research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N,N-tri­ethyl­hydroxyl­ammonium chloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, New Mexico Highlands University, Las Vegas, NM 87701, USA, and bITMO University, 49 Kronverkskiy Prospekt, Saint Petersburg, 197101 , Russian Federation
*Correspondence e-mail: averkiev75@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 September 2016; accepted 11 October 2016; online 21 October 2016)

In the title mol­ecular salt, C6H16NO+·Cl, two of the C—C—N—O groups in the cation adopt a gauche conformation [torsion angles = 62.86 (11) and −54.95 (13)°] and one an anti conformation [−177.82 (10)°. The cation and anion are linked by an O—H⋯Cl hydrogen bond. The extended structure displays C—H⋯Cl and C—H⋯O hydrogen bonds, resulting in layers lying parallel to the (100) plane: further C—H⋯Cl contacts connect the sheets into a three-dimensional network.

1. Chemical context

Tri­ethyl­amine is often used to treat silica gel with the goal of reducing the acidity of the stationary phase during column chromatography purification. In a typical procedure, an eluant is mixed with tri­ethyl­amine (1–3%), and this solvent mixture is used to prepare the silica gel slurry for manually packed columns. While the effect of the tri­ethyl­amine on silica gel is known, no specific details could be found about the structural transformation of tri­ethyl­amine itself. This work presents the result of the column chromatography purification of a di­thia­zolo[4,5-a:5′,4′-c]phenazine derivative using a di­chloro­methane:ethyl acetate mixture as eluant. Unexpectedly, the crystals obtained after slow solvent evaporation from an `empty' fraction were identified as the title mol­ecular salt, N,N,N-tri­ethyl­hydroxyl­ammonium chloride, 1.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 1 is presented in Fig. 1[link]. The C—N bond lengths [1.5090 (13)–1.5148 (13) Å] and the N—O bond length [1.4218 (11) Å] are in good agreement with mean reported geometries for 79 entries from the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) containing the C3N—O—R (R = C, H) fragment: C—N 1.51 (3) Å and N—O 1.42 (2) Å and comparable to the analogous data in a closely related compound, N,N,N-tri­methyl­hydroxyl­ammonium chloride, 2 (1.488–1.489 Å for the N—C bonds and 1.429 Å for the N—O bond) (Jiang et al., 2004[Jiang, A. J., Doerrer, L. H. & Yap, G. P. A. (2004). Private communication (refcode TMOHCL02). CCDC, Cambridge, England.]; Rérat, 1960[Rérat, C. (1960). Acta Cryst. 13, 63-71.]; Caron & Donohue, 1962[Caron, A. & Donohue, J. (1962). Acta Cryst. 15, 1052-1053.]). The hydroxyl hydrogen atom H1 participates in a strong hydrogen bond with the adjacent chloride anion (Table 1[link]), which is also observed for 2.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.87 (2) 2.06 (2) 2.9330 (12) 175 (2)
C1—H1A⋯Cl1i 0.934 (18) 2.888 (19) 3.7786 (15) 159.8 (15)
C2—H2A⋯Cl1ii 0.955 (18) 2.943 (17) 3.6859 (16) 135.6 (14)
C3—H3B⋯Cl1 0.977 (19) 2.911 (19) 3.6203 (16) 130.3 (14)
C3—H3A⋯Cl1i 0.93 (2) 2.93 (2) 3.7740 (19) 150.7 (14)
C4—H4A⋯Cl1iii 1.02 (4) 2.98 (4) 3.9913 (18) 172 (2)
C5—H5B⋯O1iv 0.97 (3) 2.50 (3) 3.4359 (18) 163 (2)
Symmetry codes: (i) [-x+1, -y, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, -y+1, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of 1, with displacement ellipsoids drawn at the 50% probability level. The O1—H1⋯Cl1 hydrogen bond is shown as a dashed line (see Table 1[link]).

3. Supra­molecular features

The O1—H1⋯Cl1 and C1—H1A⋯Cl1 hydrogen bonds assemble the constituent ions into spiral chains around 21 axes. These chains are connected by C5—H5B⋯O1 hydrogen bonds into sheets lying parallel to the (100) plane (Fig. 2[link]). There are four weak C—H⋯Cl contacts in the structure. The C2—H3B⋯Cl1 contact reinforces the O—H⋯Cl hydrogen bond; the C3—H3A⋯Cl1 hydrogen bond connects mol­ecules within a sheet, while the C2—H2A⋯Cl1 and C4—H4A⋯Cl1 contacts connect the ions between the (100) sheets.

[Figure 2]
Figure 2
Layers in the crystal structures of (left) 1 and (right) 2.

For comparison, the crystal packing of 2 is rather different. The cations in 2 lie on mirror planes and are arranged into chains along the [100] direction, being linked by O1–H1⋯Cl1 and C2–H5⋯Cl1 hydrogen bonds. The mol­ecules in the chain are symmetrically related by a glide plane and C1—H2⋯Cl1 hydrogen bonds connect the chains into three-dimensional network. It is noteworthy that the oxygen atom does not participate as a proton acceptor in hydrogen bonding.

4. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 221 crystal structures containing the C3N–O fragment: 144 of them contain a C3N+—O fragment and 79 a C3N–O–R fragment (R = C, H). While the additional connection of the oxygen atom increases the N—O bond length from 1.393 (18) to 1.42 (2) Å, the C—N bond lengths are not affected and remain at 1.51 (3) Å value. 31 structures in the CSD are salts of the C3N+–OH cation. In eight of them, the anion is Cl, of which seven feature an O—H⋯Cl hydrogen bond (the O⋯Cl distance varies from 2.872 to 3.010 Å). The exception is the crystal structure of (1S,5S)-geneseroline hydro­chloride monohydrate (refcode VAVZUN), in which the solvent water mol­ecule accepts an O—H⋯O hydrogen bond from the C3N+–OH group.

5. Synthesis and crystallization

During the column chromatography purification of the di­thia­zolo[4,5-a:5′,4′-c]phenazine derivative using di­chloro­methane–ethyl ­acetate as eluant and Alfa–Aesar silica gel (stock # 42570; lot # K03T015; case # 632131-67-4) treated with tri­ethyl­amine, a fraction containing a trace amount of the desired product was left over several days until compete evaporation of the solvents led to the formation of colourless plates of the title compound. Unexpectedly, the crystals were identified as N,N,N-tri­ethyl­hydroxyl­ammonium chloride; di­chloro­methane was probably the source of the chloride anion.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were all located in difference Fourier map and refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula C6H16NO+·Cl
Mr 153.65
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 215
a, b, c (Å) 12.816 (5), 6.371 (3), 10.439 (4)
V3) 852.3 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.38
Crystal size (mm) 0.40 × 0.20 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.667, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12103, 2484, 2447
Rint 0.025
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.056, 1.04
No. of reflections 2484
No. of parameters 146
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.15, −0.14
Absolute structure Flack x determined using 1146 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.046 (15)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL(Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N,N,N-Triethylhydroxylammonium chloride top
Crystal data top
C6H16NO+·ClDx = 1.197 Mg m3
Mr = 153.65Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 2230 reflections
a = 12.816 (5) Åθ = 3.6–32.3°
b = 6.371 (3) ŵ = 0.38 mm1
c = 10.439 (4) ÅT = 215 K
V = 852.3 (6) Å3Plate, colorless
Z = 40.40 × 0.20 × 0.05 mm
F(000) = 336
Data collection top
Bruker APEXII CCD
diffractometer
2447 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 30.0°, θmin = 3.2°
Tmin = 0.667, Tmax = 0.746h = 1818
12103 measured reflectionsk = 88
2484 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.0129P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max = 0.034
S = 1.04Δρmax = 0.15 e Å3
2484 reflectionsΔρmin = 0.14 e Å3
146 parametersAbsolute structure: Flack x determined using 1146 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.046 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35543 (2)0.08505 (4)0.50629 (5)0.03438 (9)
O10.47318 (6)0.30749 (12)0.48070 (7)0.02789 (17)
H10.4399 (16)0.188 (4)0.484 (3)0.060 (6)*
N10.53046 (7)0.29675 (12)0.36425 (9)0.02182 (16)
C10.45457 (9)0.28944 (18)0.25337 (10)0.0299 (2)
H1B0.4138 (19)0.155 (4)0.269 (2)0.054 (5)*
H1A0.4948 (15)0.269 (3)0.1798 (16)0.031 (4)*
C20.59511 (9)0.49467 (16)0.36668 (10)0.0269 (2)
H2B0.5464 (16)0.599 (3)0.380 (2)0.038 (5)*
H2A0.6374 (13)0.486 (3)0.4418 (18)0.028 (4)*
C30.59581 (10)0.09863 (15)0.36273 (11)0.0278 (2)
H3B0.5446 (14)0.015 (3)0.358 (2)0.038 (4)*
H3A0.6338 (13)0.106 (3)0.287 (2)0.030 (4)*
C40.38747 (11)0.4836 (3)0.24189 (13)0.0404 (3)
H4C0.3582 (16)0.529 (4)0.320 (2)0.049 (6)*
H4B0.4278 (16)0.602 (3)0.207 (2)0.040 (5)*
H4A0.328 (3)0.450 (5)0.181 (4)0.086 (10)*
C50.66019 (11)0.5267 (2)0.24769 (13)0.0347 (2)
H5C0.712 (2)0.420 (4)0.240 (3)0.077 (8)*
H5B0.616 (2)0.543 (4)0.173 (3)0.064 (7)*
H5A0.6950 (19)0.650 (4)0.252 (2)0.060 (6)*
C60.66688 (14)0.0771 (2)0.47737 (14)0.0392 (3)
H6C0.7011 (19)0.051 (4)0.471 (2)0.054 (6)*
H6B0.7175 (18)0.182 (4)0.478 (3)0.066 (7)*
H6A0.6251 (18)0.078 (3)0.562 (3)0.044 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03250 (14)0.03626 (14)0.03439 (14)0.00604 (8)0.00249 (12)0.00905 (11)
O10.0323 (4)0.0302 (4)0.0212 (4)0.0008 (3)0.0078 (3)0.0021 (2)
N10.0231 (4)0.0232 (3)0.0192 (3)0.0007 (3)0.0026 (3)0.0014 (3)
C10.0257 (4)0.0417 (6)0.0222 (4)0.0034 (4)0.0018 (4)0.0025 (4)
C20.0306 (5)0.0230 (4)0.0269 (5)0.0050 (3)0.0005 (4)0.0003 (4)
C30.0302 (5)0.0236 (4)0.0296 (5)0.0037 (3)0.0035 (4)0.0019 (4)
C40.0291 (6)0.0589 (8)0.0333 (6)0.0091 (5)0.0011 (5)0.0093 (6)
C50.0330 (6)0.0403 (6)0.0310 (6)0.0095 (5)0.0017 (5)0.0058 (5)
C60.0396 (6)0.0409 (7)0.0371 (8)0.0117 (5)0.0027 (5)0.0067 (5)
Geometric parameters (Å, º) top
N1—O11.4218 (11)C3—H3B0.977 (19)
O1—H10.87 (2)C3—H3A0.93 (2)
N1—C21.5090 (13)C4—H4C0.94 (3)
N1—C11.5126 (14)C4—H4B0.987 (19)
N1—C31.5148 (13)C4—H4A1.02 (4)
C1—C41.5113 (19)C5—H5C0.96 (3)
C1—H1B1.01 (2)C5—H5B0.97 (3)
C1—H1A0.934 (18)C5—H5A0.91 (3)
C2—C51.5101 (18)C6—H6C0.93 (2)
C2—H2B0.921 (19)C6—H6B0.93 (2)
C2—H2A0.955 (18)C6—H6A1.03 (3)
C3—C61.5103 (19)
N1—O1—H1104.2 (17)C6—C3—H3A111.4 (11)
O1—N1—C2103.23 (7)N1—C3—H3A104.8 (11)
O1—N1—C1108.89 (8)H3B—C3—H3A110.2 (16)
C2—N1—C1113.06 (8)C1—C4—H4C114.1 (16)
O1—N1—C3109.55 (8)C1—C4—H4B111.0 (11)
C2—N1—C3113.13 (8)H4C—C4—H4B107 (2)
C1—N1—C3108.77 (8)C1—C4—H4A107.6 (18)
C4—C1—N1113.66 (10)H4C—C4—H4A108 (3)
C4—C1—H1B114.1 (13)H4B—C4—H4A109 (2)
N1—C1—H1B103.7 (14)C2—C5—H5C111 (2)
C4—C1—H1A111.2 (12)C2—C5—H5B110.9 (18)
N1—C1—H1A106.2 (12)H5C—C5—H5B115 (3)
H1B—C1—H1A107.3 (17)C2—C5—H5A110.5 (16)
N1—C2—C5113.73 (9)H5C—C5—H5A106 (2)
N1—C2—H2B103.4 (11)H5B—C5—H5A103 (2)
C5—C2—H2B113.7 (12)C3—C6—H6C107.9 (16)
N1—C2—H2A106.1 (12)C3—C6—H6B111.1 (16)
C5—C2—H2A111.7 (10)H6C—C6—H6B108 (2)
H2B—C2—H2A107.5 (17)C3—C6—H6A111.4 (14)
C6—C3—N1113.62 (9)H6C—C6—H6A108.0 (19)
C6—C3—H3B112.2 (12)H6B—C6—H6A111 (2)
N1—C3—H3B104.2 (11)
O1—N1—C1—C462.86 (11)C3—N1—C2—C564.73 (12)
C2—N1—C1—C451.26 (13)O1—N1—C3—C654.95 (13)
C3—N1—C1—C4177.82 (10)C2—N1—C3—C659.62 (13)
O1—N1—C2—C5176.96 (9)C1—N1—C3—C6173.87 (10)
C1—N1—C2—C559.47 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.87 (2)2.06 (2)2.9330 (12)175 (2)
C1—H1A···Cl1i0.934 (18)2.888 (19)3.7786 (15)159.8 (15)
C2—H2A···Cl1ii0.955 (18)2.943 (17)3.6859 (16)135.6 (14)
C3—H3B···Cl10.977 (19)2.911 (19)3.6203 (16)130.3 (14)
C3—H3A···Cl1i0.93 (2)2.93 (2)3.7740 (19)150.7 (14)
C4—H4A···Cl1iii1.02 (4)2.98 (4)3.9913 (18)172 (2)
C5—H5B···O1iv0.97 (3)2.50 (3)3.4359 (18)163 (2)
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x+1, y+1, z1/2.
 

Acknowledgements

This work had been supported by NSF via DMR-0934212 and DMR-1523611 (PREM) and IIA-130134.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaron, A. & Donohue, J. (1962). Acta Cryst. 15, 1052–1053.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, A. J., Doerrer, L. H. & Yap, G. P. A. (2004). Private communication (refcode TMOHCL02). CCDC, Cambridge, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRérat, C. (1960). Acta Cryst. 13, 63–71.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds