research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-oxo-2H-chromen-3-yl propano­ate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët Boigny de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Moléculaire et Matériaux, Equipe de Chimie Organique et Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO 03 BP 7021 Ouagadougou 03, Burkina Faso
*Correspondence e-mail: eric.ziki@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 August 2016; accepted 28 September 2016; online 11 October 2016)

In the title compound, C12H10O4, the dihedral angle between the coumarin ring system [maximum deviation = 0.033 (8) Å] and the propionate side chain is 78.48 (8)°. In the crystal, weak C—H⋯O hydrogen bonds generate inversion dimers and and C—H⋯π and ππ inter­actions link the dimers into a three-dimensional network. A quantum chemical calculation is in good agreement with the observed structure.

1. Chemical context

Coumarin and its derivatives are widely recognized for their multiple biological activities, including anti­cancer (Lacy et al., 2004[Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797-3811.]; Kostova, 2005[Kostova, I. (2005). Curr. Med. Chem. Anticancer Agents, 5, 29-46.]), anti-inflammatory (Todeschini et al., 1998[Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.]), anti­viral (Borges et al., 2005[Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887-916.]), anti­malarial (Agarwal et al., 2005[Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645-4650.]) and anti­coagulant (Maurer et al., 1998[Maurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181-195.]) properties. As part of our studies in this area, we now describe the synthesis and crystal structure of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

In compound (I)[link] (Fig. 1[link]), the coumarin ring system is almost planar [maximum deviation = 0.033 (1)Å] and is oriented at an angle of 70.84 (8)° with respect to the plane formed by the propano­ate group. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the coumarin ring: the C2—C3 [1.329 (2) Å] and C2—C1 [1.460 (2) Å] bond lengths are shorter and longer, respectively, than those expected for a Car—Car bond. This suggests that the electron density is preferentially located in the C2—C3 bond at the pyrone ring, as seen in other coumarin-3-carboxamide derivatives (Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]).

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by pairs of C8—H8⋯O2(x, −y, 1 − z) weak hydrogen bonds to form R22(12) loops, which lie in a chain running along the c axis direction (Fig. 2[link]). Weak aromatic ππ stacking inter­actions of 3.7956 (8) Å (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]) are present between the coumarin pyran ring (centroid Cg1) and benzene ring (centroid Cg2) of symmetry-related (−x, 1 − y, 1 − z) mol­ecules, thus forming a three-dimensional supra­molecular network. A weak C—H⋯Cg (π–ring) inter­action is also present (Figs. 3[link] and 4[link], and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O2i 0.93 2.59 3.4783 (19) 161
C5—H5⋯Cg2ii 0.93 2.78 3.4959 (16) 134
Symmetry codes: (i) -x, -y, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
View of an inversion dimer linked by a pair of C8—H8⋯O2 (−x, −y, −z + 1) inter­actions, generating an R22(12) loop. This dimers stack by unit translation along the c axis. H atoms not involved in hydrogen bonding have been omitted.
[Figure 3]
Figure 3
A view of the crystal packing, showing the ππ stacking and C—H⋯π inter­actions (dashed lines). The green dots are ring centroids. H atoms not involved in the C—H⋯π inter­actions have been omitted for clarity.
[Figure 4]
Figure 4
Part of the crystal structure of (I)[link], showing C—H⋯π and ππ inter­actions as dashed lines. H atoms have been omitted for clarity.

4. Theoretical calculations

Quantum-chemical calculations were performed to compare with the experimental analysis. An ab-initio Hartree–Fock (HF) method was used with the standard basis set of 6-31G using the GAUSSIAN03 software package (Frisch et al., 2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]; Dennington et al., 2007[Dennington, R., Keith, T. & Millam, J. (2007). Gaussview4.1. Semichem Inc., Shawnee Mission, KS, USA.]) to obtain the optimized mol­ecular structure. The computational results are in good agreement with the experimental crystallographic data (Table 2[link]).

Table 2
Experimental and calculated bond lengths (Å)

Bond X-ray HF(6–31G)
O1—C1 1.3628 (17) 1.371
O1—C9 1.3769 (17) 1.378
O2—C1 1.2004 (18) 1.227
O3—C10 1.3713 (18) 1.359
O3—C2 1.3893 (17) 1.381
O4—C10 1.1932 (19) 1.21
C1—C2 1.460 (2) 1.468
C2—C3 1.329 (2) 1.355
C3—C4 1.4403 (19) 1.441
C4—C5 1.401 (2) 1.406
C4—C9 1.3928 (18) 1.407
C5—C6 1.370 (2) 1.387
C6—C7 1.386 (2) 1.395
C7—C8 1.379 (2) 1.383
C8—C9 1.3842 (19) 1.408
C10—C11 1.495 (2) 1.497
C11—C12 1.491 (3) 1.525

5. Synthesis and crystallization

In a 100 ml round-necked flask topped with a water condenser were introduced successively 25 ml of dried diethyl ether, 6.17 × 10 −3 mol (≃ 0.8 ml) of propionic anhydride and 2.35 ml (4.7 molar equivalents) of dried pyridine. While stirring strongly, 6.17 × 10−3 mol (1 g) of 3-hy­droxy­coumarin was added in small portions over 30 min. The reaction mixture was left under agitation at room temperature for 3 h. The mixture was then poured in a separating funnel containing 40 ml of chloro­form and washed with diluted hydro­chloric acid solution until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with petroleum ether and recrystallized from a solvent mixture of chloro­form–hexane (1/3, v/v). Colourless prisms of the title compound were obtained in a yield of 65%, m. p. = 351–353 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions [C—H = 0.93 (aromatic), 0.96 (meth­yl) or 0.97 Å (methyl­ene)] and refined using a riding-model approximation with Uiso(H) constrained to 1.2 (aromatic and methyl­ene group) or 1.5 (methyl group) times Ueq of the respective parent atom.

Table 3
Experimental details

Crystal data
Chemical formula C12H10O4
Mr 218.20
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 12.1179 (4), 5.7243 (2), 15.3275 (5)
β (°) 94.881 (3)
V3) 1059.36 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.87
Crystal size (mm) 0.46 × 0.16 × 0.08
 
Data collection
Diffractometer Agilent SuperNova Dual (Cu at zero) Source diffractometer with an AtlasS2 detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.778, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6028, 1930, 1655
Rint 0.020
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.117, 1.06
No. of reflections 1930
No. of parameters 145
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.16
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Oxo-2H-chromen-3-yl propanoate top
Crystal data top
C12H10O4F(000) = 456
Mr = 218.20Dx = 1.368 Mg m3
Monoclinic, P21/cMelting point: 351 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54184 Å
a = 12.1179 (4) ÅCell parameters from 3028 reflections
b = 5.7243 (2) Åθ = 5.8–68.6°
c = 15.3275 (5) ŵ = 0.87 mm1
β = 94.881 (3)°T = 293 K
V = 1059.36 (6) Å3Prism, colourless
Z = 40.46 × 0.16 × 0.08 mm
Data collection top
Agilent SuperNova Dual (Cu at zero) Source
diffractometer with an AtlasS2 detector
1930 independent reflections
Radiation source: sealed X-ray tube1655 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 5.3048 pixels mm-1θmax = 68.9°, θmin = 3.7°
ω scanh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 66
Tmin = 0.778, Tmax = 1.000l = 1518
6028 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.1085P]
where P = (Fo2 + 2Fc2)/3
1930 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
40 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08845 (8)0.19504 (17)0.44462 (6)0.0505 (3)
O30.36752 (8)0.39585 (19)0.41680 (7)0.0567 (3)
C90.02550 (11)0.3708 (2)0.40435 (8)0.0426 (3)
C20.25245 (11)0.3964 (2)0.40998 (9)0.0466 (3)
C30.19407 (11)0.5719 (2)0.37284 (8)0.0455 (3)
H30.22980.69850.34970.055*
C40.07494 (11)0.5644 (2)0.36879 (8)0.0420 (3)
C80.08834 (12)0.3450 (3)0.40123 (9)0.0521 (3)
H80.11980.21500.42580.063*
C10.20130 (12)0.1982 (2)0.45088 (9)0.0492 (3)
O40.36176 (9)0.1032 (2)0.31915 (8)0.0683 (3)
O20.24985 (10)0.0406 (2)0.48893 (8)0.0695 (3)
C50.00553 (12)0.7361 (2)0.32863 (9)0.0497 (3)
H50.03620.86760.30450.060*
C60.10727 (13)0.7114 (3)0.32463 (10)0.0566 (4)
H60.15270.82570.29750.068*
C70.15398 (12)0.5169 (3)0.36080 (10)0.0567 (4)
H70.23060.50220.35780.068*
C100.41542 (12)0.2272 (3)0.36892 (10)0.0530 (3)
C110.53858 (13)0.2315 (4)0.38698 (13)0.0728 (5)
H11A0.56440.39050.38080.087*
H11B0.55760.18390.44710.087*
C120.59736 (16)0.0768 (5)0.32791 (15)0.0858 (6)
H12A0.67580.08710.34280.129*
H12B0.58060.12520.26830.129*
H12C0.57360.08170.33460.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0500 (5)0.0463 (5)0.0557 (5)0.0037 (4)0.0068 (4)0.0091 (4)
O30.0398 (5)0.0614 (6)0.0686 (6)0.0025 (4)0.0019 (4)0.0145 (5)
C90.0453 (7)0.0438 (6)0.0394 (6)0.0015 (5)0.0069 (5)0.0014 (5)
C20.0395 (7)0.0505 (7)0.0499 (7)0.0036 (5)0.0052 (5)0.0083 (5)
C30.0468 (7)0.0425 (7)0.0485 (7)0.0072 (5)0.0109 (5)0.0037 (5)
C40.0459 (7)0.0411 (6)0.0398 (6)0.0018 (5)0.0083 (5)0.0037 (5)
C80.0473 (7)0.0570 (8)0.0535 (7)0.0083 (6)0.0125 (6)0.0022 (6)
C10.0506 (7)0.0490 (7)0.0479 (7)0.0031 (6)0.0034 (5)0.0009 (6)
O40.0510 (6)0.0805 (8)0.0730 (7)0.0006 (5)0.0025 (5)0.0238 (6)
O20.0665 (7)0.0669 (7)0.0749 (7)0.0122 (6)0.0041 (6)0.0197 (6)
C50.0575 (8)0.0450 (7)0.0474 (7)0.0025 (6)0.0100 (6)0.0013 (5)
C60.0548 (8)0.0611 (9)0.0540 (7)0.0145 (7)0.0065 (6)0.0010 (6)
C70.0411 (7)0.0715 (9)0.0584 (8)0.0027 (6)0.0097 (6)0.0069 (7)
C100.0450 (8)0.0594 (8)0.0545 (7)0.0007 (6)0.0038 (6)0.0053 (6)
C110.0430 (8)0.0917 (13)0.0829 (11)0.0053 (8)0.0003 (7)0.0168 (10)
C120.0526 (10)0.1094 (16)0.0951 (13)0.0179 (10)0.0050 (9)0.0168 (12)
Geometric parameters (Å, º) top
O1—C11.3628 (17)O4—C101.1932 (19)
O1—C91.3769 (17)C5—C61.370 (2)
O3—C101.3713 (18)C5—H50.9300
O3—C21.3893 (17)C6—C71.386 (2)
C9—C81.3842 (19)C6—H60.9300
C9—C41.3926 (18)C7—H70.9300
C2—C31.329 (2)C10—C111.495 (2)
C2—C11.460 (2)C11—C121.491 (3)
C3—C41.4403 (19)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.401 (2)C12—H12A0.9600
C8—C71.379 (2)C12—H12B0.9600
C8—H80.9300C12—H12C0.9600
C1—O21.2004 (18)
C1—O1—C9122.43 (10)C4—C5—H5119.8
C10—O3—C2115.41 (11)C5—C6—C7120.31 (14)
O1—C9—C8116.74 (12)C5—C6—H6119.8
O1—C9—C4121.11 (12)C7—C6—H6119.8
C8—C9—C4122.15 (13)C8—C7—C6120.90 (14)
C3—C2—O3121.88 (12)C8—C7—H7119.6
C3—C2—C1122.80 (12)C6—C7—H7119.6
O3—C2—C1115.22 (12)O4—C10—O3121.89 (13)
C2—C3—C4119.40 (12)O4—C10—C11127.56 (15)
C2—C3—H3120.3O3—C10—C11110.52 (13)
C4—C3—H3120.3C12—C11—C10113.50 (15)
C9—C4—C5117.88 (12)C12—C11—H11A108.9
C9—C4—C3118.03 (12)C10—C11—H11A108.9
C5—C4—C3124.05 (12)C12—C11—H11B108.9
C7—C8—C9118.32 (13)C10—C11—H11B108.9
C7—C8—H8120.8H11A—C11—H11B107.7
C9—C8—H8120.8C11—C12—H12A109.5
O2—C1—O1118.14 (13)C11—C12—H12B109.5
O2—C1—C2125.74 (14)H12A—C12—H12B109.5
O1—C1—C2116.12 (12)C11—C12—H12C109.5
C6—C5—C4120.43 (13)H12A—C12—H12C109.5
C6—C5—H5119.8H12B—C12—H12C109.5
C1—O1—C9—C8179.07 (12)C9—O1—C1—C21.73 (18)
C1—O1—C9—C40.99 (18)C3—C2—C1—O2176.26 (14)
C10—O3—C2—C3113.91 (15)O3—C2—C1—O20.3 (2)
C10—O3—C2—C169.53 (17)C3—C2—C1—O13.69 (19)
O3—C2—C3—C4179.09 (11)O3—C2—C1—O1179.78 (10)
C1—C2—C3—C42.8 (2)C9—C4—C5—C60.27 (19)
O1—C9—C4—C5179.85 (11)C3—C4—C5—C6177.46 (12)
C8—C9—C4—C50.21 (19)C4—C5—C6—C70.4 (2)
O1—C9—C4—C31.98 (17)C9—C8—C7—C60.4 (2)
C8—C9—C4—C3178.08 (12)C5—C6—C7—C80.1 (2)
C2—C3—C4—C90.08 (18)C2—O3—C10—O46.2 (2)
C2—C3—C4—C5177.81 (12)C2—O3—C10—C11175.47 (14)
O1—C9—C8—C7179.53 (12)O4—C10—C11—C126.5 (3)
C4—C9—C8—C70.5 (2)O3—C10—C11—C12171.65 (17)
C9—O1—C1—O2178.23 (13)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···O2i0.932.593.4783 (19)161
C5—H5···Cg2ii0.932.783.4959 (16)134
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2.
Experimental and calculated bond lengths (Å) top
BondX-rayHF(6-31G)
O1—C11.3628 (17)1.371
O1—C91.3769 (17)1.378
O2—C11.2004 (18)1.227
O3—C101.3713 (18)1.359
O3—C21.3893 (17)1.381
O4—C101.1932 (19)1.21
C1—C21.460 (2)1.468
C2—C31.329 (2)1.355
C3—C41.4403 (19)1.441
C4—C51.401 (2)1.406
C4—C91.3928 (18)1.407
C5—C61.370 (2)1.387
C6—C71.386 (2)1.395
C7—C81.379 (2)1.383
C8—C91.3842 (19)1.408
C10—C111.495 (2)1.497
C11—C121.491 (3)1.525
 

Acknowledgements

The authors thank the Spectropole Service of the faculty of Sciences (Aix-Marseille, France) for the use of the diffractometer and the NMR and MS spectrometers.

References

First citationAgarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645–4650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAgilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBorges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDennington, R., Keith, T. & Millam, J. (2007). Gaussview4.1. Semichem Inc., Shawnee Mission, KS, USA.  Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKostova, I. (2005). Curr. Med. Chem. Anticancer Agents, 5, 29–46.  CrossRef PubMed CAS Google Scholar
First citationLacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181–195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTodeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds