research communications
μ-chlorido-bis[chloridobis(1,2-dimethyl-5-nitro-1H-imidazole-κN3)copper(II)] acetonitrile disolvate
of di-aDepartment of Chemistry, Columbia University, New York, NY 10027, USA, and bThe Haskins Laboratories, Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
*Correspondence e-mail: rupmacis@pace.edu
1,2-Dimethyl-5-nitroimidazole (dimetridazole, dimet) is a compound that belongs to a class of nitroimidazole drugs that are effective at inhibiting the activity of certain parasites and bacteria. However, there are few reports that describe structures of compounds that feature metals complexed by dimet. Therefore, we report here that dimet reacts with CuCl2·H2O to yield a chloride-bridged copper(II) dimer, [Cu2Cl4(C5H7N3O2)4] or [Cu(μ-Cl)Cl(dimet)2]2. In this molecule, the CuII ions are coordinated in an approximately trigonal–bipyramidal manner, and the molecule lies across an inversion center. The dihedral angle between the imidazole rings in the is 4.28 (7)°. Compared to metronidazole, dimetridazole lacks the hydroxyethyl group, and thus cannot form intermolecular O⋯H hydrogen-bonding interactions. Instead, [Cu(μ-Cl)Cl(dimet)2]2 exhibits weak intermolecular interactions between the hydrogen atoms of C—H groups and (i) oxygen in the nitro groups, and (ii) the terminal and bridging chloride ligands. The contains four disordered acetonitrile molecules. These were modeled as providing a diffuse contribution to the overall scattering by SQUEEZE [Spek (2015). Acta Cryst. C71, 9–18], which identified two voids, each with a volume of 163 Å3 and a count of 46 electrons, indicative of a total of four acetonitrile molecules. These acetonitrile molecules are included in the chemical formula to give the expected calculated density and F(000).
Keywords: crystal structure; copper(II); chloride-bridged dimer; dimetridazole; dimet.
CCDC reference: 1507712
1. Chemical context
1,2-Dimethyl-5-nitroimidazole, also known as dimetridazole (dimet), is structurally related to metronidazole [2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanol, MET]. Thus, both compounds contain a 2-methyl-5-nitroimidazole core and are only differentiated according to whether one of the nitrogen atoms possesses a methyl substituent (as in dimet) or a hydroxyethyl substituent (as in MET), as illustrated in Fig. 1. Both MET and dimet are used to treat microbial infections, but dimet has specifically been used in animals for the treatment of, for instance, bovine trichomoniasis (McLoughlin, 1968), giardiasis in birds (Panigrahy et al., 1978) and swine dysentery (Messier et al., 1990). In order to control outbreaks of infection, a previous common practice was to incorporate dimet as a feed additive given, for example, to poultry and pigs (Buizer & Severijnen, 1975). However, concerns about the mutagenic properties displayed by this class of drug (Voogd et al., 1974), and the fact that trace amounts can be detected in certain animal products intended for human consumption (Arias et al., 2016), have led to a discontinuation of this practice (EC bans use of dimetridazole in food animals, 1995). Reports of structures of metal compounds involving the coordination by dimetridazole are scarce. Herein, we describe the structure of the copper compound [Cu(μ-Cl)Cl(dimet)2]2, which is obtained by the reaction of dimet with CuCl2·H2O (see Scheme).
2. Structural commentary
Crystals of composition [Cu(μ-Cl)Cl(dimet)2]2 were obtained by addition of dimet to CuCl2·2H2O in chloroform, followed by recrystallization of the blue precipitate from acetonitrile. The molecular structure, as illustrated in Fig. 2, shows a centrosymmetric chlorido-bridged dimer. The coordination geometry around each copper atom is a slightly distorted trigonal–bipyramidal with two axial dimet ligands, and three chlorine ligands in the equatorial plane, two of which bridge to the adjacent copper. This structure is analogous to a previously reported copper(II) dimer containing MET, instead of dimet, [Cu(MET)2(μ–Cl)Cl]2 (Barba-Behrens et al., 1991), and a comparison of the two structures is shown in Fig. 3. Other recent examples of metal compounds containing MET include: Cu(MET)2Cl2, [Ag(MET)2](BF4), and [H(MET)][AuCl4] (Palmer et al., 2015; Palmer & Upmacis, 2015; Quinlivan et al., 2015).
Examination of the structure of the [Cu(μ-Cl)Cl(dimet)2]2 complex demonstrates that, interestingly, the chlorine atoms bridge in an asymmetric manner, with Cu—Clbridge bond lengths of 2.3811 (3) and 2.6024 (3) Å, both of which are longer than the terminal Cu—Cl bond length of 2.2822 (3) Å. Of note, these features are also observed for the MET analog, [Cu(MET)2(μ–Cl)Cl]2, which possesses bridging Cu—Cl distances of 2.418 (1) and 2.619 (1) Å, and a terminal bond length of 2.297 (2) Å (Barba-Behrens et al., 1991). Furthermore, the Cu—N bond lengths [2.0009 (10) and 1.9914 (9) Å] are also similar to the Cu—N bond lengths reported for the MET analog [2.002 (4) and 1.993 (4) Å]. In terms of the bond angles, the N—Cu—Clterm and N—Cu—Clbridge angles are all close to 90° [ranging from 88.95 (3)° for N13—Cu—Cl1 to 91.85 (3)° for N23—Cu—Cl2], with the exception of N23—Cu—Cl2bridge which is 85.42 (3) Å.
3. Supramolecular features
The and Fig. 4). In this regard, one of the oxygen atoms of the nitro group participates in intermolecular hydrogen-bonding interactions with CH3 and CH groups of an adjacent molecule. For reference, intermolecular and intramolecular C—H⋯O hydrogen bonds involving an O atom from a nitro group (or other O-containing groups) have been reported (Desiraju, 1991; Sharma & Desiraju, 1994; Forlani, 2009). As an illustration, intermolecular C—H⋯O interactions (involving C—H motifs from an NMe2 substituent and the O atoms of a nitro group) are reported at 2.71 (3) Å, with C⋯O distances of 3.658 (4) and 3.725 (4) Å (Sharma & Desiraju, 1994). The results of our structure analysis are also comparable to the average values that have been reported for hydrogen-bonding interactions of (N,C)Csp2—H (2.48 and 3.47 Å) and Csp3—CH3 (2.63 and 3.61 Å) groups with a water O atom (Steiner, 2002). For comparison, intramolecular N—H⋯O interactions to an O atom of a nitro substituent form shorter contacts, e.g. 1.927 (15) Å for N-(2-nitrophenyl)benzamide (Saeed & Simpson, 2009) and 2.11 Å for 2-iodo-N-(2-nitrophenyl)benzamide (Wardell et al., 2005), which is in accord with the reports that C—H⋯O bonds are weaker than N—H⋯O bonds (Desiraju, 1991).
displays a number of weak intermolecular interactions between hydrogen atoms of CH groups and the more electronegative atoms on adjacent molecules, such as the oxygen atoms in the nitro groups of the dimet ligand and also the terminal and bridging chlorine atoms (see Table 1The bridging chlorine atoms also form weak intermolecular interactions with CH3 and CH groups of an adjacent molecule. In addition, the terminal chlorine atom participates in a hydrogen-bonding interaction with a CH3 group of an adjacent molecule.
While C—H⋯O interactions are widely accepted (Desiraju, 1991), C—H⋯Cl interactions are considered more controversial, but a survey of the literature reveals that they also represent a common phenomenon (Aakeröy et al., 1999). For example, hydrogen-bonding interactions of sp2 (N,C)C—H with Cl− are reported at 2.64 Å (Kovacs & Varga, 2006). However, when Cl is bonded to a metal, the average C—H⋯Cl—M hydrogen-bonding distance is 2.974 Å (Thallapally & Nangia, 2001).
Fig. 4 illustrates some of these intermolecular interactions. An important difference between this structure and the MET analog is that the dimet compound lacks the hydroxyethyl group, which is involved in classical intermolecular hydrogen-bonding interactions for the MET derivative (Barba-Behrens et al., 1991).
4. Database survey
There is only one structurally characterized metal compound containing dimet listed in the Cambridge Database (CSD Version 5.37; Groom et al., 2016), namely, a mononuclear cobalt complex, [Co(dimet)2Cl2], in which the cobalt(II) atom is surrounded by two dimet and two chlorido ligands in a distorted tetrahedron (Rosu et al., 1997; Idešicová et al., 2012). The Co—N distances are reported to be 2.228 (2) and 2.035 (4) Å (Rosu et al., 1997).
5. Synthesis and crystallization
CuCl2·H2O (3 mg, 0.018 mmol) was added to a solution of dimet (6 mg, 0.043 mmol) in chloroform (0.7 mL), resulting in the precipitation of a blue solid over the course of 1 h at room temperature. The blue solid was isolated by decantation and crystals of [Cu(μ-Cl)Cl(dimet)2]2, suitable for X-ray diffraction, were obtained by slow evaporation from a solution in acetonitrile.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms on carbon were placed in calculated positions (C—H = 0.95–1.00 Å) and included as riding contributions with isotropic displacement parameters Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3). The contains four disordered acetonitrile molecules. In view of the disorder, the acetonitrile molecules were modeled as providing a diffuse contribution to the overall scattering by SQUEEZE (Spek, 2015), which identified two voids, each with a volume of 163 Å3 and a count of 46 electrons, indicative of a total of four acetonitrile molecules.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1507712
https://doi.org/10.1107/S2056989016015413/lh5820sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016015413/lh5820Isup2.hkl
Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2Cl4(C5H7N3O2)4]·2C2H3N | F(000) = 932 |
Mr = 915.53 | Dx = 1.678 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.9545 (8) Å | Cell parameters from 9452 reflections |
b = 6.7004 (4) Å | θ = 2.9–30.6° |
c = 19.5031 (11) Å | µ = 1.54 mm−1 |
β = 96.424 (1)° | T = 130 K |
V = 1812.10 (18) Å3 | Block, blue |
Z = 2 | 0.35 × 0.17 × 0.10 mm |
Bruker APEXII CCD diffractometer | 5034 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.033 |
Absorption correction: multi-scan (SADABS; Bruker, 2010) | θmax = 30.6°, θmin = 1.5° |
Tmin = 0.637, Tmax = 0.746 | h = −19→19 |
28822 measured reflections | k = −9→9 |
5564 independent reflections | l = −27→27 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0371P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.26 | (Δ/σ)max = 0.033 |
5564 reflections | Δρmax = 0.51 e Å−3 |
212 parameters | Δρmin = −0.51 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.41957 (2) | 0.46806 (2) | 0.42320 (2) | 0.01249 (5) | |
Cl1 | 0.32308 (2) | 0.45734 (5) | 0.32075 (2) | 0.02105 (7) | |
Cl2 | 0.46436 (2) | 0.25939 (4) | 0.52033 (2) | 0.01295 (6) | |
O11 | 0.10021 (7) | 0.39434 (18) | 0.58607 (6) | 0.0303 (2) | |
O12 | 0.02709 (7) | 0.66914 (16) | 0.55203 (5) | 0.0280 (2) | |
O21 | 0.81805 (7) | 0.13329 (16) | 0.33794 (5) | 0.0263 (2) | |
O22 | 0.72749 (7) | −0.08394 (15) | 0.38274 (6) | 0.0276 (2) | |
N11 | 0.09544 (8) | 0.55179 (17) | 0.55458 (6) | 0.0209 (2) | |
N12 | 0.18478 (7) | 0.77681 (16) | 0.48250 (5) | 0.01611 (19) | |
N13 | 0.30915 (7) | 0.58276 (15) | 0.46736 (5) | 0.01353 (18) | |
N21 | 0.74156 (7) | 0.07990 (16) | 0.35776 (5) | 0.0175 (2) | |
N22 | 0.65940 (7) | 0.39673 (15) | 0.31873 (5) | 0.01363 (18) | |
N23 | 0.53211 (7) | 0.37776 (14) | 0.37688 (5) | 0.01264 (18) | |
C11 | 0.17488 (8) | 0.59978 (19) | 0.51720 (6) | 0.0164 (2) | |
C12 | 0.25207 (9) | 0.48130 (18) | 0.50794 (6) | 0.0152 (2) | |
H12A | 0.2639 | 0.3513 | 0.5264 | 0.018* | |
C13 | 0.26757 (8) | 0.76046 (17) | 0.45264 (6) | 0.0146 (2) | |
C14 | 0.12067 (10) | 0.9527 (2) | 0.47787 (8) | 0.0247 (3) | |
H14A | 0.1480 | 1.0572 | 0.4508 | 0.037* | |
H14B | 0.1145 | 1.0030 | 0.5244 | 0.037* | |
H14C | 0.0569 | 0.9147 | 0.4554 | 0.037* | |
C15 | 0.30624 (9) | 0.92050 (19) | 0.41131 (7) | 0.0189 (2) | |
H15A | 0.3555 | 0.8650 | 0.3847 | 0.028* | |
H15B | 0.3350 | 1.0252 | 0.4422 | 0.028* | |
H15C | 0.2538 | 0.9774 | 0.3797 | 0.028* | |
C21 | 0.66334 (8) | 0.21847 (17) | 0.35462 (6) | 0.0138 (2) | |
C22 | 0.58485 (8) | 0.20765 (17) | 0.39040 (6) | 0.0135 (2) | |
H22A | 0.5696 | 0.1011 | 0.4194 | 0.016* | |
C23 | 0.57767 (8) | 0.48769 (17) | 0.33275 (6) | 0.0131 (2) | |
C24 | 0.72860 (10) | 0.4744 (2) | 0.27397 (7) | 0.0218 (3) | |
H24A | 0.7509 | 0.3653 | 0.2463 | 0.033* | |
H24B | 0.7838 | 0.5330 | 0.3024 | 0.033* | |
H24C | 0.6973 | 0.5768 | 0.2433 | 0.033* | |
C25 | 0.54213 (9) | 0.68022 (18) | 0.30190 (6) | 0.0181 (2) | |
H25A | 0.4740 | 0.6973 | 0.3085 | 0.027* | |
H25B | 0.5491 | 0.6802 | 0.2525 | 0.027* | |
H25C | 0.5798 | 0.7902 | 0.3244 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.01138 (8) | 0.01446 (8) | 0.01188 (8) | 0.00362 (5) | 0.00239 (5) | −0.00060 (5) |
Cl1 | 0.01728 (14) | 0.02815 (16) | 0.01670 (14) | 0.00367 (11) | −0.00253 (11) | −0.00714 (11) |
Cl2 | 0.01421 (12) | 0.01058 (12) | 0.01442 (12) | 0.00041 (9) | 0.00312 (9) | 0.00093 (9) |
O11 | 0.0229 (5) | 0.0378 (6) | 0.0318 (6) | 0.0017 (4) | 0.0102 (4) | 0.0092 (5) |
O12 | 0.0167 (4) | 0.0344 (6) | 0.0343 (6) | 0.0063 (4) | 0.0090 (4) | −0.0021 (4) |
O21 | 0.0165 (4) | 0.0332 (5) | 0.0304 (5) | 0.0058 (4) | 0.0078 (4) | 0.0035 (4) |
O22 | 0.0259 (5) | 0.0198 (4) | 0.0379 (6) | 0.0084 (4) | 0.0066 (4) | 0.0071 (4) |
N11 | 0.0131 (5) | 0.0292 (6) | 0.0208 (5) | 0.0021 (4) | 0.0034 (4) | −0.0032 (4) |
N12 | 0.0126 (4) | 0.0188 (5) | 0.0171 (5) | 0.0049 (4) | 0.0020 (4) | −0.0022 (4) |
N13 | 0.0116 (4) | 0.0151 (4) | 0.0140 (4) | 0.0015 (3) | 0.0020 (3) | −0.0017 (3) |
N21 | 0.0157 (5) | 0.0211 (5) | 0.0157 (5) | 0.0038 (4) | 0.0018 (4) | −0.0016 (4) |
N22 | 0.0139 (4) | 0.0151 (4) | 0.0122 (4) | 0.0009 (4) | 0.0029 (3) | 0.0007 (3) |
N23 | 0.0135 (4) | 0.0125 (4) | 0.0122 (4) | 0.0023 (3) | 0.0026 (3) | 0.0003 (3) |
C11 | 0.0131 (5) | 0.0211 (6) | 0.0155 (5) | 0.0017 (4) | 0.0035 (4) | −0.0016 (4) |
C12 | 0.0132 (5) | 0.0173 (5) | 0.0153 (5) | 0.0001 (4) | 0.0022 (4) | −0.0009 (4) |
C13 | 0.0116 (5) | 0.0171 (5) | 0.0148 (5) | 0.0015 (4) | 0.0001 (4) | −0.0034 (4) |
C14 | 0.0214 (6) | 0.0248 (7) | 0.0287 (7) | 0.0140 (5) | 0.0061 (5) | 0.0000 (5) |
C15 | 0.0190 (6) | 0.0162 (5) | 0.0217 (6) | 0.0024 (4) | 0.0030 (5) | 0.0019 (4) |
C21 | 0.0139 (5) | 0.0143 (5) | 0.0135 (5) | 0.0031 (4) | 0.0020 (4) | −0.0008 (4) |
C22 | 0.0154 (5) | 0.0122 (5) | 0.0130 (5) | 0.0023 (4) | 0.0025 (4) | 0.0005 (4) |
C23 | 0.0142 (5) | 0.0133 (5) | 0.0118 (5) | 0.0007 (4) | 0.0015 (4) | −0.0009 (4) |
C24 | 0.0190 (6) | 0.0278 (7) | 0.0202 (6) | 0.0008 (5) | 0.0087 (5) | 0.0068 (5) |
C25 | 0.0207 (6) | 0.0158 (5) | 0.0186 (6) | 0.0031 (4) | 0.0049 (4) | 0.0047 (4) |
Cu—N23 | 1.9914 (9) | N22—C24 | 1.4678 (16) |
Cu—N13 | 2.0009 (10) | N23—C23 | 1.3455 (15) |
Cu—Cl1 | 2.2822 (3) | N23—C22 | 1.3663 (14) |
Cu—Cl2 | 2.3811 (3) | C11—C12 | 1.3662 (16) |
Cu—Cl2i | 2.6024 (3) | C12—H12A | 0.9500 |
Cl2—Cui | 2.6024 (3) | C13—C15 | 1.4792 (17) |
O11—N11 | 1.2188 (16) | C14—H14A | 0.9800 |
O12—N11 | 1.2329 (14) | C14—H14B | 0.9800 |
O12—N11ii | 2.9399 (15) | C14—H14C | 0.9800 |
O21—N21 | 1.2285 (14) | C15—H15A | 0.9800 |
O22—N21 | 1.2258 (15) | C15—H15B | 0.9800 |
N11—C11 | 1.4299 (16) | C15—H15C | 0.9800 |
N11—O12ii | 2.9399 (15) | C21—C22 | 1.3649 (16) |
N12—C13 | 1.3552 (15) | C22—H22A | 0.9500 |
N12—C11 | 1.3802 (16) | C23—C25 | 1.4850 (16) |
N12—C14 | 1.4764 (15) | C24—H24A | 0.9800 |
N13—C13 | 1.3414 (15) | C24—H24B | 0.9800 |
N13—C12 | 1.3653 (15) | C24—H24C | 0.9800 |
N21—C21 | 1.4291 (15) | C25—H25A | 0.9800 |
N22—C23 | 1.3478 (15) | C25—H25B | 0.9800 |
N22—C21 | 1.3823 (15) | C25—H25C | 0.9800 |
N23—Cu—N13 | 175.06 (4) | N13—C12—H12A | 126.1 |
N23—Cu—Cl1 | 90.65 (3) | N13—C13—N12 | 110.42 (11) |
N13—Cu—Cl1 | 88.95 (3) | N13—C13—C15 | 125.78 (11) |
N23—Cu—Cl2 | 91.85 (3) | N12—C13—C15 | 123.78 (11) |
N13—Cu—Cl2 | 91.68 (3) | N12—C14—H14A | 109.5 |
Cl1—Cu—Cl2 | 139.002 (12) | N12—C14—H14B | 109.5 |
N23—Cu—Cl2i | 85.42 (3) | H14A—C14—H14B | 109.5 |
N13—Cu—Cl2i | 91.21 (3) | N12—C14—H14C | 109.5 |
Cl1—Cu—Cl2i | 132.139 (12) | H14A—C14—H14C | 109.5 |
Cl2—Cu—Cl2i | 88.842 (10) | H14B—C14—H14C | 109.5 |
Cu—Cl2—Cui | 91.158 (10) | C13—C15—H15A | 109.5 |
N11—O12—N11ii | 95.37 (8) | C13—C15—H15B | 109.5 |
O11—N11—O12 | 124.80 (11) | H15A—C15—H15B | 109.5 |
O11—N11—C11 | 116.73 (10) | C13—C15—H15C | 109.5 |
O12—N11—C11 | 118.46 (11) | H15A—C15—H15C | 109.5 |
O11—N11—O12ii | 85.14 (8) | H15B—C15—H15C | 109.5 |
O12—N11—O12ii | 84.63 (8) | C22—C21—N22 | 108.42 (10) |
C11—N11—O12ii | 100.10 (7) | C22—C21—N21 | 126.61 (11) |
C13—N12—C11 | 106.15 (10) | N22—C21—N21 | 124.75 (10) |
C13—N12—C14 | 125.32 (11) | C21—C22—N23 | 107.62 (10) |
C11—N12—C14 | 128.53 (10) | C21—C22—H22A | 126.2 |
C13—N13—C12 | 107.43 (10) | N23—C22—H22A | 126.2 |
C13—N13—Cu | 125.75 (8) | N23—C23—N22 | 110.69 (10) |
C12—N13—Cu | 125.84 (8) | N23—C23—C25 | 125.06 (10) |
O21—N21—O22 | 124.71 (11) | N22—C23—C25 | 124.23 (11) |
O21—N21—C21 | 118.93 (11) | N22—C24—H24A | 109.5 |
O22—N21—C21 | 116.32 (10) | N22—C24—H24B | 109.5 |
C23—N22—C21 | 105.94 (9) | H24A—C24—H24B | 109.5 |
C23—N22—C24 | 126.03 (10) | N22—C24—H24C | 109.5 |
C21—N22—C24 | 128.03 (10) | H24A—C24—H24C | 109.5 |
C23—N23—C22 | 107.29 (9) | H24B—C24—H24C | 109.5 |
C23—N23—Cu | 125.24 (8) | C23—C25—H25A | 109.5 |
C22—N23—Cu | 126.94 (8) | C23—C25—H25B | 109.5 |
C12—C11—N12 | 108.11 (10) | H25A—C25—H25B | 109.5 |
C12—C11—N11 | 127.19 (12) | C23—C25—H25C | 109.5 |
N12—C11—N11 | 124.69 (10) | H25A—C25—H25C | 109.5 |
C11—C12—N13 | 107.88 (11) | H25B—C25—H25C | 109.5 |
C11—C12—H12A | 126.1 | ||
N11ii—O12—N11—O11 | −80.27 (13) | C11—N12—C13—C15 | −178.76 (11) |
N11ii—O12—N11—C11 | 98.59 (11) | C14—N12—C13—C15 | 0.78 (19) |
N11ii—O12—N11—O12ii | 0.0 | C23—N22—C21—C22 | −1.06 (13) |
C13—N12—C11—C12 | 0.40 (13) | C24—N22—C21—C22 | 179.19 (11) |
C14—N12—C11—C12 | −179.12 (12) | C23—N22—C21—N21 | −175.98 (11) |
C13—N12—C11—N11 | −178.29 (11) | C24—N22—C21—N21 | 4.28 (19) |
C14—N12—C11—N11 | 2.2 (2) | O21—N21—C21—C22 | −160.72 (12) |
O11—N11—C11—C12 | 6.01 (19) | O22—N21—C21—C22 | 16.86 (18) |
O12—N11—C11—C12 | −172.94 (12) | O21—N21—C21—N22 | 13.27 (17) |
O12ii—N11—C11—C12 | −83.60 (13) | O22—N21—C21—N22 | −169.15 (11) |
O11—N11—C11—N12 | −175.55 (12) | N22—C21—C22—N23 | 0.11 (13) |
O12—N11—C11—N12 | 5.50 (18) | N21—C21—C22—N23 | 174.90 (11) |
O12ii—N11—C11—N12 | 94.84 (12) | C23—N23—C22—C21 | 0.90 (13) |
N12—C11—C12—N13 | −0.50 (13) | Cu—N23—C22—C21 | −171.07 (8) |
N11—C11—C12—N13 | 178.15 (11) | C22—N23—C23—N22 | −1.62 (13) |
C13—N13—C12—C11 | 0.40 (13) | Cu—N23—C23—N22 | 170.52 (7) |
Cu—N13—C12—C11 | −168.81 (8) | C22—N23—C23—C25 | 176.82 (11) |
C12—N13—C13—N12 | −0.15 (13) | Cu—N23—C23—C25 | −11.04 (16) |
Cu—N13—C13—N12 | 169.07 (8) | C21—N22—C23—N23 | 1.66 (13) |
C12—N13—C13—C15 | 178.42 (11) | C24—N22—C23—N23 | −178.59 (11) |
Cu—N13—C13—C15 | −12.36 (17) | C21—N22—C23—C25 | −176.79 (11) |
C11—N12—C13—N13 | −0.16 (13) | C24—N22—C23—C25 | 2.96 (19) |
C14—N12—C13—N13 | 179.38 (11) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C25—H25C···O22iii | 0.98 | 2.39 | 3.2804 (17) | 150 |
C15—H15B···Cl2iii | 0.98 | 2.73 | 3.6737 (13) | 163 |
C12—H12A···O22iv | 0.95 | 2.51 | 3.4029 (16) | 156 |
C22—H22A···Cl2iv | 0.95 | 2.75 | 3.6828 (12) | 167 |
C24—H24C···Cl1v | 0.98 | 2.84 | 3.7555 (13) | 156 |
Symmetry codes: (iii) x, y+1, z; (iv) −x+1, −y, −z+1; (v) −x+1, y+1/2, −z+1/2. |
Acknowledgements
RKU would like to thank Pace University for research support. Gerard Parkin (Columbia University) is thanked for helpful discussions.
References
Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Pálinkó, I. (1999). New J. Chem. 23, 145–152. Web of Science CrossRef CAS Google Scholar
Arias, M., Chevallier, O. P., Graham, S. F., Gasull-Gimenez, A., Fodey, T., Cooper, K. M., Crooks, S. R., Danaher, M. & Elliott, C. T. (2016). Food Chem. 199, 876–884. CrossRef CAS PubMed Google Scholar
Barba-Behrens, N., Mutio-Rico, A. M., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333–1341. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Buizer, F. G. & Severijnen, M. (1975). Analyst, 100, 854–856. CrossRef PubMed CAS Google Scholar
Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296. CrossRef CAS Web of Science Google Scholar
EC bans use of dimetridazole in food animals (1995). Vet. Rec. 137, 230. Google Scholar
Forlani, L. (2009). In PATAI'S Chemistry of Functional Groups. London: John Wiley & Sons. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Idešicová, M., Dlháň, L., Moncoľ, J., Titiš, J. & Boča, R. (2012). Polyhedron, 36, 79–84. Google Scholar
Kovacs, A. & Varga, Z. (2006). Coord. Chem. Rev. 250, 710–727. CrossRef CAS Google Scholar
McLoughlin, D. K. (1968). J. Parasitol. 54, 1038–1039. CrossRef CAS PubMed Google Scholar
Messier, S., Higgins, R. & Moore, C. (1990). J. Vet. Diagn. Invest. 2, 330–333. CrossRef CAS PubMed Google Scholar
Palmer, J. H. & Upmacis, R. K. (2015). Acta Cryst. E71, 284–287. CSD CrossRef IUCr Journals Google Scholar
Palmer, J. H., Wu, J. S. & Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177–182. CSD CrossRef CAS Google Scholar
Panigrahy, B., Elissalde, G., Grumbles, L. C. & Hall, C. F. (1978). Avian Dis. 22, 815–818. CrossRef CAS PubMed Google Scholar
Quinlivan, P. J., Wu, J.-S. & Upmacis, R. K. (2015). Acta Cryst. E71, 810–812. CSD CrossRef IUCr Journals Google Scholar
Rosu, T., Negoiu, M., Strenger, I. & Müller, U. (1997). Z. Anorg. Allg. Chem. 623, 1201–1202. CSD CrossRef CAS Google Scholar
Saeed, A. & Simpson, J. (2009). Acta Cryst. E65, o1845. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sharma, C. V. K. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2345–2352. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 49–76. Google Scholar
Thallapally, P. K. & Nangia, A. (2001). CrystEngComm, 27, 1–6. Google Scholar
Voogd, C. E., Van Der Stel, J. J. & Jacobs, J. J. (1974). Mutat. Res./Fundam. Mol. Mech. Mutagen. 26, 483–490. CrossRef CAS Google Scholar
Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.