research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of La21Cr8−2aAlbGe7−bC12 [a = 0.22 (2) and b = 0.758 (19)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Farmingdale State College, Farmingdale, NY 11735, USA
*Correspondence e-mail: jack.simonson@farmingdale.edu

Edited by S. Parkin, University of Kentucky, USA (Received 9 September 2016; accepted 4 October 2016; online 11 October 2016)

Single crystals of a new multinary chromium carbide, La21Cr8−2aAlbGe7−bC12 (henicosa­lanthanum octa­chromium aluminium hexa­germanium dodeca­carbide), were grown from an La-rich self flux and were characterized by single-crystal X-ray diffraction. The face-centered cubic crystal structure is composed of isolated and geometrically frustrated regular Cr tetra­hedra that are co-centered within regular C octa­hedra. These mutually separated Cr4−aC6 clusters are distributed throughout a three-dimensional framework of Al, Ge, and La. The title compound is isotypic with La21−δMn8X7C12 and R21Fe8X7C12 (R = La, Ce, Pr; X = Al, Bi, Ge, Sn, Sb, Te) and represents the first example of a Cr-based compound with this structure-type.

1. Chemical context

Geometric frustration arises when crystallographic degeneracies lead to the near equalization of competing inter­atomic inter­actions. Often, such frustration results in the suppression to an arbitrarily low temperature of any eventual phase transition to an ordered ground state (Gilbert et al., 2016[Gilbert, I., Nisoli, C. & Schiffer, P. (2016). Phys. Today, 69, 54-59.]). In the simplest case, this phenomenon occurs when three anti­ferromagnetic exchange-coupled Ising spins are arranged on the vertices of an equilateral triangle, their counterbalanced inter­actions thereby precluding the transition to mutually energetically favorable magnetic order. The ability to tune the onset of order via geometric frustration has been shown to lead to a variety of intriguing properties, including magnetic monopoles (Pan et al., 2016[Pan, L., Laurita, N. J., Ross, K. A., Gaulin, B. D. & Armitage, N. P. (2016). Nat. Phys. 12, 361-366.]), spin ice states (Hirschberger et al., 2015[Hirschberger, M., Krizan, J. W., Cava, R. J. & Ong, N. P. (2015). Science, 348, 106-109.]; Huang et al., 2016[Huang, Y., Chen, K., Deng, Y., Prokof'ev, N. & Svistunov, B. (2016). Phys. Rev. Lett. 116, 177203.]), tricritical phenomena (McNally et al., 2015[McNally, D. E., Simonson, J. W., Kistner-Morris, J. J., Smith, G. J., Hassinger, J. E., DeBeer-Schmitt, L., Kolesnikov, A. I., Zaliznyak, I. A. & Aronson, M. C. (2015). Phys. Rev. B, 91, 180407.]), and quantum criticality (Miiller et al., 2016[Miiller, W., Wu, L. S., Kim, M. S., Orvis, T., Simonson, J. W., Gamża, M., McNally, D. M., Nelson, C. S., Ehlers, G., Podlesnyak, A., Helton, J. S., Zhao, Y., Qiu, Y., Copley, J. R. D., Lynn, J. W., Zaliznyak, I. & Aronson, M. C. (2016). Phys. Rev. B, 93, 104419.]), with applications ranging from neural networks (Grass et al., 2016[Grass, T., Raventós, D., Juliá-Díaz, B., Gogolin, C. & Lewenstein, M. (2016). Nat. Commun. 7, 11524.]), to quantum computing (Katzgraber et al., 2015[Katzgraber, H. G., Hamze, F., Zhu, Z., Ochoa, A. J. & Munoz-Bauza, H. (2015). Phys. Rev. X, 5, 031026.]), to unconventional superconductivity (Glasbrenner et al., 2015[Glasbrenner, J. K., Mazin, I. I., Jeschke, H. O., Hirschfeld, P. J., Fernandes, R. M. & Valentí, R. (2015). Nat. Phys. 11, 953-958.]). Over the last decades, a class of materials known as pyrochlores has provided a rich ground for studying magnetic frustration due to geometric degeneracies arising from their vertex-linked, regular tetra­hedral building blocks (Gardner et al., 2010[Gardner, J. S., Gingras, M. J. P. & Greedan, J. E. (2010). Rev. Mod. Phys. 82, 53-107.]). The structure of the La21Fe8Sn7C12 system also consists regular tetra­hedra of Fe, but in this case they are mutually isolated from one another. Here too, geometric frustration has been observed to manifest itself in a spin glass ground state, as inferred from a frequency f-dependent cusp in the real part of measurements of ac magnetic susceptibility χ′ near temperature T = 5 K (Benbow et al., 2009[Benbow, E. M., Dalal, N. S. & Latturner, S. E. (2009). J. Am. Chem. Soc. 131, 3349-3354.]). On the other hand, if Fe is replaced with Mn as in isostructural La21Mn8Ge6.2Al0.8C12, similar cusps occurring at T = 3 K and 6 K in χ′ exhibit no such dependence, even over four orders of magnitude in f, suggesting that only local anti­ferromagnetic ordering within the Mn4C6 cluster arises while the spin glass state remains absent down to T = 1.8 K (Zaikina et al., 2011[Zaikina, J. V., Schellenberg, I., Benbow, E. M., Pöttgen, R. & Latturner, S. E. (2011). Chem. Mater. 23, 1768-1778.]). With the aim of unveiling a new avenue to explore frustrated states within this class of compounds, we present here the synthesis and crystal structure of a new Cr-based analog that is isostructural and likewise geometrically frustrated, La21Cr8−2aAlbGe7−bC12, [a = 0.22 (2), b = 0.758 (19)].

2. Structural commentary

Fig. 1[link] shows a polyhedral representation of the crystal structure of the title compound, the geometrically frustrated substructure of which consists of a Cr-capped regular tetra­hedron enclosed within a C-capped regular octa­hedron. Fig. 1[link]a is a depiction of the unit cell from along the crystallographic a axis, and Fig. 1[link]b shows the same from a generic angle above the ab plane. The structure can be thought to be composed of three building blocks – a geometrically frustrated and Cr-deficient Cr4−aC6 unit (Fig. 1[link]c), an La9Ge6 unit (Fig. 1[link]d), and an La12AlbGe1−b unit (Fig. 1[link]e). These substructures are arranged on four inter­penetrating face-centered cubic lattices that originate within the unit cell at (¼, ¼, ¼) and (¾, ¼, ¼) for the Cr4−aC6 unit, (½, 0, 0) for the La9Ge6 unit, and (0, 0, 0) for the La12AlbGe1-b unit. Accordingly, La21Cr8−2aAlbGe7−bC12 adopts a structure that is effectively a polyatomic analog of the Heusler structure (Graf et al., 2011[Graf, T., Felser, C. & Parkin, S. S. P. (2011). Prog. Solid State Chem. 39, 1-50.]) with composition X2YZ, where X = Cr4−aC6, Y = La9Ge6, and Z = La12AlbGe1−b units. Taken together with the appropriate site occupancies, the title composition is thus obtained as X2YZ = La21Cr8−2aAlbGe7−bC12.

[Figure 1]
Figure 1
(a) A view of the crystal structure of La21Cr8−2aAlbGe7−bC12 along [100]. (b) The same crystal structure from an arbitrary view above the ab plane. (c) Cr-deficient Cr4−aC6 substructure depicted as four tetra­hedrally arranged and vertex-linked CrC3 plaquettes. (d) La3 coordination polyhedron. (e) Al2/Ge2 coordination polyhedron. In all sub-figures, colors are as follows: La (white), Cr (red), Al (green), Ge (blue), and C (black). Polyhedra are colored according to the central element. In ce, the ellipsoids correspond to 99% probability.

The geometrically frustrated Cr-deficient Cr4−aC6 unit shown in Fig. 1[link]c is composed of a single inequivalent Cr position and a single C position. Accordingly, nearest neighbor Cr—C distances are uniformly 1.949 (5) Å, in good agreement with nearest neighbor distances in binary Cr carbides. Likewise, all Cr—Cr distances within the substructure are similarly identical at 2.4821 (9) Å, only slightly smaller than the 2.512 Å nearest neighbor distance observed in Cr metal (Gorbunoff et al., 2009[Gorbunoff, A., Levin, A. A. & Meyer, D. C. (2009). J. Alloys Compd. 480, 152-156.]). Perhaps more inter­esting, however, is this relative proximity when compared with the 2.878 Å that separates neighboring Cr in the frustrated Kagomé planes of SrCr8−xGa4+xO19, a seminal example of a geometrically frustrated magnetic system (Broholm et al., 1990[Broholm, C., Aeppli, G., Espinosa, G. P. & Cooper, A. S. (1990). Phys. Rev. Lett. 65, 3173-3176.]).

The remaining substructures, namely the La9Ge6 unit shown in Fig. 1[link]d and the La12AlbGe1−b unit shown in Fig. 1[link]e form cages about their central La3 and Al2/Ge2 sites respectively. The cage-like nature of this configuration is clear from the large anisotropic displacement parameters Ueq corresponding to these two central sites, as has been previously observed in isostructural materials (Benbow et al., 2009[Benbow, E. M., Dalal, N. S. & Latturner, S. E. (2009). J. Am. Chem. Soc. 131, 3349-3354.]; Zaikina et al., 2011[Zaikina, J. V., Schellenberg, I., Benbow, E. M., Pöttgen, R. & Latturner, S. E. (2011). Chem. Mater. 23, 1768-1778.]). These sites are likely characterized by strong rattling modes of the central loosely bound atom, such as is observed in skutterudite compounds (Sergueev et al., 2015[Sergueev, I., Glazyrin, K., Kantor, I., McGuire, M. A., Chumakov, A. I., Klobes, B., Sales, B. C. & Hermann, R. P. (2015). Phys. Rev. B, 91, 224304.]). Not surprisingly, the distance between central La3 and its nearest neighbor Ge1 is a rather long, 3.41450 (13) Å. The central Al2/Ge2 site is even further – 3.8858 (2) Å from its nearest neighbor La1. A brief review of the crystallographic literature finds nearest neighbor bond lengths in La—Ge binaries to be typically on the order of only 3.0 to 3.2 Å, far smaller than either of these distances, which lends credence to the emerging picture of a stuffed, skutterudite-like arrangement.

3. Synthesis and crystallization

La21Cr8−2aAlbGe7−bC12 crystals were grown from a self flux of excess La (Alfa Aesar, 00175) and the following chemicals: Cr (Alfa Aesar, 38494), Ge (Strategic Metal, SM1301-B), and graphite (McMaster-Carr 9121K71) in an La:Cr:Ge:C atomic ratio of 561:214:76:149. The growth process was carried out in Al2O3 crucibles sealed within fused quartz ampoules under high purity Ar gas. Ampoules were heated to 1423 K over a period of four h, left to soak at that temperature for an additional four h, and cooled to 1173 K over 50 h to induce nucleation and to promote crystal growth. The ampoule was then quickly centrifuged at 2000 r.p.m. for several seconds to separate the solid crystals from the liquid La-rich solution. Crystals took the form of well-faceted tablets with metallic luster.

4. Refinement details

Details regarding the crystal itself, as well as data collection and structural refinement are presented in Table 1[link]. No evidence for twin domains was observed, and all sites with the exception of C were refined with anisotropic displacement parameters. Here permitting anisotropic displacement parameters did not appreciably improve the refinement. Two reflections, ([\overline{1}][\overline{1}][\overline{1}]) and (00[\overline{2}]), required manual culling due to beamstop clipping.

Table 1
Experimental details

Crystal data
Chemical formula La21Cr7.556Al0.758Ge6.242C12
Mr 3927.6
Crystal system, space group Cubic, Fm[\overline{3}]m
Temperature (K) 294
a (Å) 16.4048 (6)
V3) 4414.8 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 25.76
Crystal size (mm) 0.12 × 0.11 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.342, 0.527
No. of measured, independent and observed [I > 3σ(I)] reflections 40979, 328, 321
Rint 0.041
(sin θ/λ)max−1) 0.670
 
Refinement
R[F > 3σ(F)], wR(F), S 0.012, 0.045, 1.91
No. of reflections 328
No. of parameters 21
Δρmax, Δρmin (e Å−3) 1.07, −0.83
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), JANA2006 (Petřìček et al., 2014[Petřìček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The refinement was improved when the Ge2 site was permitted to be mixed with Al. In this case, Al and Ge coord­inates and displacement parameters were constrained to be equal, and the sum of the Al and Ge occupancies was constrained to unity. The refined Al:Ge ratio 0.758 (19):6.242 (19) is in excellent agreement with observed ratios of 0.83 (2):6.17 (2) in La21MnAlbGe7−bC12 (Zaikina et al., 2011[Zaikina, J. V., Schellenberg, I., Benbow, E. M., Pöttgen, R. & Latturner, S. E. (2011). Chem. Mater. 23, 1768-1778.]) and somewhat lower than the reported ratio of 2.1:4.9 in La21FeAlbGe7-bC12 (Benbow et al., 2009[Benbow, E. M., Dalal, N. S. & Latturner, S. E. (2009). J. Am. Chem. Soc. 131, 3349-3354.]). Like the Mn-based analog, however, we observe no evidence to suggest that the Ge1 site is mixed, as was the case with the more Al-rich La21FeAlbGe7−bC12. Regardless of any qu­anti­tative differences, the potential for Al – apparently extracted by an La-rich flux from Al2O3 growth crucibles – to mix with Ge appears to be a universal phenomenon in this class of compounds. It remains unclear if Al is required to stabilize the Ge-containing examples of these phases, which have not been reported in its absence.

In addition to mixing on the Al2/Ge2 site, excess charge was observed in Fourier maps when the Cr site was constrained to full occupancy, and the refinement was substanti­ally improved when this parameter was subsequently freed. Permitting instead partial occupancy of Al on the Cr site did not appreciably improve the refinement. No evidence for mixed or non-unity occupancy was found for any of the La sites, despite previously published density functional theory calculations that found a composition of La20Mn8Te7C12 to be stabilized by the shift of the Fermi energy to a pseudogap in the density of states (Zaikina et al., 2011[Zaikina, J. V., Schellenberg, I., Benbow, E. M., Pöttgen, R. & Latturner, S. E. (2011). Chem. Mater. 23, 1768-1778.]). Our final refined composition is then La21Cr8−2aAlbGe7−bC12 with the occupancy parameters a = 0.22 (2) and b = 0.758 (19).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007) and SAINT (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007) and SAINT (Bruker, 2007); data reduction: APEX2 (Bruker, 2007) and SAINT (Bruker, 2007); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petřìček et al., 2014); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Henicosalanthanum octachromium alumimium hexagermanium dodecacarbide top
Crystal data top
La21Cr7.556Al0.758Ge6.242C12Dx = 5.909 Mg m3
Mr = 3927.6Mo Kα radiation, λ = 0.71073 Å
Cubic, Fm3mCell parameters from 9327 reflections
Hall symbol: -F 4 2 3θ = 5.0–56.7°
a = 16.4048 (6) ŵ = 25.76 mm1
V = 4414.8 (5) Å3T = 294 K
Z = 4Plate, metallic_black
F(000) = 6639.40.12 × 0.11 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
328 independent reflections
Radiation source: X-ray tube321 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.041
ω and φ scansθmax = 28.4°, θmin = 2.2°
Absorption correction: numerical
(SADABS; Bruker, 2008)
h = 2121
Tmin = 0.342, Tmax = 0.527k = 2121
40979 measured reflectionsl = 2121
Refinement top
Refinement on F21 constraint
R[F > 3σ(F)] = 0.012Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
wR(F) = 0.045(Δ/σ)max = 0.015
S = 1.91Δρmax = 1.07 e Å3
328 reflectionsΔρmin = 0.83 e Å3
21 parametersExtinction correction: B-C type 2 (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 810 (150)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La100.167496 (14)0.167496 (14)0.01125 (10)
La20.369379 (15)0.369379 (15)0.369379 (15)0.00984 (9)
La30.50.50.50.0384 (3)
Ge10.29186 (6)000.0121 (2)
Cr10.19651 (4)0.19651 (4)0.19651 (4)0.0068 (2)0.944 (5)
Ge20000.0323 (12)0.242 (19)
Al20000.0323 (12)0.758 (19)
C10.1049 (4)0.250.250.0127 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0074 (2)0.01315 (17)0.01315 (17)000.00046 (13)
La20.00984 (15)0.00984 (15)0.00984 (15)0.00052 (8)0.00052 (8)0.00052 (8)
La30.0384 (4)0.0384 (4)0.0384 (4)000
Ge10.0139 (5)0.0112 (3)0.0112 (3)000
Cr10.0068 (3)0.0068 (3)0.0068 (3)0.0008 (2)0.0008 (2)0.0008 (2)
Ge20.032 (2)0.032 (2)0.032 (2)000
Al20.032 (2)0.032 (2)0.032 (2)000
Geometric parameters (Å, º) top
La1—La1i3.8282 (4)La2—Ge1xiii3.2864 (5)
La1—La1ii3.8859 (3)La2—Ge1xiv3.2864 (5)
La1—La1iii3.8859 (3)La2—Cr1vi3.2216 (7)
La1—La1iv3.8859 (3)La2—Cr1vii3.2216 (7)
La1—La1v3.8859 (3)La2—Cr1i3.2216 (7)
La1—La2vi3.9907 (4)La2—C1vi2.8015 (9)
La1—La2vii3.9907 (4)La2—C1xv2.8015 (9)
La1—La2viii3.9907 (4)La2—C1xvi2.8015 (9)
La1—La2ix3.9907 (4)Cr1—Cr1vi2.4821 (9)
La1—Cr13.2932 (7)Cr1—Cr1vii2.4821 (9)
La1—Cr1x3.2932 (7)Cr1—Cr1i2.4821 (9)
La1—C12.574 (4)Cr1—C11.949 (5)
La1—C1xi2.574 (4)Cr1—C1ii1.949 (5)
La2—La33.7115 (3)Cr1—C1iv1.949 (5)
La2—Ge1xii3.2864 (5)
La1i—La1—La1ii120.000 (6)La3—La2—Cr1vii153.589 (14)
La1i—La1—La1iii120.000 (6)La3—La2—Cr1i153.589 (14)
La1i—La1—La1iv120.000 (6)La3—La2—C1vi136.07 (12)
La1i—La1—La1v120.000 (6)La3—La2—C1xv136.07 (12)
La1i—La1—La2vi61.339 (6)La3—La2—C1xvi136.07 (12)
La1i—La1—La2vii61.339 (6)Ge1xii—La2—Ge1xiii94.557 (15)
La1i—La1—La2viii61.339 (6)Ge1xii—La2—Ge1xiv94.557 (15)
La1i—La1—La2ix61.339 (6)Ge1xii—La2—Cr1vi131.521 (19)
La1i—La1—Cr178.207 (12)Ge1xii—La2—Cr1vii131.521 (19)
La1i—La1—Cr1x78.207 (12)Ge1xii—La2—Cr1i95.56 (2)
La1i—La1—C141.96 (10)Ge1xii—La2—C1vi165.90 (12)
La1i—La1—C1xi41.96 (10)Ge1xii—La2—C1xv95.00 (8)
La1ii—La1—La1iii90.000 (7)Ge1xii—La2—C1xvi95.00 (8)
La1ii—La1—La1iv60.000 (5)Ge1xiii—La2—Ge1xiv94.557 (15)
La1ii—La1—La1v120.000 (7)Ge1xiii—La2—Cr1vi131.521 (19)
La1ii—La1—La2vi60.865 (6)Ge1xiii—La2—Cr1vii95.56 (2)
La1ii—La1—La2vii101.955 (5)Ge1xiii—La2—Cr1i131.521 (19)
La1ii—La1—La2viii165.127 (7)Ge1xiii—La2—C1vi95.00 (8)
La1ii—La1—La2ix105.813 (7)Ge1xiii—La2—C1xv165.90 (12)
La1ii—La1—Cr153.844 (12)Ge1xiii—La2—C1xvi95.00 (8)
La1ii—La1—Cr1x142.596 (13)Ge1xiv—La2—Cr1vi95.56 (2)
La1ii—La1—C184.21 (8)Ge1xiv—La2—Cr1vii131.521 (19)
La1ii—La1—C1xi147.63 (4)Ge1xiv—La2—Cr1i131.521 (19)
La1iii—La1—La1iv120.000 (7)Ge1xiv—La2—C1vi95.00 (8)
La1iii—La1—La1v60.000 (5)Ge1xiv—La2—C1xv95.00 (8)
La1iii—La1—La2vi105.813 (7)Ge1xiv—La2—C1xvi165.90 (12)
La1iii—La1—La2vii165.127 (7)Cr1vi—La2—Cr1vii45.314 (17)
La1iii—La1—La2viii101.955 (5)Cr1vi—La2—Cr1i45.314 (17)
La1iii—La1—La2ix60.865 (6)Cr1vi—La2—C1vi36.93 (9)
La1iii—La1—Cr1142.596 (13)Cr1vi—La2—C1xv36.93 (9)
La1iii—La1—Cr1x53.844 (12)Cr1vi—La2—C1xvi70.34 (12)
La1iii—La1—C1147.63 (4)Cr1vii—La2—Cr1i45.314 (17)
La1iii—La1—C1xi84.21 (8)Cr1vii—La2—C1vi36.93 (9)
La1iv—La1—La1v90.000 (7)Cr1vii—La2—C1xv70.34 (12)
La1iv—La1—La2vi101.955 (5)Cr1vii—La2—C1xvi36.93 (9)
La1iv—La1—La2vii60.865 (6)Cr1i—La2—C1vi70.34 (12)
La1iv—La1—La2viii105.813 (7)Cr1i—La2—C1xv36.93 (9)
La1iv—La1—La2ix165.127 (7)Cr1i—La2—C1xvi36.93 (9)
La1iv—La1—Cr153.844 (12)C1vi—La2—C1xv73.86 (13)
La1iv—La1—Cr1x142.596 (13)C1vi—La2—C1xvi73.86 (13)
La1iv—La1—C184.21 (8)C1xv—La2—C1xvi73.86 (13)
La1iv—La1—C1xi147.63 (4)La2—La3—La2xix109.471 (6)
La1v—La1—La2vi165.127 (7)La2—La3—La2xx109.471 (6)
La1v—La1—La2vii105.813 (7)La2—La3—La2xxi109.471 (6)
La1v—La1—La2viii60.865 (6)La2—La3—La2xxii70.529 (6)
La1v—La1—La2ix101.955 (5)La2—La3—La2xxiii180.0 (5)
La1v—La1—Cr1142.596 (13)La2—La3—La2xxiv70.529 (6)
La1v—La1—Cr1x53.844 (12)La2—La3—La2xxv70.529 (6)
La1v—La1—C1147.63 (4)La2xix—La3—La2xx109.471 (6)
La1v—La1—C1xi84.21 (8)La2xix—La3—La2xxi109.471 (6)
La2vi—La1—La2vii87.896 (6)La2xix—La3—La2xxii180.0 (5)
La2vi—La1—La2viii122.677 (8)La2xix—La3—La2xxiii70.529 (6)
La2vi—La1—La2ix64.952 (7)La2xix—La3—La2xxiv70.529 (6)
La2vi—La1—Cr151.418 (12)La2xix—La3—La2xxv70.529 (6)
La2vi—La1—Cr1x115.315 (13)La2xx—La3—La2xxi109.471 (6)
La2vi—La1—C144.302 (12)La2xx—La3—La2xxii70.529 (6)
La2vi—La1—C1xi90.13 (7)La2xx—La3—La2xxiii70.529 (6)
La2vii—La1—La2viii64.952 (7)La2xx—La3—La2xxiv180.0 (5)
La2vii—La1—La2ix122.677 (8)La2xx—La3—La2xxv70.529 (6)
La2vii—La1—Cr151.418 (12)La2xxi—La3—La2xxii70.529 (6)
La2vii—La1—Cr1x115.315 (13)La2xxi—La3—La2xxiii70.529 (6)
La2vii—La1—C144.302 (12)La2xxi—La3—La2xxiv70.529 (6)
La2vii—La1—C1xi90.13 (7)La2xxi—La3—La2xxv180.0 (5)
La2viii—La1—La2ix87.896 (6)La2xxii—La3—La2xxiii109.471 (6)
La2viii—La1—Cr1115.314 (13)La2xxii—La3—La2xxiv109.471 (6)
La2viii—La1—Cr1x51.418 (12)La2xxii—La3—La2xxv109.471 (6)
La2viii—La1—C190.13 (7)La2xxiii—La3—La2xxiv109.471 (6)
La2viii—La1—C1xi44.302 (12)La2xxiii—La3—La2xxv109.471 (6)
La2ix—La1—Cr1115.314 (13)La2xxiv—La3—La2xxv109.471 (6)
La2ix—La1—Cr1x51.418 (12)La2xxvi—Ge1—La2i134.47 (3)
La2ix—La1—C190.13 (7)La2xxvi—Ge1—La2xxvii81.389 (12)
La2ix—La1—C1xi44.302 (12)La2xxvi—Ge1—La2xxviii81.389 (12)
Cr1—La1—Cr1x156.414 (18)La2i—Ge1—La2xxvii81.389 (12)
Cr1—La1—C136.25 (10)La2i—Ge1—La2xxviii81.389 (12)
Cr1—La1—C1xi120.16 (10)La2xxvii—Ge1—La2xxviii134.47 (3)
Cr1x—La1—C1120.16 (10)La1—Cr1—La1ii72.313 (15)
Cr1x—La1—C1xi36.25 (10)La1—Cr1—La1iv72.313 (15)
C1—La1—C1xi83.91 (14)La1—Cr1—La2vi75.541 (15)
La1vi—La2—La1vii57.323 (6)La1—Cr1—La2vii75.541 (15)
La1vi—La2—La1xv113.653 (7)La1—Cr1—La2i139.88 (2)
La1vi—La2—La1xvii58.269 (6)La1—Cr1—Cr1vi142.60 (3)
La1vi—La2—La1xvi113.653 (7)La1—Cr1—Cr1vii142.60 (3)
La1vi—La2—La1xviii150.254 (8)La1—Cr1—Cr1i101.79 (3)
La1vi—La2—La3104.871 (7)La1—Cr1—C151.34 (11)
La1vi—La2—Ge1xii147.964 (10)La1—Cr1—C1ii113.23 (9)
La1vi—La2—Ge1xiii97.605 (8)La1—Cr1—C1iv113.23 (9)
La1vi—La2—Ge1xiv55.083 (13)La1ii—Cr1—La1iv72.313 (15)
La1vi—La2—Cr1vi53.041 (13)La1ii—Cr1—La2vi75.541 (15)
La1vi—La2—Cr1vii76.602 (13)La1ii—Cr1—La2vii139.88 (2)
La1vi—La2—Cr1i98.244 (13)La1ii—Cr1—La2i75.541 (15)
La1vi—La2—C1vi39.92 (8)La1ii—Cr1—Cr1vi142.60 (3)
La1vi—La2—C1xv79.52 (2)La1ii—Cr1—Cr1vii101.79 (3)
La1vi—La2—C1xvi113.23 (10)La1ii—Cr1—Cr1i142.60 (3)
La1vii—La2—La1xv150.254 (8)La1ii—Cr1—C1113.23 (9)
La1vii—La2—La1xvii113.653 (7)La1ii—Cr1—C1ii51.34 (11)
La1vii—La2—La1xvi58.269 (6)La1ii—Cr1—C1iv113.23 (9)
La1vii—La2—La1xviii113.653 (7)La1iv—Cr1—La2vi139.88 (2)
La1vii—La2—La3104.871 (7)La1iv—Cr1—La2vii75.541 (15)
La1vii—La2—Ge1xii147.964 (10)La1iv—Cr1—La2i75.541 (15)
La1vii—La2—Ge1xiii55.083 (13)La1iv—Cr1—Cr1vi101.79 (3)
La1vii—La2—Ge1xiv97.605 (8)La1iv—Cr1—Cr1vii142.60 (3)
La1vii—La2—Cr1vi76.602 (13)La1iv—Cr1—Cr1i142.60 (3)
La1vii—La2—Cr1vii53.041 (13)La1iv—Cr1—C1113.23 (9)
La1vii—La2—Cr1i98.244 (13)La1iv—Cr1—C1ii113.23 (9)
La1vii—La2—C1vi39.92 (8)La1iv—Cr1—C1iv51.34 (11)
La1vii—La2—C1xv113.23 (10)La2vi—Cr1—La2vii118.56 (2)
La1vii—La2—C1xvi79.52 (2)La2vi—Cr1—La2i118.56 (2)
La1xv—La2—La1xvii57.323 (6)La2vi—Cr1—Cr1vi118.32 (3)
La1xv—La2—La1xvi113.653 (7)La2vi—Cr1—Cr1vii67.34 (2)
La1xv—La2—La1xviii58.269 (6)La2vi—Cr1—Cr1i67.34 (2)
La1xv—La2—La3104.871 (7)La2vi—Cr1—C159.74 (2)
La1xv—La2—Ge1xii55.083 (13)La2vi—Cr1—C1ii59.74 (2)
La1xv—La2—Ge1xiii147.964 (10)La2vi—Cr1—C1iv168.77 (11)
La1xv—La2—Ge1xiv97.605 (8)La2vii—Cr1—La2i118.56 (2)
La1xv—La2—Cr1vi76.602 (13)La2vii—Cr1—Cr1vi67.34 (2)
La1xv—La2—Cr1vii98.244 (13)La2vii—Cr1—Cr1vii118.32 (3)
La1xv—La2—Cr1i53.041 (13)La2vii—Cr1—Cr1i67.34 (2)
La1xv—La2—C1vi113.23 (10)La2vii—Cr1—C159.74 (2)
La1xv—La2—C1xv39.92 (8)La2vii—Cr1—C1ii168.77 (11)
La1xv—La2—C1xvi79.52 (2)La2vii—Cr1—C1iv59.74 (2)
La1xvii—La2—La1xvi150.254 (8)La2i—Cr1—Cr1vi67.34 (2)
La1xvii—La2—La1xviii113.653 (7)La2i—Cr1—Cr1vii67.34 (2)
La1xvii—La2—La3104.871 (7)La2i—Cr1—Cr1i118.32 (3)
La1xvii—La2—Ge1xii97.605 (8)La2i—Cr1—C1168.77 (11)
La1xvii—La2—Ge1xiii147.964 (10)La2i—Cr1—C1ii59.74 (2)
La1xvii—La2—Ge1xiv55.083 (13)La2i—Cr1—C1iv59.74 (2)
La1xvii—La2—Cr1vi53.041 (13)Cr1vi—Cr1—Cr1vii60.00 (3)
La1xvii—La2—Cr1vii98.244 (13)Cr1vi—Cr1—Cr1i60.00 (3)
La1xvii—La2—Cr1i76.602 (13)Cr1vi—Cr1—C1103.11 (10)
La1xvii—La2—C1vi79.52 (2)Cr1vi—Cr1—C1ii103.11 (10)
La1xvii—La2—C1xv39.92 (8)Cr1vi—Cr1—C1iv50.45 (11)
La1xvii—La2—C1xvi113.23 (10)Cr1vii—Cr1—Cr1i60.00 (3)
La1xvi—La2—La1xviii57.323 (6)Cr1vii—Cr1—C1103.11 (10)
La1xvi—La2—La3104.871 (7)Cr1vii—Cr1—C1ii50.45 (11)
La1xvi—La2—Ge1xii97.605 (8)Cr1vii—Cr1—C1iv103.11 (10)
La1xvi—La2—Ge1xiii55.083 (13)Cr1i—Cr1—C150.45 (11)
La1xvi—La2—Ge1xiv147.964 (10)Cr1i—Cr1—C1ii103.11 (10)
La1xvi—La2—Cr1vi98.244 (13)Cr1i—Cr1—C1iv103.11 (10)
La1xvi—La2—Cr1vii53.041 (13)C1—Cr1—C1ii119.45 (4)
La1xvi—La2—Cr1i76.602 (13)C1—Cr1—C1iv119.45 (4)
La1xvi—La2—C1vi79.52 (2)C1ii—Cr1—C1iv119.45 (4)
La1xvi—La2—C1xv113.23 (10)La1—C1—La1i96.09 (19)
La1xvi—La2—C1xvi39.92 (8)La1—C1—La2vi95.78 (7)
La1xviii—La2—La3104.871 (7)La1—C1—La2vii95.78 (7)
La1xviii—La2—Ge1xii55.083 (13)La1—C1—Cr192.41 (2)
La1xviii—La2—Ge1xiii97.605 (8)La1—C1—Cr1i171.5 (2)
La1xviii—La2—Ge1xiv147.964 (10)La1i—C1—La2vi95.78 (7)
La1xviii—La2—Cr1vi98.244 (13)La1i—C1—La2vii95.78 (7)
La1xviii—La2—Cr1vii76.602 (13)La1i—C1—Cr1171.5 (2)
La1xviii—La2—Cr1i53.041 (13)La1i—C1—Cr1i92.41 (2)
La1xviii—La2—C1vi113.23 (10)La2vi—C1—La2vii162.7 (2)
La1xviii—La2—C1xv79.52 (2)La2vi—C1—Cr183.33 (10)
La1xviii—La2—C1xvi39.92 (8)La2vi—C1—Cr1i83.33 (10)
La3—La2—Ge1xii58.029 (15)La2vii—C1—Cr183.33 (10)
La3—La2—Ge1xiii58.029 (15)La2vii—C1—Cr1i83.33 (10)
La3—La2—Ge1xiv58.029 (15)Cr1—C1—Cr1i79.1 (2)
La3—La2—Cr1vi153.589 (14)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) z, x, y; (iii) z, x, y; (iv) y, z, x; (v) y, z, x; (vi) x+1/2, y+1/2, z; (vii) x+1/2, y, z+1/2; (viii) y1/2, x, z+1/2; (ix) y1/2, x+1/2, z; (x) y, x, z; (xi) x, z, y; (xii) x, y+1/2, z+1/2; (xiii) z+1/2, x, y+1/2; (xiv) y+1/2, z+1/2, x; (xv) z, x+1/2, y+1/2; (xvi) y+1/2, z, x+1/2; (xvii) z+1/2, x+1/2, y; (xviii) y, z+1/2, x+1/2; (xix) x+1, y+1, z; (xx) x+1, y, z+1; (xxi) x, y+1, z+1; (xxii) y, x, z+1; (xxiii) y+1, x+1, z+1; (xxiv) y, x+1, z; (xxv) y+1, x, z; (xxvi) x, y1/2, z1/2; (xxvii) y, x1/2, z+1/2; (xxviii) y, x+1/2, z1/2.
 

Acknowledgements

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research under contract 56764-UNI10. We are likewise grateful to M. C. Aronson for providing access to the Bruker APEXII single-crystal diffractometer at Brookhaven National Laboratory. JWS was supported in part by a Provost's Research Fellowship from Farmingdale State College.

References

First citationBenbow, E. M., Dalal, N. S. & Latturner, S. E. (2009). J. Am. Chem. Soc. 131, 3349–3354.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBroholm, C., Aeppli, G., Espinosa, G. P. & Cooper, A. S. (1990). Phys. Rev. Lett. 65, 3173–3176.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGardner, J. S., Gingras, M. J. P. & Greedan, J. E. (2010). Rev. Mod. Phys. 82, 53–107.  Web of Science CrossRef CAS Google Scholar
First citationGilbert, I., Nisoli, C. & Schiffer, P. (2016). Phys. Today, 69, 54–59.  CrossRef Google Scholar
First citationGlasbrenner, J. K., Mazin, I. I., Jeschke, H. O., Hirschfeld, P. J., Fernandes, R. M. & Valentí, R. (2015). Nat. Phys. 11, 953–958.  Web of Science CrossRef CAS Google Scholar
First citationGorbunoff, A., Levin, A. A. & Meyer, D. C. (2009). J. Alloys Compd. 480, 152–156.  Web of Science CrossRef CAS Google Scholar
First citationGraf, T., Felser, C. & Parkin, S. S. P. (2011). Prog. Solid State Chem. 39, 1–50.  Web of Science CrossRef CAS Google Scholar
First citationGrass, T., Raventós, D., Juliá-Díaz, B., Gogolin, C. & Lewenstein, M. (2016). Nat. Commun. 7, 11524.  Web of Science PubMed Google Scholar
First citationHirschberger, M., Krizan, J. W., Cava, R. J. & Ong, N. P. (2015). Science, 348, 106–109.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuang, Y., Chen, K., Deng, Y., Prokof'ev, N. & Svistunov, B. (2016). Phys. Rev. Lett. 116, 177203.  Web of Science CrossRef PubMed Google Scholar
First citationKatzgraber, H. G., Hamze, F., Zhu, Z., Ochoa, A. J. & Munoz-Bauza, H. (2015). Phys. Rev. X, 5, 031026.  Google Scholar
First citationMcNally, D. E., Simonson, J. W., Kistner-Morris, J. J., Smith, G. J., Hassinger, J. E., DeBeer-Schmitt, L., Kolesnikov, A. I., Zaliznyak, I. A. & Aronson, M. C. (2015). Phys. Rev. B, 91, 180407.  Web of Science CrossRef Google Scholar
First citationMiiller, W., Wu, L. S., Kim, M. S., Orvis, T., Simonson, J. W., Gamża, M., McNally, D. M., Nelson, C. S., Ehlers, G., Podlesnyak, A., Helton, J. S., Zhao, Y., Qiu, Y., Copley, J. R. D., Lynn, J. W., Zaliznyak, I. & Aronson, M. C. (2016). Phys. Rev. B, 93, 104419.  Web of Science CrossRef Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPan, L., Laurita, N. J., Ross, K. A., Gaulin, B. D. & Armitage, N. P. (2016). Nat. Phys. 12, 361–366.  Web of Science CrossRef CAS Google Scholar
First citationPetřìček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationSergueev, I., Glazyrin, K., Kantor, I., McGuire, M. A., Chumakov, A. I., Klobes, B., Sales, B. C. & Hermann, R. P. (2015). Phys. Rev. B, 91, 224304.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaikina, J. V., Schellenberg, I., Benbow, E. M., Pöttgen, R. & Latturner, S. E. (2011). Chem. Mater. 23, 1768–1778.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds