)0.0386 (4)
H9A0.94870.51050.26330.058*
H9B0.99480.51870.39810.058*
H9C0.96450.64100.32340.058*
C100.50907 (16)0.52895 (16)0.16130 (14)0.0329 (4)
H10A0.48210.46900.09930.049*
H10B0.55210.59760.14370.049*
H10C0.43350.55900.16960.049*
C110.53771 (16)0.35560 (15)0.29460 (15)0.0312 (4)
H11A0.52200.29520.23440.047*
H11B0.45570.37940.29450.047*
H11C0.59380.31990.36870.047*
C120.72190 (17)0.39690 (17)0.15482 (14)0.0336 (4)
H120.70530.45650.09700.040*
C130.73330 (16)0.28041 (17)0.13139 (14)0.0339 (4)
H130.71750.25790.05600.041*
C140.76943 (15)0.18690 (15)0.21904 (14)0.0290 (3)
C150.77489 (16)0.06223 (16)0.19799 (16)0.0343 (4)
H150.75210.03490.12240.041*
C160.81308 (16)0.02187 (16)0.28582 (17)0.0372 (4)
H160.81470.10660.27040.045*
C170.84899 (15)0.01812 (16)0.39650 (16)0.0344 (4)
H170.87550.03950.45700.041*
C180.84650 (14)0.14200 (15)0.41974 (14)0.0290 (3)
H180.87350.16920.49600.035*
C190.80426 (14)0.22559 (14)0.33084 (13)0.0261 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0296 (6)0.0243 (5)0.0275 (6)0.0041 (4)0.0103 (5)0.0002 (4)
N10.0238 (7)0.0291 (7)0.0385 (8)0.0025 (5)0.0159 (6)0.0002 (6)
C10.0259 (7)0.0271 (8)0.0285 (8)0.0003 (6)0.0119 (6)0.0029 (6)
C20.0269 (8)0.0243 (7)0.0331 (8)0.0008 (6)0.0122 (7)0.0031 (6)
C30.0346 (9)0.0276 (8)0.0402 (9)0.0035 (7)0.0104 (7)0.0001 (7)
C40.0511 (11)0.0254 (8)0.0361 (9)0.0006 (7)0.0142 (8)0.0005 (7)
C50.0509 (11)0.0284 (8)0.0362 (9)0.0089 (8)0.0223 (8)0.0036 (7)
C60.0318 (8)0.0278 (8)0.0360 (8)0.0057 (6)0.0172 (7)0.0065 (7)
C70.0266 (7)0.0234 (7)0.0292 (8)0.0028 (6)0.0112 (6)0.0043 (6)
C80.0230 (7)0.0271 (8)0.0279 (8)0.0000 (6)0.0106 (6)0.0037 (6)
C90.0254 (8)0.0435 (10)0.0490 (10)0.0023 (7)0.0180 (8)0.0036 (8)
C100.0282 (8)0.0340 (9)0.0333 (9)0.0012 (7)0.0102 (7)0.0059 (7)
C110.0280 (8)0.0295 (8)0.0363 (9)0.0024 (6)0.0143 (7)0.0036 (7)
C120.0338 (9)0.0399 (9)0.0291 (8)0.0008 (7)0.0154 (7)0.0027 (7)
C130.0315 (8)0.0438 (10)0.0287 (8)0.0027 (7)0.0151 (7)0.0041 (7)
C140.0218 (7)0.0350 (9)0.0317 (8)0.0017 (6)0.0130 (6)0.0055 (7)
C150.0244 (8)0.0383 (9)0.0405 (9)0.0031 (7)0.0144 (7)0.0123 (7)
C160.0259 (8)0.0298 (9)0.0528 (11)0.0002 (7)0.0143 (8)0.0079 (8)
C170.0226 (8)0.0298 (8)0.0474 (10)0.0014 (6)0.0118 (7)0.0021 (7)
C180.0204 (7)0.0317 (8)0.0330 (8)0.0017 (6)0.0096 (6)0.0007 (7)
C190.0196 (7)0.0268 (8)0.0330 (8)0.0007 (6)0.0125 (6)0.0037 (6)
Geometric parameters (Å, º) top
O1—C191.370 (2)C9—H9C0.9800
O1—C11.4708 (19)C10—H10A0.9800
N1—C21.405 (2)C10—H10B0.9800
N1—C11.447 (2)C10—H10C0.9800
N1—C91.457 (2)C11—H11A0.9800
C1—C121.496 (2)C11—H11B0.9800
C1—C81.580 (2)C11—H11C0.9800
C2—C31.388 (2)C12—C131.330 (3)
C2—C71.397 (2)C12—H120.9500
C3—C41.395 (3)C13—C141.452 (2)
C3—H30.9500C13—H130.9500
C4—C51.387 (3)C14—C191.397 (2)
C4—H40.9500C14—C151.398 (2)
C5—C61.398 (3)C15—C161.382 (3)
C5—H50.9500C15—H150.9500
C6—C71.381 (2)C16—C171.386 (3)
C6—H60.9500C16—H160.9500
C7—C81.511 (2)C17—C181.391 (2)
C8—C111.528 (2)C17—H170.9500
C8—C101.538 (2)C18—C191.387 (2)
C9—H9A0.9800C18—H180.9500
C9—H9B0.9800
C19—O1—C1121.03 (12)H9A—C9—H9C109.5
C2—N1—C1107.85 (13)H9B—C9—H9C109.5
C2—N1—C9120.85 (14)C8—C10—H10A109.5
C1—N1—C9119.66 (14)C8—C10—H10B109.5
N1—C1—O1105.75 (12)H10A—C10—H10B109.5
N1—C1—C12112.92 (14)C8—C10—H10C109.5
O1—C1—C12111.35 (13)H10A—C10—H10C109.5
N1—C1—C8102.85 (13)H10B—C10—H10C109.5
O1—C1—C8108.57 (12)C8—C11—H11A109.5
C12—C1—C8114.70 (13)C8—C11—H11B109.5
C3—C2—C7121.35 (16)H11A—C11—H11B109.5
C3—C2—N1128.78 (16)C8—C11—H11C109.5
C7—C2—N1109.87 (14)H11A—C11—H11C109.5
C2—C3—C4117.80 (17)H11B—C11—H11C109.5
C2—C3—H3121.1C13—C12—C1122.43 (16)
C4—C3—H3121.1C13—C12—H12118.8
C5—C4—C3121.40 (17)C1—C12—H12118.8
C5—C4—H4119.3C12—C13—C14121.19 (16)
C3—C4—H4119.3C12—C13—H13119.4
C4—C5—C6120.06 (17)C14—C13—H13119.4
C4—C5—H5120.0C19—C14—C15118.85 (16)
C6—C5—H5120.0C19—C14—C13117.40 (15)
C7—C6—C5119.14 (16)C15—C14—C13123.71 (16)
C7—C6—H6120.4C16—C15—C14120.83 (17)
C5—C6—H6120.4C16—C15—H15119.6
C6—C7—C2120.22 (16)C14—C15—H15119.6
C6—C7—C8130.76 (15)C15—C16—C17119.62 (17)
C2—C7—C8108.96 (14)C15—C16—H16120.2
C7—C8—C11114.54 (14)C17—C16—H16120.2
C7—C8—C10109.56 (13)C16—C17—C18120.55 (17)
C11—C8—C10108.83 (13)C16—C17—H17119.7
C7—C8—C1100.34 (12)C18—C17—H17119.7
C11—C8—C1112.92 (13)C19—C18—C17119.56 (16)
C10—C8—C1110.41 (13)C19—C18—H18120.2
N1—C9—H9A109.5C17—C18—H18120.2
N1—C9—H9B109.5O1—C19—C18117.61 (14)
H9A—C9—H9B109.5O1—C19—C14121.79 (15)
N1—C9—H9C109.5C18—C19—C14120.54 (15)
C2—N1—C1—O182.59 (15)C2—C7—C8—C118.11 (16)
C9—N1—C1—O160.87 (18)N1—C1—C8—C729.16 (14)
C2—N1—C1—C12155.41 (14)O1—C1—C8—C782.58 (14)
C9—N1—C1—C1261.1 (2)C12—C1—C8—C7152.16 (14)
C2—N1—C1—C831.23 (16)N1—C1—C8—C11151.54 (13)
C9—N1—C1—C8174.69 (14)O1—C1—C8—C1139.80 (17)
C19—O1—C1—N1148.68 (13)C12—C1—C8—C1185.46 (17)
C19—O1—C1—C1225.67 (19)N1—C1—C8—C1086.38 (15)
C19—O1—C1—C8101.54 (15)O1—C1—C8—C10161.88 (12)
C1—N1—C2—C3159.89 (16)C12—C1—C8—C1036.62 (19)
C9—N1—C2—C316.9 (3)N1—C1—C12—C13139.09 (17)
C1—N1—C2—C720.76 (18)O1—C1—C12—C1320.3 (2)
C9—N1—C2—C7163.71 (14)C8—C1—C12—C13103.50 (19)
C7—C2—C3—C41.8 (2)C1—C12—C13—C145.3 (3)
N1—C2—C3—C4177.50 (16)C12—C13—C14—C196.3 (2)
C2—C3—C4—C50.5 (3)C12—C13—C14—C15175.75 (16)
C3—C4—C5—C60.5 (3)C19—C14—C15—C160.5 (2)
C4—C5—C6—C70.3 (2)C13—C14—C15—C16178.41 (15)
C5—C6—C7—C21.0 (2)C14—C15—C16—C171.3 (2)
C5—C6—C7—C8177.85 (15)C15—C16—C17—C180.2 (2)
C3—C2—C7—C62.1 (2)C16—C17—C18—C191.8 (2)
N1—C2—C7—C6177.35 (14)C1—O1—C19—C18166.22 (13)
C3—C2—C7—C8179.55 (15)C1—O1—C19—C1416.5 (2)
N1—C2—C7—C80.14 (18)C17—C18—C19—O1180.00 (14)
C6—C7—C8—C1143.5 (2)C17—C18—C19—C142.7 (2)
C2—C7—C8—C11139.34 (14)C15—C14—C19—O1178.75 (14)
C6—C7—C8—C1079.1 (2)C13—C14—C19—O10.7 (2)
C2—C7—C8—C1098.05 (15)C15—C14—C19—C181.5 (2)
C6—C7—C8—C1164.75 (16)C13—C14—C19—C18176.51 (14)
(2) 1',3',3'-Trimethyl-4-[(E)-(1,3,3-trimethylindolin-2-ylidene)methyl]spiro[chroman-2,2'-indoline] top
Crystal data top
C31H34N2OF(000) = 968
Mr = 450.60Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.1774 (11) ÅCell parameters from 9967 reflections
b = 11.6019 (9) Åθ = 2.3–31.0°
c = 16.2847 (17) ŵ = 0.07 mm1
β = 115.6129 (12)°T = 90 K
V = 2415.4 (4) Å3Plate, colorless
Z = 40.48 × 0.26 × 0.08 mm
Data collection top
Bruker DUO
diffractometer
7680 independent reflections
Radiation source: fine focus sealed tube6549 reflections with I > 2σ(I)
Detector resolution: 8.3 pixels mm-1Rint = 0.026
ω scansθmax = 31.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2020
Tmin = 0.713, Tmax = 0.746k = 1616
39237 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.9489P]
where P = (Fo2 + 2Fc2)/3
7680 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34762 (5)0.16535 (6)0.32478 (5)0.01634 (15)
N10.40423 (7)0.35186 (7)0.37594 (6)0.01547 (16)
N20.08953 (7)0.35771 (8)0.01968 (6)0.01639 (17)
C10.31133 (7)0.27916 (8)0.33767 (7)0.01376 (17)
C20.45179 (8)0.33748 (8)0.47069 (7)0.01494 (18)
C30.55233 (8)0.36930 (9)0.53229 (7)0.01845 (19)
H30.59980.40300.51220.022*
C40.58087 (9)0.34990 (10)0.62471 (7)0.0212 (2)
H40.64890.37120.66820.025*
C50.51211 (9)0.30028 (10)0.65452 (8)0.0231 (2)
H50.53350.28750.71770.028*
C60.41093 (9)0.26899 (10)0.59145 (7)0.0211 (2)
H60.36330.23550.61140.025*
C70.38174 (8)0.28778 (9)0.49969 (7)0.01572 (18)
C80.27724 (7)0.27236 (8)0.41788 (7)0.01457 (17)
C90.47220 (8)0.36495 (10)0.33042 (7)0.0195 (2)
H9A0.51140.43720.34980.029*
H9B0.42970.36640.26430.029*
H9C0.52120.30010.34640.029*
C100.20944 (8)0.37710 (10)0.41676 (8)0.0203 (2)
H10A0.20040.37840.47310.031*
H10B0.14080.37110.36440.031*
H10C0.24400.44820.41200.031*
C110.22236 (8)0.16035 (10)0.42081 (7)0.0203 (2)
H11A0.21200.15820.47650.030*
H11B0.26550.09460.42020.030*
H11C0.15440.15630.36760.030*
C120.23105 (8)0.32528 (9)0.24650 (7)0.01534 (18)
H12A0.26650.34080.20700.018*
H12B0.20340.39940.25690.018*
C130.13889 (7)0.24303 (8)0.19642 (7)0.01457 (17)
H130.09670.23670.23200.017*
C140.18259 (7)0.12496 (8)0.19179 (6)0.01406 (17)
C150.12593 (8)0.04410 (9)0.12446 (7)0.01773 (19)
H150.05750.06340.08050.021*
C160.16694 (8)0.06372 (9)0.12009 (7)0.0192 (2)
H160.12720.11690.07360.023*
C170.26725 (8)0.09253 (9)0.18494 (8)0.0198 (2)
H170.29600.16580.18270.024*
C180.32501 (8)0.01440 (9)0.25269 (7)0.01735 (19)
H180.39300.03440.29690.021*
C190.28304 (7)0.09388 (8)0.25583 (7)0.01425 (17)
C200.06994 (8)0.28955 (9)0.10287 (7)0.01557 (18)
H200.10260.30220.06350.019*
C210.03249 (7)0.31510 (8)0.06905 (6)0.01364 (17)
C220.19342 (8)0.37872 (8)0.03783 (7)0.01475 (18)
C230.27463 (8)0.42123 (9)0.11683 (7)0.01866 (19)
H230.26380.44060.16880.022*
C240.37283 (8)0.43437 (10)0.11672 (8)0.0213 (2)
H240.42950.46300.16980.026*
C250.38953 (8)0.40669 (10)0.04102 (8)0.0211 (2)
H250.45690.41650.04270.025*
C260.30669 (8)0.36425 (9)0.03782 (7)0.01789 (19)
H260.31730.34530.08990.021*
C270.20940 (7)0.35039 (8)0.03879 (7)0.01449 (18)
C280.10793 (7)0.30639 (8)0.11424 (6)0.01381 (17)
C290.07525 (8)0.38417 (10)0.19859 (7)0.0196 (2)
H29A0.05880.46140.18420.029*
H29B0.01340.35150.24880.029*
H29C0.13270.38910.21660.029*
C300.12197 (9)0.18061 (9)0.13746 (8)0.0211 (2)
H30A0.17530.17740.16060.032*
H30B0.05550.15150.18400.032*
H30C0.14410.13310.08250.032*
C310.04513 (9)0.37235 (10)0.08373 (7)0.0209 (2)
H31A0.09850.40300.14110.031*
H31B0.02050.29770.09500.031*
H31C0.01380.42630.05860.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0140 (3)0.0146 (3)0.0178 (3)0.0019 (2)0.0043 (3)0.0028 (3)
N10.0150 (4)0.0173 (4)0.0146 (4)0.0025 (3)0.0069 (3)0.0006 (3)
N20.0156 (4)0.0212 (4)0.0129 (4)0.0024 (3)0.0068 (3)0.0041 (3)
C10.0142 (4)0.0130 (4)0.0143 (4)0.0015 (3)0.0064 (3)0.0002 (3)
C20.0160 (4)0.0139 (4)0.0147 (4)0.0016 (3)0.0065 (3)0.0006 (3)
C30.0164 (4)0.0180 (4)0.0202 (5)0.0006 (3)0.0072 (4)0.0026 (4)
C40.0187 (5)0.0217 (5)0.0187 (5)0.0013 (4)0.0041 (4)0.0034 (4)
C50.0246 (5)0.0263 (5)0.0149 (4)0.0016 (4)0.0054 (4)0.0008 (4)
C60.0226 (5)0.0247 (5)0.0168 (5)0.0005 (4)0.0091 (4)0.0026 (4)
C70.0161 (4)0.0156 (4)0.0154 (4)0.0023 (3)0.0067 (3)0.0013 (3)
C80.0149 (4)0.0159 (4)0.0141 (4)0.0011 (3)0.0074 (3)0.0014 (3)
C90.0186 (4)0.0232 (5)0.0200 (5)0.0021 (4)0.0115 (4)0.0004 (4)
C100.0187 (4)0.0227 (5)0.0201 (5)0.0041 (4)0.0088 (4)0.0019 (4)
C110.0212 (5)0.0220 (5)0.0191 (5)0.0041 (4)0.0100 (4)0.0017 (4)
C120.0160 (4)0.0150 (4)0.0140 (4)0.0010 (3)0.0055 (3)0.0010 (3)
C130.0142 (4)0.0156 (4)0.0139 (4)0.0021 (3)0.0061 (3)0.0014 (3)
C140.0140 (4)0.0154 (4)0.0135 (4)0.0009 (3)0.0066 (3)0.0005 (3)
C150.0174 (4)0.0191 (5)0.0153 (4)0.0009 (3)0.0057 (3)0.0000 (3)
C160.0231 (5)0.0174 (4)0.0172 (4)0.0030 (4)0.0088 (4)0.0038 (4)
C170.0218 (5)0.0169 (4)0.0230 (5)0.0008 (4)0.0118 (4)0.0025 (4)
C180.0155 (4)0.0172 (4)0.0204 (5)0.0021 (3)0.0087 (4)0.0004 (4)
C190.0136 (4)0.0150 (4)0.0153 (4)0.0001 (3)0.0074 (3)0.0006 (3)
C200.0157 (4)0.0181 (4)0.0136 (4)0.0018 (3)0.0069 (3)0.0017 (3)
C210.0164 (4)0.0132 (4)0.0117 (4)0.0002 (3)0.0064 (3)0.0005 (3)
C220.0154 (4)0.0132 (4)0.0141 (4)0.0007 (3)0.0050 (3)0.0006 (3)
C230.0199 (5)0.0180 (5)0.0144 (4)0.0000 (4)0.0039 (4)0.0014 (3)
C240.0173 (4)0.0200 (5)0.0200 (5)0.0008 (4)0.0018 (4)0.0007 (4)
C250.0140 (4)0.0212 (5)0.0241 (5)0.0007 (4)0.0046 (4)0.0007 (4)
C260.0152 (4)0.0188 (5)0.0190 (5)0.0024 (3)0.0067 (4)0.0009 (4)
C270.0141 (4)0.0133 (4)0.0148 (4)0.0013 (3)0.0051 (3)0.0004 (3)
C280.0144 (4)0.0148 (4)0.0130 (4)0.0005 (3)0.0066 (3)0.0013 (3)
C290.0169 (4)0.0265 (5)0.0143 (4)0.0026 (4)0.0057 (4)0.0025 (4)
C300.0210 (5)0.0184 (5)0.0255 (5)0.0000 (4)0.0116 (4)0.0067 (4)
C310.0222 (5)0.0276 (5)0.0158 (4)0.0015 (4)0.0111 (4)0.0042 (4)
Geometric parameters (Å, º) top
O1—C191.3776 (12)C13—H131.0000
O1—C11.4648 (12)C14—C191.4005 (13)
N1—C21.4013 (13)C14—C151.4022 (14)
N1—C91.4556 (13)C15—C161.3942 (15)
N1—C11.4577 (13)C15—H150.9500
N2—C221.3928 (13)C16—C171.3967 (15)
N2—C211.4056 (12)C16—H160.9500
N2—C311.4425 (13)C17—C181.3887 (15)
C1—C121.5247 (13)C17—H170.9500
C1—C81.5785 (14)C18—C191.4004 (14)
C2—C31.3921 (14)C18—H180.9500
C2—C71.3956 (14)C20—C211.3448 (13)
C3—C41.3975 (15)C20—H200.9500
C3—H30.9500C21—C281.5415 (13)
C4—C51.3881 (17)C22—C231.3941 (13)
C4—H40.9500C22—C271.4002 (14)
C5—C61.4037 (16)C23—C241.4013 (15)
C5—H50.9500C23—H230.9500
C6—C71.3845 (14)C24—C251.3896 (16)
C6—H60.9500C24—H240.9500
C7—C81.5150 (14)C25—C261.4023 (14)
C8—C111.5260 (14)C25—H250.9500
C8—C101.5446 (14)C26—C271.3820 (14)
C9—H9A0.9800C26—H260.9500
C9—H9B0.9800C27—C281.5204 (13)
C9—H9C0.9800C28—C291.5381 (14)
C10—H10A0.9800C28—C301.5418 (14)
C10—H10B0.9800C29—H29A0.9800
C10—H10C0.9800C29—H29B0.9800
C11—H11A0.9800C29—H29C0.9800
C11—H11B0.9800C30—H30A0.9800
C11—H11C0.9800C30—H30B0.9800
C12—C131.5367 (14)C30—H30C0.9800
C12—H12A0.9900C31—H31A0.9800
C12—H12B0.9900C31—H31B0.9800
C13—C201.5100 (13)C31—H31C0.9800
C13—C141.5186 (14)
C19—O1—C1120.56 (7)C19—C14—C15117.67 (9)
C2—N1—C9117.63 (8)C19—C14—C13120.04 (8)
C2—N1—C1108.51 (8)C15—C14—C13122.29 (9)
C9—N1—C1121.16 (8)C16—C15—C14121.98 (9)
C22—N2—C21111.43 (8)C16—C15—H15119.0
C22—N2—C31125.31 (8)C14—C15—H15119.0
C21—N2—C31123.21 (8)C15—C16—C17119.14 (9)
N1—C1—O1105.93 (7)C15—C16—H16120.4
N1—C1—C12111.68 (8)C17—C16—H16120.4
O1—C1—C12109.72 (8)C18—C17—C16120.16 (10)
N1—C1—C8102.62 (8)C18—C17—H17119.9
O1—C1—C8109.01 (7)C16—C17—H17119.9
C12—C1—C8117.17 (8)C17—C18—C19120.04 (9)
C3—C2—C7121.49 (9)C17—C18—H18120.0
C3—C2—N1128.12 (9)C19—C18—H18120.0
C7—C2—N1110.35 (8)O1—C19—C18115.25 (8)
C2—C3—C4117.58 (10)O1—C19—C14123.75 (9)
C2—C3—H3121.2C18—C19—C14121.00 (9)
C4—C3—H3121.2C21—C20—C13127.27 (9)
C5—C4—C3121.55 (10)C21—C20—H20116.4
C5—C4—H4119.2C13—C20—H20116.4
C3—C4—H4119.2C20—C21—N2122.55 (9)
C4—C5—C6120.10 (10)C20—C21—C28129.73 (9)
C4—C5—H5120.0N2—C21—C28107.71 (8)
C6—C5—H5120.0N2—C22—C23129.31 (9)
C7—C6—C5118.89 (10)N2—C22—C27109.48 (8)
C7—C6—H6120.6C23—C22—C27121.21 (9)
C5—C6—H6120.6C22—C23—C24117.51 (10)
C6—C7—C2120.39 (9)C22—C23—H23121.2
C6—C7—C8130.77 (9)C24—C23—H23121.2
C2—C7—C8108.64 (8)C25—C24—C23121.77 (10)
C7—C8—C11113.02 (8)C25—C24—H24119.1
C7—C8—C10106.52 (8)C23—C24—H24119.1
C11—C8—C10110.32 (8)C24—C25—C26119.79 (10)
C7—C8—C1100.90 (8)C24—C25—H25120.1
C11—C8—C1114.27 (8)C26—C25—H25120.1
C10—C8—C1111.26 (8)C27—C26—C25119.21 (10)
N1—C9—H9A109.5C27—C26—H26120.4
N1—C9—H9B109.5C25—C26—H26120.4
H9A—C9—H9B109.5C26—C27—C22120.51 (9)
N1—C9—H9C109.5C26—C27—C28129.74 (9)
H9A—C9—H9C109.5C22—C27—C28109.75 (8)
H9B—C9—H9C109.5C27—C28—C29109.83 (8)
C8—C10—H10A109.5C27—C28—C21101.63 (8)
C8—C10—H10B109.5C29—C28—C21112.62 (8)
H10A—C10—H10B109.5C27—C28—C30109.79 (8)
C8—C10—H10C109.5C29—C28—C30110.93 (8)
H10A—C10—H10C109.5C21—C28—C30111.65 (8)
H10B—C10—H10C109.5C28—C29—H29A109.5
C8—C11—H11A109.5C28—C29—H29B109.5
C8—C11—H11B109.5H29A—C29—H29B109.5
H11A—C11—H11B109.5C28—C29—H29C109.5
C8—C11—H11C109.5H29A—C29—H29C109.5
H11A—C11—H11C109.5H29B—C29—H29C109.5
H11B—C11—H11C109.5C28—C30—H30A109.5
C1—C12—C13113.85 (8)C28—C30—H30B109.5
C1—C12—H12A108.8H30A—C30—H30B109.5
C13—C12—H12A108.8C28—C30—H30C109.5
C1—C12—H12B108.8H30A—C30—H30C109.5
C13—C12—H12B108.8H30B—C30—H30C109.5
H12A—C12—H12B107.7N2—C31—H31A109.5
C20—C13—C14111.87 (8)N2—C31—H31B109.5
C20—C13—C12110.16 (8)H31A—C31—H31B109.5
C14—C13—C12108.36 (8)N2—C31—H31C109.5
C20—C13—H13108.8H31A—C31—H31C109.5
C14—C13—H13108.8H31B—C31—H31C109.5
C12—C13—H13108.8
C2—N1—C1—O185.70 (9)C19—C14—C15—C160.24 (15)
C9—N1—C1—O155.02 (11)C13—C14—C15—C16179.36 (9)
C2—N1—C1—C12154.89 (8)C14—C15—C16—C170.36 (16)
C9—N1—C1—C1264.39 (11)C15—C16—C17—C180.04 (16)
C2—N1—C1—C828.56 (10)C16—C17—C18—C190.40 (16)
C9—N1—C1—C8169.28 (8)C1—O1—C19—C18177.53 (8)
C19—O1—C1—N1149.92 (8)C1—O1—C19—C143.06 (14)
C19—O1—C1—C1229.24 (11)C17—C18—C19—O1178.90 (9)
C19—O1—C1—C8100.29 (10)C17—C18—C19—C140.53 (15)
C9—N1—C2—C322.49 (15)C15—C14—C19—O1179.16 (9)
C1—N1—C2—C3164.79 (10)C13—C14—C19—O10.44 (14)
C9—N1—C2—C7159.66 (9)C15—C14—C19—C180.21 (14)
C1—N1—C2—C717.36 (11)C13—C14—C19—C18179.82 (9)
C7—C2—C3—C40.12 (15)C14—C13—C20—C21117.80 (11)
N1—C2—C3—C4177.51 (10)C12—C13—C20—C21121.61 (11)
C2—C3—C4—C50.29 (16)C13—C20—C21—N2179.70 (9)
C3—C4—C5—C60.46 (17)C13—C20—C21—C280.79 (18)
C4—C5—C6—C70.44 (17)C22—N2—C21—C20179.21 (9)
C5—C6—C7—C20.28 (16)C31—N2—C21—C203.22 (16)
C5—C6—C7—C8174.41 (10)C22—N2—C21—C280.39 (11)
C3—C2—C7—C60.12 (15)C31—N2—C21—C28177.17 (9)
N1—C2—C7—C6177.89 (9)C21—N2—C22—C23179.71 (10)
C3—C2—C7—C8175.44 (9)C31—N2—C22—C232.79 (17)
N1—C2—C7—C82.58 (11)C21—N2—C22—C270.10 (12)
C6—C7—C8—C1143.62 (15)C31—N2—C22—C27177.40 (10)
C2—C7—C8—C11141.72 (9)N2—C22—C23—C24179.88 (10)
C6—C7—C8—C1077.68 (13)C27—C22—C23—C240.09 (15)
C2—C7—C8—C1096.98 (10)C22—C23—C24—C250.19 (16)
C6—C7—C8—C1166.08 (11)C23—C24—C25—C260.08 (17)
C2—C7—C8—C119.26 (10)C24—C25—C26—C270.14 (16)
N1—C1—C8—C728.15 (9)C25—C26—C27—C220.23 (15)
O1—C1—C8—C783.84 (9)C25—C26—C27—C28179.83 (10)
C12—C1—C8—C7150.86 (8)N2—C22—C27—C26179.71 (9)
N1—C1—C8—C11149.73 (8)C23—C22—C27—C260.12 (15)
O1—C1—C8—C1137.73 (11)N2—C22—C27—C280.24 (11)
C12—C1—C8—C1187.57 (10)C23—C22—C27—C28179.93 (9)
N1—C1—C8—C1084.53 (9)C26—C27—C28—C2960.05 (13)
O1—C1—C8—C10163.48 (8)C22—C27—C28—C29119.89 (9)
C12—C1—C8—C1038.18 (11)C26—C27—C28—C21179.50 (10)
N1—C1—C12—C13171.51 (8)C22—C27—C28—C210.44 (10)
O1—C1—C12—C1354.37 (10)C26—C27—C28—C3062.18 (13)
C8—C1—C12—C1370.57 (11)C22—C27—C28—C30117.88 (9)
C1—C12—C13—C20173.83 (8)C20—C21—C28—C27179.07 (10)
C1—C12—C13—C1451.16 (11)N2—C21—C28—C270.49 (10)
C20—C13—C14—C19145.65 (9)C20—C21—C28—C2961.62 (14)
C12—C13—C14—C1924.02 (12)N2—C21—C28—C29117.94 (9)
C20—C13—C14—C1533.94 (13)C20—C21—C28—C3063.95 (14)
C12—C13—C14—C15155.57 (9)N2—C21—C28—C30116.48 (9)
Comparison of modeled (MM2, PDDG, PM6) bond lengths, angles, and dihedral angles (Å, °) with X-ray crystallographic data top
X-rayMM2ΔPDDGDPM6Δ
C1—O11.4711.4150.0561.4230.0481.484-0.013
C1—N11.4471.488-0.0411.515-0.0681.493-0.046
C1—C81.581.588-0.0081.589-0.0091.599-0.019
C1—C121.4961.508-0.0121.504-0.0081.497-0.001
N1—C21.4051.2700.1351.428-0.0231.430-0.025
N1—C91.4571.475-0.0181.468-0.0111.481-0.024
C12—C131.331.338-0.0081.340-0.0101.340-0.010
C13—C141.4531.3430.1101.4480.0051.455-0.002
O1—C191.371.3680.0021.3660.0041.3620.008
|mean|0.0430.0210.017
Dihedral angle O1/C1/C12 and N1/C1/C889.3392.7-3.37091.4-2.07091.3-1.970
Sum of angles at N1348.36360.0-11.640345.42.960344.53.860
C1—O1—C19121.03119.11.93118.42.63121.3-0.27
O1—C1—C12111.35111.30.05115.4-4.05113.7-2.35
O1—C1—C8108.57109.1-0.53110.2-1.63104.83.77
N1—C1—C8102.85104.3-1.45104.9-2.05105.3-2.45
N1—C1—O1105.75110.3-4.55103.91.85104.51.25
N1—C1—C12112.92107.65.32109.13.82111.01.92
C8—C1—C12114.7114.00.70112.32.40116.6-1.90
|mean|2.082.631.99
 

Acknowledgements

We thank the National Science Foundation (Grant 0840444) for the Dual source X-ray diffractometer.

References

First citationAshraf, M., Gainsford, G. J. & Kay, A. J. (2012). Aust. J. Chem. 65, 779–784.  CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlajn, R. (2014). Chem. Soc. Rev. 43, 148–184.  CrossRef CAS PubMed Google Scholar
First citationKoelsch, C. F. & Workman, W. R. (1952). J. Am. Chem. Soc. 74, 6288–6289.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.  CrossRef Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds