research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of four co-crystals of (E)-1,2-di(pyridin-4-yl)ethene with 4-alk­­oxy­benzoic acids: 4-meth­­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-eth­­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1), 4-n-propoxybenzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1) and 4-n-but­­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by A. J. Lough, University of Toronto, Canada (Received 5 October 2016; accepted 25 October 2016; online 28 October 2016)

The crystal structures of four hydrogen-bonded co-crystals of 4-alk­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1), namely, 2C8H8O3·C12H10N2, (I), 2C9H10O3·C12H10N2, (II), 2C10H12O3·C12H10N2, (III) and 2C11H14O3·C12H10N2, (IV), have been determined at 93 K. In compounds (I) and (IV), the asymmetric units are each composed of one 4-alk­oxy­benzoic acid mol­ecule and one half-mol­ecule of (E)-1,2-di(pyridin-4-yl)ethene, which lies on an inversion centre. The asymmetric unit of (II) consists of two crystallographically independent 4-eth­oxy­benzoic acid mol­ecules and one 1,2-di(pyridin-4-yl)ethene mol­ecule. Compound (III) crystallizes in a non-centrosymmetric space group (Pc) and the asymmetric unit comprises four 4-n-propoxybenzoic acid mol­ecules and two (E)-1,2-di(pyridin-4-yl)ethane mol­ecules. In each crystal, the acid and base components are linked by O—H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. In (I), (II) and (III), inter­molecular C—H⋯O inter­actions are observed. The 2:1 units of (I) and (II) are linked via C—H⋯O hydrogen bonds, forming tape structures. In (III), the C—H⋯O hydrogen bonds, except for those formed in the units, link the two crystallographically independent 2:1 units. In (IV), no C—H⋯O inter­actions are observed, but ππ and C—H⋯π inter­actions link the units into a column structure.

1. Chemical context

Co-crystals of 4-alk­oxy­benzoic acid–4,4′-bipyridyl (2/1) and 4-alk­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene [common name: trans-1,2-bis­(4-pyrid­yl)ethyl­ene] (2/1), in which the two acids and the base are held together by hydrogen bonds, exhibit thermotropic liquid crystallinity (Kato et al., 1990[Kato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. 19, 2003-2006.], 1993[Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094-1100.]; Grunert et al., 1997[Grunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211-214.]). Similar co-crystals of 4-alk­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethane (2/1) also show thermotropic liquid crystallinity, namely, nematic phases at 419, 421 and 419 K for the compounds of 4-meth­oxy-, 4-eth­oxy- and 4-n-propoxybenzoic acid, respectively, and a smectic A phase at 413 K and a nematic phase at 419 K for the compound of 4-n-but­oxy­benzoic acid (Tabuchi et al., 2015a[Tabuchi, Y., Gotoh, K. & Ishida, H. (2015a). Acta Cryst. E71, 1340-1344.]). The crystal structures of the compound of 4,4′-bipyridyl with 4-meth­oxy­benzoic acid (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]; Ramon et al., 2014[Ramon, G., Davies, K. & Nassimbeni, L. R. (2014). CrystEngComm, 16, 5802-5810.]), the three compounds of 4,4′-bipyridyl with 4-eth­oxy-, 4-n-prop­oxy- and 4-n-but­oxy­benzoic acid (Tabuchi et al., 2015b[Tabuchi, Y., Gotoh, K. & Ishida, H. (2015b). Acta Cryst. E71, 1290-1295.]), the compound of 1,2-bis­(pyridin-4-yl)ethane with 4-meth­oxy­benzoic acid (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]) and the three compounds of 1,2-bis­(pyridin-4-yl)ethane with with 4-eth­oxy-, 4-n-prop­oxy- and 4-n-but­oxy­benzoic acid (Tabuchi et al., 2015a[Tabuchi, Y., Gotoh, K. & Ishida, H. (2015a). Acta Cryst. E71, 1340-1344.]) have been reported. As an expansion of our work on the structural characterization of hydrogen-bonded co-crystals which exhibit liquid phases, we have prepared four compounds of 4-alk­oxy­benzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1) and analyzed the crystal structures.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of compounds (I)–(IV) are shown in Fig. 1[link]. The asymmetric units of (I)[link] and (IV)[link] are each composed of one 4-alk­oxy­benzoic acid mol­ecule and one half-mol­ecule of (E)-1,2-di(pyridin-4-yl)ethene, which lies on an inversion centre. The two acid mol­ecules and the base mol­ecule are held together via O—H⋯N hydrogen bonds (Tables 1[link] and 4[link]) to afford a centrosymmetric linear 2:1 unit. The hydrogen-bonded asymmetric unit of (I)[link] is twisted with dihedral angles of 48.93 (12), 8.66 (12) and 57.16 (5)°, respectively, between the pyridine (N1/C9–C13) and carboxyl (O1/C7/O2) planes, the carboxyl and benzene (C1–C6) planes, and the pyridine and benzene rings, while the asymmetric unit of (IV)[link] is approximately planar with dihedral angles of 5.24 (11), 3.29 (11) and 8.36 (4)°, respectively, between the pyridine (N1/C12–C16) and carboxyl (O1/C7/O2) planes, the carboxyl and benzene (C1–C6) planes, and the pyridine and benzene rings.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.01 (2) 1.61 (2) 2.6210 (15) 175.0 (17)
C8—H8B⋯O2i 0.98 2.56 3.4993 (18) 162
C10—H10⋯O2ii 0.95 2.57 3.4900 (18) 162
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.02 (3) 1.57 (3) 2.5912 (18) 179 (2)
C11—H11CCgi 0.98 2.92 3.800 (2) 150
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structures of compounds (I)[link], (II)[link], (III)[link] and (IV)[link] determined at 93 K, showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are drawn as circles of arbitrary size. The O—H⋯N hydrogen bonds are indicated by dashed lines. [Symmetry code for (I)[link]: (iii) −x + 1, −y + 1, −z; symmetry code for (IV)[link]: (ii) −x + 1, −y + 1, −z + 1.]

The asymmetric unit of (II)[link] consists of two crystallographically independent 4-eth­oxy­benzoic acid mol­ecules and one (E)-1,2-di(pyridin-4-yl)ethene mol­ecule, and the two acids and the base are held together by O—H⋯N hydrogen bonds (Table 2[link]), forming a linear hydrogen-bonded 2:1 aggregate. The pyridine rings of the base mol­ecule are twisted slightly to each other with a dihedral angle of 11.61 (5)°. One side of the hydrogen-bonded unit, i.e. C1–C7/O1/O2/N1/C19–C23, is considerably twisted, while the other side, i.e. C10–C16/O4/O5/N2/C24–C28, is approximately planar, which causes an additional C—H⋯O inter­action (C28—H28⋯O5; Table 2[link]) between the acid and the base. The dihedral angles between the benzene (C1–C6) and pyridine (N1/C19–C23) rings, the C1–C6 and carboxyl O1/C7/O2 planes, and the N1/C19–C23 and O1/C7/O2 planes are 50.52 (5), 6.68 (13) and 43.98 (13)°, respectively, while the corresponding angles for the other side are 6.12 (5), 3.00 (12) and 3.38 (12)°, respectively, between the C10–C15 and N2/C24–C28 rings, the C10–C15 and carboxyl O4/C16/O5 planes, and the N2/C24–C28 and O4/C16/O5 planes.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg is the centroid of the C10–C15 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.02 (2) 1.57 (2) 2.5931 (14) 178 (3)
O4—H4⋯N2 0.93 (2) 1.76 (2) 2.6858 (15) 177 (2)
C8—H8A⋯O5i 0.99 2.50 3.316 (2) 139
C20—H20⋯O2i 0.95 2.29 3.238 (2) 173
C23—H23⋯O1ii 0.95 2.58 3.449 (2) 152
C24—H24⋯O2iii 0.95 2.47 3.2993 (17) 146
C28—H28⋯O5 0.95 2.56 3.2291 (19) 128
C8—H8BCgiv 0.00 2.75 3.6471 (18) 150
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+2, -z+1; (iv) x+1, y-2, z+1.

The asymmetric unit of (III)[link] is composed of four crystallographically independent mol­ecules of 4-n-propoxybenzoic acid and two base mol­ecules, forming two independent linear hydrogen-bonded 2:1 aggregates through O—H⋯N hydrogen bonds (Table 3[link]). Both of the independent base mol­ecules are essentially planar with dihedral angles of 1.84 (8) and 0.58 (7)°, respectively, between the pyridine N1/C21–C25 and N2/C26–C30 rings, and between the pyridine N3/C53–C57 and N4/C58–C62 rings. The two hydrogen-bonded 2:1 units are also approximately planar. For one unit, the dihedral angles between the N1/C21–C25 and O1/C7/O2 planes, the C1–C6 and O1/C7/O2 planes, and the N1/C21–C25 and C1–C6 planes are 12.79 (19), 3.66 (19) and 9.16 (7)°, respectively, and the corresponding angles between the N2/C26–C30 and O4/C17/O5 planes, the C11–C16 and O4/C17/O5 planes, and the N2/C26–C30 and C11–C16 planes are 5.95 (19), 1.16 (19) and 5.82 (8)°, respectively. For the other 2:1 unit, the dihedral angles are 3.19 (19), 4.93 (19) and 7.59 (8)°, respectively, between the N3/C53–C57 and O7/C39/O8 planes, the C33–C38 and O7/C39/O8 planes, and the N3/C53–C57 and C33–C38 planes, and the corresponding dihedral angles are 7.71 (19), 7.70 (19) and 15.40 (8)°, respectively, between the N4/C58–C62 and O10/C49/O11 planes, the C43–C48 and O10/C49/O11 planes, and the N4/C58–C62 and C43–C48 planes.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C21–C25 pyridine, C1–C6 benzene, C11–C16 benzene and N4/C58–C62 pyridine rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.95 (4) 1.71 (4) 2.6607 (19) 175 (4)
O4—H4⋯N2 0.98 (3) 1.62 (3) 2.5974 (19) 179 (4)
O7—H7⋯N3 1.01 (2) 1.59 (2) 2.5836 (18) 170 (3)
O10—H10D⋯N4 0.97 (3) 1.63 (3) 2.5950 (18) 179 (3)
C21—H21⋯O2 0.95 2.50 3.193 (2) 130
C21—H21⋯O11 0.95 2.50 3.124 (2) 123
C26—H26⋯O7i 0.95 2.55 3.236 (2) 129
C30—H30⋯O8ii 0.95 2.47 3.155 (2) 129
C57—H57⋯O2iii 0.95 2.45 3.146 (2) 130
C58—H58⋯O11 0.95 2.51 3.165 (2) 126
C62—H62⋯O5iv 0.95 2.37 3.057 (2) 129
C8—H8ACg1v 0.99 2.85 3.6843 (19) 143
C8—H8BCg3vi 0.99 2.83 3.7013 (19) 147
C18—H18ACg2vii 0.99 2.80 3.5897 (19) 137
C50—H50BCg4viii 0.99 2.79 3.5721 (18) 136
Symmetry codes: (i) [x-1, -y+1, z+{\script{1\over 2}}]; (ii) [x-1, -y, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x, -y, z-{\script{1\over 2}}]; (v) [x, -y+1, z-{\script{1\over 2}}]; (vi) x-1, y, z-1; (vii) x+1, y, z+1; (viii) x-1, y, z.

3. Supra­molecular features

In the crystal of (I)[link], the 2:1 units are linked into a tape structure along the a axis through a pair of C—H⋯O hydrogen bonds (C10—H10⋯O2ii; symmetry code in Table 1[link]), forming an R44(16) ring motif together with O—H⋯N hydrogen bonds (Fig. 2[link]). In addition, another C—H⋯O hydrogen bond (C8—H8B⋯O2i; symmetry code in Table 1[link]) links the tapes into a three-dimensional network.

[Figure 2]
Figure 2
A partial packing diagram of compound (I)[link], showing the tape structure formed by C—H⋯O and O—H⋯N hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted. [Symmetry code: (ii) −x, −y + 1, −z.]

In the crystal of (II)[link], the 2:1 units are linked by C—H⋯O inter­actions (C8—H8A⋯O5i, C20—H20⋯O2i and C23—H23⋯O1ii; symmetry codes in Table 2[link]), forming a tape structure along the a axis (Fig. 3[link]). Between the tapes, another C—H⋯O and a C—H⋯π inter­action (C24—H24⋯O2iii and C8—H8BCgiv; Cg is the centroid of the C10–C15 benzene ring; Table 2[link]) are observed.

[Figure 3]
Figure 3
A partial packing diagram of compound (II)[link], showing the tape structure formed by C—H⋯O and O—H⋯N hydrogen bonds (dashed lines). H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 1.]

In the crystal of (III)[link], two crystallographically independent 2:1 units separately form layers parallel to the ac plane through weak C—H⋯π inter­actions (Table 3[link]). These two layers are alternately stacked along the b axis through the C—H⋯O inter­actions (Table 3[link] and Fig. 4[link]). In each layer, the 2:1 units are arranged with their long axes parallel to each other, while the units in neighbouring layers are arranged approximately perpendicular with an angle of ca 87° between their long axes (Fig. 4[link]).

[Figure 4]
Figure 4
A partial packing diagram of compound (III)[link], showing the two independent layers. H atoms not involved in the O—H⋯N hydrogen bonds (dashed lines) have been omitted.

In the crystal of (IV)[link], the 2:1units are stacked in a column along the b axis through a weak C—H⋯π inter­action between the methyl group and the benzene ring (Table 4[link]) and ππ inter­actions between the benzene (C1–C6) and pyridine (N1/C12–C16) rings and between the pyridine rings (Fig. 5[link]). The centroid–centroid distances are 3.658 (2) and 3.960 (2) Å, respectively, between the benzene and pyridine rings and between the pyridine rings.

[Figure 5]
Figure 5
A partial packing diagram of compound (IV)[link], showing the column structure formed by ππ and C—H⋯π inter­actions (dashed lines). H atoms not involved in these inter­actions have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic co-crystals of 1,2-di(pyridin-4-yl)ethene with 4-alk­oxy­benzoic acid derivatives gave two structures: 1,2-di(pyridin-4-yl)ethene with 2,4,6-tris­(4-carb­oxy­phen­oxy)-1,3,5-triazine (Refcode YAKVEM; Aakeröy et al., 2005[Aakeröy, C. B., Desper, J. & Urbina, J. F. (2005). CrystEngComm, 7, 193-201.]) and with 4,4′-oxydi­benzoic acid (Refcode QEWHEH; Ma et al., 2006[Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165-o1166.]).

5. Synthesis and crystallization

Single crystals of compounds (I)[link], (III)[link] and (IV)[link] were obtained from ethanol solutions of (E)-1,2-di(pyridin-4-yl)ethene with 4-meth­oxy­benzoic acid, 4-n-propoxybenzoic acid and 4-n-but­oxy­benzoic acid, respectively, at room temperature [ethanol solution (160 ml) of 1,2-di(pyridin-4-yl)ethene (72 mg) and 4-meth­oxy­benzoic acid (120 mg) for (I)[link], ethanol solution (160 ml) of 1,2-di(pyridin-4-yl)ethene (61 mg) and 4-n-propoxybenzoic acid (120 mg) for (III)[link], and ethanol solution (160 ml) of 1,2-di(pyridin-4-yl)ethene (56 mg) and 4-n-but­oxy­benzoic acid (120 mg) for (IV)]. Crystals of compound (II)[link] were obtained by slow evaporation from an acetone solution (150 ml) of 1,2-di(pyridin-4-yl)ethene (66 mg) with 4-eth­oxy­benzoic acid (120 mg) at room temperature.

6. Phase transitions

Phase transitions of the four title compounds were observed by DSC and the liquid crystal phases were confirmed by polarizing microscope. DSC measurements were performed by using a Perkin Elmer Pyris 1 in the temperature range from 103 K to the melting temperature at a heating rate of 10 K min−1. Phase transition temperatures (K) and enthalpies (kJ mol−1) determined by DSC are as follows:

(I) 439.0 (7) [60 (3)] K → N, 457.3 (5) [4.0 (2)] N → I;

(II) 432.6 (5) [66.6 (17)] K → N, 461 (1) [6.8 (15)] N → I;

(III) 401.0 (6) [16.5 (10)] K1 → K2, 425.2 (5) [45.6 (13)] K2 → N, 450.2 (5) [5.0 (5)] N → I;

(IV) 417.5 (5) [65 (2)] K → SA, 438 (1) [1.4 (2)] SA → N, 449 (1) [6.1 (10)] N → I.

K, SA, N and I denote crystal, smectic A, nematic and isotropic phases, respectively. The observed transition temperatures and enthalpies are good agreement with the reported values (Kato et al., 1993[Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094-1100.]).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. For all compounds, C-bound H atoms were positioned geometrically with C—H = 0.95–0.99 Å and were refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The O-bound H atoms were located in a difference Fourier map and refined freely [refined O—H = 0.93 (2)–1.02 (2) Å].

Table 5
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula 2C8H8O3·C12H10N2 2C9H10O3·C12H10N2 2C10H12O3·C12H10N2 2C11H14O3·C12H10N2
Mr 486.52 514.58 542.63 570.68
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Monoclinic, Pc Triclinic, P[\overline{1}]
Temperature (K) 93 93 93 93
a, b, c (Å) 11.259 (4), 7.2693 (17), 14.758 (4) 10.873 (3), 11.197 (4), 12.921 (4) 11.1192 (18), 10.8289 (13), 23.020 (3) 7.103 (4), 9.060 (5), 11.627 (7)
α, β, γ (°) 90, 105.706 (15), 90 82.399 (13), 66.241 (10), 62.207 (11) 90, 93.517 (8), 90 82.29 (2), 78.54 (3), 86.79 (3)
V3) 1162.8 (6) 1270.6 (7) 2766.6 (7) 726.3 (7)
Z 2 2 4 1
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.09 0.09 0.09
Crystal size (mm) 0.31 × 0.30 × 0.10 0.40 × 0.13 × 0.10 0.47 × 0.27 × 0.10 0.49 × 0.21 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.896, 0.990 0.900, 0.991 0.914, 0.991 0.841, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 11262, 2674, 2437 20685, 5814, 5127 43672, 11868, 11427 7250, 3311, 2919
Rint 0.015 0.015 0.022 0.033
(sin θ/λ)max−1) 0.649 0.649 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.10 0.038, 0.109, 1.09 0.032, 0.080, 1.06 0.041, 0.118, 1.08
No. of reflections 2674 5814 11868 3311
No. of parameters 168 353 742 195
No. of restraints 0 0 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.30 0.30, −0.35 0.19, −0.45 0.18, −0.45
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.0 (5)
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

For all compounds, data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2015).

(I) 4-Methoxybenzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1) top
Crystal data top
2C8H8O3·C12H10N2F(000) = 512.00
Mr = 486.52Dx = 1.389 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 12695 reflections
a = 11.259 (4) Åθ = 3.2–30.1°
b = 7.2693 (17) ŵ = 0.10 mm1
c = 14.758 (4) ÅT = 93 K
β = 105.706 (15)°Block, colorless
V = 1162.8 (6) Å30.31 × 0.30 × 0.10 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
2437 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.015
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.896, Tmax = 0.990k = 98
11262 measured reflectionsl = 1919
2674 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.3311P]
where P = (Fo2 + 2Fc2)/3
2674 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07932 (7)0.45344 (11)0.29896 (5)0.02040 (18)
O20.04269 (7)0.29971 (11)0.17718 (5)0.02025 (18)
O30.38497 (6)0.33362 (10)0.45442 (5)0.01748 (17)
N10.22710 (8)0.49461 (12)0.19037 (6)0.0198 (2)
C10.11584 (8)0.36124 (13)0.31108 (6)0.0137 (2)
C20.10070 (8)0.46264 (13)0.39320 (7)0.0143 (2)
H20.02880.53580.41540.017*
C30.18891 (9)0.45914 (13)0.44362 (6)0.0146 (2)
H30.17750.52890.49980.017*
C40.29405 (8)0.35178 (13)0.41034 (7)0.0143 (2)
C50.31129 (9)0.25306 (14)0.32684 (7)0.0173 (2)
H50.38420.18250.30360.021*
C60.22277 (9)0.25724 (14)0.27769 (7)0.0166 (2)
H60.23490.18900.22100.020*
C70.02356 (9)0.36617 (13)0.25543 (7)0.0148 (2)
C80.36144 (10)0.40882 (15)0.54742 (7)0.0194 (2)
H8A0.28170.36400.58610.029*
H8B0.42690.37050.57570.029*
H8C0.35970.54340.54410.029*
C90.17790 (9)0.54944 (14)0.10152 (7)0.0196 (2)
H90.09310.58230.08290.023*
C100.24464 (9)0.56063 (14)0.03539 (7)0.0177 (2)
H100.20610.60070.02690.021*
C110.36946 (9)0.51212 (13)0.06160 (7)0.0155 (2)
C120.42043 (9)0.45621 (14)0.15457 (7)0.0179 (2)
H120.50510.42290.17560.022*
C130.34688 (10)0.44970 (15)0.21567 (7)0.0195 (2)
H130.38300.41150.27870.023*
C140.44046 (9)0.52048 (14)0.00820 (7)0.0171 (2)
H140.39800.55820.07010.021*
H10.1344 (19)0.463 (3)0.2554 (14)0.064 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0160 (4)0.0290 (4)0.0188 (4)0.0048 (3)0.0093 (3)0.0038 (3)
O20.0205 (4)0.0259 (4)0.0163 (3)0.0010 (3)0.0083 (3)0.0027 (3)
O30.0145 (3)0.0221 (4)0.0183 (3)0.0021 (3)0.0087 (3)0.0021 (3)
N10.0206 (4)0.0212 (4)0.0215 (4)0.0045 (3)0.0123 (3)0.0041 (3)
C10.0136 (4)0.0150 (4)0.0132 (4)0.0024 (3)0.0047 (3)0.0026 (3)
C20.0118 (4)0.0170 (4)0.0138 (4)0.0001 (3)0.0028 (3)0.0014 (3)
C30.0144 (4)0.0174 (4)0.0120 (4)0.0013 (3)0.0038 (3)0.0005 (3)
C40.0129 (4)0.0157 (4)0.0155 (4)0.0022 (3)0.0063 (3)0.0027 (3)
C50.0157 (4)0.0171 (5)0.0194 (5)0.0031 (4)0.0054 (4)0.0021 (4)
C60.0183 (5)0.0170 (5)0.0151 (4)0.0006 (4)0.0055 (3)0.0023 (4)
C70.0157 (4)0.0147 (4)0.0148 (4)0.0027 (3)0.0054 (3)0.0024 (3)
C80.0207 (5)0.0228 (5)0.0179 (5)0.0004 (4)0.0106 (4)0.0013 (4)
C90.0163 (5)0.0207 (5)0.0237 (5)0.0013 (4)0.0089 (4)0.0033 (4)
C100.0178 (5)0.0183 (5)0.0180 (4)0.0017 (4)0.0066 (4)0.0014 (4)
C110.0170 (5)0.0149 (4)0.0167 (4)0.0037 (4)0.0081 (4)0.0029 (4)
C120.0165 (5)0.0216 (5)0.0172 (5)0.0017 (4)0.0070 (4)0.0011 (4)
C130.0214 (5)0.0228 (5)0.0160 (4)0.0032 (4)0.0083 (4)0.0013 (4)
C140.0188 (5)0.0198 (5)0.0146 (4)0.0023 (4)0.0076 (3)0.0007 (4)
Geometric parameters (Å, º) top
O1—C71.3244 (12)C5—H50.9500
O1—H11.01 (2)C6—H60.9500
O2—C71.2160 (12)C8—H8A0.9800
O3—C41.3599 (11)C8—H8B0.9800
O3—C81.4338 (12)C8—H8C0.9800
N1—C91.3385 (14)C9—C101.3859 (14)
N1—C131.3388 (15)C9—H90.9500
C1—C21.3889 (14)C10—C111.3981 (15)
C1—C61.3938 (14)C10—H100.9500
C1—C71.4890 (13)C11—C121.3967 (14)
C2—C31.3931 (13)C11—C141.4661 (13)
C2—H20.9500C12—C131.3804 (14)
C3—C41.3917 (14)C12—H120.9500
C3—H30.9500C13—H130.9500
C4—C51.3934 (14)C14—C14i1.330 (2)
C5—C61.3826 (14)C14—H140.9500
C7—O1—H1109.4 (11)O3—C8—H8A109.5
C4—O3—C8116.93 (8)O3—C8—H8B109.5
C9—N1—C13117.66 (9)H8A—C8—H8B109.5
C2—C1—C6119.12 (9)O3—C8—H8C109.5
C2—C1—C7121.96 (9)H8A—C8—H8C109.5
C6—C1—C7118.88 (9)H8B—C8—H8C109.5
C1—C2—C3121.30 (9)N1—C9—C10123.22 (10)
C1—C2—H2119.4N1—C9—H9118.4
C3—C2—H2119.4C10—C9—H9118.4
C4—C3—C2118.88 (9)C9—C10—C11119.11 (9)
C4—C3—H3120.6C9—C10—H10120.4
C2—C3—H3120.6C11—C10—H10120.4
O3—C4—C3124.35 (9)C12—C11—C10117.39 (9)
O3—C4—C5115.49 (9)C12—C11—C14123.02 (9)
C3—C4—C5120.16 (9)C10—C11—C14119.58 (9)
C6—C5—C4120.33 (9)C13—C12—C11119.47 (10)
C6—C5—H5119.8C13—C12—H12120.3
C4—C5—H5119.8C11—C12—H12120.3
C5—C6—C1120.18 (9)N1—C13—C12123.14 (10)
C5—C6—H6119.9N1—C13—H13118.4
C1—C6—H6119.9C12—C13—H13118.4
O2—C7—O1123.90 (9)C14i—C14—C11125.27 (12)
O2—C7—C1122.92 (9)C14i—C14—H14117.4
O1—C7—C1113.16 (8)C11—C14—H14117.4
C6—C1—C2—C31.38 (14)C6—C1—C7—O28.04 (14)
C7—C1—C2—C3178.85 (8)C2—C1—C7—O19.13 (13)
C1—C2—C3—C40.14 (14)C6—C1—C7—O1173.39 (8)
C8—O3—C4—C39.37 (13)C13—N1—C9—C100.34 (15)
C8—O3—C4—C5170.34 (9)N1—C9—C10—C110.23 (15)
C2—C3—C4—O3178.32 (8)C9—C10—C11—C120.64 (14)
C2—C3—C4—C51.37 (14)C9—C10—C11—C14178.99 (9)
O3—C4—C5—C6178.08 (9)C10—C11—C12—C130.50 (14)
C3—C4—C5—C61.64 (15)C14—C11—C12—C13179.11 (9)
C4—C5—C6—C10.37 (15)C9—N1—C13—C120.49 (15)
C2—C1—C6—C51.12 (14)C11—C12—C13—N10.07 (16)
C7—C1—C6—C5178.67 (8)C12—C11—C14—C14i1.01 (19)
C2—C1—C7—O2169.44 (9)C10—C11—C14—C14i179.39 (13)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.01 (2)1.61 (2)2.6210 (15)175.0 (17)
C8—H8B···O2ii0.982.563.4993 (18)162
C10—H10···O2iii0.952.573.4900 (18)162
Symmetry codes: (ii) x1/2, y+1/2, z+1/2; (iii) x, y+1, z.
(II) 4-Ethoxybenzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1) top
Crystal data top
2C9H10O3·C12H10N2Z = 2
Mr = 514.58F(000) = 544.00
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 10.873 (3) ÅCell parameters from 22362 reflections
b = 11.197 (4) Åθ = 3.3–30.0°
c = 12.921 (4) ŵ = 0.09 mm1
α = 82.399 (13)°T = 93 K
β = 66.241 (10)°Platelet, colorless
γ = 62.207 (11)°0.40 × 0.13 × 0.10 mm
V = 1270.6 (7) Å3
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
5127 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.015
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.900, Tmax = 0.991k = 1414
20685 measured reflectionsl = 1616
5814 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.1676P]
where P = (Fo2 + 2Fc2)/3
5814 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44575 (8)0.29817 (7)0.49920 (6)0.02270 (17)
O20.22493 (8)0.30835 (7)0.62196 (6)0.02228 (16)
O30.70637 (8)0.25170 (7)0.71620 (6)0.01917 (15)
O40.40769 (8)1.64915 (7)0.18066 (6)0.02136 (16)
O50.50193 (9)1.52880 (7)0.14118 (7)0.02571 (17)
O60.87480 (8)2.10135 (7)0.00980 (6)0.01967 (16)
N10.28738 (9)0.53158 (8)0.43973 (7)0.01887 (18)
N20.24387 (9)1.41152 (8)0.24761 (7)0.01975 (18)
C10.45252 (10)0.11559 (9)0.61365 (8)0.01602 (19)
C20.60886 (11)0.04391 (10)0.55614 (8)0.01699 (19)
H20.65990.08020.49260.020*
C30.68971 (10)0.07954 (10)0.59126 (8)0.01692 (19)
H30.79580.12810.55130.020*
C40.61597 (10)0.13298 (9)0.68521 (8)0.01573 (18)
C50.45923 (11)0.06414 (10)0.74142 (8)0.01780 (19)
H50.40780.10140.80390.021*
C60.37964 (10)0.05957 (10)0.70471 (8)0.01762 (19)
H60.27310.10670.74280.021*
C70.36266 (11)0.24964 (9)0.57911 (8)0.01740 (19)
C80.63496 (12)0.30580 (10)0.81677 (9)0.0216 (2)
H8A0.57500.34120.80190.026*
H8B0.56630.23400.87910.026*
C90.75677 (12)0.41802 (10)0.84936 (9)0.0231 (2)
H9A0.82580.48730.78630.035*
H9B0.71090.45840.91630.035*
H9C0.81290.38130.86670.035*
C100.59976 (10)1.76311 (9)0.10913 (8)0.01658 (19)
C110.69670 (11)1.75879 (10)0.06566 (8)0.0195 (2)
H110.69931.67590.06170.023*
C120.78868 (11)1.87368 (10)0.02853 (8)0.0189 (2)
H120.85511.86990.00030.023*
C130.78373 (10)1.99537 (9)0.03265 (8)0.01663 (19)
C140.68928 (11)2.00189 (10)0.07724 (8)0.01755 (19)
H140.68682.08480.08120.021*
C150.59854 (11)1.88556 (10)0.11586 (8)0.01718 (19)
H150.53511.89000.14710.021*
C160.49962 (11)1.63572 (10)0.14515 (8)0.01805 (19)
C170.86841 (12)2.22730 (10)0.01373 (9)0.0206 (2)
H17A0.76532.21500.06210.025*
H17B0.89482.26030.06340.025*
C180.97968 (12)2.32750 (10)0.06207 (9)0.0258 (2)
H18A1.08202.34300.01110.039*
H18B0.95572.29150.13660.039*
H18C0.97372.41310.06990.039*
C190.16443 (11)0.55222 (10)0.42448 (8)0.0193 (2)
H190.13840.48010.43580.023*
C200.07334 (11)0.67374 (10)0.39300 (8)0.01813 (19)
H200.01280.68400.38290.022*
C210.10966 (10)0.78120 (9)0.37619 (8)0.01547 (19)
C220.23808 (11)0.75891 (10)0.39243 (8)0.01754 (19)
H220.26700.82900.38200.021*
C230.32276 (11)0.63424 (10)0.42375 (8)0.0191 (2)
H230.40970.62070.43440.023*
C240.13435 (11)1.39130 (10)0.28095 (8)0.01879 (19)
H240.11761.46600.28580.023*
C250.04417 (11)1.26610 (10)0.30882 (8)0.01838 (19)
H250.03321.25620.33100.022*
C260.06734 (10)1.15489 (9)0.30414 (8)0.01639 (19)
C270.18146 (12)1.17653 (10)0.26908 (9)0.0234 (2)
H270.20121.10390.26380.028*
C280.26563 (12)1.30443 (11)0.24211 (10)0.0252 (2)
H280.34281.31710.21850.030*
C290.01377 (10)0.91023 (9)0.34238 (8)0.01701 (19)
H290.06300.91280.32310.020*
C300.02655 (10)1.02405 (10)0.33681 (8)0.01731 (19)
H300.10411.02000.35590.021*
H10.382 (3)0.391 (2)0.4775 (19)0.082 (7)*
H40.354 (2)1.566 (2)0.2045 (15)0.059 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0197 (3)0.0169 (3)0.0299 (4)0.0070 (3)0.0119 (3)0.0082 (3)
O20.0170 (3)0.0157 (3)0.0329 (4)0.0046 (3)0.0118 (3)0.0011 (3)
O30.0174 (3)0.0149 (3)0.0216 (3)0.0047 (3)0.0086 (3)0.0048 (3)
O40.0205 (3)0.0162 (3)0.0307 (4)0.0079 (3)0.0152 (3)0.0069 (3)
O50.0339 (4)0.0152 (3)0.0356 (4)0.0118 (3)0.0216 (3)0.0078 (3)
O60.0211 (3)0.0140 (3)0.0269 (4)0.0073 (3)0.0145 (3)0.0066 (3)
N10.0182 (4)0.0156 (4)0.0194 (4)0.0053 (3)0.0076 (3)0.0032 (3)
N20.0182 (4)0.0158 (4)0.0223 (4)0.0052 (3)0.0089 (3)0.0038 (3)
C10.0168 (4)0.0131 (4)0.0199 (4)0.0057 (3)0.0096 (4)0.0002 (3)
C20.0177 (4)0.0164 (4)0.0177 (4)0.0079 (4)0.0078 (4)0.0018 (3)
C30.0137 (4)0.0162 (4)0.0187 (4)0.0047 (3)0.0063 (3)0.0004 (3)
C40.0173 (4)0.0121 (4)0.0190 (4)0.0052 (3)0.0098 (4)0.0003 (3)
C50.0176 (4)0.0166 (4)0.0194 (4)0.0086 (4)0.0066 (4)0.0017 (3)
C60.0144 (4)0.0161 (4)0.0214 (4)0.0056 (3)0.0068 (4)0.0014 (3)
C70.0186 (4)0.0138 (4)0.0224 (4)0.0063 (4)0.0113 (4)0.0002 (3)
C80.0227 (5)0.0180 (5)0.0252 (5)0.0107 (4)0.0105 (4)0.0075 (4)
C90.0285 (5)0.0172 (5)0.0256 (5)0.0091 (4)0.0151 (4)0.0055 (4)
C100.0165 (4)0.0148 (4)0.0171 (4)0.0065 (3)0.0068 (4)0.0037 (3)
C110.0229 (5)0.0160 (4)0.0230 (5)0.0111 (4)0.0100 (4)0.0038 (4)
C120.0203 (4)0.0187 (5)0.0221 (4)0.0104 (4)0.0114 (4)0.0045 (4)
C130.0151 (4)0.0150 (4)0.0173 (4)0.0055 (3)0.0063 (4)0.0033 (3)
C140.0186 (4)0.0142 (4)0.0210 (4)0.0083 (4)0.0083 (4)0.0027 (3)
C150.0169 (4)0.0166 (4)0.0188 (4)0.0079 (4)0.0078 (4)0.0027 (3)
C160.0183 (4)0.0157 (4)0.0184 (4)0.0072 (4)0.0067 (4)0.0029 (3)
C170.0243 (5)0.0135 (4)0.0241 (5)0.0075 (4)0.0117 (4)0.0037 (4)
C180.0286 (5)0.0161 (5)0.0288 (5)0.0046 (4)0.0152 (4)0.0046 (4)
C190.0209 (5)0.0146 (4)0.0222 (4)0.0081 (4)0.0083 (4)0.0021 (3)
C200.0163 (4)0.0164 (4)0.0217 (4)0.0066 (4)0.0083 (4)0.0005 (3)
C210.0155 (4)0.0128 (4)0.0146 (4)0.0043 (3)0.0052 (3)0.0009 (3)
C220.0181 (4)0.0158 (4)0.0194 (4)0.0084 (4)0.0077 (4)0.0036 (3)
C230.0168 (4)0.0191 (5)0.0208 (4)0.0072 (4)0.0087 (4)0.0042 (4)
C240.0202 (5)0.0146 (4)0.0203 (4)0.0072 (4)0.0079 (4)0.0019 (3)
C250.0183 (4)0.0168 (4)0.0205 (4)0.0070 (4)0.0095 (4)0.0022 (3)
C260.0155 (4)0.0142 (4)0.0159 (4)0.0049 (3)0.0053 (3)0.0022 (3)
C270.0257 (5)0.0164 (5)0.0348 (5)0.0106 (4)0.0185 (5)0.0076 (4)
C280.0244 (5)0.0208 (5)0.0366 (6)0.0105 (4)0.0194 (5)0.0086 (4)
C290.0147 (4)0.0149 (4)0.0191 (4)0.0046 (3)0.0077 (4)0.0031 (3)
C300.0157 (4)0.0151 (4)0.0190 (4)0.0043 (3)0.0085 (4)0.0025 (3)
Geometric parameters (Å, º) top
O1—C71.3173 (12)C11—H110.9500
O1—H11.02 (2)C12—C131.3972 (14)
O2—C71.2213 (12)C12—H120.9500
O3—C41.3606 (11)C13—C141.3963 (13)
O3—C81.4407 (12)C14—C151.3948 (13)
O4—C161.3267 (12)C14—H140.9500
O4—H40.93 (2)C15—H150.9500
O5—C161.2173 (13)C17—C181.5067 (14)
O6—C131.3636 (12)C17—H17A0.9900
O6—C171.4373 (12)C17—H17B0.9900
N1—C191.3385 (13)C18—H18A0.9800
N1—C231.3406 (13)C18—H18B0.9800
N2—C241.3384 (13)C18—H18C0.9800
N2—C281.3413 (14)C19—C201.3853 (13)
C1—C61.3866 (13)C19—H190.9500
C1—C21.3978 (14)C20—C211.3985 (14)
C1—C71.4877 (13)C20—H200.9500
C2—C31.3826 (13)C21—C221.3977 (13)
C2—H20.9500C21—C291.4698 (13)
C3—C41.3948 (13)C22—C231.3829 (13)
C3—H30.9500C22—H220.9500
C4—C51.3970 (14)C23—H230.9500
C5—C61.3899 (14)C24—C251.3876 (13)
C5—H50.9500C24—H240.9500
C6—H60.9500C25—C261.3937 (14)
C8—C91.5060 (14)C25—H250.9500
C8—H8A0.9900C26—C271.3954 (14)
C8—H8B0.9900C26—C301.4682 (13)
C9—H9A0.9800C27—C281.3830 (14)
C9—H9B0.9800C27—H270.9500
C9—H9C0.9800C28—H280.9500
C10—C151.3917 (14)C29—C301.3347 (14)
C10—C111.4002 (14)C29—H290.9500
C10—C161.4904 (13)C30—H300.9500
C11—C121.3816 (14)
C7—O1—H1112.5 (13)C10—C15—C14120.80 (9)
C4—O3—C8117.16 (8)C10—C15—H15119.6
C16—O4—H4107.3 (12)C14—C15—H15119.6
C13—O6—C17117.81 (8)O5—C16—O4123.33 (9)
C19—N1—C23117.86 (8)O5—C16—C10122.47 (9)
C24—N2—C28117.29 (8)O4—C16—C10114.19 (8)
C6—C1—C2118.97 (9)O6—C17—C18107.58 (8)
C6—C1—C7119.35 (9)O6—C17—H17A110.2
C2—C1—C7121.68 (9)C18—C17—H17A110.2
C3—C2—C1120.38 (9)O6—C17—H17B110.2
C3—C2—H2119.8C18—C17—H17B110.2
C1—C2—H2119.8H17A—C17—H17B108.5
C2—C3—C4120.20 (9)C17—C18—H18A109.5
C2—C3—H3119.9C17—C18—H18B109.5
C4—C3—H3119.9H18A—C18—H18B109.5
O3—C4—C3115.67 (8)C17—C18—H18C109.5
O3—C4—C5124.38 (8)H18A—C18—H18C109.5
C3—C4—C5119.94 (9)H18B—C18—H18C109.5
C6—C5—C4119.07 (9)N1—C19—C20123.14 (9)
C6—C5—H5120.5N1—C19—H19118.4
C4—C5—H5120.5C20—C19—H19118.4
C1—C6—C5121.38 (9)C19—C20—C21119.28 (9)
C1—C6—H6119.3C19—C20—H20120.4
C5—C6—H6119.3C21—C20—H20120.4
O2—C7—O1123.82 (9)C22—C21—C20117.24 (8)
O2—C7—C1122.55 (9)C22—C21—C29123.22 (8)
O1—C7—C1113.62 (8)C20—C21—C29119.54 (9)
O3—C8—C9108.07 (8)C23—C22—C21119.66 (9)
O3—C8—H8A110.1C23—C22—H22120.2
C9—C8—H8A110.1C21—C22—H22120.2
O3—C8—H8B110.1N1—C23—C22122.83 (9)
C9—C8—H8B110.1N1—C23—H23118.6
H8A—C8—H8B108.4C22—C23—H23118.6
C8—C9—H9A109.5N2—C24—C25122.96 (9)
C8—C9—H9B109.5N2—C24—H24118.5
H9A—C9—H9B109.5C25—C24—H24118.5
C8—C9—H9C109.5C24—C25—C26119.90 (9)
H9A—C9—H9C109.5C24—C25—H25120.1
H9B—C9—H9C109.5C26—C25—H25120.1
C15—C10—C11119.03 (9)C25—C26—C27116.87 (9)
C15—C10—C16122.19 (9)C25—C26—C30119.11 (9)
C11—C10—C16118.78 (9)C27—C26—C30124.01 (9)
C12—C11—C10120.75 (9)C28—C27—C26119.58 (9)
C12—C11—H11119.6C28—C27—H27120.2
C10—C11—H11119.6C26—C27—H27120.2
C11—C12—C13119.86 (9)N2—C28—C27123.40 (10)
C11—C12—H12120.1N2—C28—H28118.3
C13—C12—H12120.1C27—C28—H28118.3
O6—C13—C14124.69 (9)C30—C29—C21124.82 (9)
O6—C13—C12115.20 (8)C30—C29—H29117.6
C14—C13—C12120.11 (9)C21—C29—H29117.6
C15—C14—C13119.42 (9)C29—C30—C26126.47 (9)
C15—C14—H14120.3C29—C30—H30116.8
C13—C14—H14120.3C26—C30—H30116.8
C6—C1—C2—C31.41 (14)C13—C14—C15—C100.81 (14)
C7—C1—C2—C3179.01 (8)C15—C10—C16—O5178.78 (9)
C1—C2—C3—C40.64 (14)C11—C10—C16—O52.10 (14)
C8—O3—C4—C3176.51 (8)C15—C10—C16—O41.78 (13)
C8—O3—C4—C52.87 (13)C11—C10—C16—O4177.33 (8)
C2—C3—C4—O3176.95 (8)C13—O6—C17—C18179.28 (8)
C2—C3—C4—C52.45 (14)C23—N1—C19—C200.14 (14)
O3—C4—C5—C6177.18 (8)N1—C19—C20—C210.13 (15)
C3—C4—C5—C62.17 (14)C19—C20—C21—C220.04 (14)
C2—C1—C6—C51.69 (14)C19—C20—C21—C29179.78 (8)
C7—C1—C6—C5178.72 (8)C20—C21—C22—C230.04 (14)
C4—C5—C6—C10.10 (14)C29—C21—C22—C23179.69 (9)
C6—C1—C7—O26.00 (14)C19—N1—C23—C220.05 (14)
C2—C1—C7—O2173.58 (9)C21—C22—C23—N10.04 (15)
C6—C1—C7—O1173.62 (8)C28—N2—C24—C250.33 (14)
C2—C1—C7—O16.80 (13)N2—C24—C25—C260.90 (15)
C4—O3—C8—C9167.74 (8)C24—C25—C26—C270.98 (14)
C15—C10—C11—C120.81 (14)C24—C25—C26—C30178.40 (8)
C16—C10—C11—C12178.33 (9)C25—C26—C27—C280.58 (15)
C10—C11—C12—C130.96 (15)C30—C26—C27—C28178.77 (9)
C17—O6—C13—C142.93 (13)C24—N2—C28—C270.09 (16)
C17—O6—C13—C12176.60 (8)C26—C27—C28—N20.05 (17)
C11—C12—C13—O6177.69 (8)C22—C21—C29—C308.51 (15)
C11—C12—C13—C141.86 (14)C20—C21—C29—C30171.76 (9)
O6—C13—C14—C15178.53 (8)C21—C29—C30—C26179.62 (8)
C12—C13—C14—C150.98 (14)C25—C26—C30—C29176.47 (9)
C11—C10—C15—C141.70 (14)C27—C26—C30—C292.87 (16)
C16—C10—C15—C14177.41 (8)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.02 (2)1.57 (2)2.5931 (14)178 (3)
O4—H4···N20.93 (2)1.76 (2)2.6858 (15)177 (2)
C8—H8A···O5i0.992.503.316 (2)139
C20—H20···O2i0.952.293.238 (2)173
C23—H23···O1ii0.952.583.449 (2)152
C24—H24···O2iii0.952.473.2993 (17)146
C28—H28···O50.952.563.2291 (19)128
C8—H8B···Cgiv0.002.753.6471 (18)150
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+2, z+1; (iv) x+1, y2, z+1.
(III) 4-n-Propoxybenzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1) top
Crystal data top
2C10H12O3·C12H10N2F(000) = 1152.00
Mr = 542.63Dx = 1.303 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71075 Å
Hall symbol: P -2ycCell parameters from 52745 reflections
a = 11.1192 (18) Åθ = 3.1–30.1°
b = 10.8289 (13) ŵ = 0.09 mm1
c = 23.020 (3) ÅT = 93 K
β = 93.517 (8)°Block, colorless
V = 2766.6 (7) Å30.47 × 0.27 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
11427 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.022
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.914, Tmax = 0.991k = 1314
43672 measured reflectionsl = 2929
11868 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.1097P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
11868 reflectionsΔρmax = 0.19 e Å3
742 parametersΔρmin = 0.45 e Å3
2 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32953 (12)0.53144 (11)0.14865 (5)0.0194 (2)
O20.32547 (13)0.32943 (11)0.16857 (5)0.0256 (3)
O30.15985 (11)0.32000 (10)0.09975 (5)0.0175 (2)
O40.74306 (11)0.61561 (10)0.76437 (5)0.0192 (2)
O50.74264 (12)0.40996 (11)0.75692 (5)0.0246 (3)
O60.90934 (11)0.50197 (10)1.02430 (5)0.0170 (2)
O71.64469 (10)0.01975 (11)0.11593 (6)0.0192 (2)
O81.65201 (11)0.22435 (11)0.10387 (6)0.0231 (3)
O92.16733 (10)0.04986 (11)0.02766 (5)0.0184 (2)
O100.42885 (10)0.04174 (10)0.31208 (6)0.0189 (2)
O110.44387 (11)0.16385 (11)0.31005 (6)0.0232 (3)
O120.08488 (10)0.10616 (10)0.39427 (5)0.0180 (2)
N10.40817 (12)0.55374 (13)0.25966 (6)0.0164 (3)
N20.65872 (13)0.61638 (12)0.65662 (6)0.0162 (3)
N31.43371 (12)0.05632 (13)0.15388 (6)0.0161 (3)
N40.64132 (12)0.02903 (12)0.27170 (6)0.0155 (3)
C10.27225 (14)0.39443 (14)0.07180 (7)0.0142 (3)
C20.25007 (14)0.49248 (14)0.03367 (7)0.0161 (3)
H20.26130.57460.04740.019*
C30.21176 (15)0.47258 (14)0.02430 (7)0.0164 (3)
H30.19610.54040.04990.020*
C40.19672 (14)0.35145 (14)0.04430 (7)0.0146 (3)
C50.21982 (14)0.25211 (14)0.00639 (7)0.0153 (3)
H50.21020.16980.02020.018*
C60.25659 (14)0.27355 (14)0.05111 (7)0.0155 (3)
H60.27140.20580.07680.019*
C70.31161 (14)0.41411 (15)0.13429 (7)0.0159 (3)
C80.13607 (15)0.41737 (15)0.14122 (7)0.0167 (3)
H8A0.21000.46620.14610.020*
H8B0.07290.47320.12790.020*
C90.09421 (16)0.35684 (16)0.19813 (7)0.0204 (3)
H9A0.01960.30930.19280.024*
H9B0.15670.29860.21010.024*
C100.07013 (17)0.45360 (18)0.24547 (8)0.0259 (4)
H10A0.03750.41330.28120.039*
H10B0.14560.49570.25310.039*
H10C0.01180.51400.23260.039*
C110.79737 (14)0.50089 (14)0.84888 (7)0.0144 (3)
C120.81679 (14)0.38887 (14)0.87723 (7)0.0163 (3)
H120.80400.31410.85610.020*
C130.85464 (15)0.38402 (14)0.93601 (7)0.0159 (3)
H130.86790.30680.95490.019*
C140.87278 (14)0.49443 (15)0.96683 (7)0.0145 (3)
C150.85349 (15)0.60769 (14)0.93858 (7)0.0165 (3)
H150.86630.68260.95950.020*
C160.81583 (14)0.61066 (14)0.88022 (7)0.0154 (3)
H160.80240.68780.86130.019*
C170.75811 (14)0.50347 (14)0.78582 (7)0.0155 (3)
C180.92950 (15)0.38910 (14)1.05584 (7)0.0159 (3)
H18A0.99300.34001.03820.019*
H18B0.85460.33951.05470.019*
C190.96841 (15)0.42194 (15)1.11810 (7)0.0170 (3)
H19A0.90470.47151.13520.020*
H19B1.04270.47251.11880.020*
C200.99190 (17)0.30527 (16)1.15432 (7)0.0215 (3)
H20A1.05570.25671.13760.032*
H20B0.91800.25601.15420.032*
H20C1.01720.32831.19440.032*
C210.44175 (14)0.44775 (15)0.28601 (7)0.0172 (3)
H210.43610.37340.26410.021*
C220.48435 (14)0.44187 (15)0.34388 (7)0.0162 (3)
H220.50840.36490.36060.019*
C230.49178 (14)0.54936 (15)0.37746 (7)0.0146 (3)
C240.45676 (14)0.65969 (14)0.34977 (7)0.0162 (3)
H240.46030.73530.37070.019*
C250.41696 (15)0.65777 (15)0.29160 (7)0.0170 (3)
H250.39470.73370.27330.020*
C260.62835 (14)0.72313 (14)0.63042 (7)0.0163 (3)
H260.63710.79730.65230.020*
C270.58483 (14)0.73036 (14)0.57292 (7)0.0157 (3)
H270.56280.80800.55620.019*
C280.57348 (14)0.62230 (14)0.53938 (7)0.0143 (3)
C290.60595 (15)0.51143 (14)0.56720 (7)0.0163 (3)
H290.60030.43580.54630.020*
C300.64636 (15)0.51207 (15)0.62520 (7)0.0175 (3)
H300.66620.43560.64360.021*
C310.53612 (14)0.54115 (15)0.43876 (7)0.0157 (3)
H310.57270.46570.45140.019*
C320.52930 (14)0.63108 (15)0.47830 (7)0.0151 (3)
H320.49290.70660.46570.018*
C331.82306 (14)0.10410 (14)0.08278 (7)0.0143 (3)
C341.87138 (15)0.01377 (14)0.07642 (7)0.0155 (3)
H341.82510.08440.08510.019*
C351.98640 (15)0.02828 (14)0.05759 (7)0.0163 (3)
H352.01840.10880.05300.020*
C362.05535 (14)0.07502 (15)0.04539 (7)0.0155 (3)
C372.00860 (15)0.19323 (15)0.05190 (7)0.0168 (3)
H372.05520.26380.04350.020*
C381.89264 (14)0.20662 (14)0.07082 (7)0.0155 (3)
H381.86060.28710.07560.019*
C391.69845 (14)0.12297 (14)0.10180 (7)0.0147 (3)
C402.23943 (14)0.15240 (15)0.01121 (7)0.0169 (3)
H40A2.19870.19660.02210.020*
H40B2.25100.21100.04410.020*
C412.36007 (15)0.10366 (16)0.00547 (7)0.0196 (3)
H41A2.40010.05880.02780.024*
H41B2.34810.04530.03840.024*
C422.43915 (17)0.21100 (18)0.02284 (9)0.0282 (4)
H42A2.45420.26630.01050.042*
H42B2.51600.17900.03520.042*
H42C2.39810.25670.05500.042*
C430.26098 (14)0.07523 (14)0.33818 (7)0.0148 (3)
C440.20144 (14)0.03061 (14)0.35473 (7)0.0152 (3)
H440.24070.10830.35290.018*
C450.08563 (14)0.02495 (14)0.37387 (7)0.0154 (3)
H450.04600.09800.38530.018*
C460.02829 (14)0.08912 (15)0.37615 (7)0.0149 (3)
C470.08671 (15)0.19663 (14)0.35876 (7)0.0183 (3)
H470.04700.27420.35970.022*
C480.20245 (15)0.18907 (15)0.34025 (7)0.0183 (3)
H480.24240.26190.32890.022*
C490.38641 (14)0.07066 (14)0.31880 (7)0.0151 (3)
C500.15245 (14)0.00148 (15)0.40715 (7)0.0162 (3)
H50A0.10970.04920.43870.019*
H50B0.16260.05490.37230.019*
C510.27412 (15)0.04002 (15)0.42582 (7)0.0188 (3)
H51A0.31600.08840.39420.023*
H51B0.26320.09380.46050.023*
C520.34991 (16)0.07171 (17)0.43997 (9)0.0256 (4)
H52A0.36000.12500.40560.038*
H52B0.42910.04410.45130.038*
H52C0.30950.11790.47210.038*
C531.37844 (15)0.16641 (14)0.15381 (7)0.0158 (3)
H531.42170.23750.14290.019*
C541.26071 (14)0.18018 (14)0.16912 (7)0.0154 (3)
H541.22430.25960.16840.018*
C551.19548 (14)0.07673 (14)0.18562 (6)0.0136 (3)
C561.25420 (15)0.03742 (14)0.18563 (7)0.0154 (3)
H561.21360.11040.19630.018*
C571.37192 (15)0.04280 (15)0.16993 (7)0.0164 (3)
H571.41110.12080.17050.020*
C580.69887 (14)0.07938 (14)0.27061 (7)0.0152 (3)
H580.65720.15210.28070.018*
C590.81687 (14)0.08950 (14)0.25528 (7)0.0151 (3)
H590.85510.16790.25540.018*
C600.87958 (14)0.01604 (14)0.23960 (6)0.0139 (3)
C610.81821 (14)0.12871 (14)0.24027 (7)0.0154 (3)
H610.85700.20290.22970.018*
C620.70047 (14)0.13104 (15)0.25645 (7)0.0163 (3)
H620.65970.20810.25680.020*
C631.07037 (14)0.09180 (14)0.20120 (6)0.0146 (3)
H631.03360.17010.19440.018*
C641.00481 (14)0.00392 (14)0.22417 (7)0.0153 (3)
H641.04260.07380.23120.018*
H10.362 (4)0.539 (4)0.1878 (17)0.086 (12)*
H40.711 (3)0.615 (3)0.7237 (13)0.050 (8)*
H71.564 (2)0.044 (3)0.1301 (11)0.040 (7)*
H10D0.508 (3)0.036 (3)0.2969 (14)0.055 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0288 (6)0.0148 (5)0.0139 (5)0.0000 (5)0.0040 (5)0.0016 (4)
O20.0432 (8)0.0150 (5)0.0174 (6)0.0006 (5)0.0085 (5)0.0000 (4)
O30.0257 (6)0.0137 (5)0.0126 (5)0.0002 (4)0.0019 (4)0.0009 (4)
O40.0296 (6)0.0137 (5)0.0136 (5)0.0012 (5)0.0045 (5)0.0009 (4)
O50.0400 (7)0.0147 (5)0.0181 (6)0.0005 (5)0.0064 (5)0.0021 (5)
O60.0237 (6)0.0138 (5)0.0129 (5)0.0008 (4)0.0024 (5)0.0003 (4)
O70.0151 (5)0.0134 (5)0.0300 (6)0.0006 (4)0.0069 (5)0.0004 (4)
O80.0206 (6)0.0158 (5)0.0333 (7)0.0029 (5)0.0052 (5)0.0027 (5)
O90.0164 (5)0.0157 (5)0.0239 (6)0.0012 (4)0.0076 (5)0.0001 (4)
O100.0148 (5)0.0138 (5)0.0286 (6)0.0013 (4)0.0061 (5)0.0014 (5)
O110.0195 (6)0.0141 (5)0.0369 (7)0.0021 (5)0.0090 (5)0.0015 (5)
O120.0155 (5)0.0152 (5)0.0237 (6)0.0002 (4)0.0056 (5)0.0006 (4)
N10.0181 (6)0.0164 (6)0.0144 (6)0.0012 (5)0.0007 (5)0.0004 (5)
N20.0186 (6)0.0159 (6)0.0138 (6)0.0016 (5)0.0014 (5)0.0000 (5)
N30.0143 (6)0.0174 (6)0.0167 (6)0.0012 (5)0.0011 (5)0.0014 (5)
N40.0143 (6)0.0152 (6)0.0169 (6)0.0008 (5)0.0017 (5)0.0009 (5)
C10.0139 (7)0.0149 (7)0.0138 (7)0.0006 (5)0.0006 (6)0.0007 (6)
C20.0183 (7)0.0127 (7)0.0172 (7)0.0006 (6)0.0009 (6)0.0016 (6)
C30.0202 (8)0.0116 (7)0.0172 (7)0.0001 (5)0.0003 (6)0.0025 (5)
C40.0137 (7)0.0162 (7)0.0139 (7)0.0003 (6)0.0011 (6)0.0013 (6)
C50.0176 (7)0.0102 (6)0.0182 (7)0.0004 (5)0.0011 (6)0.0016 (6)
C60.0171 (7)0.0131 (7)0.0162 (7)0.0007 (5)0.0001 (6)0.0020 (6)
C70.0166 (7)0.0162 (7)0.0148 (7)0.0006 (6)0.0007 (6)0.0012 (6)
C80.0195 (7)0.0153 (7)0.0150 (7)0.0005 (6)0.0007 (6)0.0026 (6)
C90.0236 (8)0.0224 (8)0.0149 (7)0.0016 (6)0.0013 (6)0.0004 (6)
C100.0276 (9)0.0323 (9)0.0175 (8)0.0044 (7)0.0007 (7)0.0053 (7)
C110.0143 (7)0.0145 (7)0.0143 (7)0.0005 (5)0.0003 (6)0.0002 (6)
C120.0178 (7)0.0134 (7)0.0174 (7)0.0007 (6)0.0001 (6)0.0021 (6)
C130.0191 (7)0.0117 (7)0.0168 (7)0.0001 (6)0.0001 (6)0.0017 (6)
C140.0137 (7)0.0162 (7)0.0136 (7)0.0001 (5)0.0000 (6)0.0011 (5)
C150.0204 (7)0.0127 (7)0.0162 (7)0.0000 (6)0.0009 (6)0.0021 (6)
C160.0178 (7)0.0121 (7)0.0162 (7)0.0006 (6)0.0006 (6)0.0007 (6)
C170.0152 (7)0.0152 (7)0.0159 (7)0.0011 (5)0.0002 (6)0.0001 (6)
C180.0191 (8)0.0143 (7)0.0140 (7)0.0011 (6)0.0006 (6)0.0024 (6)
C190.0197 (8)0.0179 (7)0.0133 (7)0.0001 (6)0.0001 (6)0.0001 (6)
C200.0301 (9)0.0189 (8)0.0150 (7)0.0004 (6)0.0028 (7)0.0002 (6)
C210.0193 (8)0.0157 (7)0.0166 (7)0.0017 (6)0.0002 (6)0.0029 (6)
C220.0177 (7)0.0140 (7)0.0166 (7)0.0006 (6)0.0001 (6)0.0002 (6)
C230.0121 (7)0.0169 (7)0.0147 (7)0.0019 (5)0.0001 (6)0.0005 (6)
C240.0187 (8)0.0140 (7)0.0157 (7)0.0009 (6)0.0008 (6)0.0023 (6)
C250.0196 (8)0.0143 (7)0.0166 (7)0.0012 (6)0.0014 (6)0.0013 (6)
C260.0191 (7)0.0148 (7)0.0148 (7)0.0005 (6)0.0008 (6)0.0018 (6)
C270.0179 (7)0.0133 (7)0.0160 (7)0.0014 (6)0.0008 (6)0.0012 (6)
C280.0123 (7)0.0164 (7)0.0141 (7)0.0018 (5)0.0011 (6)0.0002 (6)
C290.0189 (7)0.0136 (7)0.0163 (7)0.0015 (6)0.0012 (6)0.0012 (6)
C300.0206 (8)0.0142 (7)0.0174 (8)0.0002 (6)0.0014 (6)0.0025 (6)
C310.0166 (7)0.0157 (7)0.0145 (7)0.0012 (6)0.0010 (6)0.0009 (6)
C320.0146 (7)0.0155 (7)0.0149 (7)0.0011 (5)0.0008 (6)0.0016 (6)
C330.0155 (7)0.0149 (7)0.0126 (7)0.0006 (6)0.0000 (6)0.0008 (5)
C340.0177 (7)0.0134 (7)0.0155 (7)0.0017 (6)0.0007 (6)0.0011 (5)
C350.0187 (8)0.0128 (7)0.0174 (7)0.0005 (6)0.0021 (6)0.0005 (5)
C360.0157 (7)0.0193 (8)0.0113 (6)0.0004 (6)0.0000 (6)0.0002 (6)
C370.0171 (7)0.0143 (7)0.0189 (7)0.0025 (6)0.0018 (6)0.0029 (6)
C380.0197 (8)0.0108 (7)0.0160 (7)0.0013 (6)0.0000 (6)0.0011 (5)
C390.0158 (7)0.0136 (7)0.0146 (7)0.0001 (6)0.0008 (6)0.0003 (5)
C400.0163 (7)0.0166 (7)0.0180 (7)0.0021 (6)0.0024 (6)0.0015 (6)
C410.0175 (8)0.0215 (8)0.0202 (7)0.0010 (6)0.0041 (6)0.0019 (6)
C420.0200 (8)0.0284 (9)0.0371 (10)0.0055 (7)0.0088 (8)0.0008 (8)
C430.0133 (7)0.0157 (7)0.0154 (7)0.0011 (6)0.0007 (6)0.0013 (6)
C440.0159 (7)0.0124 (7)0.0171 (7)0.0020 (5)0.0000 (6)0.0002 (5)
C450.0161 (7)0.0138 (7)0.0162 (7)0.0021 (6)0.0002 (6)0.0019 (5)
C460.0145 (7)0.0166 (7)0.0138 (7)0.0001 (6)0.0015 (6)0.0011 (6)
C470.0184 (8)0.0121 (7)0.0247 (8)0.0022 (6)0.0034 (6)0.0007 (6)
C480.0177 (8)0.0140 (7)0.0233 (8)0.0026 (6)0.0027 (6)0.0007 (6)
C490.0159 (7)0.0137 (7)0.0156 (7)0.0000 (5)0.0012 (6)0.0001 (5)
C500.0171 (7)0.0151 (7)0.0167 (7)0.0019 (6)0.0032 (6)0.0007 (6)
C510.0173 (7)0.0205 (8)0.0190 (8)0.0007 (6)0.0045 (6)0.0002 (6)
C520.0198 (8)0.0249 (9)0.0327 (9)0.0034 (7)0.0075 (7)0.0030 (7)
C530.0162 (7)0.0147 (7)0.0165 (7)0.0037 (6)0.0017 (6)0.0006 (6)
C540.0166 (7)0.0144 (7)0.0151 (7)0.0009 (6)0.0003 (6)0.0007 (5)
C550.0137 (7)0.0167 (7)0.0103 (6)0.0008 (6)0.0000 (5)0.0014 (5)
C560.0164 (7)0.0138 (7)0.0160 (7)0.0026 (6)0.0015 (6)0.0009 (5)
C570.0173 (7)0.0147 (7)0.0174 (7)0.0019 (6)0.0020 (6)0.0013 (6)
C580.0171 (7)0.0136 (7)0.0150 (7)0.0027 (6)0.0019 (6)0.0011 (5)
C590.0173 (7)0.0120 (7)0.0160 (7)0.0008 (5)0.0008 (6)0.0012 (5)
C600.0144 (7)0.0159 (7)0.0113 (6)0.0000 (6)0.0000 (5)0.0020 (5)
C610.0170 (7)0.0128 (7)0.0163 (7)0.0021 (6)0.0007 (6)0.0007 (5)
C620.0157 (8)0.0148 (7)0.0182 (7)0.0013 (5)0.0007 (6)0.0003 (6)
C630.0141 (7)0.0154 (7)0.0143 (7)0.0016 (6)0.0000 (6)0.0010 (5)
C640.0141 (7)0.0156 (7)0.0162 (7)0.0011 (6)0.0012 (6)0.0015 (6)
Geometric parameters (Å, º) top
O1—C71.325 (2)C24—H240.9500
O1—H10.95 (4)C25—H250.9500
O2—C71.214 (2)C26—C271.383 (2)
O3—C41.3598 (18)C26—H260.9500
O3—C81.4360 (18)C27—C281.403 (2)
O4—C171.3177 (19)C27—H270.9500
O4—H40.98 (3)C28—C291.398 (2)
O5—C171.218 (2)C28—C321.464 (2)
O6—C141.3625 (18)C29—C301.383 (2)
O6—C181.4322 (18)C29—H290.9500
O7—C391.3177 (19)C30—H300.9500
O7—H71.01 (3)C31—C321.338 (2)
O8—C391.215 (2)C31—H310.9500
O9—C361.361 (2)C32—H320.9500
O9—C401.4340 (18)C33—C381.390 (2)
O10—C491.3180 (19)C33—C341.396 (2)
O10—H10D0.97 (3)C33—C391.493 (2)
O11—C491.218 (2)C34—C351.384 (2)
O12—C461.3624 (19)C34—H340.9500
O12—C501.4278 (19)C35—C361.394 (2)
N1—C211.340 (2)C35—H350.9500
N1—C251.346 (2)C36—C371.393 (2)
N2—C261.338 (2)C37—C381.394 (2)
N2—C301.344 (2)C37—H370.9500
N3—C571.339 (2)C38—H380.9500
N3—C531.341 (2)C40—C411.513 (2)
N4—C581.338 (2)C40—H40A0.9900
N4—C621.343 (2)C40—H40B0.9900
C1—C21.390 (2)C41—C421.526 (2)
C1—C61.400 (2)C41—H41A0.9900
C1—C71.493 (2)C41—H41B0.9900
C2—C31.393 (2)C42—H42A0.9800
C2—H20.9500C42—H42B0.9800
C3—C41.397 (2)C42—H42C0.9800
C3—H30.9500C43—C441.389 (2)
C4—C51.399 (2)C43—C481.396 (2)
C5—C61.381 (2)C43—C491.491 (2)
C5—H50.9500C44—C451.388 (2)
C6—H60.9500C44—H440.9500
C8—C91.512 (2)C45—C461.393 (2)
C8—H8A0.9900C45—H450.9500
C8—H8B0.9900C46—C471.403 (2)
C9—C101.524 (2)C47—C481.383 (2)
C9—H9A0.9900C47—H470.9500
C9—H9B0.9900C48—H480.9500
C10—H10A0.9800C50—C511.513 (2)
C10—H10B0.9800C50—H50A0.9900
C10—H10C0.9800C50—H50B0.9900
C11—C121.388 (2)C51—C521.521 (2)
C11—C161.399 (2)C51—H51A0.9900
C11—C171.490 (2)C51—H51B0.9900
C12—C131.393 (2)C52—H52A0.9800
C12—H120.9500C52—H52B0.9800
C13—C141.399 (2)C52—H52C0.9800
C13—H130.9500C53—C541.384 (2)
C14—C151.399 (2)C53—H530.9500
C15—C161.383 (2)C54—C551.400 (2)
C15—H150.9500C54—H540.9500
C16—H160.9500C55—C561.398 (2)
C18—C191.514 (2)C55—C631.467 (2)
C18—H18A0.9900C56—C571.380 (2)
C18—H18B0.9900C56—H560.9500
C19—C201.527 (2)C57—H570.9500
C19—H19A0.9900C58—C591.384 (2)
C19—H19B0.9900C58—H580.9500
C20—H20A0.9800C59—C601.398 (2)
C20—H20B0.9800C59—H590.9500
C20—H20C0.9800C60—C611.399 (2)
C21—C221.388 (2)C60—C641.464 (2)
C21—H210.9500C61—C621.383 (2)
C22—C231.397 (2)C61—H610.9500
C22—H220.9500C62—H620.9500
C23—C241.398 (2)C63—C641.328 (2)
C23—C311.469 (2)C63—H630.9500
C24—C251.384 (2)C64—H640.9500
C7—O1—H1111 (2)C32—C31—C23125.44 (14)
C4—O3—C8118.22 (12)C32—C31—H31117.3
C17—O4—H4112.7 (17)C23—C31—H31117.3
C14—O6—C18117.98 (12)C31—C32—C28125.19 (14)
C39—O7—H7106.7 (16)C31—C32—H32117.4
C36—O9—C40117.42 (12)C28—C32—H32117.4
C49—O10—H10D108.7 (18)C38—C33—C34119.14 (14)
C46—O12—C50117.43 (12)C38—C33—C39119.12 (13)
C21—N1—C25117.43 (14)C34—C33—C39121.74 (14)
C26—N2—C30117.97 (14)C35—C34—C33120.37 (14)
C57—N3—C53118.04 (14)C35—C34—H34119.8
C58—N4—C62118.30 (14)C33—C34—H34119.8
C2—C1—C6119.07 (14)C34—C35—C36120.13 (15)
C2—C1—C7121.97 (14)C34—C35—H35119.9
C6—C1—C7118.96 (14)C36—C35—H35119.9
C1—C2—C3121.26 (14)O9—C36—C37124.77 (14)
C1—C2—H2119.4O9—C36—C35115.09 (14)
C3—C2—H2119.4C37—C36—C35120.13 (15)
C2—C3—C4118.99 (14)C36—C37—C38119.19 (14)
C2—C3—H3120.5C36—C37—H37120.4
C4—C3—H3120.5C38—C37—H37120.4
O3—C4—C3124.59 (14)C33—C38—C37121.03 (14)
O3—C4—C5115.24 (13)C33—C38—H38119.5
C3—C4—C5120.17 (14)C37—C38—H38119.5
C6—C5—C4120.07 (14)O8—C39—O7123.80 (15)
C6—C5—H5120.0O8—C39—C33122.64 (14)
C4—C5—H5120.0O7—C39—C33113.56 (13)
C5—C6—C1120.43 (14)O9—C40—C41108.40 (13)
C5—C6—H6119.8O9—C40—H40A110.0
C1—C6—H6119.8C41—C40—H40A110.0
O2—C7—O1123.45 (15)O9—C40—H40B110.0
O2—C7—C1122.46 (14)C41—C40—H40B110.0
O1—C7—C1114.09 (13)H40A—C40—H40B108.4
O3—C8—C9106.97 (13)C40—C41—C42109.57 (14)
O3—C8—H8A110.3C40—C41—H41A109.8
C9—C8—H8A110.3C42—C41—H41A109.8
O3—C8—H8B110.3C40—C41—H41B109.8
C9—C8—H8B110.3C42—C41—H41B109.8
H8A—C8—H8B108.6H41A—C41—H41B108.2
C8—C9—C10110.65 (15)C41—C42—H42A109.5
C8—C9—H9A109.5C41—C42—H42B109.5
C10—C9—H9A109.5H42A—C42—H42B109.5
C8—C9—H9B109.5C41—C42—H42C109.5
C10—C9—H9B109.5H42A—C42—H42C109.5
H9A—C9—H9B108.1H42B—C42—H42C109.5
C9—C10—H10A109.5C44—C43—C48119.23 (14)
C9—C10—H10B109.5C44—C43—C49121.69 (14)
H10A—C10—H10B109.5C48—C43—C49119.08 (14)
C9—C10—H10C109.5C45—C44—C43121.20 (14)
H10A—C10—H10C109.5C45—C44—H44119.4
H10B—C10—H10C109.5C43—C44—H44119.4
C12—C11—C16119.11 (14)C44—C45—C46119.15 (14)
C12—C11—C17120.14 (14)C44—C45—H45120.4
C16—C11—C17120.74 (13)C46—C45—H45120.4
C11—C12—C13121.24 (14)O12—C46—C45124.42 (14)
C11—C12—H12119.4O12—C46—C47115.30 (14)
C13—C12—H12119.4C45—C46—C47120.27 (14)
C12—C13—C14119.08 (14)C48—C47—C46119.65 (14)
C12—C13—H13120.5C48—C47—H47120.2
C14—C13—H13120.5C46—C47—H47120.2
O6—C14—C15115.27 (13)C47—C48—C43120.49 (14)
O6—C14—C13124.68 (14)C47—C48—H48119.8
C15—C14—C13120.04 (14)C43—C48—H48119.8
C16—C15—C14120.05 (14)O11—C49—O10123.42 (15)
C16—C15—H15120.0O11—C49—C43122.13 (14)
C14—C15—H15120.0O10—C49—C43114.45 (13)
C15—C16—C11120.48 (14)O12—C50—C51107.92 (12)
C15—C16—H16119.8O12—C50—H50A110.1
C11—C16—H16119.8C51—C50—H50A110.1
O5—C17—O4123.44 (15)O12—C50—H50B110.1
O5—C17—C11122.65 (14)C51—C50—H50B110.1
O4—C17—C11113.90 (13)H50A—C50—H50B108.4
O6—C18—C19107.83 (13)C50—C51—C52109.96 (13)
O6—C18—H18A110.1C50—C51—H51A109.7
C19—C18—H18A110.1C52—C51—H51A109.7
O6—C18—H18B110.1C50—C51—H51B109.7
C19—C18—H18B110.1C52—C51—H51B109.7
H18A—C18—H18B108.5H51A—C51—H51B108.2
C18—C19—C20110.60 (13)C51—C52—H52A109.5
C18—C19—H19A109.5C51—C52—H52B109.5
C20—C19—H19A109.5H52A—C52—H52B109.5
C18—C19—H19B109.5C51—C52—H52C109.5
C20—C19—H19B109.5H52A—C52—H52C109.5
H19A—C19—H19B108.1H52B—C52—H52C109.5
C19—C20—H20A109.5N3—C53—C54122.40 (14)
C19—C20—H20B109.5N3—C53—H53118.8
H20A—C20—H20B109.5C54—C53—H53118.8
C19—C20—H20C109.5C53—C54—C55119.78 (14)
H20A—C20—H20C109.5C53—C54—H54120.1
H20B—C20—H20C109.5C55—C54—H54120.1
N1—C21—C22122.88 (15)C56—C55—C54117.25 (14)
N1—C21—H21118.6C56—C55—C63123.26 (14)
C22—C21—H21118.6C54—C55—C63119.49 (14)
C21—C22—C23119.88 (14)C57—C56—C55119.19 (14)
C21—C22—H22120.1C57—C56—H56120.4
C23—C22—H22120.1C55—C56—H56120.4
C22—C23—C24117.02 (14)N3—C57—C56123.33 (14)
C22—C23—C31119.10 (14)N3—C57—H57118.3
C24—C23—C31123.88 (14)C56—C57—H57118.3
C25—C24—C23119.45 (14)N4—C58—C59122.44 (14)
C25—C24—H24120.3N4—C58—H58118.8
C23—C24—H24120.3C59—C58—H58118.8
N1—C25—C24123.32 (14)C58—C59—C60119.80 (14)
N1—C25—H25118.3C58—C59—H59120.1
C24—C25—H25118.3C60—C59—H59120.1
N2—C26—C27122.98 (14)C59—C60—C61117.33 (14)
N2—C26—H26118.5C59—C60—C64119.10 (14)
C27—C26—H26118.5C61—C60—C64123.57 (14)
C26—C27—C28119.58 (14)C62—C61—C60119.30 (14)
C26—C27—H27120.2C62—C61—H61120.4
C28—C27—H27120.2C60—C61—H61120.4
C29—C28—C27116.88 (14)N4—C62—C61122.83 (14)
C29—C28—C32123.92 (14)N4—C62—H62118.6
C27—C28—C32119.20 (14)C61—C62—H62118.6
C30—C29—C28119.85 (15)C64—C63—C55124.72 (14)
C30—C29—H29120.1C64—C63—H63117.6
C28—C29—H29120.1C55—C63—H63117.6
N2—C30—C29122.72 (15)C63—C64—C60125.87 (14)
N2—C30—H30118.6C63—C64—H64117.1
C29—C30—H30118.6C60—C64—H64117.1
C6—C1—C2—C30.6 (2)C38—C33—C34—C351.0 (2)
C7—C1—C2—C3179.08 (14)C39—C33—C34—C35178.71 (14)
C1—C2—C3—C40.7 (2)C33—C34—C35—C360.6 (2)
C8—O3—C4—C30.9 (2)C40—O9—C36—C373.9 (2)
C8—O3—C4—C5179.18 (13)C40—O9—C36—C35176.38 (13)
C2—C3—C4—O3179.98 (14)C34—C35—C36—O9179.49 (14)
C2—C3—C4—C50.1 (2)C34—C35—C36—C370.2 (2)
O3—C4—C5—C6179.34 (13)O9—C36—C37—C38179.53 (14)
C3—C4—C5—C60.6 (2)C35—C36—C37—C380.2 (2)
C4—C5—C6—C10.7 (2)C34—C33—C38—C370.9 (2)
C2—C1—C6—C50.1 (2)C39—C33—C38—C37178.79 (14)
C7—C1—C6—C5179.75 (14)C36—C37—C38—C330.5 (2)
C2—C1—C7—O2176.28 (16)C38—C33—C39—O84.7 (2)
C6—C1—C7—O23.4 (2)C34—C33—C39—O8174.99 (16)
C2—C1—C7—O13.6 (2)C38—C33—C39—O7175.30 (14)
C6—C1—C7—O1176.79 (14)C34—C33—C39—O75.0 (2)
C4—O3—C8—C9178.66 (13)C36—O9—C40—C41178.73 (13)
O3—C8—C9—C10178.38 (13)O9—C40—C41—C42179.64 (14)
C16—C11—C12—C130.3 (2)C48—C43—C44—C450.7 (2)
C17—C11—C12—C13179.37 (14)C49—C43—C44—C45178.62 (14)
C11—C12—C13—C140.3 (2)C43—C44—C45—C460.3 (2)
C18—O6—C14—C15179.40 (13)C50—O12—C46—C455.4 (2)
C18—O6—C14—C130.7 (2)C50—O12—C46—C47174.21 (14)
C12—C13—C14—O6179.86 (14)C44—C45—C46—O12179.82 (14)
C12—C13—C14—C150.3 (2)C44—C45—C46—C470.6 (2)
O6—C14—C15—C16179.79 (14)O12—C46—C47—C48179.30 (15)
C13—C14—C15—C160.3 (2)C45—C46—C47—C481.1 (2)
C14—C15—C16—C110.4 (2)C46—C47—C48—C430.7 (3)
C12—C11—C16—C150.3 (2)C44—C43—C48—C470.3 (2)
C17—C11—C16—C15179.31 (14)C49—C43—C48—C47179.13 (15)
C12—C11—C17—O50.6 (2)C44—C43—C49—O11172.16 (16)
C16—C11—C17—O5179.02 (16)C48—C43—C49—O117.2 (2)
C12—C11—C17—O4179.96 (14)C44—C43—C49—O107.9 (2)
C16—C11—C17—O40.3 (2)C48—C43—C49—O10172.77 (14)
C14—O6—C18—C19179.70 (12)C46—O12—C50—C51179.65 (13)
O6—C18—C19—C20179.83 (13)O12—C50—C51—C52179.89 (13)
C25—N1—C21—C220.0 (2)C57—N3—C53—C540.6 (2)
N1—C21—C22—C231.0 (2)N3—C53—C54—C550.2 (2)
C21—C22—C23—C241.0 (2)C53—C54—C55—C560.1 (2)
C21—C22—C23—C31179.48 (15)C53—C54—C55—C63179.36 (14)
C22—C23—C24—C250.1 (2)C54—C55—C56—C570.3 (2)
C31—C23—C24—C25179.55 (15)C63—C55—C56—C57179.54 (14)
C21—N1—C25—C241.0 (2)C53—N3—C57—C560.8 (2)
C23—C24—C25—N11.0 (2)C55—C56—C57—N30.7 (2)
C30—N2—C26—C270.2 (2)C62—N4—C58—C591.0 (2)
N2—C26—C27—C281.3 (2)N4—C58—C59—C600.7 (2)
C26—C27—C28—C291.0 (2)C58—C59—C60—C610.0 (2)
C26—C27—C28—C32178.96 (14)C58—C59—C60—C64179.28 (14)
C27—C28—C29—C300.3 (2)C59—C60—C61—C620.4 (2)
C32—C28—C29—C30179.75 (14)C64—C60—C61—C62178.88 (14)
C26—N2—C30—C291.2 (2)C58—N4—C62—C610.6 (2)
C28—C29—C30—N21.5 (3)C60—C61—C62—N40.1 (2)
C22—C23—C31—C32168.18 (15)C56—C55—C63—C649.4 (2)
C24—C23—C31—C3212.4 (2)C54—C55—C63—C64171.36 (15)
C23—C31—C32—C28179.89 (15)C55—C63—C64—C60179.38 (14)
C29—C28—C32—C3113.7 (2)C59—C60—C64—C63170.54 (15)
C27—C28—C32—C31166.22 (15)C61—C60—C64—C6310.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the N1/C21–C25 pyridine, C1–C6 benzene, C11–C16 benzene and N4/C58–C62 pyridine rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.95 (4)1.71 (4)2.6607 (19)175 (4)
O4—H4···N20.98 (3)1.62 (3)2.5974 (19)179 (4)
O7—H7···N31.01 (2)1.59 (2)2.5836 (18)170 (3)
O10—H10D···N40.97 (3)1.63 (3)2.5950 (18)179 (3)
C21—H21···O20.952.503.193 (2)130
C21—H21···O110.952.503.124 (2)123
C26—H26···O7i0.952.553.236 (2)129
C30—H30···O8ii0.952.473.155 (2)129
C57—H57···O2iii0.952.453.146 (2)130
C58—H58···O110.952.513.165 (2)126
C62—H62···O5iv0.952.373.057 (2)129
C8—H8A···Cg1v0.992.853.6843 (19)143
C8—H8B···Cg3vi0.992.833.7013 (19)147
C18—H18A···Cg2vii0.992.803.5897 (19)137
C50—H50B···Cg4viii0.992.793.5721 (18)136
Symmetry codes: (i) x1, y+1, z+1/2; (ii) x1, y, z+1/2; (iii) x+1, y, z; (iv) x, y, z1/2; (v) x, y+1, z1/2; (vi) x1, y, z1; (vii) x+1, y, z+1; (viii) x1, y, z.
(IV) 4-n-Butoxybenzoic acid–(E)-1,2-di(pyridin-4-yl)ethene (2/1) top
Crystal data top
2C11H14O3·C12H10N2Z = 1
Mr = 570.68F(000) = 304.00
Triclinic, P1Dx = 1.305 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 7.103 (4) ÅCell parameters from 7992 reflections
b = 9.060 (5) Åθ = 3.1–30.0°
c = 11.627 (7) ŵ = 0.09 mm1
α = 82.29 (2)°T = 93 K
β = 78.54 (3)°Block, colorless
γ = 86.79 (3)°0.49 × 0.21 × 0.10 mm
V = 726.3 (7) Å3
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
2919 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.033
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.841, Tmax = 0.991k = 1110
7250 measured reflectionsl = 1515
3311 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.0445P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3311 reflectionsΔρmax = 0.18 e Å3
195 parametersΔρmin = 0.45 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87741 (10)0.23737 (7)0.37208 (5)0.02330 (17)
O20.77725 (10)0.20959 (7)0.19912 (6)0.02700 (18)
O31.18789 (9)0.85943 (7)0.22858 (6)0.02097 (17)
N10.73630 (11)0.02600 (8)0.40868 (7)0.02009 (18)
C10.94410 (12)0.43488 (9)0.25797 (7)0.01695 (19)
C21.04332 (12)0.51022 (9)0.34173 (7)0.01810 (19)
H21.05770.46310.40760.022*
C31.12077 (12)0.65193 (9)0.33042 (7)0.01837 (19)
H31.18490.70270.38920.022*
C41.10454 (12)0.72040 (9)0.23223 (8)0.01745 (19)
C51.00760 (13)0.64625 (9)0.14720 (7)0.01907 (19)
H50.99660.69210.08010.023*
C60.92703 (12)0.50462 (9)0.16124 (8)0.01858 (19)
H60.85930.45490.10380.022*
C70.85686 (12)0.28309 (9)0.27212 (8)0.0186 (2)
C81.17439 (13)0.93751 (9)0.13072 (8)0.0196 (2)
H8A1.23050.87820.05500.024*
H8B1.03820.95490.13030.024*
C91.28435 (12)1.08457 (9)0.14586 (8)0.0193 (2)
H9A1.22381.14420.22040.023*
H9B1.41791.06570.15160.023*
C101.28714 (14)1.17236 (10)0.04249 (8)0.0241 (2)
H10A1.34521.11120.03190.029*
H10B1.15331.19160.03770.029*
C111.39915 (14)1.32056 (10)0.05306 (9)0.0280 (2)
H11A1.53111.30270.05990.042*
H11B1.40141.36960.01740.042*
H11C1.33701.38470.12350.042*
C120.66351 (13)0.11082 (10)0.32383 (8)0.0209 (2)
H120.66100.07070.25280.025*
C130.59161 (12)0.25456 (10)0.33492 (8)0.0194 (2)
H130.54290.31160.27190.023*
C140.59107 (12)0.31523 (9)0.43924 (8)0.01710 (19)
C150.66576 (13)0.22516 (9)0.52787 (8)0.0205 (2)
H150.66740.26120.60070.025*
C160.73711 (13)0.08358 (10)0.50919 (8)0.0212 (2)
H160.78890.02440.57000.025*
C170.51374 (12)0.46721 (9)0.45065 (8)0.0182 (2)
H170.48040.52380.38230.022*
H10.823 (3)0.133 (3)0.3863 (19)0.100 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0321 (4)0.0185 (3)0.0208 (3)0.0048 (3)0.0079 (3)0.0060 (2)
O20.0332 (4)0.0217 (3)0.0291 (4)0.0062 (3)0.0145 (3)0.0044 (3)
O30.0279 (3)0.0153 (3)0.0225 (3)0.0045 (2)0.0106 (3)0.0062 (2)
N10.0197 (4)0.0160 (3)0.0244 (4)0.0004 (3)0.0034 (3)0.0033 (3)
C10.0166 (4)0.0162 (4)0.0174 (4)0.0017 (3)0.0018 (3)0.0015 (3)
C20.0197 (4)0.0191 (4)0.0160 (4)0.0019 (3)0.0034 (3)0.0036 (3)
C30.0191 (4)0.0187 (4)0.0178 (4)0.0004 (3)0.0055 (3)0.0016 (3)
C40.0176 (4)0.0150 (4)0.0196 (4)0.0010 (3)0.0035 (3)0.0015 (3)
C50.0236 (4)0.0175 (4)0.0176 (4)0.0019 (3)0.0063 (3)0.0038 (3)
C60.0208 (4)0.0170 (4)0.0183 (4)0.0009 (3)0.0064 (3)0.0002 (3)
C70.0177 (4)0.0179 (4)0.0201 (4)0.0023 (3)0.0027 (3)0.0022 (3)
C80.0246 (4)0.0173 (4)0.0188 (4)0.0003 (3)0.0074 (3)0.0045 (3)
C90.0205 (4)0.0159 (4)0.0230 (4)0.0007 (3)0.0067 (3)0.0042 (3)
C100.0302 (5)0.0195 (4)0.0237 (4)0.0015 (3)0.0061 (4)0.0066 (3)
C110.0269 (5)0.0219 (4)0.0354 (5)0.0018 (4)0.0029 (4)0.0102 (4)
C120.0214 (4)0.0211 (4)0.0210 (4)0.0007 (3)0.0032 (3)0.0063 (3)
C130.0191 (4)0.0200 (4)0.0191 (4)0.0007 (3)0.0051 (3)0.0010 (3)
C140.0152 (4)0.0150 (4)0.0210 (4)0.0010 (3)0.0035 (3)0.0016 (3)
C150.0252 (4)0.0161 (4)0.0218 (4)0.0007 (3)0.0079 (3)0.0034 (3)
C160.0244 (4)0.0162 (4)0.0236 (4)0.0016 (3)0.0073 (3)0.0015 (3)
C170.0186 (4)0.0145 (4)0.0218 (4)0.0010 (3)0.0060 (3)0.0004 (3)
Geometric parameters (Å, º) top
O1—C71.3218 (12)C9—C101.5240 (13)
O1—H11.03 (2)C9—H9A0.9900
O2—C71.2167 (12)C9—H9B0.9900
O3—C41.3637 (12)C10—C111.5251 (14)
O3—C81.4392 (11)C10—H10A0.9900
N1—C121.3363 (13)C10—H10B0.9900
N1—C161.3433 (13)C11—H11A0.9800
C1—C61.3901 (13)C11—H11B0.9800
C1—C21.3969 (14)C11—H11C0.9800
C1—C71.4923 (13)C12—C131.3848 (14)
C2—C31.3805 (13)C12—H120.9500
C2—H20.9500C13—C141.3965 (13)
C3—C41.3970 (13)C13—H130.9500
C3—H30.9500C14—C151.3973 (14)
C4—C51.3940 (13)C14—C171.4665 (13)
C5—C61.3919 (13)C15—C161.3812 (13)
C5—H50.9500C15—H150.9500
C6—H60.9500C16—H160.9500
C8—C91.5138 (13)C17—C17i1.3375 (18)
C8—H8A0.9900C17—H170.9500
C8—H8B0.9900
C7—O1—H1116.3 (12)C8—C9—H9B109.4
C4—O3—C8118.25 (7)C10—C9—H9B109.4
C12—N1—C16117.89 (8)H9A—C9—H9B108.0
C6—C1—C2118.62 (8)C9—C10—C11113.13 (8)
C6—C1—C7120.51 (8)C9—C10—H10A109.0
C2—C1—C7120.87 (8)C11—C10—H10A109.0
C3—C2—C1121.11 (8)C9—C10—H10B109.0
C3—C2—H2119.4C11—C10—H10B109.0
C1—C2—H2119.4H10A—C10—H10B107.8
C2—C3—C4119.79 (8)C10—C11—H11A109.5
C2—C3—H3120.1C10—C11—H11B109.5
C4—C3—H3120.1H11A—C11—H11B109.5
O3—C4—C5124.92 (8)C10—C11—H11C109.5
O3—C4—C3115.24 (8)H11A—C11—H11C109.5
C5—C4—C3119.84 (8)H11B—C11—H11C109.5
C6—C5—C4119.59 (8)N1—C12—C13122.92 (8)
C6—C5—H5120.2N1—C12—H12118.5
C4—C5—H5120.2C13—C12—H12118.5
C1—C6—C5121.02 (8)C12—C13—C14119.64 (8)
C1—C6—H6119.5C12—C13—H13120.2
C5—C6—H6119.5C14—C13—H13120.2
O2—C7—O1124.00 (9)C13—C14—C15117.01 (8)
O2—C7—C1123.57 (8)C13—C14—C17119.36 (8)
O1—C7—C1112.43 (8)C15—C14—C17123.63 (9)
O3—C8—C9107.37 (7)C16—C15—C14119.76 (9)
O3—C8—H8A110.2C16—C15—H15120.1
C9—C8—H8A110.2C14—C15—H15120.1
O3—C8—H8B110.2N1—C16—C15122.78 (8)
C9—C8—H8B110.2N1—C16—H16118.6
H8A—C8—H8B108.5C15—C16—H16118.6
C8—C9—C10111.29 (8)C17i—C17—C14125.41 (10)
C8—C9—H9A109.4C17i—C17—H17117.3
C10—C9—H9A109.4C14—C17—H17117.3
C6—C1—C2—C30.99 (13)C2—C1—C7—O13.18 (12)
C7—C1—C2—C3178.60 (7)C4—O3—C8—C9177.82 (7)
C1—C2—C3—C41.67 (13)O3—C8—C9—C10177.05 (7)
C8—O3—C4—C50.63 (13)C8—C9—C10—C11179.13 (7)
C8—O3—C4—C3179.14 (7)C16—N1—C12—C130.69 (13)
C2—C3—C4—O3179.19 (7)N1—C12—C13—C140.95 (14)
C2—C3—C4—C51.03 (13)C12—C13—C14—C150.29 (13)
O3—C4—C5—C6179.50 (7)C12—C13—C14—C17179.66 (7)
C3—C4—C5—C60.26 (13)C13—C14—C15—C160.56 (13)
C2—C1—C6—C50.33 (13)C17—C14—C15—C16179.49 (8)
C7—C1—C6—C5179.92 (7)C12—N1—C16—C150.23 (13)
C4—C5—C6—C10.95 (13)C14—C15—C16—N10.86 (14)
C6—C1—C7—O24.16 (13)C13—C14—C17—C17i172.64 (10)
C2—C1—C7—O2176.26 (8)C15—C14—C17—C17i7.31 (17)
C6—C1—C7—O1176.40 (7)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.02 (3)1.57 (3)2.5912 (18)179 (2)
C11—H11C···Cgii0.982.923.800 (2)150
Symmetry code: (ii) x, y1, z.
 

References

First citationAakeröy, C. B., Desper, J. & Urbina, J. F. (2005). CrystEngComm, 7, 193–201.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrunert, M., Howie, A., Kaeding, A. & Imrie, C. T. (1997). J. Mater. Chem. 7, 211–214.  CSD CrossRef CAS Web of Science Google Scholar
First citationHigashi (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094–1100.  CrossRef CAS Web of Science Google Scholar
First citationKato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. 19, 2003–2006.  CrossRef Web of Science Google Scholar
First citationMa, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165–o1166.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375–1385.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamon, G., Davies, K. & Nassimbeni, L. R. (2014). CrystEngComm, 16, 5802–5810.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTabuchi, Y., Gotoh, K. & Ishida, H. (2015a). Acta Cryst. E71, 1340–1344.  CrossRef IUCr Journals Google Scholar
First citationTabuchi, Y., Gotoh, K. & Ishida, H. (2015b). Acta Cryst. E71, 1290–1295.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds