research communications
H-chromen-3-yl propanoate
of 2-oxo-2aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët Boigny de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Moléculaire et Matériaux, Equipe de Chimie Organique et Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO 03 BP 7021 Ouagadougou 03, Burkina Faso
*Correspondence e-mail: eric.ziki@gmail.com
In the title compound, C12H10O4, the dihedral angle between the coumarin ring system [maximum deviation = 0.033 (8) Å] and the propionate side chain is 78.48 (8)°. In the crystal, weak C—H⋯O hydrogen bonds generate inversion dimers and and C—H⋯π and π–π interactions link the dimers into a three-dimensional network. A quantum chemical calculation is in good agreement with the observed structure.
Keywords: crystal structure; π–π interactions; C—H⋯π interactions; chromane; quantum-chemical calculations.
CCDC reference: 1507161
1. Chemical context
Coumarin and its derivatives are widely recognized for their multiple biological activities, including anticancer (Lacy et al., 2004; Kostova, 2005), anti-inflammatory (Todeschini et al., 1998), antiviral (Borges et al., 2005), antimalarial (Agarwal et al., 2005) and anticoagulant (Maurer et al., 1998) properties. As part of our studies in this area, we now describe the synthesis and of the title compound, (I).
2. Structural commentary
In compound (I) (Fig. 1), the coumarin ring system is almost planar [maximum deviation = 0.033 (1)Å] and is oriented at an angle of 70.84 (8)° with respect to the plane formed by the propanoate group. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the coumarin ring: the C2—C3 [1.329 (2) Å] and C2—C1 [1.460 (2) Å] bond lengths are shorter and longer, respectively, than those expected for a Car—Car bond. This suggests that the electron density is preferentially located in the C2—C3 bond at the pyrone ring, as seen in other coumarin-3-carboxamide derivatives (Gomes et al., 2016).
3. Supramolecular features
In the crystal, the molecules are linked by pairs of C8—H8⋯O2(x, −y, 1 − z) weak hydrogen bonds to form R22(12) loops, which lie in a chain running along the c axis direction (Fig. 2). Weak aromatic π–π stacking interactions of 3.7956 (8) Å (Janiak, 2000) are present between the coumarin pyran ring (centroid Cg1) and benzene ring (centroid Cg2) of symmetry-related (−x, 1 − y, 1 − z) molecules, thus forming a three-dimensional supramolecular network. A weak C—H⋯Cg (π–ring) interaction is also present (Figs. 3 and 4, and Table 1).
4. Theoretical calculations
Quantum-chemical calculations were performed to compare with the experimental analysis. An ab-initio Hartree–Fock (HF) method was used with the standard basis set of 6-31G using the GAUSSIAN03 software package (Frisch et al., 2004; Dennington et al., 2007) to obtain the optimized molecular structure. The computational results are in good agreement with the experimental crystallographic data (Table 2).
|
5. Synthesis and crystallization
In a 100 ml round-necked flask topped with a water condenser were introduced successively 25 ml of dried diethyl ether, 6.17 × 10 −3 mol (≃ 0.8 ml) of propionic anhydride and 2.35 ml (4.7 molar equivalents) of dried pyridine. While stirring strongly, 6.17 × 10−3 mol (1 g) of 3-hydroxycoumarin was added in small portions over 30 min. The reaction mixture was left under agitation at room temperature for 3 h. The mixture was then poured in a separating funnel containing 40 ml of chloroform and washed with diluted hydrochloric acid solution until the pH was 2–3. The organic layer was extracted, washed with water to neutrality, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with petroleum ether and recrystallized from a solvent mixture of chloroform–hexane (1/3, v/v). Colourless prisms of the title compound were obtained in a yield of 65%, m. p. = 351–353 K.
6. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions [C—H = 0.93 (aromatic), 0.96 (methyl) or 0.97 Å (methylene)] and refined using a riding-model approximation with Uiso(H) constrained to 1.2 (aromatic and methylene group) or 1.5 (methyl group) times Ueq of the respective parent atom.
details are summarized in Table 3Supporting information
CCDC reference: 1507161
https://doi.org/10.1107/S2056989016015279/hb7613sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016015279/hb7613Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016015279/hb7613Isup3.cml
Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C12H10O4 | F(000) = 456 |
Mr = 218.20 | Dx = 1.368 Mg m−3 |
Monoclinic, P21/c | Melting point: 351 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54184 Å |
a = 12.1179 (4) Å | Cell parameters from 3028 reflections |
b = 5.7243 (2) Å | θ = 5.8–68.6° |
c = 15.3275 (5) Å | µ = 0.87 mm−1 |
β = 94.881 (3)° | T = 293 K |
V = 1059.36 (6) Å3 | Prism, colourless |
Z = 4 | 0.46 × 0.16 × 0.08 mm |
Agilent SuperNova Dual (Cu at zero) Source diffractometer with an AtlasS2 detector | 1930 independent reflections |
Radiation source: sealed X-ray tube | 1655 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.020 |
Detector resolution: 5.3048 pixels mm-1 | θmax = 68.9°, θmin = 3.7° |
ω scan | h = −14→14 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | k = −6→6 |
Tmin = 0.778, Tmax = 1.000 | l = −15→18 |
6028 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0631P)2 + 0.1085P] where P = (Fo2 + 2Fc2)/3 |
1930 reflections | (Δ/σ)max < 0.001 |
145 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
40 constraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.08845 (8) | 0.19504 (17) | 0.44462 (6) | 0.0505 (3) | |
O3 | 0.36752 (8) | 0.39585 (19) | 0.41680 (7) | 0.0567 (3) | |
C9 | 0.02550 (11) | 0.3708 (2) | 0.40435 (8) | 0.0426 (3) | |
C2 | 0.25245 (11) | 0.3964 (2) | 0.40998 (9) | 0.0466 (3) | |
C3 | 0.19407 (11) | 0.5719 (2) | 0.37284 (8) | 0.0455 (3) | |
H3 | 0.2298 | 0.6985 | 0.3497 | 0.055* | |
C4 | 0.07494 (11) | 0.5644 (2) | 0.36879 (8) | 0.0420 (3) | |
C8 | −0.08834 (12) | 0.3450 (3) | 0.40123 (9) | 0.0521 (3) | |
H8 | −0.1198 | 0.2150 | 0.4258 | 0.063* | |
C1 | 0.20130 (12) | 0.1982 (2) | 0.45088 (9) | 0.0492 (3) | |
O4 | 0.36176 (9) | 0.1032 (2) | 0.31915 (8) | 0.0683 (3) | |
O2 | 0.24985 (10) | 0.0406 (2) | 0.48893 (8) | 0.0695 (3) | |
C5 | 0.00553 (12) | 0.7361 (2) | 0.32863 (9) | 0.0497 (3) | |
H5 | 0.0362 | 0.8676 | 0.3045 | 0.060* | |
C6 | −0.10727 (13) | 0.7114 (3) | 0.32463 (10) | 0.0566 (4) | |
H6 | −0.1527 | 0.8257 | 0.2975 | 0.068* | |
C7 | −0.15398 (12) | 0.5169 (3) | 0.36080 (10) | 0.0567 (4) | |
H7 | −0.2306 | 0.5022 | 0.3578 | 0.068* | |
C10 | 0.41542 (12) | 0.2272 (3) | 0.36892 (10) | 0.0530 (3) | |
C11 | 0.53858 (13) | 0.2315 (4) | 0.38698 (13) | 0.0728 (5) | |
H11A | 0.5644 | 0.3905 | 0.3808 | 0.087* | |
H11B | 0.5576 | 0.1839 | 0.4471 | 0.087* | |
C12 | 0.59736 (16) | 0.0768 (5) | 0.32791 (15) | 0.0858 (6) | |
H12A | 0.6758 | 0.0871 | 0.3428 | 0.129* | |
H12B | 0.5806 | 0.1252 | 0.2683 | 0.129* | |
H12C | 0.5736 | −0.0817 | 0.3346 | 0.129* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0500 (5) | 0.0463 (5) | 0.0557 (5) | −0.0037 (4) | 0.0068 (4) | 0.0091 (4) |
O3 | 0.0398 (5) | 0.0614 (6) | 0.0686 (6) | −0.0025 (4) | 0.0019 (4) | −0.0145 (5) |
C9 | 0.0453 (7) | 0.0438 (6) | 0.0394 (6) | −0.0015 (5) | 0.0069 (5) | −0.0014 (5) |
C2 | 0.0395 (7) | 0.0505 (7) | 0.0499 (7) | −0.0036 (5) | 0.0052 (5) | −0.0083 (5) |
C3 | 0.0468 (7) | 0.0425 (7) | 0.0485 (7) | −0.0072 (5) | 0.0109 (5) | −0.0037 (5) |
C4 | 0.0459 (7) | 0.0411 (6) | 0.0398 (6) | −0.0018 (5) | 0.0083 (5) | −0.0037 (5) |
C8 | 0.0473 (7) | 0.0570 (8) | 0.0535 (7) | −0.0083 (6) | 0.0125 (6) | −0.0022 (6) |
C1 | 0.0506 (7) | 0.0490 (7) | 0.0479 (7) | 0.0031 (6) | 0.0034 (5) | 0.0009 (6) |
O4 | 0.0510 (6) | 0.0805 (8) | 0.0730 (7) | −0.0006 (5) | 0.0025 (5) | −0.0238 (6) |
O2 | 0.0665 (7) | 0.0669 (7) | 0.0749 (7) | 0.0122 (6) | 0.0041 (6) | 0.0197 (6) |
C5 | 0.0575 (8) | 0.0450 (7) | 0.0474 (7) | 0.0025 (6) | 0.0100 (6) | 0.0013 (5) |
C6 | 0.0548 (8) | 0.0611 (9) | 0.0540 (7) | 0.0145 (7) | 0.0065 (6) | −0.0010 (6) |
C7 | 0.0411 (7) | 0.0715 (9) | 0.0584 (8) | 0.0027 (6) | 0.0097 (6) | −0.0069 (7) |
C10 | 0.0450 (8) | 0.0594 (8) | 0.0545 (7) | 0.0007 (6) | 0.0038 (6) | −0.0053 (6) |
C11 | 0.0430 (8) | 0.0917 (13) | 0.0829 (11) | 0.0053 (8) | −0.0003 (7) | −0.0168 (10) |
C12 | 0.0526 (10) | 0.1094 (16) | 0.0951 (13) | 0.0179 (10) | 0.0050 (9) | −0.0168 (12) |
O1—C1 | 1.3628 (17) | O4—C10 | 1.1932 (19) |
O1—C9 | 1.3769 (17) | C5—C6 | 1.370 (2) |
O3—C10 | 1.3713 (18) | C5—H5 | 0.9300 |
O3—C2 | 1.3893 (17) | C6—C7 | 1.386 (2) |
C9—C8 | 1.3842 (19) | C6—H6 | 0.9300 |
C9—C4 | 1.3926 (18) | C7—H7 | 0.9300 |
C2—C3 | 1.329 (2) | C10—C11 | 1.495 (2) |
C2—C1 | 1.460 (2) | C11—C12 | 1.491 (3) |
C3—C4 | 1.4403 (19) | C11—H11A | 0.9700 |
C3—H3 | 0.9300 | C11—H11B | 0.9700 |
C4—C5 | 1.401 (2) | C12—H12A | 0.9600 |
C8—C7 | 1.379 (2) | C12—H12B | 0.9600 |
C8—H8 | 0.9300 | C12—H12C | 0.9600 |
C1—O2 | 1.2004 (18) | ||
C1—O1—C9 | 122.43 (10) | C4—C5—H5 | 119.8 |
C10—O3—C2 | 115.41 (11) | C5—C6—C7 | 120.31 (14) |
O1—C9—C8 | 116.74 (12) | C5—C6—H6 | 119.8 |
O1—C9—C4 | 121.11 (12) | C7—C6—H6 | 119.8 |
C8—C9—C4 | 122.15 (13) | C8—C7—C6 | 120.90 (14) |
C3—C2—O3 | 121.88 (12) | C8—C7—H7 | 119.6 |
C3—C2—C1 | 122.80 (12) | C6—C7—H7 | 119.6 |
O3—C2—C1 | 115.22 (12) | O4—C10—O3 | 121.89 (13) |
C2—C3—C4 | 119.40 (12) | O4—C10—C11 | 127.56 (15) |
C2—C3—H3 | 120.3 | O3—C10—C11 | 110.52 (13) |
C4—C3—H3 | 120.3 | C12—C11—C10 | 113.50 (15) |
C9—C4—C5 | 117.88 (12) | C12—C11—H11A | 108.9 |
C9—C4—C3 | 118.03 (12) | C10—C11—H11A | 108.9 |
C5—C4—C3 | 124.05 (12) | C12—C11—H11B | 108.9 |
C7—C8—C9 | 118.32 (13) | C10—C11—H11B | 108.9 |
C7—C8—H8 | 120.8 | H11A—C11—H11B | 107.7 |
C9—C8—H8 | 120.8 | C11—C12—H12A | 109.5 |
O2—C1—O1 | 118.14 (13) | C11—C12—H12B | 109.5 |
O2—C1—C2 | 125.74 (14) | H12A—C12—H12B | 109.5 |
O1—C1—C2 | 116.12 (12) | C11—C12—H12C | 109.5 |
C6—C5—C4 | 120.43 (13) | H12A—C12—H12C | 109.5 |
C6—C5—H5 | 119.8 | H12B—C12—H12C | 109.5 |
C1—O1—C9—C8 | 179.07 (12) | C9—O1—C1—C2 | −1.73 (18) |
C1—O1—C9—C4 | −0.99 (18) | C3—C2—C1—O2 | −176.26 (14) |
C10—O3—C2—C3 | −113.91 (15) | O3—C2—C1—O2 | 0.3 (2) |
C10—O3—C2—C1 | 69.53 (17) | C3—C2—C1—O1 | 3.69 (19) |
O3—C2—C3—C4 | −179.09 (11) | O3—C2—C1—O1 | −179.78 (10) |
C1—C2—C3—C4 | −2.8 (2) | C9—C4—C5—C6 | −0.27 (19) |
O1—C9—C4—C5 | 179.85 (11) | C3—C4—C5—C6 | 177.46 (12) |
C8—C9—C4—C5 | −0.21 (19) | C4—C5—C6—C7 | 0.4 (2) |
O1—C9—C4—C3 | 1.98 (17) | C9—C8—C7—C6 | −0.4 (2) |
C8—C9—C4—C3 | −178.08 (12) | C5—C6—C7—C8 | −0.1 (2) |
C2—C3—C4—C9 | −0.08 (18) | C2—O3—C10—O4 | 6.2 (2) |
C2—C3—C4—C5 | −177.81 (12) | C2—O3—C10—C11 | −175.47 (14) |
O1—C9—C8—C7 | −179.53 (12) | O4—C10—C11—C12 | 6.5 (3) |
C4—C9—C8—C7 | 0.5 (2) | O3—C10—C11—C12 | −171.65 (17) |
C9—O1—C1—O2 | 178.23 (13) |
Cg2 is the centroid of the C4–C9 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O2i | 0.93 | 2.59 | 3.4783 (19) | 161 |
C5—H5···Cg2ii | 0.93 | 2.78 | 3.4959 (16) | 134 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x, y+1/2, −z+1/2. |
Bond | X-ray | HF(6-31G) |
O1—C1 | 1.3628 (17) | 1.371 |
O1—C9 | 1.3769 (17) | 1.378 |
O2—C1 | 1.2004 (18) | 1.227 |
O3—C10 | 1.3713 (18) | 1.359 |
O3—C2 | 1.3893 (17) | 1.381 |
O4—C10 | 1.1932 (19) | 1.21 |
C1—C2 | 1.460 (2) | 1.468 |
C2—C3 | 1.329 (2) | 1.355 |
C3—C4 | 1.4403 (19) | 1.441 |
C4—C5 | 1.401 (2) | 1.406 |
C4—C9 | 1.3928 (18) | 1.407 |
C5—C6 | 1.370 (2) | 1.387 |
C6—C7 | 1.386 (2) | 1.395 |
C7—C8 | 1.379 (2) | 1.383 |
C8—C9 | 1.3842 (19) | 1.408 |
C10—C11 | 1.495 (2) | 1.497 |
C11—C12 | 1.491 (3) | 1.525 |
Acknowledgements
The authors thank the Spectropole Service of the faculty of Sciences (Aix-Marseille, France) for the use of the diffractometer and the NMR and MS spectrometers.
References
Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645–4650. Web of Science CrossRef PubMed CAS Google Scholar
Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916. Web of Science CrossRef PubMed CAS Google Scholar
Dennington, R., Keith, T. & Millam, J. (2007). Gaussview4.1. Semichem Inc., Shawnee Mission, KS, USA. Google Scholar
Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA. Google Scholar
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Kostova, I. (2005). Curr. Med. Chem. Anticancer Agents, 5, 29–46. CrossRef PubMed CAS Google Scholar
Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811. Web of Science CrossRef PubMed CAS Google Scholar
Maurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181–195. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.