research communications
Synthesis and 21Cr8−2aAlbGe7−bC12 [a = 0.22 (2) and b = 0.758 (19)]
of LaaDepartment of Physics, Farmingdale State College, Farmingdale, NY 11735, USA
*Correspondence e-mail: jack.simonson@farmingdale.edu
Single crystals of a new multinary chromium carbide, La21Cr8−2aAlbGe7−bC12 (henicosalanthanum octachromium aluminium hexagermanium dodecacarbide), were grown from an La-rich self and were characterized by single-crystal X-ray diffraction. The face-centered cubic is composed of isolated and geometrically frustrated regular Cr tetrahedra that are co-centered within regular C octahedra. These mutually separated Cr4−aC6 clusters are distributed throughout a three-dimensional framework of Al, Ge, and La. The title compound is isotypic with La21−δMn8X7C12 and R21Fe8X7C12 (R = La, Ce, Pr; X = Al, Bi, Ge, Sn, Sb, Te) and represents the first example of a Cr-based compound with this structure-type.
CCDC reference: 1508202
1. Chemical context
Geometric frustration arises when crystallographic degeneracies lead to the near equalization of competing interatomic interactions. Often, such frustration results in the suppression to an arbitrarily low temperature of any eventual et al., 2016). In the simplest case, this phenomenon occurs when three antiferromagnetic exchange-coupled Ising spins are arranged on the vertices of an equilateral triangle, their counterbalanced interactions thereby precluding the transition to mutually energetically favorable magnetic order. The ability to tune the onset of order via geometric frustration has been shown to lead to a variety of intriguing properties, including magnetic monopoles (Pan et al., 2016), spin ice states (Hirschberger et al., 2015; Huang et al., 2016), tricritical phenomena (McNally et al., 2015), and quantum criticality (Miiller et al., 2016), with applications ranging from neural networks (Grass et al., 2016), to quantum computing (Katzgraber et al., 2015), to unconventional superconductivity (Glasbrenner et al., 2015). Over the last decades, a class of materials known as pyrochlores has provided a rich ground for studying magnetic frustration due to geometric degeneracies arising from their vertex-linked, regular tetrahedral building blocks (Gardner et al., 2010). The structure of the La21Fe8Sn7C12 system also consists regular tetrahedra of Fe, but in this case they are mutually isolated from one another. Here too, geometric frustration has been observed to manifest itself in a spin glass ground state, as inferred from a frequency f-dependent cusp in the real part of measurements of ac χ′ near temperature T = 5 K (Benbow et al., 2009). On the other hand, if Fe is replaced with Mn as in isostructural La21Mn8Ge6.2Al0.8C12, similar cusps occurring at T = 3 K and 6 K in χ′ exhibit no such dependence, even over four orders of magnitude in f, suggesting that only local antiferromagnetic ordering within the Mn4C6 cluster arises while the spin glass state remains absent down to T = 1.8 K (Zaikina et al., 2011). With the aim of unveiling a new avenue to explore frustrated states within this class of compounds, we present here the synthesis and of a new Cr-based analog that is isostructural and likewise geometrically frustrated, La21Cr8−2aAlbGe7−bC12, [a = 0.22 (2), b = 0.758 (19)].
to an ordered ground state (Gilbert2. Structural commentary
Fig. 1 shows a polyhedral representation of the of the title compound, the geometrically frustrated of which consists of a Cr-capped regular tetrahedron enclosed within a C-capped regular octahedron. Fig. 1a is a depiction of the from along the crystallographic a axis, and Fig. 1b shows the same from a generic angle above the ab plane. The structure can be thought to be composed of three building blocks – a geometrically frustrated and Cr-deficient Cr4−aC6 unit (Fig. 1c), an La9Ge6 unit (Fig. 1d), and an La12AlbGe1−b unit (Fig. 1e). These substructures are arranged on four interpenetrating face-centered cubic lattices that originate within the at (¼, ¼, ¼) and (¾, ¼, ¼) for the Cr4−aC6 unit, (½, 0, 0) for the La9Ge6 unit, and (0, 0, 0) for the La12AlbGe1-b unit. Accordingly, La21Cr8−2aAlbGe7−bC12 adopts a structure that is effectively a polyatomic analog of the Heusler structure (Graf et al., 2011) with composition X2YZ, where X = Cr4−aC6, Y = La9Ge6, and Z = La12AlbGe1−b units. Taken together with the appropriate site occupancies, the title composition is thus obtained as X2YZ = La21Cr8−2aAlbGe7−bC12.
The geometrically frustrated Cr-deficient Cr4−aC6 unit shown in Fig. 1c is composed of a single inequivalent Cr position and a single C position. Accordingly, nearest neighbor Cr—C distances are uniformly 1.949 (5) Å, in good agreement with nearest neighbor distances in binary Cr carbides. Likewise, all Cr—Cr distances within the are similarly identical at 2.4821 (9) Å, only slightly smaller than the 2.512 Å nearest neighbor distance observed in Cr metal (Gorbunoff et al., 2009). Perhaps more interesting, however, is this relative proximity when compared with the 2.878 Å that separates neighboring Cr in the frustrated Kagomé planes of SrCr8−xGa4+xO19, a seminal example of a geometrically frustrated magnetic system (Broholm et al., 1990).
The remaining substructures, namely the La9Ge6 unit shown in Fig. 1d and the La12AlbGe1−b unit shown in Fig. 1e form cages about their central La3 and Al2/Ge2 sites respectively. The cage-like nature of this configuration is clear from the large anisotropic displacement parameters Ueq corresponding to these two central sites, as has been previously observed in isostructural materials (Benbow et al., 2009; Zaikina et al., 2011). These sites are likely characterized by strong rattling modes of the central loosely bound atom, such as is observed in skutterudite compounds (Sergueev et al., 2015). Not surprisingly, the distance between central La3 and its nearest neighbor Ge1 is a rather long, 3.41450 (13) Å. The central Al2/Ge2 site is even further – 3.8858 (2) Å from its nearest neighbor La1. A brief review of the crystallographic literature finds nearest neighbor bond lengths in La—Ge binaries to be typically on the order of only 3.0 to 3.2 Å, far smaller than either of these distances, which lends credence to the emerging picture of a stuffed, skutterudite-like arrangement.
3. Synthesis and crystallization
La21Cr8−2aAlbGe7−bC12 crystals were grown from a self of excess La (Alfa Aesar, 00175) and the following chemicals: Cr (Alfa Aesar, 38494), Ge (Strategic Metal, SM1301-B), and graphite (McMaster-Carr 9121K71) in an La:Cr:Ge:C atomic ratio of 561:214:76:149. The growth process was carried out in Al2O3 crucibles sealed within fused quartz ampoules under high purity Ar gas. Ampoules were heated to 1423 K over a period of four h, left to soak at that temperature for an additional four h, and cooled to 1173 K over 50 h to induce nucleation and to promote crystal growth. The ampoule was then quickly centrifuged at 2000 r.p.m. for several seconds to separate the solid crystals from the liquid La-rich solution. Crystals took the form of well-faceted tablets with metallic luster.
4. details
Details regarding the crystal itself, as well as data collection and structural . No evidence for twin domains was observed, and all sites with the exception of C were refined with anisotropic displacement parameters. Here permitting anisotropic displacement parameters did not appreciably improve the Two reflections, () and (00), required manual culling due to beamstop clipping.
are presented in Table 1The 21MnAlbGe7−bC12 (Zaikina et al., 2011) and somewhat lower than the reported ratio of 2.1:4.9 in La21FeAlbGe7-bC12 (Benbow et al., 2009). Like the Mn-based analog, however, we observe no evidence to suggest that the Ge1 site is mixed, as was the case with the more Al-rich La21FeAlbGe7−bC12. Regardless of any quantitative differences, the potential for Al – apparently extracted by an La-rich from Al2O3 growth crucibles – to mix with Ge appears to be a universal phenomenon in this class of compounds. It remains unclear if Al is required to stabilize the Ge-containing examples of these phases, which have not been reported in its absence.
was improved when the Ge2 site was permitted to be mixed with Al. In this case, Al and Ge coordinates and displacement parameters were constrained to be equal, and the sum of the Al and Ge occupancies was constrained to unity. The refined Al:Ge ratio 0.758 (19):6.242 (19) is in excellent agreement with observed ratios of 0.83 (2):6.17 (2) in LaIn addition to mixing on the Al2/Ge2 site, excess charge was observed in Fourier maps when the Cr site was constrained to full occupancy, and the 20Mn8Te7C12 to be stabilized by the shift of the to a pseudogap in the (Zaikina et al., 2011). Our final refined composition is then La21Cr8−2aAlbGe7−bC12 with the occupancy parameters a = 0.22 (2) and b = 0.758 (19).
was substantially improved when this parameter was subsequently freed. Permitting instead partial occupancy of Al on the Cr site did not appreciably improve the No evidence for mixed or non-unity occupancy was found for any of the La sites, despite previously published density functional theory calculations that found a composition of LaSupporting information
CCDC reference: 1508202
https://doi.org/10.1107/S2056989016015668/pk2592sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablocks global, I. DOI: https://doi.org/10.1107/S2056989016015668/pk2592Isup2.hkl
Data collection: APEX2 (Bruker, 2007) and SAINT (Bruker, 2007); cell
APEX2 (Bruker, 2007) and SAINT (Bruker, 2007); data reduction: APEX2 (Bruker, 2007) and SAINT (Bruker, 2007); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: JANA2006 (Petřìček et al., 2014); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).La21Cr7.556Al0.758Ge6.242C12 | Dx = 5.909 Mg m−3 |
Mr = 3927.6 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, Fm3m | Cell parameters from 9327 reflections |
Hall symbol: -F 4 2 3 | θ = 5.0–56.7° |
a = 16.4048 (6) Å | µ = 25.76 mm−1 |
V = 4414.8 (5) Å3 | T = 294 K |
Z = 4 | Plate, metallic_black |
F(000) = 6639.4 | 0.12 × 0.11 × 0.07 mm |
Bruker APEXII CCD diffractometer | 328 independent reflections |
Radiation source: X-ray tube | 321 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.041 |
ω and φ scans | θmax = 28.4°, θmin = 2.2° |
Absorption correction: numerical (SADABS; Bruker, 2008) | h = −21→21 |
Tmin = 0.342, Tmax = 0.527 | k = −21→21 |
40979 measured reflections | l = −21→21 |
Refinement on F2 | 1 constraint |
R[F > 3σ(F)] = 0.012 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2) |
wR(F) = 0.045 | (Δ/σ)max = 0.015 |
S = 1.91 | Δρmax = 1.07 e Å−3 |
328 reflections | Δρmin = −0.83 e Å−3 |
21 parameters | Extinction correction: B-C type 2 (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 810 (150) |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0 | 0.167496 (14) | 0.167496 (14) | 0.01125 (10) | |
La2 | 0.369379 (15) | 0.369379 (15) | 0.369379 (15) | 0.00984 (9) | |
La3 | 0.5 | 0.5 | 0.5 | 0.0384 (3) | |
Ge1 | 0.29186 (6) | 0 | 0 | 0.0121 (2) | |
Cr1 | 0.19651 (4) | 0.19651 (4) | 0.19651 (4) | 0.0068 (2) | 0.944 (5) |
Ge2 | 0 | 0 | 0 | 0.0323 (12) | 0.242 (19) |
Al2 | 0 | 0 | 0 | 0.0323 (12) | 0.758 (19) |
C1 | 0.1049 (4) | 0.25 | 0.25 | 0.0127 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.0074 (2) | 0.01315 (17) | 0.01315 (17) | 0 | 0 | 0.00046 (13) |
La2 | 0.00984 (15) | 0.00984 (15) | 0.00984 (15) | −0.00052 (8) | −0.00052 (8) | −0.00052 (8) |
La3 | 0.0384 (4) | 0.0384 (4) | 0.0384 (4) | 0 | 0 | 0 |
Ge1 | 0.0139 (5) | 0.0112 (3) | 0.0112 (3) | 0 | 0 | 0 |
Cr1 | 0.0068 (3) | 0.0068 (3) | 0.0068 (3) | 0.0008 (2) | 0.0008 (2) | 0.0008 (2) |
Ge2 | 0.032 (2) | 0.032 (2) | 0.032 (2) | 0 | 0 | 0 |
Al2 | 0.032 (2) | 0.032 (2) | 0.032 (2) | 0 | 0 | 0 |
La1—La1i | 3.8282 (4) | La2—Ge1xiii | 3.2864 (5) |
La1—La1ii | 3.8859 (3) | La2—Ge1xiv | 3.2864 (5) |
La1—La1iii | 3.8859 (3) | La2—Cr1vi | 3.2216 (7) |
La1—La1iv | 3.8859 (3) | La2—Cr1vii | 3.2216 (7) |
La1—La1v | 3.8859 (3) | La2—Cr1i | 3.2216 (7) |
La1—La2vi | 3.9907 (4) | La2—C1vi | 2.8015 (9) |
La1—La2vii | 3.9907 (4) | La2—C1xv | 2.8015 (9) |
La1—La2viii | 3.9907 (4) | La2—C1xvi | 2.8015 (9) |
La1—La2ix | 3.9907 (4) | Cr1—Cr1vi | 2.4821 (9) |
La1—Cr1 | 3.2932 (7) | Cr1—Cr1vii | 2.4821 (9) |
La1—Cr1x | 3.2932 (7) | Cr1—Cr1i | 2.4821 (9) |
La1—C1 | 2.574 (4) | Cr1—C1 | 1.949 (5) |
La1—C1xi | 2.574 (4) | Cr1—C1ii | 1.949 (5) |
La2—La3 | 3.7115 (3) | Cr1—C1iv | 1.949 (5) |
La2—Ge1xii | 3.2864 (5) | ||
La1i—La1—La1ii | 120.000 (6) | La3—La2—Cr1vii | 153.589 (14) |
La1i—La1—La1iii | 120.000 (6) | La3—La2—Cr1i | 153.589 (14) |
La1i—La1—La1iv | 120.000 (6) | La3—La2—C1vi | 136.07 (12) |
La1i—La1—La1v | 120.000 (6) | La3—La2—C1xv | 136.07 (12) |
La1i—La1—La2vi | 61.339 (6) | La3—La2—C1xvi | 136.07 (12) |
La1i—La1—La2vii | 61.339 (6) | Ge1xii—La2—Ge1xiii | 94.557 (15) |
La1i—La1—La2viii | 61.339 (6) | Ge1xii—La2—Ge1xiv | 94.557 (15) |
La1i—La1—La2ix | 61.339 (6) | Ge1xii—La2—Cr1vi | 131.521 (19) |
La1i—La1—Cr1 | 78.207 (12) | Ge1xii—La2—Cr1vii | 131.521 (19) |
La1i—La1—Cr1x | 78.207 (12) | Ge1xii—La2—Cr1i | 95.56 (2) |
La1i—La1—C1 | 41.96 (10) | Ge1xii—La2—C1vi | 165.90 (12) |
La1i—La1—C1xi | 41.96 (10) | Ge1xii—La2—C1xv | 95.00 (8) |
La1ii—La1—La1iii | 90.000 (7) | Ge1xii—La2—C1xvi | 95.00 (8) |
La1ii—La1—La1iv | 60.000 (5) | Ge1xiii—La2—Ge1xiv | 94.557 (15) |
La1ii—La1—La1v | 120.000 (7) | Ge1xiii—La2—Cr1vi | 131.521 (19) |
La1ii—La1—La2vi | 60.865 (6) | Ge1xiii—La2—Cr1vii | 95.56 (2) |
La1ii—La1—La2vii | 101.955 (5) | Ge1xiii—La2—Cr1i | 131.521 (19) |
La1ii—La1—La2viii | 165.127 (7) | Ge1xiii—La2—C1vi | 95.00 (8) |
La1ii—La1—La2ix | 105.813 (7) | Ge1xiii—La2—C1xv | 165.90 (12) |
La1ii—La1—Cr1 | 53.844 (12) | Ge1xiii—La2—C1xvi | 95.00 (8) |
La1ii—La1—Cr1x | 142.596 (13) | Ge1xiv—La2—Cr1vi | 95.56 (2) |
La1ii—La1—C1 | 84.21 (8) | Ge1xiv—La2—Cr1vii | 131.521 (19) |
La1ii—La1—C1xi | 147.63 (4) | Ge1xiv—La2—Cr1i | 131.521 (19) |
La1iii—La1—La1iv | 120.000 (7) | Ge1xiv—La2—C1vi | 95.00 (8) |
La1iii—La1—La1v | 60.000 (5) | Ge1xiv—La2—C1xv | 95.00 (8) |
La1iii—La1—La2vi | 105.813 (7) | Ge1xiv—La2—C1xvi | 165.90 (12) |
La1iii—La1—La2vii | 165.127 (7) | Cr1vi—La2—Cr1vii | 45.314 (17) |
La1iii—La1—La2viii | 101.955 (5) | Cr1vi—La2—Cr1i | 45.314 (17) |
La1iii—La1—La2ix | 60.865 (6) | Cr1vi—La2—C1vi | 36.93 (9) |
La1iii—La1—Cr1 | 142.596 (13) | Cr1vi—La2—C1xv | 36.93 (9) |
La1iii—La1—Cr1x | 53.844 (12) | Cr1vi—La2—C1xvi | 70.34 (12) |
La1iii—La1—C1 | 147.63 (4) | Cr1vii—La2—Cr1i | 45.314 (17) |
La1iii—La1—C1xi | 84.21 (8) | Cr1vii—La2—C1vi | 36.93 (9) |
La1iv—La1—La1v | 90.000 (7) | Cr1vii—La2—C1xv | 70.34 (12) |
La1iv—La1—La2vi | 101.955 (5) | Cr1vii—La2—C1xvi | 36.93 (9) |
La1iv—La1—La2vii | 60.865 (6) | Cr1i—La2—C1vi | 70.34 (12) |
La1iv—La1—La2viii | 105.813 (7) | Cr1i—La2—C1xv | 36.93 (9) |
La1iv—La1—La2ix | 165.127 (7) | Cr1i—La2—C1xvi | 36.93 (9) |
La1iv—La1—Cr1 | 53.844 (12) | C1vi—La2—C1xv | 73.86 (13) |
La1iv—La1—Cr1x | 142.596 (13) | C1vi—La2—C1xvi | 73.86 (13) |
La1iv—La1—C1 | 84.21 (8) | C1xv—La2—C1xvi | 73.86 (13) |
La1iv—La1—C1xi | 147.63 (4) | La2—La3—La2xix | 109.471 (6) |
La1v—La1—La2vi | 165.127 (7) | La2—La3—La2xx | 109.471 (6) |
La1v—La1—La2vii | 105.813 (7) | La2—La3—La2xxi | 109.471 (6) |
La1v—La1—La2viii | 60.865 (6) | La2—La3—La2xxii | 70.529 (6) |
La1v—La1—La2ix | 101.955 (5) | La2—La3—La2xxiii | 180.0 (5) |
La1v—La1—Cr1 | 142.596 (13) | La2—La3—La2xxiv | 70.529 (6) |
La1v—La1—Cr1x | 53.844 (12) | La2—La3—La2xxv | 70.529 (6) |
La1v—La1—C1 | 147.63 (4) | La2xix—La3—La2xx | 109.471 (6) |
La1v—La1—C1xi | 84.21 (8) | La2xix—La3—La2xxi | 109.471 (6) |
La2vi—La1—La2vii | 87.896 (6) | La2xix—La3—La2xxii | 180.0 (5) |
La2vi—La1—La2viii | 122.677 (8) | La2xix—La3—La2xxiii | 70.529 (6) |
La2vi—La1—La2ix | 64.952 (7) | La2xix—La3—La2xxiv | 70.529 (6) |
La2vi—La1—Cr1 | 51.418 (12) | La2xix—La3—La2xxv | 70.529 (6) |
La2vi—La1—Cr1x | 115.315 (13) | La2xx—La3—La2xxi | 109.471 (6) |
La2vi—La1—C1 | 44.302 (12) | La2xx—La3—La2xxii | 70.529 (6) |
La2vi—La1—C1xi | 90.13 (7) | La2xx—La3—La2xxiii | 70.529 (6) |
La2vii—La1—La2viii | 64.952 (7) | La2xx—La3—La2xxiv | 180.0 (5) |
La2vii—La1—La2ix | 122.677 (8) | La2xx—La3—La2xxv | 70.529 (6) |
La2vii—La1—Cr1 | 51.418 (12) | La2xxi—La3—La2xxii | 70.529 (6) |
La2vii—La1—Cr1x | 115.315 (13) | La2xxi—La3—La2xxiii | 70.529 (6) |
La2vii—La1—C1 | 44.302 (12) | La2xxi—La3—La2xxiv | 70.529 (6) |
La2vii—La1—C1xi | 90.13 (7) | La2xxi—La3—La2xxv | 180.0 (5) |
La2viii—La1—La2ix | 87.896 (6) | La2xxii—La3—La2xxiii | 109.471 (6) |
La2viii—La1—Cr1 | 115.314 (13) | La2xxii—La3—La2xxiv | 109.471 (6) |
La2viii—La1—Cr1x | 51.418 (12) | La2xxii—La3—La2xxv | 109.471 (6) |
La2viii—La1—C1 | 90.13 (7) | La2xxiii—La3—La2xxiv | 109.471 (6) |
La2viii—La1—C1xi | 44.302 (12) | La2xxiii—La3—La2xxv | 109.471 (6) |
La2ix—La1—Cr1 | 115.314 (13) | La2xxiv—La3—La2xxv | 109.471 (6) |
La2ix—La1—Cr1x | 51.418 (12) | La2xxvi—Ge1—La2i | 134.47 (3) |
La2ix—La1—C1 | 90.13 (7) | La2xxvi—Ge1—La2xxvii | 81.389 (12) |
La2ix—La1—C1xi | 44.302 (12) | La2xxvi—Ge1—La2xxviii | 81.389 (12) |
Cr1—La1—Cr1x | 156.414 (18) | La2i—Ge1—La2xxvii | 81.389 (12) |
Cr1—La1—C1 | 36.25 (10) | La2i—Ge1—La2xxviii | 81.389 (12) |
Cr1—La1—C1xi | 120.16 (10) | La2xxvii—Ge1—La2xxviii | 134.47 (3) |
Cr1x—La1—C1 | 120.16 (10) | La1—Cr1—La1ii | 72.313 (15) |
Cr1x—La1—C1xi | 36.25 (10) | La1—Cr1—La1iv | 72.313 (15) |
C1—La1—C1xi | 83.91 (14) | La1—Cr1—La2vi | 75.541 (15) |
La1vi—La2—La1vii | 57.323 (6) | La1—Cr1—La2vii | 75.541 (15) |
La1vi—La2—La1xv | 113.653 (7) | La1—Cr1—La2i | 139.88 (2) |
La1vi—La2—La1xvii | 58.269 (6) | La1—Cr1—Cr1vi | 142.60 (3) |
La1vi—La2—La1xvi | 113.653 (7) | La1—Cr1—Cr1vii | 142.60 (3) |
La1vi—La2—La1xviii | 150.254 (8) | La1—Cr1—Cr1i | 101.79 (3) |
La1vi—La2—La3 | 104.871 (7) | La1—Cr1—C1 | 51.34 (11) |
La1vi—La2—Ge1xii | 147.964 (10) | La1—Cr1—C1ii | 113.23 (9) |
La1vi—La2—Ge1xiii | 97.605 (8) | La1—Cr1—C1iv | 113.23 (9) |
La1vi—La2—Ge1xiv | 55.083 (13) | La1ii—Cr1—La1iv | 72.313 (15) |
La1vi—La2—Cr1vi | 53.041 (13) | La1ii—Cr1—La2vi | 75.541 (15) |
La1vi—La2—Cr1vii | 76.602 (13) | La1ii—Cr1—La2vii | 139.88 (2) |
La1vi—La2—Cr1i | 98.244 (13) | La1ii—Cr1—La2i | 75.541 (15) |
La1vi—La2—C1vi | 39.92 (8) | La1ii—Cr1—Cr1vi | 142.60 (3) |
La1vi—La2—C1xv | 79.52 (2) | La1ii—Cr1—Cr1vii | 101.79 (3) |
La1vi—La2—C1xvi | 113.23 (10) | La1ii—Cr1—Cr1i | 142.60 (3) |
La1vii—La2—La1xv | 150.254 (8) | La1ii—Cr1—C1 | 113.23 (9) |
La1vii—La2—La1xvii | 113.653 (7) | La1ii—Cr1—C1ii | 51.34 (11) |
La1vii—La2—La1xvi | 58.269 (6) | La1ii—Cr1—C1iv | 113.23 (9) |
La1vii—La2—La1xviii | 113.653 (7) | La1iv—Cr1—La2vi | 139.88 (2) |
La1vii—La2—La3 | 104.871 (7) | La1iv—Cr1—La2vii | 75.541 (15) |
La1vii—La2—Ge1xii | 147.964 (10) | La1iv—Cr1—La2i | 75.541 (15) |
La1vii—La2—Ge1xiii | 55.083 (13) | La1iv—Cr1—Cr1vi | 101.79 (3) |
La1vii—La2—Ge1xiv | 97.605 (8) | La1iv—Cr1—Cr1vii | 142.60 (3) |
La1vii—La2—Cr1vi | 76.602 (13) | La1iv—Cr1—Cr1i | 142.60 (3) |
La1vii—La2—Cr1vii | 53.041 (13) | La1iv—Cr1—C1 | 113.23 (9) |
La1vii—La2—Cr1i | 98.244 (13) | La1iv—Cr1—C1ii | 113.23 (9) |
La1vii—La2—C1vi | 39.92 (8) | La1iv—Cr1—C1iv | 51.34 (11) |
La1vii—La2—C1xv | 113.23 (10) | La2vi—Cr1—La2vii | 118.56 (2) |
La1vii—La2—C1xvi | 79.52 (2) | La2vi—Cr1—La2i | 118.56 (2) |
La1xv—La2—La1xvii | 57.323 (6) | La2vi—Cr1—Cr1vi | 118.32 (3) |
La1xv—La2—La1xvi | 113.653 (7) | La2vi—Cr1—Cr1vii | 67.34 (2) |
La1xv—La2—La1xviii | 58.269 (6) | La2vi—Cr1—Cr1i | 67.34 (2) |
La1xv—La2—La3 | 104.871 (7) | La2vi—Cr1—C1 | 59.74 (2) |
La1xv—La2—Ge1xii | 55.083 (13) | La2vi—Cr1—C1ii | 59.74 (2) |
La1xv—La2—Ge1xiii | 147.964 (10) | La2vi—Cr1—C1iv | 168.77 (11) |
La1xv—La2—Ge1xiv | 97.605 (8) | La2vii—Cr1—La2i | 118.56 (2) |
La1xv—La2—Cr1vi | 76.602 (13) | La2vii—Cr1—Cr1vi | 67.34 (2) |
La1xv—La2—Cr1vii | 98.244 (13) | La2vii—Cr1—Cr1vii | 118.32 (3) |
La1xv—La2—Cr1i | 53.041 (13) | La2vii—Cr1—Cr1i | 67.34 (2) |
La1xv—La2—C1vi | 113.23 (10) | La2vii—Cr1—C1 | 59.74 (2) |
La1xv—La2—C1xv | 39.92 (8) | La2vii—Cr1—C1ii | 168.77 (11) |
La1xv—La2—C1xvi | 79.52 (2) | La2vii—Cr1—C1iv | 59.74 (2) |
La1xvii—La2—La1xvi | 150.254 (8) | La2i—Cr1—Cr1vi | 67.34 (2) |
La1xvii—La2—La1xviii | 113.653 (7) | La2i—Cr1—Cr1vii | 67.34 (2) |
La1xvii—La2—La3 | 104.871 (7) | La2i—Cr1—Cr1i | 118.32 (3) |
La1xvii—La2—Ge1xii | 97.605 (8) | La2i—Cr1—C1 | 168.77 (11) |
La1xvii—La2—Ge1xiii | 147.964 (10) | La2i—Cr1—C1ii | 59.74 (2) |
La1xvii—La2—Ge1xiv | 55.083 (13) | La2i—Cr1—C1iv | 59.74 (2) |
La1xvii—La2—Cr1vi | 53.041 (13) | Cr1vi—Cr1—Cr1vii | 60.00 (3) |
La1xvii—La2—Cr1vii | 98.244 (13) | Cr1vi—Cr1—Cr1i | 60.00 (3) |
La1xvii—La2—Cr1i | 76.602 (13) | Cr1vi—Cr1—C1 | 103.11 (10) |
La1xvii—La2—C1vi | 79.52 (2) | Cr1vi—Cr1—C1ii | 103.11 (10) |
La1xvii—La2—C1xv | 39.92 (8) | Cr1vi—Cr1—C1iv | 50.45 (11) |
La1xvii—La2—C1xvi | 113.23 (10) | Cr1vii—Cr1—Cr1i | 60.00 (3) |
La1xvi—La2—La1xviii | 57.323 (6) | Cr1vii—Cr1—C1 | 103.11 (10) |
La1xvi—La2—La3 | 104.871 (7) | Cr1vii—Cr1—C1ii | 50.45 (11) |
La1xvi—La2—Ge1xii | 97.605 (8) | Cr1vii—Cr1—C1iv | 103.11 (10) |
La1xvi—La2—Ge1xiii | 55.083 (13) | Cr1i—Cr1—C1 | 50.45 (11) |
La1xvi—La2—Ge1xiv | 147.964 (10) | Cr1i—Cr1—C1ii | 103.11 (10) |
La1xvi—La2—Cr1vi | 98.244 (13) | Cr1i—Cr1—C1iv | 103.11 (10) |
La1xvi—La2—Cr1vii | 53.041 (13) | C1—Cr1—C1ii | 119.45 (4) |
La1xvi—La2—Cr1i | 76.602 (13) | C1—Cr1—C1iv | 119.45 (4) |
La1xvi—La2—C1vi | 79.52 (2) | C1ii—Cr1—C1iv | 119.45 (4) |
La1xvi—La2—C1xv | 113.23 (10) | La1—C1—La1i | 96.09 (19) |
La1xvi—La2—C1xvi | 39.92 (8) | La1—C1—La2vi | 95.78 (7) |
La1xviii—La2—La3 | 104.871 (7) | La1—C1—La2vii | 95.78 (7) |
La1xviii—La2—Ge1xii | 55.083 (13) | La1—C1—Cr1 | 92.41 (2) |
La1xviii—La2—Ge1xiii | 97.605 (8) | La1—C1—Cr1i | 171.5 (2) |
La1xviii—La2—Ge1xiv | 147.964 (10) | La1i—C1—La2vi | 95.78 (7) |
La1xviii—La2—Cr1vi | 98.244 (13) | La1i—C1—La2vii | 95.78 (7) |
La1xviii—La2—Cr1vii | 76.602 (13) | La1i—C1—Cr1 | 171.5 (2) |
La1xviii—La2—Cr1i | 53.041 (13) | La1i—C1—Cr1i | 92.41 (2) |
La1xviii—La2—C1vi | 113.23 (10) | La2vi—C1—La2vii | 162.7 (2) |
La1xviii—La2—C1xv | 79.52 (2) | La2vi—C1—Cr1 | 83.33 (10) |
La1xviii—La2—C1xvi | 39.92 (8) | La2vi—C1—Cr1i | 83.33 (10) |
La3—La2—Ge1xii | 58.029 (15) | La2vii—C1—Cr1 | 83.33 (10) |
La3—La2—Ge1xiii | 58.029 (15) | La2vii—C1—Cr1i | 83.33 (10) |
La3—La2—Ge1xiv | 58.029 (15) | Cr1—C1—Cr1i | 79.1 (2) |
La3—La2—Cr1vi | 153.589 (14) |
Symmetry codes: (i) x, −y+1/2, −z+1/2; (ii) z, x, y; (iii) −z, −x, y; (iv) y, z, x; (v) −y, z, −x; (vi) −x+1/2, −y+1/2, z; (vii) −x+1/2, y, −z+1/2; (viii) y−1/2, x, −z+1/2; (ix) y−1/2, −x+1/2, z; (x) −y, x, z; (xi) −x, z, y; (xii) x, y+1/2, z+1/2; (xiii) z+1/2, x, y+1/2; (xiv) y+1/2, z+1/2, x; (xv) z, −x+1/2, −y+1/2; (xvi) −y+1/2, z, −x+1/2; (xvii) −z+1/2, −x+1/2, y; (xviii) y, −z+1/2, −x+1/2; (xix) −x+1, −y+1, z; (xx) −x+1, y, −z+1; (xxi) x, −y+1, −z+1; (xxii) y, x, −z+1; (xxiii) −y+1, −x+1, −z+1; (xxiv) y, −x+1, z; (xxv) −y+1, x, z; (xxvi) x, y−1/2, z−1/2; (xxvii) y, x−1/2, −z+1/2; (xxviii) y, −x+1/2, z−1/2. |
Acknowledgements
Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research under contract 56764-UNI10. We are likewise grateful to M. C. Aronson for providing access to the Bruker APEXII single-crystal diffractometer at Brookhaven National Laboratory. JWS was supported in part by a Provost's Research Fellowship from Farmingdale State College.
References
Benbow, E. M., Dalal, N. S. & Latturner, S. E. (2009). J. Am. Chem. Soc. 131, 3349–3354. Web of Science CSD CrossRef PubMed CAS Google Scholar
Broholm, C., Aeppli, G., Espinosa, G. P. & Cooper, A. S. (1990). Phys. Rev. Lett. 65, 3173–3176. CrossRef PubMed CAS Web of Science Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gardner, J. S., Gingras, M. J. P. & Greedan, J. E. (2010). Rev. Mod. Phys. 82, 53–107. Web of Science CrossRef CAS Google Scholar
Gilbert, I., Nisoli, C. & Schiffer, P. (2016). Phys. Today, 69, 54–59. CrossRef Google Scholar
Glasbrenner, J. K., Mazin, I. I., Jeschke, H. O., Hirschfeld, P. J., Fernandes, R. M. & Valentí, R. (2015). Nat. Phys. 11, 953–958. Web of Science CrossRef CAS Google Scholar
Gorbunoff, A., Levin, A. A. & Meyer, D. C. (2009). J. Alloys Compd. 480, 152–156. Web of Science CrossRef CAS Google Scholar
Graf, T., Felser, C. & Parkin, S. S. P. (2011). Prog. Solid State Chem. 39, 1–50. Web of Science CrossRef CAS Google Scholar
Grass, T., Raventós, D., Juliá-Díaz, B., Gogolin, C. & Lewenstein, M. (2016). Nat. Commun. 7, 11524. Web of Science PubMed Google Scholar
Hirschberger, M., Krizan, J. W., Cava, R. J. & Ong, N. P. (2015). Science, 348, 106–109. Web of Science CrossRef CAS PubMed Google Scholar
Huang, Y., Chen, K., Deng, Y., Prokof'ev, N. & Svistunov, B. (2016). Phys. Rev. Lett. 116, 177203. Web of Science CrossRef PubMed Google Scholar
Katzgraber, H. G., Hamze, F., Zhu, Z., Ochoa, A. J. & Munoz-Bauza, H. (2015). Phys. Rev. X, 5, 031026. Google Scholar
McNally, D. E., Simonson, J. W., Kistner-Morris, J. J., Smith, G. J., Hassinger, J. E., DeBeer-Schmitt, L., Kolesnikov, A. I., Zaliznyak, I. A. & Aronson, M. C. (2015). Phys. Rev. B, 91, 180407. Web of Science CrossRef Google Scholar
Miiller, W., Wu, L. S., Kim, M. S., Orvis, T., Simonson, J. W., Gamża, M., McNally, D. M., Nelson, C. S., Ehlers, G., Podlesnyak, A., Helton, J. S., Zhao, Y., Qiu, Y., Copley, J. R. D., Lynn, J. W., Zaliznyak, I. & Aronson, M. C. (2016). Phys. Rev. B, 93, 104419. Web of Science CrossRef Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pan, L., Laurita, N. J., Ross, K. A., Gaulin, B. D. & Armitage, N. P. (2016). Nat. Phys. 12, 361–366. Web of Science CrossRef CAS Google Scholar
Petřìček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352. Google Scholar
Sergueev, I., Glazyrin, K., Kantor, I., McGuire, M. A., Chumakov, A. I., Klobes, B., Sales, B. C. & Hermann, R. P. (2015). Phys. Rev. B, 91, 224304. Web of Science CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zaikina, J. V., Schellenberg, I., Benbow, E. M., Pöttgen, R. & Latturner, S. E. (2011). Chem. Mater. 23, 1768–1778. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.