research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-chlorido-bis­­[chlorido­bis­­(1,2-di­methyl-5-nitro-1H-imidazole-κN3)copper(II)] aceto­nitrile disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Columbia University, New York, NY 10027, USA, and bThe Haskins Laboratories, Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
*Correspondence e-mail: rupmacis@pace.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 21 July 2016; accepted 1 October 2016; online 25 October 2016)

1,2-Dimethyl-5-nitro­imidazole (dimetridazole, dimet) is a compound that belongs to a class of nitro­imidazole drugs that are effective at inhibiting the activity of certain parasites and bacteria. However, there are few reports that describe structures of compounds that feature metals complexed by dimet. Therefore, we report here that dimet reacts with CuCl2·H2O to yield a chloride-bridged copper(II) dimer, [Cu2Cl4(C5H7N3O2)4] or [Cu(μ-Cl)Cl(dimet)2]2. In this mol­ecule, the CuII ions are coordinated in an approximately trigonal–bipyramidal manner, and the mol­ecule lies across an inversion center. The dihedral angle between the imidazole rings in the asymmetric unit is 4.28 (7)°. Compared to metronidazole, dimetridazole lacks the hy­droxy­ethyl group, and thus cannot form inter­molecular O⋯H hydrogen-bonding inter­actions. Instead, [Cu(μ-Cl)Cl(dimet)2]2 exhibits weak inter­molecular inter­actions between the hydrogen atoms of C—H groups and (i) oxygen in the nitro groups, and (ii) the terminal and bridging chloride ligands. The unit cell contains four disordered aceto­nitrile mol­ecules. These were modeled as providing a diffuse contribution to the overall scattering by SQUEEZE [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18], which identified two voids, each with a volume of 163 Å3 and a count of 46 electrons, indicative of a total of four aceto­nitrile mol­ecules. These aceto­nitrile mol­ecules are included in the chemical formula to give the expected calculated density and F(000).

1. Chemical context

1,2-Dimethyl-5-nitro­imidazole, also known as dimetridazole (dimet), is structurally related to metronidazole [2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanol, MET]. Thus, both compounds contain a 2-methyl-5-nitro­imidazole core and are only differentiated according to whether one of the nitro­gen atoms possesses a methyl substituent (as in dimet) or a hy­droxy­ethyl substituent (as in MET), as illustrated in Fig. 1[link]. Both MET and dimet are used to treat microbial infections, but dimet has specifically been used in animals for the treatment of, for instance, bovine trichomoniasis (McLoughlin, 1968[McLoughlin, D. K. (1968). J. Parasitol. 54, 1038-1039.]), giardiasis in birds (Panigrahy et al., 1978[Panigrahy, B., Elissalde, G., Grumbles, L. C. & Hall, C. F. (1978). Avian Dis. 22, 815-818.]) and swine dysentery (Messier et al., 1990[Messier, S., Higgins, R. & Moore, C. (1990). J. Vet. Diagn. Invest. 2, 330-333.]). In order to control outbreaks of infection, a previous common practice was to incorporate dimet as a feed additive given, for example, to poultry and pigs (Buizer & Severijnen, 1975[Buizer, F. G. & Severijnen, M. (1975). Analyst, 100, 854-856.]). However, concerns about the mutagenic properties displayed by this class of drug (Voogd et al., 1974[Voogd, C. E., Van Der Stel, J. J. & Jacobs, J. J. (1974). Mutat. Res./Fundam. Mol. Mech. Mutagen. 26, 483-490.]), and the fact that trace amounts can be detected in certain animal products intended for human consumption (Arias et al., 2016[Arias, M., Chevallier, O. P., Graham, S. F., Gasull-Gimenez, A., Fodey, T., Cooper, K. M., Crooks, S. R., Danaher, M. & Elliott, C. T. (2016). Food Chem. 199, 876-884.]), have led to a discontinuation of this practice (EC bans use of dimetridazole in food animals, 1995[EC bans use of dimetridazole in food animals (1995). Vet. Rec. 137, 230.]). Reports of structures of metal compounds involving the coordination by dimetridazole are scarce. Herein, we describe the structure of the copper compound [Cu(μ-Cl)Cl(dimet)2]2, which is obtained by the reaction of dimet with CuCl2·H2O (see Scheme).

[Scheme 1]
[Figure 1]
Figure 1
A comparison of the structures of (a) metronidazole (MET) and (b) dimetridazole (dimet).

2. Structural commentary

Crystals of composition [Cu(μ-Cl)Cl(dimet)2]2 were obtained by addition of dimet to CuCl2·2H2O in chloro­form, followed by recrystallization of the blue precipitate from aceto­nitrile. The molecular structure, as illustrated in Fig. 2[link], shows a centrosymmetric chlorido-bridged dimer. The coordination geometry around each copper atom is a slightly distorted trigonal–bipyramidal with two axial dimet ligands, and three chlorine ligands in the equatorial plane, two of which bridge to the adjacent copper. This structure is analogous to a previously reported copper(II) dimer containing MET, instead of dimet, [Cu(MET)2(μ–Cl)Cl]2 (Barba-Behrens et al., 1991[Barba-Behrens, N., Mutio-Rico, A. M., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333-1341.]), and a comparison of the two structures is shown in Fig. 3[link]. Other recent examples of metal compounds containing MET include: Cu(MET)2Cl2, [Ag(MET)2](BF4), and [H(MET)][AuCl4] (Palmer et al., 2015[Palmer, J. H., Wu, J. S. & Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177-182.]; Palmer & Upmacis, 2015[Palmer, J. H. & Upmacis, R. K. (2015). Acta Cryst. E71, 284-287.]; Quinlivan et al., 2015[Quinlivan, P. J., Wu, J.-S. & Upmacis, R. K. (2015). Acta Cryst. E71, 810-812.]).

[Figure 2]
Figure 2
The mol­ecular structure of [Cu(μ-Cl)Cl(dimet)2]2, with displacement ellipsoids depicted at the 30% probability level. H atoms associated with methyl groups are not shown [symmetry code ('): −x, −y + 1, −z + 1].
[Figure 3]
Figure 3
A comparison of the structures of the dinuclear Cu complexes which are derived from (a) metronidazole (MET) and (b) dimetridazole (dimet).

Examination of the structure of the [Cu(μ-Cl)Cl(dimet)2]2 complex demonstrates that, inter­estingly, the chlorine atoms bridge in an asymmetric manner, with Cu—Clbridge bond lengths of 2.3811 (3) and 2.6024 (3) Å, both of which are longer than the terminal Cu—Cl bond length of 2.2822 (3) Å. Of note, these features are also observed for the MET analog, [Cu(MET)2(μ–Cl)Cl]2, which possesses bridging Cu—Cl distances of 2.418 (1) and 2.619 (1) Å, and a terminal bond length of 2.297 (2) Å (Barba-Behrens et al., 1991[Barba-Behrens, N., Mutio-Rico, A. M., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333-1341.]). Furthermore, the Cu—N bond lengths [2.0009 (10) and 1.9914 (9) Å] are also similar to the Cu—N bond lengths reported for the MET analog [2.002 (4) and 1.993 (4) Å]. In terms of the bond angles, the N—Cu—Clterm and N—Cu—Clbridge angles are all close to 90° [ranging from 88.95 (3)° for N13—Cu—Cl1 to 91.85 (3)° for N23—Cu—Cl2], with the exception of N23—Cu—Cl2bridge which is 85.42 (3) Å.

3. Supra­molecular features

The crystal structure displays a number of weak inter­molecular inter­actions between hydrogen atoms of CH groups and the more electronegative atoms on adjacent mol­ecules, such as the oxygen atoms in the nitro groups of the dimet ligand and also the terminal and bridging chlorine atoms (see Table 1[link] and Fig. 4[link]). In this regard, one of the oxygen atoms of the nitro group participates in inter­molecular hydrogen-bonding inter­actions with CH3 and CH groups of an adjacent mol­ecule. For reference, inter­molecular and intra­molecular C—H⋯O hydrogen bonds involving an O atom from a nitro group (or other O-containing groups) have been reported (Desiraju, 1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]; Sharma & Desiraju, 1994[Sharma, C. V. K. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2345-2352.]; Forlani, 2009[Forlani, L. (2009). In PATAI'S Chemistry of Functional Groups. London: John Wiley & Sons.]). As an illustration, inter­molecular C—H⋯O inter­actions (involving C—H motifs from an NMe2 substituent and the O atoms of a nitro group) are reported at 2.71 (3) Å, with C⋯O distances of 3.658 (4) and 3.725 (4) Å (Sharma & Desiraju, 1994[Sharma, C. V. K. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2345-2352.]). The results of our structure analysis are also comparable to the average values that have been reported for hydrogen-bonding inter­actions of (N,C)Csp2—H (2.48 and 3.47 Å) and Csp3—CH3 (2.63 and 3.61 Å) groups with a water O atom (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 49-76.]). For comparison, intra­molecular N—H⋯O inter­actions to an O atom of a nitro substituent form shorter contacts, e.g. 1.927 (15) Å for N-(2-nitro­phen­yl)benzamide (Saeed & Simpson, 2009[Saeed, A. & Simpson, J. (2009). Acta Cryst. E65, o1845.]) and 2.11 Å for 2-iodo-N-(2-nitro­phen­yl)benzamide (Wardell et al., 2005[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634-o638.]), which is in accord with the reports that C—H⋯O bonds are weaker than N—H⋯O bonds (Desiraju, 1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25C⋯O22i 0.98 2.39 3.2804 (17) 150
C15—H15B⋯Cl2i 0.98 2.73 3.6737 (13) 163
C12—H12A⋯O22ii 0.95 2.51 3.4029 (16) 156
C22—H22A⋯Cl2ii 0.95 2.75 3.6828 (12) 167
C24—H24C⋯Cl1iii 0.98 2.84 3.7555 (13) 156
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Weak inter­molecular hydrogen-bonding inter­actions (shown as dashed lines) for [Cu(μ-Cl)Cl(dimet)2]2.

The bridging chlorine atoms also form weak inter­molecular inter­actions with CH3 and CH groups of an adjacent mol­ecule. In addition, the terminal chlorine atom participates in a hydrogen-bonding inter­action with a CH3 group of an adjacent mol­ecule.

While C—H⋯O inter­actions are widely accepted (Desiraju, 1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]), C—H⋯Cl inter­actions are considered more controversial, but a survey of the literature reveals that they also represent a common phenomenon (Aakeröy et al., 1999[Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Pálinkó, I. (1999). New J. Chem. 23, 145-152.]). For example, hydrogen-bonding inter­actions of sp2 (N,C)C—H with Cl are reported at 2.64 Å (Kovacs & Varga, 2006[Kovacs, A. & Varga, Z. (2006). Coord. Chem. Rev. 250, 710-727.]). However, when Cl is bonded to a metal, the average C—H⋯Cl—M hydrogen-bonding distance is 2.974 Å (Thallapally & Nangia, 2001[Thallapally, P. K. & Nangia, A. (2001). CrystEngComm, 27, 1-6.]).

Fig. 4[link] illustrates some of these inter­molecular inter­actions. An important difference between this structure and the MET analog is that the dimet compound lacks the hy­droxy­ethyl group, which is involved in classical inter­molecular hydrogen-bonding inter­actions for the MET derivative (Barba-Behrens et al., 1991[Barba-Behrens, N., Mutio-Rico, A. M., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333-1341.]).

4. Database survey

There is only one structurally characterized metal compound containing dimet listed in the Cambridge Database (CSD Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), namely, a mononuclear cobalt complex, [Co(dimet)2Cl2], in which the cobalt(II) atom is surrounded by two dimet and two chlorido ligands in a distorted tetra­hedron (Rosu et al., 1997[Rosu, T., Negoiu, M., Strenger, I. & Müller, U. (1997). Z. Anorg. Allg. Chem. 623, 1201-1202.]; Idešicová et al., 2012[Idešicová, M., Dlháň, L., Moncoľ, J., Titiš, J. & Boča, R. (2012). Polyhedron, 36, 79-84.]). The Co—N distances are reported to be 2.228 (2) and 2.035 (4) Å (Rosu et al., 1997[Rosu, T., Negoiu, M., Strenger, I. & Müller, U. (1997). Z. Anorg. Allg. Chem. 623, 1201-1202.]).

5. Synthesis and crystallization

CuCl2·H2O (3 mg, 0.018 mmol) was added to a solution of dimet (6 mg, 0.043 mmol) in chloro­form (0.7 mL), resulting in the precipitation of a blue solid over the course of 1 h at room temperature. The blue solid was isolated by deca­ntation and crystals of [Cu(μ-Cl)Cl(dimet)2]2, suitable for X-ray diffraction, were obtained by slow evaporation from a solution in aceto­nitrile.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms on carbon were placed in calculated positions (C—H = 0.95–1.00 Å) and included as riding contributions with isotropic displacement parameters Uiso(H) = 1.2Ueq(Csp2) or 1.5Ueq(Csp3). The unit cell contains four disordered aceto­nitrile mol­ecules. In view of the disorder, the aceto­nitrile mol­ecules were modeled as providing a diffuse contribution to the overall scattering by SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), which identified two voids, each with a volume of 163 Å3 and a count of 46 electrons, indicative of a total of four aceto­nitrile mol­ecules.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2Cl4(C5H7N3O2)4]·2C2H3N
Mr 915.53
Crystal system, space group Monoclinic, P21/c
Temperature (K) 130
a, b, c (Å) 13.9545 (8), 6.7004 (4), 19.5031 (11)
β (°) 96.424 (1)
V3) 1812.10 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.54
Crystal size (mm) 0.35 × 0.17 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.637, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 28822, 5564, 5034
Rint 0.033
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.071, 1.26
No. of reflections 5564
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.51
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Di-µ-chlorido-bis[chloridobis(1,2-dimethyl-5-nitro-1H-imidazole-κN3)copper(II)] acetonitrile disolvate top
Crystal data top
[Cu2Cl4(C5H7N3O2)4]·2C2H3NF(000) = 932
Mr = 915.53Dx = 1.678 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.9545 (8) ÅCell parameters from 9452 reflections
b = 6.7004 (4) Åθ = 2.9–30.6°
c = 19.5031 (11) ŵ = 1.54 mm1
β = 96.424 (1)°T = 130 K
V = 1812.10 (18) Å3Block, blue
Z = 20.35 × 0.17 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
5034 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
θmax = 30.6°, θmin = 1.5°
Tmin = 0.637, Tmax = 0.746h = 1919
28822 measured reflectionsk = 99
5564 independent reflectionsl = 2727
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max = 0.033
5564 reflectionsΔρmax = 0.51 e Å3
212 parametersΔρmin = 0.51 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.41957 (2)0.46806 (2)0.42320 (2)0.01249 (5)
Cl10.32308 (2)0.45734 (5)0.32075 (2)0.02105 (7)
Cl20.46436 (2)0.25939 (4)0.52033 (2)0.01295 (6)
O110.10021 (7)0.39434 (18)0.58607 (6)0.0303 (2)
O120.02709 (7)0.66914 (16)0.55203 (5)0.0280 (2)
O210.81805 (7)0.13329 (16)0.33794 (5)0.0263 (2)
O220.72749 (7)0.08394 (15)0.38274 (6)0.0276 (2)
N110.09544 (8)0.55179 (17)0.55458 (6)0.0209 (2)
N120.18478 (7)0.77681 (16)0.48250 (5)0.01611 (19)
N130.30915 (7)0.58276 (15)0.46736 (5)0.01353 (18)
N210.74156 (7)0.07990 (16)0.35776 (5)0.0175 (2)
N220.65940 (7)0.39673 (15)0.31873 (5)0.01363 (18)
N230.53211 (7)0.37776 (14)0.37688 (5)0.01264 (18)
C110.17488 (8)0.59978 (19)0.51720 (6)0.0164 (2)
C120.25207 (9)0.48130 (18)0.50794 (6)0.0152 (2)
H12A0.26390.35130.52640.018*
C130.26757 (8)0.76046 (17)0.45264 (6)0.0146 (2)
C140.12067 (10)0.9527 (2)0.47787 (8)0.0247 (3)
H14A0.14801.05720.45080.037*
H14B0.11451.00300.52440.037*
H14C0.05690.91470.45540.037*
C150.30624 (9)0.92050 (19)0.41131 (7)0.0189 (2)
H15A0.35550.86500.38470.028*
H15B0.33501.02520.44220.028*
H15C0.25380.97740.37970.028*
C210.66334 (8)0.21847 (17)0.35462 (6)0.0138 (2)
C220.58485 (8)0.20765 (17)0.39040 (6)0.0135 (2)
H22A0.56960.10110.41940.016*
C230.57767 (8)0.48769 (17)0.33275 (6)0.0131 (2)
C240.72860 (10)0.4744 (2)0.27397 (7)0.0218 (3)
H24A0.75090.36530.24630.033*
H24B0.78380.53300.30240.033*
H24C0.69730.57680.24330.033*
C250.54213 (9)0.68022 (18)0.30190 (6)0.0181 (2)
H25A0.47400.69730.30850.027*
H25B0.54910.68020.25250.027*
H25C0.57980.79020.32440.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01138 (8)0.01446 (8)0.01188 (8)0.00362 (5)0.00239 (5)0.00060 (5)
Cl10.01728 (14)0.02815 (16)0.01670 (14)0.00367 (11)0.00253 (11)0.00714 (11)
Cl20.01421 (12)0.01058 (12)0.01442 (12)0.00041 (9)0.00312 (9)0.00093 (9)
O110.0229 (5)0.0378 (6)0.0318 (6)0.0017 (4)0.0102 (4)0.0092 (5)
O120.0167 (4)0.0344 (6)0.0343 (6)0.0063 (4)0.0090 (4)0.0021 (4)
O210.0165 (4)0.0332 (5)0.0304 (5)0.0058 (4)0.0078 (4)0.0035 (4)
O220.0259 (5)0.0198 (4)0.0379 (6)0.0084 (4)0.0066 (4)0.0071 (4)
N110.0131 (5)0.0292 (6)0.0208 (5)0.0021 (4)0.0034 (4)0.0032 (4)
N120.0126 (4)0.0188 (5)0.0171 (5)0.0049 (4)0.0020 (4)0.0022 (4)
N130.0116 (4)0.0151 (4)0.0140 (4)0.0015 (3)0.0020 (3)0.0017 (3)
N210.0157 (5)0.0211 (5)0.0157 (5)0.0038 (4)0.0018 (4)0.0016 (4)
N220.0139 (4)0.0151 (4)0.0122 (4)0.0009 (4)0.0029 (3)0.0007 (3)
N230.0135 (4)0.0125 (4)0.0122 (4)0.0023 (3)0.0026 (3)0.0003 (3)
C110.0131 (5)0.0211 (6)0.0155 (5)0.0017 (4)0.0035 (4)0.0016 (4)
C120.0132 (5)0.0173 (5)0.0153 (5)0.0001 (4)0.0022 (4)0.0009 (4)
C130.0116 (5)0.0171 (5)0.0148 (5)0.0015 (4)0.0001 (4)0.0034 (4)
C140.0214 (6)0.0248 (7)0.0287 (7)0.0140 (5)0.0061 (5)0.0000 (5)
C150.0190 (6)0.0162 (5)0.0217 (6)0.0024 (4)0.0030 (5)0.0019 (4)
C210.0139 (5)0.0143 (5)0.0135 (5)0.0031 (4)0.0020 (4)0.0008 (4)
C220.0154 (5)0.0122 (5)0.0130 (5)0.0023 (4)0.0025 (4)0.0005 (4)
C230.0142 (5)0.0133 (5)0.0118 (5)0.0007 (4)0.0015 (4)0.0009 (4)
C240.0190 (6)0.0278 (7)0.0202 (6)0.0008 (5)0.0087 (5)0.0068 (5)
C250.0207 (6)0.0158 (5)0.0186 (6)0.0031 (4)0.0049 (4)0.0047 (4)
Geometric parameters (Å, º) top
Cu—N231.9914 (9)N22—C241.4678 (16)
Cu—N132.0009 (10)N23—C231.3455 (15)
Cu—Cl12.2822 (3)N23—C221.3663 (14)
Cu—Cl22.3811 (3)C11—C121.3662 (16)
Cu—Cl2i2.6024 (3)C12—H12A0.9500
Cl2—Cui2.6024 (3)C13—C151.4792 (17)
O11—N111.2188 (16)C14—H14A0.9800
O12—N111.2329 (14)C14—H14B0.9800
O12—N11ii2.9399 (15)C14—H14C0.9800
O21—N211.2285 (14)C15—H15A0.9800
O22—N211.2258 (15)C15—H15B0.9800
N11—C111.4299 (16)C15—H15C0.9800
N11—O12ii2.9399 (15)C21—C221.3649 (16)
N12—C131.3552 (15)C22—H22A0.9500
N12—C111.3802 (16)C23—C251.4850 (16)
N12—C141.4764 (15)C24—H24A0.9800
N13—C131.3414 (15)C24—H24B0.9800
N13—C121.3653 (15)C24—H24C0.9800
N21—C211.4291 (15)C25—H25A0.9800
N22—C231.3478 (15)C25—H25B0.9800
N22—C211.3823 (15)C25—H25C0.9800
N23—Cu—N13175.06 (4)N13—C12—H12A126.1
N23—Cu—Cl190.65 (3)N13—C13—N12110.42 (11)
N13—Cu—Cl188.95 (3)N13—C13—C15125.78 (11)
N23—Cu—Cl291.85 (3)N12—C13—C15123.78 (11)
N13—Cu—Cl291.68 (3)N12—C14—H14A109.5
Cl1—Cu—Cl2139.002 (12)N12—C14—H14B109.5
N23—Cu—Cl2i85.42 (3)H14A—C14—H14B109.5
N13—Cu—Cl2i91.21 (3)N12—C14—H14C109.5
Cl1—Cu—Cl2i132.139 (12)H14A—C14—H14C109.5
Cl2—Cu—Cl2i88.842 (10)H14B—C14—H14C109.5
Cu—Cl2—Cui91.158 (10)C13—C15—H15A109.5
N11—O12—N11ii95.37 (8)C13—C15—H15B109.5
O11—N11—O12124.80 (11)H15A—C15—H15B109.5
O11—N11—C11116.73 (10)C13—C15—H15C109.5
O12—N11—C11118.46 (11)H15A—C15—H15C109.5
O11—N11—O12ii85.14 (8)H15B—C15—H15C109.5
O12—N11—O12ii84.63 (8)C22—C21—N22108.42 (10)
C11—N11—O12ii100.10 (7)C22—C21—N21126.61 (11)
C13—N12—C11106.15 (10)N22—C21—N21124.75 (10)
C13—N12—C14125.32 (11)C21—C22—N23107.62 (10)
C11—N12—C14128.53 (10)C21—C22—H22A126.2
C13—N13—C12107.43 (10)N23—C22—H22A126.2
C13—N13—Cu125.75 (8)N23—C23—N22110.69 (10)
C12—N13—Cu125.84 (8)N23—C23—C25125.06 (10)
O21—N21—O22124.71 (11)N22—C23—C25124.23 (11)
O21—N21—C21118.93 (11)N22—C24—H24A109.5
O22—N21—C21116.32 (10)N22—C24—H24B109.5
C23—N22—C21105.94 (9)H24A—C24—H24B109.5
C23—N22—C24126.03 (10)N22—C24—H24C109.5
C21—N22—C24128.03 (10)H24A—C24—H24C109.5
C23—N23—C22107.29 (9)H24B—C24—H24C109.5
C23—N23—Cu125.24 (8)C23—C25—H25A109.5
C22—N23—Cu126.94 (8)C23—C25—H25B109.5
C12—C11—N12108.11 (10)H25A—C25—H25B109.5
C12—C11—N11127.19 (12)C23—C25—H25C109.5
N12—C11—N11124.69 (10)H25A—C25—H25C109.5
C11—C12—N13107.88 (11)H25B—C25—H25C109.5
C11—C12—H12A126.1
N11ii—O12—N11—O1180.27 (13)C11—N12—C13—C15178.76 (11)
N11ii—O12—N11—C1198.59 (11)C14—N12—C13—C150.78 (19)
N11ii—O12—N11—O12ii0.0C23—N22—C21—C221.06 (13)
C13—N12—C11—C120.40 (13)C24—N22—C21—C22179.19 (11)
C14—N12—C11—C12179.12 (12)C23—N22—C21—N21175.98 (11)
C13—N12—C11—N11178.29 (11)C24—N22—C21—N214.28 (19)
C14—N12—C11—N112.2 (2)O21—N21—C21—C22160.72 (12)
O11—N11—C11—C126.01 (19)O22—N21—C21—C2216.86 (18)
O12—N11—C11—C12172.94 (12)O21—N21—C21—N2213.27 (17)
O12ii—N11—C11—C1283.60 (13)O22—N21—C21—N22169.15 (11)
O11—N11—C11—N12175.55 (12)N22—C21—C22—N230.11 (13)
O12—N11—C11—N125.50 (18)N21—C21—C22—N23174.90 (11)
O12ii—N11—C11—N1294.84 (12)C23—N23—C22—C210.90 (13)
N12—C11—C12—N130.50 (13)Cu—N23—C22—C21171.07 (8)
N11—C11—C12—N13178.15 (11)C22—N23—C23—N221.62 (13)
C13—N13—C12—C110.40 (13)Cu—N23—C23—N22170.52 (7)
Cu—N13—C12—C11168.81 (8)C22—N23—C23—C25176.82 (11)
C12—N13—C13—N120.15 (13)Cu—N23—C23—C2511.04 (16)
Cu—N13—C13—N12169.07 (8)C21—N22—C23—N231.66 (13)
C12—N13—C13—C15178.42 (11)C24—N22—C23—N23178.59 (11)
Cu—N13—C13—C1512.36 (17)C21—N22—C23—C25176.79 (11)
C11—N12—C13—N130.16 (13)C24—N22—C23—C252.96 (19)
C14—N12—C13—N13179.38 (11)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···O22iii0.982.393.2804 (17)150
C15—H15B···Cl2iii0.982.733.6737 (13)163
C12—H12A···O22iv0.952.513.4029 (16)156
C22—H22A···Cl2iv0.952.753.6828 (12)167
C24—H24C···Cl1v0.982.843.7555 (13)156
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x+1, y+1/2, z+1/2.
 

Acknowledgements

RKU would like to thank Pace University for research support. Gerard Parkin (Columbia University) is thanked for helpful discussions.

References

First citationAakeröy, C. B., Evans, T. A., Seddon, K. R. & Pálinkó, I. (1999). New J. Chem. 23, 145–152.  Web of Science CrossRef CAS Google Scholar
First citationArias, M., Chevallier, O. P., Graham, S. F., Gasull-Gimenez, A., Fodey, T., Cooper, K. M., Crooks, S. R., Danaher, M. & Elliott, C. T. (2016). Food Chem. 199, 876–884.  CrossRef CAS PubMed Google Scholar
First citationBarba-Behrens, N., Mutio-Rico, A. M., Joseph-Nathan, P. & Contreras, R. (1991). Polyhedron, 10, 1333–1341.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuizer, F. G. & Severijnen, M. (1975). Analyst, 100, 854–856.  CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationEC bans use of dimetridazole in food animals (1995). Vet. Rec. 137, 230.  Google Scholar
First citationForlani, L. (2009). In PATAI'S Chemistry of Functional Groups. London: John Wiley & Sons.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIdešicová, M., Dlháň, L., Moncoľ, J., Titiš, J. & Boča, R. (2012). Polyhedron, 36, 79–84.  Google Scholar
First citationKovacs, A. & Varga, Z. (2006). Coord. Chem. Rev. 250, 710–727.  CrossRef CAS Google Scholar
First citationMcLoughlin, D. K. (1968). J. Parasitol. 54, 1038–1039.  CrossRef CAS PubMed Google Scholar
First citationMessier, S., Higgins, R. & Moore, C. (1990). J. Vet. Diagn. Invest. 2, 330–333.  CrossRef CAS PubMed Google Scholar
First citationPalmer, J. H. & Upmacis, R. K. (2015). Acta Cryst. E71, 284–287.  CSD CrossRef IUCr Journals Google Scholar
First citationPalmer, J. H., Wu, J. S. & Upmacis, R. K. (2015). J. Mol. Struct. 1091, 177–182.  CSD CrossRef CAS Google Scholar
First citationPanigrahy, B., Elissalde, G., Grumbles, L. C. & Hall, C. F. (1978). Avian Dis. 22, 815–818.  CrossRef CAS PubMed Google Scholar
First citationQuinlivan, P. J., Wu, J.-S. & Upmacis, R. K. (2015). Acta Cryst. E71, 810–812.  CSD CrossRef IUCr Journals Google Scholar
First citationRosu, T., Negoiu, M., Strenger, I. & Müller, U. (1997). Z. Anorg. Allg. Chem. 623, 1201–1202.  CSD CrossRef CAS Google Scholar
First citationSaeed, A. & Simpson, J. (2009). Acta Cryst. E65, o1845.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, C. V. K. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2345–2352.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 49–76.  Google Scholar
First citationThallapally, P. K. & Nangia, A. (2001). CrystEngComm, 27, 1–6.  Google Scholar
First citationVoogd, C. E., Van Der Stel, J. J. & Jacobs, J. J. (1974). Mutat. Res./Fundam. Mol. Mech. Mutagen. 26, 483–490.  CrossRef CAS Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o634–o638.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds