research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[μ-1,4-bis­­(di­phenyl­phos­phan­yl)butane-κ2P:P′]bis­­[(3,4,7,8-tetra­methyl-1,10-phenanthroline-κ2N,N′)copper(I)] bis­­(hexa­fluorido­phosphate) di­chloro­methane disolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, Japan
*Correspondence e-mail: tsubomura@st.seikei.ac.jp

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 7 September 2016; accepted 4 October 2016; online 11 October 2016)

The dication of the title compound, [Cu2(C28H28P2)2(C16H16N2)2](PF6)2·2CH2Cl2, has crystallographically imposed inversion symmetry. The copper(I) cation is coordinated in a distorted tetra­hedral geometry by two N atoms of a chelating 3,4,7,8-tetra­methyl-1,10-phenanthroline ligand and two P atoms of two bridging 1,4-bis­(di­phenyl­phosphan­yl)butane ligands, forming a 14-membered ring. An intra­molecular ππ inter­action stabilizes the conformation of the dication. In the crystal, dications are linked by ππ inter­actions involving adjacent phenanthroline rings, forming chains running parallel to [111]. Weak C—H⋯F hydrogen inter­actions are also observed.

1. Chemical context

Copper(I) complexes bearing di­imine ligands are important candidates for photofunctional materials due to the possible generation of long-lived charge-transfer excited states (Barbieri et al., 2008[Barbieri, A., Accorsi, G. & Armaroli, N. (2008). Chem. Commun. pp. 2185-2193.]; Nishikawa et al., 2015[Nishikawa, M., Sawamura, S., Haraguchi, A., Morikubo, J., Takao, K. & Tsubomura, T. (2015). Dalton Trans. 44, 411-418.]). We have previously reported the crystal structures as well as the long-lived emission properties of the dicopper(I) complexes [Cu2(dmp)2(dppb)2](PF6)2 (dppb = 1,4-bis­(di­phenyl­phos­phan­yl)butane, dmp = 2,9-dimethyl-1,10-phenanthroline) (Saito et al., 2006[Saito, K., Arai, T., Takahashi, N., Tsukuda, T. & Tsubomura, T. (2006). Dalton Trans. pp. 4444-4448.]) and [Cu2(dmpp)2(dppb)2](PF6)2 (dmpp = 4,7-diphenyl-1,10-phenanthroline) (Tsubomura et al., 2015[Tsubomura, T., Kimura, K., Nishikawa, M. & Tsukuda, T. (2015). Dalton Trans. 44, 7554-7562.]). In addition, the synthesis and NMR studies of dicopper(I) complexes bearing 1,1-bis­(di­phenyl­phosphan­yl)methane and 3,4,7,8-tetra­methyl-1,10-phenanthroline (tmp) ligands (Kitagawa et al., 1991[Kitagawa, S., Maruyama, H., Wada, S., Munakata, M., Nakamura, M. & Masuda, H. (1991). Bull. Chem. Soc. Jpn, 64, 2809-2813.]), and the crystal structures of bis­(di­imine)­copper(I) complexes, [Cu(tmp)2]BPh4 and [Cu(phen)2]BPh4 (Cunningham et al., 2000[Cunningham, C. T., Moore, J. J., Cunningham, K. L., Fanwick, P. E. & McMillin, D. R. (2000). Inorg. Chem. 39, 3638-3644.]), have been reported. It is known that methyl substitution on the phenanthroline ligand often gives the essential effect on the photophysical properties of the copper complexes. Herein we describe the synthesis and crystal structure of a novel dinuclear copper(I) complex bearing tmp and dppb ligands. The title complex, [Cu2(tmp)2(dppb)2](PF6)2·2CH2Cl2, was newly synthesized by the reaction of tmp, dppb, and tetra­kis­(aceto­nitrile)­copper(I) hexa­fluorido­phosphate in di­chloro­methane at room temperature.

2. Structural commentary

The asymmetric unit of the title compound consists of half of the dicopper(I) complex cation, one hexa­fluorido­phosphate counter-anion, and one di­chloro­methane mol­ecule. The complex has crystallographically imposed inversion symmetry. Each copper(I) atom is coordinated in a distorted tetra­hedral geometry by two nitro­gen atoms of a chelating tmp mol­ecule and two phospho­rus atoms of two centrosymmetric bridging dppb ligands, forming a 14-membered ring (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by (−x, −y, −z). H atoms have been omitted for clarity.

The distorted tetra­hedral geometry around the copper(I) cation is characteristic of copper(I) complexes bearing di­imine and diphosphine ligands. The Cu—N bond lengths [2.063 (4) and 2.091 (4) Å] are shorter than those observed in the related complexes [Cu2(dmpp)2(dppb)2](PF6)2 [2.080 (4) and 2.130 (4) Å] and [Cu2(dmp)2(dppb)2](PF6)2 [2.105 (4) and 2.117 (4) Å]. The Cu—P bonds [2.212 (2) and 2.276 (2) Å] are also shorter than those of [Cu2(dmpp)2(dppb)2](PF6)2 [2.2669 (15) and 2.2915 (16) Å] and [Cu2(dmp)2(dppb)2] [2.256 (1) and 2.3002 (14) Å]. The N—Cu—N bond angle of 80.10 (13)° is not significantly different from those of [Cu2(dmpp)2(dppb)2](PF6)2 [80.03 (14)°] and [Cu2(dmp)2(dppb)2](PF6)2 [80.1 (2)°], whereas the P—Cu—P bond angle [122.83 (8)°] falls in the range observed for [Cu2(dmpp)2(dppb)2](PF6)2 [119.57 (5)°] and [Cu2(dmp)2(dppb)2](PF6)2 [126.38 (5)°]. The conformation of the dinuclear complex is stabilized by the presence of two relatively short intramolecular ππ inter­actions involving the N12/C17/C30/C54/C36/C37 pyridine ring and the C29/C26/C46/C47/C57/C32 phenyl ring of the dppb ligand [centroid-to-centroid distance = 3.577 (5) Å].

3. Supra­molecular features

In the crystal, ππ inter­actions between the phenanthroline rings of adjacent complex dications are observed [centroid-to-centroid distance = 3.644 (4) Å], forming chains running parallel to [111]. As shown in Fig. 2[link], the di­chloro­methane solvent mol­ecules and counter-ions are sandwiched by the chains of the complex cations. There are weak inter­molecular C—H⋯F hydrogen-bonding inter­actions between the fluorine atoms of the counter-ion and the methyl­ene group of the di­chloro­methane mol­ecule. An inter­molecular C—H⋯F hydrogen bond involving an aromatic C—H group of a phenyl ring is also observed (Table 1[link]). Inter­molecular ππ inter­actions between phenanthroline rings are not observed in the crystal structure of [Cu2(dmp)2(dppb)2](PF6)2, where only weak intra­molecular inter­actions are present between the phenanthroline ring and the phenyl rings of the diphosphine moieties.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯F10i 0.95 2.51 3.382 (6) 152
C100—H10A⋯F11ii 0.99 2.39 3.360 (8) 165
C100—H10A⋯F13ii 0.99 2.55 3.373 (9) 141
Symmetry codes: (i) -x, -y, -z+1; (ii) x+1, y, z.
[Figure 2]
Figure 2
The packing of the title compound, viewed along the a axis.

4. Synthesis and crystallization

Under an argon atmosphere, [Cu(MeCN)4]PF6 (75 mg, 0.20 mmol) was added to a CH2Cl2 solution of dppb (85 mg, 0.20 mmol). Then, tmp (45 mg, 0.20 mmol) was added and the reaction mixture was stirred for 100 min at room temperature. After addition of n-hexane to the solution, the formed solid was filtered, washed with diethyl ether, and dried in vacuo (yield; 139 mg, 80%). Single crystals of the title compound suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into the di­chloro­methane solution.

5. Refinement

Data collection details and refinement results are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene groups, C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for the methyl groups and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for the aromatic groups. A rotation model was used for the methyl groups.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C28H28P2)2(C16H16N2)2](PF6)2·2CH2Cl2
Mr 1912.38
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 11.723 (15), 12.967 (16), 16.06 (2)
α, β, γ (°) 108.302 (13), 98.665 (12), 103.284 (13)
V3) 2190 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.79
Crystal size (mm) 0.5 × 0.5 × 0.2
 
Data collection
Diffractometer Rigaku Saturn70 CCD
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.892, 1
No. of measured, independent and observed [I > 2σ(I)] reflections 20388, 9329, 6951
Rint 0.044
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.169, 1.09
No. of reflections 9329
No. of parameters 536
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.52
Computer programs: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[µ-1,4-bis(diphenylphosphanyl)butane-κ2P:P']bis[(3,4,7,8-tetramethyl-1,10-phenanthroline-κ2N,N')copper(I)] bis(hexafluoridophosphate) dichloromethane disolvate top
Crystal data top
[Cu2(C28H28P2)2(C16H16N2)2](PF6)2·2CH2Cl2Z = 1
Mr = 1912.38F(000) = 984
Triclinic, P1Dx = 1.45 Mg m3
a = 11.723 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.967 (16) ÅCell parameters from 5584 reflections
c = 16.06 (2) Åθ = 3.2–27.5°
α = 108.302 (13)°µ = 0.79 mm1
β = 98.665 (12)°T = 123 K
γ = 103.284 (13)°Block, yellow
V = 2190 (5) Å30.5 × 0.5 × 0.2 mm
Data collection top
Rigaku Saturn70 CCD
diffractometer
6951 reflections with I > 2σ(I)
dtprofit.ref scansRint = 0.044
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
θmax = 27.5°, θmin = 3.2°
Tmin = 0.892, Tmax = 1h = 1315
20388 measured reflectionsk = 1616
9329 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.072 w = 1/[σ2(Fo2) + (0.0723P)2 + 2.0278P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.169(Δ/σ)max = 0.013
S = 1.09Δρmax = 0.62 e Å3
9329 reflectionsΔρmin = 0.52 e Å3
536 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26867 (4)0.23663 (4)0.22973 (3)0.02662 (15)
P20.36165 (9)0.12357 (9)0.15197 (7)0.0275 (2)
P30.09667 (9)0.26348 (8)0.16520 (7)0.0265 (2)
P40.12149 (11)0.18077 (11)0.81650 (8)0.0395 (3)
F70.0743 (3)0.2452 (3)0.8990 (2)0.0573 (8)
F80.2540 (3)0.2682 (3)0.8601 (2)0.0655 (9)
F90.1681 (3)0.1150 (3)0.7334 (2)0.0746 (10)
F100.1578 (3)0.1026 (2)0.8698 (2)0.0572 (8)
F110.0859 (3)0.2600 (3)0.7650 (2)0.0701 (10)
N120.2443 (3)0.2589 (3)0.3581 (2)0.0292 (7)
F130.0099 (3)0.0909 (3)0.7726 (2)0.0702 (9)
C140.4484 (4)0.0520 (3)0.2078 (3)0.0310 (9)
C150.4132 (3)0.5631 (3)0.4366 (3)0.0296 (9)
C160.1100 (4)0.1833 (3)0.0189 (3)0.0312 (9)
H16A0.08150.2520.00420.037*
H16B0.15770.20150.06460.037*
C170.2907 (3)0.3699 (3)0.4152 (3)0.0281 (8)
C180.0006 (3)0.1546 (3)0.0598 (3)0.0284 (8)
H18A0.04860.14010.01480.034*
H18B0.02970.08330.07080.034*
N190.3846 (3)0.4014 (3)0.2999 (2)0.0293 (7)
C200.4835 (4)0.6354 (3)0.4000 (3)0.0314 (9)
C210.0450 (4)0.4616 (4)0.1457 (3)0.0414 (11)
H210.02730.44130.16450.05*
C220.5032 (4)0.5885 (4)0.3153 (3)0.0335 (9)
C230.5963 (4)0.2594 (4)0.1741 (3)0.0387 (10)
H230.61890.2360.2230.046*
C240.0731 (6)0.5596 (4)0.1243 (3)0.0556 (15)
H240.02050.60590.12870.067*
C250.3660 (3)0.4468 (3)0.3833 (3)0.0254 (8)
C260.0186 (5)0.3783 (4)0.3143 (3)0.0446 (12)
H260.07710.4450.31820.053*
C270.5335 (4)0.7615 (3)0.4518 (3)0.0395 (10)
H27A0.60380.77660.50030.059*
H27B0.47140.790.47790.059*
H27C0.5580.80.41090.059*
C280.3189 (4)0.5288 (4)0.5536 (3)0.0356 (10)
H280.30560.55760.61230.043*
C290.0020 (4)0.2758 (3)0.2432 (3)0.0298 (9)
C300.2647 (4)0.4102 (4)0.5002 (3)0.0317 (9)
C310.6490 (5)0.3739 (5)0.0858 (4)0.0545 (14)
H310.70680.42990.07520.065*
C320.0873 (4)0.1812 (4)0.2409 (3)0.0420 (11)
H320.10210.11070.19310.05*
C330.4536 (4)0.0697 (4)0.2980 (3)0.0388 (10)
H330.40970.11550.32940.047*
C340.5091 (4)0.0187 (4)0.1620 (3)0.0409 (11)
H340.50480.03270.09980.049*
C350.3884 (4)0.6012 (4)0.5232 (3)0.0338 (9)
H350.42130.67920.56070.041*
C360.1367 (4)0.2211 (4)0.4677 (3)0.0357 (10)
C370.1683 (4)0.1886 (4)0.3844 (3)0.0320 (9)
H370.13350.11190.34430.038*
C380.2725 (4)0.0082 (3)0.0463 (3)0.0290 (9)
H38A0.22180.03780.01010.035*
H38B0.32730.0220.01070.035*
C390.1922 (4)0.0868 (3)0.0665 (3)0.0312 (9)
H39A0.14150.05480.10560.037*
H39B0.24380.11820.10040.037*
C400.5725 (5)0.6565 (4)0.2687 (4)0.0494 (12)
H40A0.52330.6990.24720.074*
H40B0.59190.6050.21720.074*
H40C0.64740.70980.31130.074*
C410.4780 (4)0.2122 (3)0.1195 (3)0.0313 (9)
C420.1216 (4)0.3938 (3)0.1397 (3)0.0345 (10)
C430.1520 (5)0.3689 (4)0.6160 (3)0.0496 (12)
H43A0.07860.39250.60880.074*
H43B0.21820.43270.66010.074*
H43C0.13760.30510.63720.074*
C440.5851 (4)0.0473 (4)0.2978 (3)0.0454 (12)
H440.63410.07890.32920.054*
C450.4481 (4)0.2465 (4)0.0471 (3)0.0404 (10)
H450.36870.21510.00910.048*
C460.0477 (6)0.3818 (6)0.3797 (3)0.0634 (17)
H460.03420.45160.42790.076*
C470.1324 (5)0.2861 (7)0.3756 (4)0.0668 (18)
H470.17670.28990.42080.08*
C480.6798 (4)0.3394 (4)0.1573 (3)0.0478 (12)
H480.75930.37120.19510.057*
C490.4531 (4)0.4712 (4)0.2693 (3)0.0334 (9)
H490.46920.4390.21210.04*
C500.2252 (4)0.4237 (5)0.1098 (4)0.0496 (13)
H500.27770.37730.10380.06*
C510.5230 (5)0.0205 (4)0.3430 (3)0.0460 (12)
H510.52730.0340.40520.055*
C520.5765 (4)0.0695 (4)0.2073 (3)0.0445 (11)
H520.61640.11940.17540.053*
C530.0479 (5)0.1334 (4)0.4881 (4)0.0500 (13)
H53A0.08650.12280.54210.075*
H53B0.02220.06110.43670.075*
H53C0.02260.15930.49890.075*
C540.1851 (4)0.3328 (4)0.5270 (3)0.0354 (10)
C550.5341 (5)0.3265 (4)0.0301 (3)0.0516 (13)
H550.51350.34850.01990.062*
C560.1779 (6)0.5883 (5)0.0967 (4)0.0689 (18)
H560.19810.65550.08310.083*
C570.1519 (5)0.1869 (6)0.3069 (4)0.0593 (15)
H570.21030.12060.30380.071*
C590.2525 (5)0.5213 (6)0.0887 (4)0.0709 (19)
H590.32370.54130.06860.085*
Cl10.74499 (14)0.04960 (12)0.56451 (11)0.0641 (4)
Cl20.79599 (14)0.29365 (12)0.61857 (12)0.0734 (5)
C1000.7937 (6)0.1792 (5)0.6560 (4)0.0699 (17)
H10A0.87570.18940.69010.084*
H10B0.73880.17840.69710.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0277 (3)0.0262 (3)0.0270 (3)0.0094 (2)0.0062 (2)0.0102 (2)
P20.0279 (5)0.0278 (5)0.0257 (6)0.0101 (4)0.0039 (4)0.0081 (4)
P30.0272 (5)0.0249 (5)0.0277 (6)0.0090 (4)0.0051 (4)0.0097 (4)
P40.0404 (7)0.0554 (7)0.0350 (7)0.0234 (6)0.0142 (5)0.0237 (6)
F70.082 (2)0.0625 (18)0.0543 (18)0.0418 (17)0.0413 (16)0.0306 (15)
F80.0492 (18)0.073 (2)0.075 (2)0.0079 (16)0.0152 (16)0.0347 (18)
F90.072 (2)0.115 (3)0.0448 (19)0.049 (2)0.0251 (16)0.0196 (19)
F100.074 (2)0.0507 (17)0.0560 (18)0.0306 (15)0.0092 (15)0.0257 (14)
F110.071 (2)0.113 (3)0.077 (2)0.053 (2)0.0374 (18)0.074 (2)
N120.0282 (17)0.0286 (17)0.0306 (19)0.0055 (14)0.0055 (14)0.0132 (14)
F130.0462 (18)0.091 (2)0.062 (2)0.0077 (17)0.0022 (15)0.0260 (18)
C140.034 (2)0.032 (2)0.028 (2)0.0137 (18)0.0034 (17)0.0101 (17)
C150.027 (2)0.030 (2)0.033 (2)0.0097 (17)0.0049 (17)0.0134 (18)
C160.034 (2)0.028 (2)0.031 (2)0.0119 (17)0.0046 (18)0.0101 (17)
C170.026 (2)0.029 (2)0.030 (2)0.0073 (16)0.0031 (16)0.0137 (17)
C180.030 (2)0.029 (2)0.026 (2)0.0096 (17)0.0081 (17)0.0089 (16)
N190.0292 (18)0.0302 (17)0.0294 (19)0.0062 (14)0.0080 (14)0.0133 (15)
C200.030 (2)0.029 (2)0.034 (2)0.0090 (17)0.0036 (18)0.0123 (18)
C210.047 (3)0.032 (2)0.040 (3)0.015 (2)0.001 (2)0.009 (2)
C220.029 (2)0.035 (2)0.037 (2)0.0078 (18)0.0073 (18)0.0169 (19)
C230.026 (2)0.046 (3)0.041 (3)0.0103 (19)0.0071 (19)0.014 (2)
C240.081 (4)0.033 (2)0.045 (3)0.023 (3)0.010 (3)0.011 (2)
C250.0186 (18)0.030 (2)0.026 (2)0.0062 (15)0.0037 (15)0.0097 (16)
C260.056 (3)0.046 (3)0.032 (3)0.026 (2)0.006 (2)0.008 (2)
C270.042 (3)0.030 (2)0.043 (3)0.0074 (19)0.008 (2)0.0111 (19)
C280.038 (2)0.039 (2)0.030 (2)0.017 (2)0.0061 (19)0.0095 (19)
C290.029 (2)0.036 (2)0.023 (2)0.0149 (18)0.0021 (16)0.0078 (17)
C300.032 (2)0.036 (2)0.030 (2)0.0130 (18)0.0037 (17)0.0146 (18)
C310.041 (3)0.056 (3)0.055 (3)0.008 (2)0.019 (2)0.016 (3)
C320.036 (2)0.051 (3)0.039 (3)0.007 (2)0.011 (2)0.020 (2)
C330.049 (3)0.040 (2)0.034 (2)0.025 (2)0.007 (2)0.015 (2)
C340.041 (3)0.046 (3)0.035 (3)0.023 (2)0.006 (2)0.007 (2)
C350.034 (2)0.032 (2)0.032 (2)0.0124 (18)0.0074 (18)0.0068 (18)
C360.034 (2)0.041 (2)0.041 (3)0.0134 (19)0.0115 (19)0.025 (2)
C370.032 (2)0.033 (2)0.036 (2)0.0077 (18)0.0079 (18)0.0204 (19)
C380.031 (2)0.030 (2)0.025 (2)0.0089 (17)0.0034 (16)0.0099 (16)
C390.035 (2)0.030 (2)0.027 (2)0.0078 (18)0.0039 (17)0.0099 (17)
C400.053 (3)0.040 (3)0.055 (3)0.002 (2)0.019 (2)0.023 (2)
C410.033 (2)0.031 (2)0.028 (2)0.0098 (18)0.0094 (17)0.0070 (17)
C420.035 (2)0.031 (2)0.032 (2)0.0051 (18)0.0007 (18)0.0095 (18)
C430.060 (3)0.057 (3)0.042 (3)0.021 (3)0.024 (2)0.024 (2)
C440.050 (3)0.044 (3)0.047 (3)0.023 (2)0.005 (2)0.020 (2)
C450.037 (2)0.042 (2)0.035 (3)0.003 (2)0.009 (2)0.010 (2)
C460.084 (4)0.088 (4)0.030 (3)0.063 (4)0.014 (3)0.009 (3)
C470.057 (4)0.124 (6)0.050 (4)0.056 (4)0.029 (3)0.044 (4)
C480.035 (3)0.056 (3)0.047 (3)0.010 (2)0.011 (2)0.013 (2)
C490.035 (2)0.035 (2)0.033 (2)0.0093 (18)0.0092 (18)0.0173 (19)
C500.038 (3)0.064 (3)0.061 (3)0.011 (2)0.010 (2)0.045 (3)
C510.061 (3)0.052 (3)0.034 (3)0.028 (3)0.008 (2)0.020 (2)
C520.045 (3)0.040 (3)0.048 (3)0.022 (2)0.008 (2)0.010 (2)
C530.054 (3)0.048 (3)0.058 (3)0.009 (2)0.027 (3)0.031 (3)
C540.035 (2)0.043 (2)0.034 (2)0.014 (2)0.0111 (19)0.019 (2)
C550.056 (3)0.057 (3)0.039 (3)0.003 (3)0.013 (2)0.023 (2)
C560.085 (5)0.047 (3)0.066 (4)0.001 (3)0.011 (3)0.036 (3)
C570.038 (3)0.098 (5)0.053 (3)0.018 (3)0.018 (2)0.041 (3)
C590.051 (3)0.084 (4)0.090 (5)0.002 (3)0.002 (3)0.068 (4)
Cl10.0641 (9)0.0491 (7)0.0746 (10)0.0129 (7)0.0155 (7)0.0197 (7)
Cl20.0685 (10)0.0511 (8)0.0955 (12)0.0158 (7)0.0000 (8)0.0303 (8)
C1000.087 (5)0.064 (4)0.053 (4)0.028 (3)0.006 (3)0.020 (3)
Geometric parameters (Å, º) top
Cu1—N122.063 (4)C31—C551.380 (7)
Cu1—N192.091 (4)C31—C481.386 (8)
Cu1—P22.212 (2)C31—H310.95
Cu1—P32.276 (2)C32—C571.387 (7)
P2—C411.823 (4)C32—H320.95
P2—C381.834 (4)C33—C511.394 (6)
P2—C141.839 (4)C33—H330.95
P3—C291.824 (4)C34—C521.397 (6)
P3—C181.827 (4)C34—H340.95
P3—C421.831 (5)C35—H350.95
P4—F71.580 (3)C36—C541.386 (6)
P4—F91.589 (3)C36—C371.404 (6)
P4—F111.595 (3)C36—C531.510 (6)
P4—F131.600 (4)C37—H370.95
P4—F81.598 (4)C38—C391.522 (6)
P4—F101.604 (3)C38—H38A0.99
N12—C371.337 (5)C38—H38B0.99
N12—C171.368 (5)C39—C16i1.532 (6)
C14—C331.383 (6)C39—H39A0.99
C14—C341.386 (6)C39—H39B0.99
C15—C251.406 (6)C40—H40A0.98
C15—C351.422 (6)C40—H40B0.98
C15—C201.428 (6)C40—H40C0.98
C16—C181.528 (6)C41—C451.394 (6)
C16—C39i1.532 (6)C42—C501.391 (7)
C16—H16A0.99C43—C541.498 (6)
C16—H16B0.99C43—H43A0.98
C17—C301.406 (6)C43—H43B0.98
C17—C251.446 (5)C43—H43C0.98
C18—H18A0.99C44—C511.372 (7)
C18—H18B0.99C44—C521.374 (7)
N19—C491.330 (5)C44—H440.95
N19—C251.357 (5)C45—C551.396 (6)
C20—C221.383 (6)C45—H450.95
C20—C271.507 (6)C46—C471.376 (9)
C21—C421.387 (6)C46—H460.95
C21—C241.398 (7)C47—C571.350 (9)
C21—H210.95C47—H470.95
C22—C491.399 (6)C48—H480.95
C22—C401.505 (6)C49—H490.95
C23—C481.376 (7)C50—C591.391 (7)
C23—C411.406 (6)C50—H500.95
C23—H230.95C51—H510.95
C24—C561.379 (9)C52—H520.95
C24—H240.95C53—H53A0.98
C26—C461.392 (8)C53—H53B0.98
C26—C291.395 (6)C53—H53C0.98
C26—H260.95C55—H550.95
C27—H27A0.98C56—C591.360 (9)
C27—H27B0.98C56—H560.95
C27—H27C0.98C57—H570.95
C28—C351.356 (6)C59—H590.95
C28—C301.436 (6)Cl1—C1001.751 (6)
C28—H280.95Cl2—C1001.764 (6)
C29—C321.380 (6)C100—H10A0.99
C30—C541.423 (6)C100—H10B0.99
N12—Cu1—N1980.10 (13)C57—C32—H32119.3
N12—Cu1—P2127.97 (10)C14—C33—C51120.2 (4)
N19—Cu1—P2111.67 (13)C14—C33—H33119.9
N12—Cu1—P3100.49 (11)C51—C33—H33119.9
N19—Cu1—P3104.06 (12)C14—C34—C52120.1 (4)
P2—Cu1—P3122.83 (8)C14—C34—H34119.9
C41—P2—C38105.3 (2)C52—C34—H34119.9
C41—P2—C14102.2 (2)C28—C35—C15121.6 (4)
C38—P2—C14102.7 (2)C28—C35—H35119.2
C41—P2—Cu1106.99 (16)C15—C35—H35119.2
C38—P2—Cu1118.10 (16)C54—C36—C37119.1 (4)
C14—P2—Cu1119.70 (16)C54—C36—C53122.3 (4)
C29—P3—C18103.9 (2)C37—C36—C53118.5 (4)
C29—P3—C42105.8 (2)N12—C37—C36124.1 (4)
C18—P3—C42103.2 (2)N12—C37—H37118
C29—P3—Cu1109.29 (15)C36—C37—H37118
C18—P3—Cu1119.27 (14)C39—C38—P2110.2 (3)
C42—P3—Cu1114.08 (15)C39—C38—H38A109.6
F7—P4—F9179.5 (2)P2—C38—H38A109.6
F7—P4—F1189.82 (19)C39—C38—H38B109.6
F9—P4—F1190.4 (2)P2—C38—H38B109.6
F7—P4—F1389.8 (2)H38A—C38—H38B108.1
F9—P4—F1389.8 (2)C38—C39—C16i112.9 (3)
F11—P4—F1390.7 (2)C38—C39—H39A109
F7—P4—F891.1 (2)C16i—C39—H39A109
F9—P4—F889.4 (2)C38—C39—H39B109
F11—P4—F890.3 (2)C16i—C39—H39B109
F13—P4—F8178.68 (19)H39A—C39—H39B107.8
F7—P4—F1089.44 (18)C22—C40—H40A109.5
F9—P4—F1090.3 (2)C22—C40—H40B109.5
F11—P4—F10179.1 (2)H40A—C40—H40B109.5
F13—P4—F1089.8 (2)C22—C40—H40C109.5
F8—P4—F1089.21 (19)H40A—C40—H40C109.5
C37—N12—C17117.3 (4)H40B—C40—H40C109.5
C37—N12—Cu1128.3 (3)C45—C41—C23118.5 (4)
C17—N12—Cu1112.2 (3)C45—C41—P2120.7 (3)
C33—C14—C34119.2 (4)C23—C41—P2120.3 (3)
C33—C14—P2119.1 (3)C50—C42—C21118.6 (4)
C34—C14—P2121.7 (3)C50—C42—P3115.8 (3)
C25—C15—C35118.2 (4)C21—C42—P3125.5 (4)
C25—C15—C20117.6 (4)C54—C43—H43A109.5
C35—C15—C20124.2 (4)C54—C43—H43B109.5
C18—C16—C39i113.3 (3)H43A—C43—H43B109.5
C18—C16—H16A108.9C54—C43—H43C109.5
C39i—C16—H16A108.9H43A—C43—H43C109.5
C18—C16—H16B108.9H43B—C43—H43C109.5
C39i—C16—H16B108.9C51—C44—C52120.1 (4)
H16A—C16—H16B107.7C51—C44—H44120
N12—C17—C30122.7 (4)C52—C44—H44120
N12—C17—C25116.8 (4)C55—C45—C41120.4 (4)
C30—C17—C25120.5 (4)C55—C45—H45119.8
C16—C18—P3115.4 (3)C41—C45—H45119.8
C16—C18—H18A108.4C47—C46—C26121.3 (5)
P3—C18—H18A108.4C47—C46—H46119.3
C16—C18—H18B108.4C26—C46—H46119.3
P3—C18—H18B108.4C57—C47—C46119.4 (5)
H18A—C18—H18B107.5C57—C47—H47120.3
C49—N19—C25117.4 (4)C46—C47—H47120.3
C49—N19—Cu1129.5 (3)C23—C48—C31120.7 (5)
C25—N19—Cu1111.7 (2)C23—C48—H48119.7
C22—C20—C15119.2 (4)C31—C48—H48119.7
C22—C20—C27120.1 (4)N19—C49—C22124.8 (4)
C15—C20—C27120.7 (4)N19—C49—H49117.6
C42—C21—C24120.7 (5)C22—C49—H49117.6
C42—C21—H21119.7C42—C50—C59120.4 (5)
C24—C21—H21119.7C42—C50—H50119.8
C20—C22—C49117.9 (4)C59—C50—H50119.8
C20—C22—C40124.0 (4)C44—C51—C33120.2 (4)
C49—C22—C40118.1 (4)C44—C51—H51119.9
C48—C23—C41120.5 (4)C33—C51—H51119.9
C48—C23—H23119.8C44—C52—C34120.0 (4)
C41—C23—H23119.8C44—C52—H52120
C56—C24—C21119.4 (5)C34—C52—H52120
C56—C24—H24120.3C36—C53—H53A109.5
C21—C24—H24120.3C36—C53—H53B109.5
N19—C25—C15123.0 (4)H53A—C53—H53B109.5
N19—C25—C17116.8 (3)C36—C53—H53C109.5
C15—C25—C17120.2 (4)H53A—C53—H53C109.5
C46—C26—C29119.2 (5)H53B—C53—H53C109.5
C46—C26—H26120.4C36—C54—C30118.1 (4)
C29—C26—H26120.4C36—C54—C43119.8 (4)
C20—C27—H27A109.5C30—C54—C43122.1 (4)
C20—C27—H27B109.5C31—C55—C45120.2 (5)
H27A—C27—H27B109.5C31—C55—H55119.9
C20—C27—H27C109.5C45—C55—H55119.9
H27A—C27—H27C109.5C59—C56—C24120.5 (5)
H27B—C27—H27C109.5C59—C56—H56119.7
C35—C28—C30122.3 (4)C24—C56—H56119.7
C35—C28—H28118.8C47—C57—C32120.4 (6)
C30—C28—H28118.8C47—C57—H57119.8
C32—C29—C26118.2 (4)C32—C57—H57119.8
C32—C29—P3120.9 (3)C56—C59—C50120.4 (6)
C26—C29—P3120.3 (4)C56—C59—H59119.8
C17—C30—C54118.6 (4)C50—C59—H59119.8
C17—C30—C28117.2 (4)Cl1—C100—Cl2110.9 (3)
C54—C30—C28124.2 (4)Cl1—C100—H10A109.5
C55—C31—C48119.7 (5)Cl2—C100—H10A109.5
C55—C31—H31120.1Cl1—C100—H10B109.5
C48—C31—H31120.1Cl2—C100—H10B109.5
C29—C32—C57121.4 (5)H10A—C100—H10B108.1
C29—C32—H32119.3
N12—Cu1—P2—C41124.73 (19)Cu1—P3—C29—C2680.0 (4)
N19—Cu1—P2—C4130.41 (18)N12—C17—C30—C541.3 (6)
P3—Cu1—P2—C4194.16 (16)C25—C17—C30—C54176.8 (4)
N12—Cu1—P2—C38116.9 (2)N12—C17—C30—C28179.9 (4)
N19—Cu1—P2—C38148.81 (18)C25—C17—C30—C281.8 (6)
P3—Cu1—P2—C3824.24 (16)C35—C28—C30—C172.7 (6)
N12—Cu1—P2—C149.4 (2)C35—C28—C30—C54175.8 (4)
N19—Cu1—P2—C1484.91 (19)C26—C29—C32—C570.4 (7)
P3—Cu1—P2—C14150.52 (16)P3—C29—C32—C57171.5 (4)
N12—Cu1—P3—C296.90 (17)C34—C14—C33—C512.6 (7)
N19—Cu1—P3—C2989.21 (18)P2—C14—C33—C51177.2 (4)
P2—Cu1—P3—C29142.87 (16)C33—C14—C34—C521.3 (7)
N12—Cu1—P3—C18126.11 (19)P2—C14—C34—C52178.5 (4)
N19—Cu1—P3—C18151.59 (18)C30—C28—C35—C151.0 (6)
P2—Cu1—P3—C1823.67 (17)C25—C15—C35—C281.6 (6)
N12—Cu1—P3—C42111.35 (18)C20—C15—C35—C28178.6 (4)
N19—Cu1—P3—C4229.04 (19)C17—N12—C37—C362.1 (6)
P2—Cu1—P3—C4298.87 (18)Cu1—N12—C37—C36164.0 (3)
N19—Cu1—N12—C37175.8 (4)C54—C36—C37—N120.7 (6)
P2—Cu1—N12—C3774.4 (4)C53—C36—C37—N12178.9 (4)
P3—Cu1—N12—C3773.2 (4)C41—P2—C38—C39166.2 (3)
N19—Cu1—N12—C1713.1 (3)C14—P2—C38—C3959.6 (3)
P2—Cu1—N12—C17122.9 (3)Cu1—P2—C38—C3974.5 (3)
P3—Cu1—N12—C1789.5 (3)P2—C38—C39—C16i176.9 (3)
C41—P2—C14—C33118.2 (4)C48—C23—C41—C451.3 (6)
C38—P2—C14—C33132.8 (4)C48—C23—C41—P2170.4 (4)
Cu1—P2—C14—C330.4 (4)C38—P2—C41—C4547.9 (4)
C41—P2—C14—C3461.6 (4)C14—P2—C41—C45154.9 (4)
C38—P2—C14—C3447.4 (4)Cu1—P2—C41—C4578.5 (4)
Cu1—P2—C14—C34179.4 (3)C38—P2—C41—C23140.5 (3)
C37—N12—C17—C302.3 (6)C14—P2—C41—C2333.6 (4)
Cu1—N12—C17—C30167.1 (3)Cu1—P2—C41—C2393.0 (3)
C37—N12—C17—C25175.8 (3)C24—C21—C42—C501.6 (7)
Cu1—N12—C17—C2511.0 (4)C24—C21—C42—P3179.9 (3)
C39i—C16—C18—P3176.9 (3)C29—P3—C42—C50157.2 (4)
C29—P3—C18—C1661.4 (3)C18—P3—C42—C5093.9 (4)
C42—P3—C18—C1648.9 (3)Cu1—P3—C42—C5037.0 (4)
Cu1—P3—C18—C16176.6 (2)C29—P3—C42—C2124.4 (4)
N12—Cu1—N19—C49179.5 (4)C18—P3—C42—C2184.5 (4)
P2—Cu1—N19—C4953.4 (4)Cu1—P3—C42—C21144.6 (3)
P3—Cu1—N19—C4981.1 (4)C23—C41—C45—C550.4 (7)
N12—Cu1—N19—C2513.4 (3)P2—C41—C45—C55171.2 (4)
P2—Cu1—N19—C25140.4 (2)C29—C26—C46—C470.4 (7)
P3—Cu1—N19—C2585.1 (3)C26—C46—C47—C570.2 (8)
C25—C15—C20—C220.7 (6)C41—C23—C48—C310.6 (7)
C35—C15—C20—C22179.1 (4)C55—C31—C48—C230.9 (8)
C25—C15—C20—C27178.0 (4)C25—N19—C49—C222.8 (6)
C35—C15—C20—C272.3 (6)Cu1—N19—C49—C22162.7 (3)
C15—C20—C22—C490.3 (6)C20—C22—C49—N192.1 (6)
C27—C20—C22—C49179.0 (4)C40—C22—C49—N19176.4 (4)
C15—C20—C22—C40178.1 (4)C21—C42—C50—C591.6 (7)
C27—C20—C22—C400.6 (7)P3—C42—C50—C59179.9 (4)
C42—C21—C24—C560.3 (7)C52—C44—C51—C331.8 (8)
C49—N19—C25—C151.6 (6)C14—C33—C51—C441.1 (7)
Cu1—N19—C25—C15166.3 (3)C51—C44—C52—C343.1 (8)
C49—N19—C25—C17179.6 (3)C14—C34—C52—C441.5 (7)
Cu1—N19—C25—C1711.6 (4)C37—C36—C54—C300.4 (6)
C35—C15—C25—N19179.7 (3)C53—C36—C54—C30177.7 (4)
C20—C15—C25—N190.0 (6)C37—C36—C54—C43179.9 (4)
C35—C15—C25—C172.4 (6)C53—C36—C54—C431.7 (7)
C20—C15—C25—C17177.8 (3)C17—C30—C54—C360.1 (6)
N12—C17—C25—N190.5 (5)C28—C30—C54—C36178.3 (4)
C30—C17—C25—N19178.7 (3)C17—C30—C54—C43179.6 (4)
N12—C17—C25—C15177.5 (3)C28—C30—C54—C431.1 (7)
C30—C17—C25—C150.7 (6)C48—C31—C55—C451.8 (8)
C46—C26—C29—C320.5 (6)C41—C45—C55—C311.1 (8)
C46—C26—C29—P3171.7 (4)C21—C24—C56—C591.1 (8)
C18—P3—C29—C3237.4 (4)C46—C47—C57—C320.0 (8)
C42—P3—C29—C32145.8 (3)C29—C32—C57—C470.1 (8)
Cu1—P3—C29—C3291.0 (3)C24—C56—C59—C501.1 (9)
C18—P3—C29—C26151.7 (3)C42—C50—C59—C560.2 (9)
C42—P3—C29—C2643.3 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C32—H32···F10ii0.952.513.382 (6)152
C100—H10A···F11iii0.992.393.360 (8)165
C100—H10A···F13iii0.992.553.373 (9)141
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

This work was partially supported by Grants-in-Aid from MEXT of Japan (26410077) and a grant from Seikei University.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarbieri, A., Accorsi, G. & Armaroli, N. (2008). Chem. Commun. pp. 2185–2193.  Web of Science CrossRef Google Scholar
First citationCunningham, C. T., Moore, J. J., Cunningham, K. L., Fanwick, P. E. & McMillin, D. R. (2000). Inorg. Chem. 39, 3638–3644.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Maruyama, H., Wada, S., Munakata, M., Nakamura, M. & Masuda, H. (1991). Bull. Chem. Soc. Jpn, 64, 2809–2813.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNishikawa, M., Sawamura, S., Haraguchi, A., Morikubo, J., Takao, K. & Tsubomura, T. (2015). Dalton Trans. 44, 411–418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaito, K., Arai, T., Takahashi, N., Tsukuda, T. & Tsubomura, T. (2006). Dalton Trans. pp. 4444–4448.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsubomura, T., Kimura, K., Nishikawa, M. & Tsukuda, T. (2015). Dalton Trans. 44, 7554–7562.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds