research communications
Dimethylammonium 2,4,5-tricarboxybenzoate: an example of the decarbonylation of N,N-dimethylformamide in the presence of a metal and a benzenepolycarboxylic acid. Is zirconium(IV) the Tsotsi?
aDepartment of Chemistry, Rhodes University, PO Box 94, Grahamstown, South Africa, and bDepartment of Chemistry, Nelson Mandela University, Summerstrand, PO Box 77000, South Africa
*Correspondence e-mail: g11h7156@campus.ru.ac.za
The title salt, C2H8N+·C10H5O8−, was the unexpected product of an attempt to prepare a ZrIV metal–organic framework with benzene-1,2,4,5-tetracarboxylic acid (1,2,4,5-H3B4C). In the reaction, the DMF solvent has been decarbonylated, forming the dimethylammonium cation, with one proton lost from the tetracarboxylic acid. It is proposed that the ZrIV salt acts as a Tsotsi or robber, plundering CO from the DMF molecule. The resulting salt crystallizes with two cations and two anions in the An intramolecular hydrogen bond forms between a carboxylic acid substituent and the carboxylate group of each of the monodeprotonated (1,2,4,5-H3B4C−) anions. In the crystal, an extensive array of O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds generates a three-dimensional network, with columns of cations and anions forming along the b axis.
1. Chemical context
The term Tsotsi is South African township slang for a street gangster or hoodlum who is known to mug unsuspecting passers-by and steal their goods. Identifying a possible Tsotsi on the street is part of everyday township life. We attempted to grow a single crystal of a zirconium-based metal–organic framework incorporating 1,2,4,5-benzenetetracarboxylic acid that we had previously synthesized in powder form, in a dimethylformamide, DMF, solution. Instead this yielded crystals of the unanticipated title compound (I). The unexpected decarbonylation of N,N-dimethylformamide (DMF) has led us to ponder the possible characteristics of the reagents used that led to this `plundering' of the DMF. Decarbonylation of DMF has previously been shown to occur under slow evaporation conditions in the presence of coordination complexes (Siddiqui et al., 2012; Chen et al., 2007; Karpova et al., 2004). In these reports, the nitrate salts of MgII (Siddiqui et al., 2012), PbII (Chen et al., 2007), HoIII and the chloride salt of NdIII (Karpova et al., 2004) ions were suggested to play a unique catalytic role in the observed decarbonylation reaction. The form of the metals in these reactions was thought to be as six-coordinate metal complexes This suggests that, in the decarbonylation reaction observed here, the active decarbonylation agent could be the chloride salt of ZrIV as this is also likely to be six-coordinate in solution.
The other potential decarbonylation catalyst in this reaction is the benzenetetracarboxylic acid. However, Dale and coworkers have studied the slow evaporation reactions of 1,4-benzenedicarboxylic acid (terephthalic acid; 1,4-H2B2C), 1,2,3-benzenetricarboxylic acid (hemimellitic acid; 1,2,3-H3B3C) and 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid; 1,2,4,5-H4B4C) in the absence of metal complexes and no decarbonylation of DMF was observed (Dale & Elsegood, 2004).
Clearly this further implicates the zirconium(IV) as the Tsotsi in this decarbonylation reaction, stealing CO from the DMF and forming the dimethylammonium cation (Fig. 1). While the detailed mechanism of the decarbonylation process remains unclear, it is most likely that the formation of this salt is initiated by the zirconium(IV) Tsotsi.
2. Structural commentary
The 2H8N+ C10H5O8−, (I), consists of two anions, 1 and 2 and two cations, 3 and 4, differentiated by the leading numbers in the numbering scheme, Fig. 2. Within the both cations and anions are linked by strong N—H⋯O and weaker C—H⋯O hydrogen bonds, Table 1, Fig. 3. Bond distances and angles in the approximately tetrahedral dimethylammonium cations are unremarkable.
of the title salt CThe benzene rings of the anions are inclined to one another by 6.56 (3)°. In both anions, the two carboxylate substituents lie reasonably close to the benzene ring planes, inclined at 16.16 (19)° for 1 and 6.01 (5)° for 2. One carboxylic acid substituent in each cation also lies close to these planes, [5.85 (8)° for 1 and 6.25 (9)° for 2]. This planarity is doubtless aided by the two intramolecular O17—H17A⋯O16 and O22—H22A⋯O23 hydrogen bonds that form between a carboxylate oxygen and the OH group of an adjacent carboxylic acid substituent in each of the discrete anions, Fig. 2. Each encloses an S7 ring. The other two carboxylic acid substituents in both anions lie well out of the benzene ring planes with dihedral angles ranging from 75.4 (4) to 37.23 (15)°.
3. Supramolecular features
In the . Each individual anion of type 1 binds to four other type 1 anions through O—H⋯O hydrogen bonds. Each also binds to four cations, two of type 3 and two of type 4, through N—H⋯O and C—H⋯O hydrogen bonds, Fig. 4. Similarly, each type 2 anion binds to four other discrete type 2 anions and to three cations one of type 3 and two of type 4, Fig. 5.
a myriad of classical O—H⋯O and N—H⋯O hydrogen bonds are found together with non-classical C—H⋯O hydrogen bonds. These are detailed in Table 1Layers built from alternating rows of cations and anions form in the ab plane, Fig. 6. These layers are further linked by N—H⋯O and C—H⋯O contacts to form a three-dimensional network comprised of linked columns of cations and anions, Fig. 7.
4. Database survey
A search of the Cambridge Structural Database (Version 5.37, update November 2015; Groom et al., 2016) for 1,2,4,5-H3B4C− anion yielded 46 hits and of these 35 are purely organic compounds. One particular compound, YIRFOV, reports a 1,2,4,5-H3B4C− salt with a tetramethylammonium cation (Cunha-Silva et al., 2008). This is very similar to the structure reported here. The principal difference between these structures is that the of YIRFOV comprises one tetramethylammonium cation, one 1,2,4,5-H3B4C− anion co-crystallized with half a fully protonated 1,2,4,5-H4B4C molecule that lies on a centre of inversion. In YIRFOV, the crystal packing is also mediated by an extensive hydrogen-bonding network.
5. Synthesis and crystallization
A 2 mL aqueous solution of ZrOCl2·8H2O (0.04 g, 0.124 mmol) was suspended in 0.5 mL N,N-dimethylformamide (DMF). A 2 mL aqueous solution of 1,2,4,5-H4B4C 0.032 g, 0.124 mmol) was similarly suspended in 0.5 mL DMF and the two solutions were combined in a small sample vial. This was placed inside a larger sample vial. 0.5 mL of deionized water was added before it was covered and left until crystallization was complete. After three weeks, yellow–brown cubic crystals formed. These were isolated and used for the X-ray crystallographic analysis.
6. Refinement
Crystal data, data collection and structure . All non-hydrogen atoms were refined anisotropically. Carbon-bound hydrogen atoms were placed in calculated positions and were included in the in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C—C bond to best fit the experimental electron density, with Uiso(H) = 1.5Ueq(C). The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around the C—-O bond to best fit the experimental electron density with Uiso(H) set to 1.5Ueq(O).
details are summarized in Table 2
|
Supporting information
https://doi.org/10.1107/S2056989016014948/sj5505sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016014948/sj5505Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016014948/sj5505Isup3.cml
Data collection: APEX2 (Bruker, 2010); cell
APEX2 (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and ShelXle (Hübschle et al., 2011); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).C2H8N+·C10H5O8− | Dx = 1.526 Mg m−3 |
Mr = 299.23 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P41 | Cell parameters from 9896 reflections |
a = 9.6621 (5) Å | θ = 2.2–28.3° |
c = 27.8940 (17) Å | µ = 0.13 mm−1 |
V = 2604.1 (3) Å3 | T = 200 K |
Z = 8 | Block, pale yellow |
F(000) = 1248 | 0.42 × 0.32 × 0.20 mm |
Bruker APEXII CCD diffractometer | 6473 independent reflections |
Radiation source: sealed tube | 6118 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 28.3°, θmin = 2.1° |
φ and ω scans | h = −12→12 |
Absorption correction: numerical (SADABS; Bruker, 2010) | k = −12→12 |
Tmin = 0.946, Tmax = 1.000 | l = −37→37 |
47565 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0614P)2 + 1.8024P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.134 | (Δ/σ)max < 0.001 |
S = 1.15 | Δρmax = 0.40 e Å−3 |
6473 reflections | Δρmin = −0.27 e Å−3 |
388 parameters | Absolute structure: Flack x determined using 2780 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: −0.14 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Carbon and nitrogen-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C) and Ueq(N) respectively. The H atoms of the methyl groups were allowed to rotate with a fixed angle around the C-C bond to best fit the experimental electron density (HFIX 137 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). The H atoms of the hydroxyl groups were allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)), with U(H) set to 1.5Ueq(C). |
x | y | z | Uiso*/Ueq | ||
O11 | 0.5156 (3) | 1.2649 (3) | 0.49062 (12) | 0.0377 (7) | |
H11A | 0.5377 | 1.3476 | 0.4959 | 0.057* | |
O12 | 0.6526 (3) | 1.2222 (3) | 0.55294 (12) | 0.0349 (6) | |
O13 | 0.8393 (3) | 1.0813 (3) | 0.48959 (12) | 0.0340 (7) | |
O14 | 0.8840 (3) | 0.8724 (3) | 0.51895 (13) | 0.0363 (7) | |
H14A | 0.9655 | 0.8913 | 0.5107 | 0.054* | |
O15 | 0.5589 (3) | 0.5243 (3) | 0.50160 (14) | 0.0406 (8) | |
O16 | 0.3406 (3) | 0.5520 (3) | 0.48128 (12) | 0.0321 (6) | |
O17 | 0.1613 (3) | 0.7171 (3) | 0.49938 (13) | 0.0365 (7) | |
H17A | 0.2233 | 0.6602 | 0.4919 | 0.055* | |
O18 | 0.1428 (3) | 0.9376 (3) | 0.51382 (13) | 0.0351 (7) | |
O21 | 0.5303 (3) | 0.7790 (3) | 0.38363 (14) | 0.0370 (7) | |
O22 | 0.5504 (3) | 1.0018 (3) | 0.37440 (17) | 0.0500 (10) | |
H22A | 0.6137 | 1.0670 | 0.3758 | 0.075* | |
O23 | 0.7235 (3) | 1.1753 (3) | 0.37790 (17) | 0.0455 (9) | |
O24 | 0.9469 (3) | 1.1983 (2) | 0.38543 (13) | 0.0318 (6) | |
O25 | 1.2733 (2) | 0.8364 (3) | 0.39696 (10) | 0.0276 (6) | |
H25A | 1.3548 | 0.8232 | 0.3875 | 0.041* | |
O26 | 1.2263 (3) | 0.6532 (3) | 0.35071 (11) | 0.0291 (6) | |
O27 | 1.0649 (3) | 0.4957 (3) | 0.41643 (10) | 0.0265 (5) | |
O28 | 0.8825 (3) | 0.4524 (2) | 0.36955 (11) | 0.0286 (6) | |
H28 | 0.9106 | 0.3703 | 0.3714 | 0.043* | |
N3 | 0.9720 (4) | 0.3343 (4) | 0.49322 (15) | 0.0420 (9) | |
H3A | 0.9185 | 0.2571 | 0.4910 | 0.050* | |
H3B | 1.0072 | 0.3520 | 0.4636 | 0.050* | |
N4 | 0.3409 (3) | 0.3907 (4) | 0.39447 (13) | 0.0310 (7) | |
H4A | 0.2799 | 0.4288 | 0.3734 | 0.037* | |
H4B | 0.3290 | 0.4338 | 0.4232 | 0.037* | |
C10 | 0.5492 (3) | 1.0341 (3) | 0.51166 (12) | 0.0190 (6) | |
C11 | 0.6516 (3) | 0.9326 (3) | 0.50839 (12) | 0.0180 (6) | |
C12 | 0.6134 (3) | 0.7951 (3) | 0.50505 (13) | 0.0203 (6) | |
H12 | 0.6836 | 0.7263 | 0.5043 | 0.024* | |
C13 | 0.4749 (3) | 0.7538 (3) | 0.50279 (12) | 0.0181 (6) | |
C14 | 0.3713 (3) | 0.8560 (3) | 0.50605 (12) | 0.0182 (6) | |
C15 | 0.4121 (3) | 0.9940 (3) | 0.51066 (13) | 0.0193 (6) | |
H15 | 0.3426 | 1.0631 | 0.5132 | 0.023* | |
C16 | 0.5807 (3) | 1.1841 (3) | 0.52053 (13) | 0.0214 (6) | |
C17 | 0.8019 (3) | 0.9708 (3) | 0.50521 (13) | 0.0207 (6) | |
C18 | 0.4570 (4) | 0.5988 (3) | 0.49537 (14) | 0.0238 (7) | |
C19 | 0.2155 (3) | 0.8358 (4) | 0.50648 (14) | 0.0239 (7) | |
C20 | 0.7591 (3) | 0.8638 (3) | 0.38189 (13) | 0.0186 (6) | |
C21 | 0.8632 (3) | 0.9671 (3) | 0.38146 (13) | 0.0185 (6) | |
C22 | 1.0014 (3) | 0.9250 (3) | 0.38182 (13) | 0.0200 (6) | |
H22 | 1.0716 | 0.9938 | 0.3817 | 0.024* | |
C23 | 1.0406 (3) | 0.7872 (3) | 0.38235 (12) | 0.0158 (6) | |
C24 | 0.9378 (3) | 0.6852 (3) | 0.38409 (12) | 0.0173 (6) | |
C25 | 0.7998 (3) | 0.7253 (3) | 0.38374 (13) | 0.0194 (6) | |
H25 | 0.7304 | 0.6558 | 0.3848 | 0.023* | |
C26 | 0.6027 (3) | 0.8836 (4) | 0.38037 (15) | 0.0249 (7) | |
C27 | 0.8424 (4) | 1.1233 (3) | 0.38165 (15) | 0.0266 (7) | |
C28 | 1.1904 (3) | 0.7498 (3) | 0.37547 (13) | 0.0201 (6) | |
C29 | 0.9707 (3) | 0.5344 (3) | 0.39091 (12) | 0.0186 (6) | |
C31 | 1.0866 (6) | 0.3067 (6) | 0.5262 (2) | 0.0530 (13) | |
H31A | 1.1372 | 0.2244 | 0.5154 | 0.080* | |
H31B | 1.0499 | 0.2906 | 0.5585 | 0.080* | |
H31C | 1.1492 | 0.3864 | 0.5267 | 0.080* | |
C32 | 0.8850 (6) | 0.4510 (7) | 0.5079 (3) | 0.0627 (16) | |
H32A | 0.9411 | 0.5354 | 0.5093 | 0.094* | |
H32B | 0.8457 | 0.4323 | 0.5397 | 0.094* | |
H32C | 0.8099 | 0.4633 | 0.4847 | 0.094* | |
C41 | 0.3069 (5) | 0.2421 (4) | 0.40027 (17) | 0.0353 (9) | |
H41A | 0.3220 | 0.1939 | 0.3698 | 0.053* | |
H41B | 0.2097 | 0.2326 | 0.4098 | 0.053* | |
H41C | 0.3664 | 0.2017 | 0.4250 | 0.053* | |
C42 | 0.4831 (4) | 0.4183 (5) | 0.37732 (19) | 0.0395 (10) | |
H42A | 0.4988 | 0.3687 | 0.3471 | 0.059* | |
H42B | 0.5498 | 0.3865 | 0.4014 | 0.059* | |
H42C | 0.4949 | 0.5179 | 0.3721 | 0.059* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O11 | 0.0440 (17) | 0.0134 (11) | 0.0557 (19) | −0.0008 (11) | −0.0229 (14) | −0.0006 (12) |
O12 | 0.0337 (14) | 0.0235 (13) | 0.0475 (17) | 0.0014 (11) | −0.0156 (13) | −0.0105 (12) |
O13 | 0.0244 (13) | 0.0226 (12) | 0.0550 (18) | −0.0073 (10) | 0.0025 (12) | 0.0038 (12) |
O14 | 0.0114 (11) | 0.0270 (13) | 0.070 (2) | −0.0007 (10) | −0.0005 (12) | 0.0107 (14) |
O15 | 0.0245 (13) | 0.0136 (11) | 0.084 (3) | −0.0006 (10) | −0.0132 (15) | −0.0025 (13) |
O16 | 0.0201 (12) | 0.0194 (12) | 0.0567 (18) | −0.0025 (9) | −0.0041 (12) | −0.0130 (12) |
O17 | 0.0174 (12) | 0.0261 (13) | 0.066 (2) | −0.0019 (10) | 0.0030 (13) | −0.0130 (13) |
O18 | 0.0132 (11) | 0.0260 (13) | 0.066 (2) | 0.0014 (10) | −0.0006 (12) | −0.0076 (13) |
O21 | 0.0109 (11) | 0.0223 (13) | 0.078 (2) | −0.0005 (9) | −0.0032 (13) | 0.0035 (14) |
O22 | 0.0147 (12) | 0.0226 (13) | 0.113 (3) | 0.0058 (10) | −0.0048 (16) | 0.0069 (16) |
O23 | 0.0191 (13) | 0.0148 (12) | 0.102 (3) | 0.0052 (9) | −0.0021 (16) | −0.0011 (15) |
O24 | 0.0222 (12) | 0.0108 (10) | 0.0624 (19) | −0.0022 (9) | −0.0031 (13) | 0.0014 (11) |
O25 | 0.0095 (10) | 0.0280 (13) | 0.0454 (16) | −0.0009 (9) | −0.0013 (10) | −0.0052 (11) |
O26 | 0.0186 (11) | 0.0230 (12) | 0.0457 (16) | 0.0041 (10) | 0.0020 (11) | −0.0069 (11) |
O27 | 0.0216 (12) | 0.0175 (11) | 0.0405 (15) | 0.0036 (9) | −0.0048 (10) | 0.0043 (10) |
O28 | 0.0314 (13) | 0.0099 (10) | 0.0445 (16) | −0.0022 (9) | −0.0115 (11) | −0.0007 (10) |
N3 | 0.051 (2) | 0.0303 (17) | 0.045 (2) | −0.0167 (16) | −0.0150 (18) | 0.0110 (15) |
N4 | 0.0235 (15) | 0.0280 (16) | 0.0414 (19) | 0.0082 (12) | −0.0053 (13) | −0.0080 (14) |
C10 | 0.0182 (14) | 0.0144 (13) | 0.0243 (16) | −0.0007 (11) | −0.0005 (12) | −0.0010 (11) |
C11 | 0.0137 (13) | 0.0149 (13) | 0.0255 (16) | 0.0009 (11) | −0.0005 (11) | 0.0005 (11) |
C12 | 0.0129 (14) | 0.0152 (14) | 0.0328 (18) | −0.0002 (11) | −0.0014 (12) | −0.0004 (12) |
C13 | 0.0130 (13) | 0.0119 (13) | 0.0295 (17) | −0.0008 (11) | −0.0020 (12) | −0.0005 (11) |
C14 | 0.0127 (13) | 0.0161 (14) | 0.0258 (16) | −0.0010 (11) | 0.0010 (11) | −0.0023 (12) |
C15 | 0.0124 (13) | 0.0149 (14) | 0.0305 (16) | 0.0009 (10) | −0.0018 (12) | −0.0035 (12) |
C16 | 0.0165 (14) | 0.0143 (13) | 0.0333 (18) | −0.0014 (11) | 0.0003 (13) | −0.0035 (12) |
C17 | 0.0147 (14) | 0.0178 (14) | 0.0297 (17) | −0.0020 (11) | 0.0027 (12) | −0.0058 (12) |
C18 | 0.0212 (15) | 0.0131 (13) | 0.0370 (19) | −0.0018 (12) | 0.0005 (14) | 0.0002 (13) |
C19 | 0.0128 (14) | 0.0244 (16) | 0.0344 (19) | −0.0008 (12) | −0.0003 (13) | −0.0047 (14) |
C20 | 0.0102 (12) | 0.0152 (14) | 0.0304 (17) | 0.0013 (10) | −0.0002 (12) | −0.0016 (12) |
C21 | 0.0153 (14) | 0.0102 (12) | 0.0299 (16) | 0.0005 (10) | −0.0018 (12) | −0.0015 (12) |
C22 | 0.0145 (13) | 0.0118 (13) | 0.0336 (17) | −0.0023 (10) | 0.0007 (13) | −0.0016 (12) |
C23 | 0.0092 (12) | 0.0124 (13) | 0.0258 (15) | −0.0009 (10) | −0.0019 (11) | −0.0008 (11) |
C24 | 0.0134 (13) | 0.0133 (13) | 0.0253 (15) | −0.0013 (11) | 0.0008 (12) | −0.0014 (12) |
C25 | 0.0130 (13) | 0.0139 (14) | 0.0312 (17) | −0.0029 (11) | −0.0001 (12) | 0.0007 (12) |
C26 | 0.0106 (13) | 0.0223 (15) | 0.042 (2) | 0.0011 (11) | −0.0007 (13) | −0.0013 (15) |
C27 | 0.0236 (16) | 0.0138 (14) | 0.042 (2) | 0.0024 (12) | −0.0014 (15) | −0.0009 (14) |
C28 | 0.0112 (13) | 0.0157 (14) | 0.0334 (18) | 0.0017 (10) | 0.0010 (12) | 0.0054 (12) |
C29 | 0.0158 (14) | 0.0135 (13) | 0.0267 (16) | −0.0007 (11) | 0.0006 (12) | 0.0008 (11) |
C31 | 0.051 (3) | 0.052 (3) | 0.056 (3) | 0.004 (2) | −0.015 (2) | 0.013 (2) |
C32 | 0.043 (3) | 0.076 (4) | 0.069 (4) | 0.015 (3) | 0.019 (3) | 0.024 (3) |
C41 | 0.034 (2) | 0.032 (2) | 0.039 (2) | 0.0016 (16) | −0.0071 (17) | −0.0011 (17) |
C42 | 0.028 (2) | 0.039 (2) | 0.051 (3) | 0.0064 (17) | 0.0007 (18) | −0.001 (2) |
O11—C16 | 1.304 (5) | C11—C12 | 1.382 (4) |
O11—H11A | 0.8400 | C11—C17 | 1.501 (4) |
O12—C16 | 1.198 (5) | C12—C13 | 1.398 (4) |
O13—C17 | 1.208 (4) | C12—H12 | 0.9500 |
O14—C17 | 1.297 (4) | C13—C14 | 1.409 (4) |
O14—H14A | 0.8400 | C13—C18 | 1.522 (4) |
O15—C18 | 1.232 (5) | C14—C15 | 1.396 (4) |
O16—C18 | 1.274 (4) | C14—C19 | 1.518 (4) |
O17—C19 | 1.276 (4) | C15—H15 | 0.9500 |
O17—H17A | 0.8400 | C20—C25 | 1.396 (4) |
O18—C19 | 1.226 (4) | C20—C21 | 1.418 (4) |
O21—C26 | 1.233 (4) | C20—C26 | 1.523 (4) |
O22—C26 | 1.260 (4) | C21—C22 | 1.396 (4) |
O22—H22A | 0.8788 | C21—C27 | 1.522 (4) |
O23—C27 | 1.258 (4) | C22—C23 | 1.384 (4) |
O24—C27 | 1.248 (4) | C22—H22 | 0.9500 |
O25—C28 | 1.304 (4) | C23—C24 | 1.400 (4) |
O25—H25A | 0.8400 | C23—C28 | 1.504 (4) |
O26—C28 | 1.211 (4) | C24—C25 | 1.388 (4) |
O27—C29 | 1.214 (4) | C24—C29 | 1.504 (4) |
O28—C29 | 1.307 (4) | C25—H25 | 0.9500 |
O28—H28 | 0.8400 | C31—H31A | 0.9800 |
N3—C31 | 1.463 (6) | C31—H31B | 0.9800 |
N3—C32 | 1.465 (8) | C31—H31C | 0.9800 |
N3—H3A | 0.9100 | C32—H32A | 0.9800 |
N3—H3B | 0.9100 | C32—H32B | 0.9800 |
N4—C42 | 1.479 (6) | C32—H32C | 0.9800 |
N4—C41 | 1.481 (5) | C41—H41A | 0.9800 |
N4—H4A | 0.9100 | C41—H41B | 0.9800 |
N4—H4B | 0.9100 | C41—H41C | 0.9800 |
C10—C15 | 1.381 (4) | C42—H42A | 0.9800 |
C10—C11 | 1.396 (4) | C42—H42B | 0.9800 |
C10—C16 | 1.501 (4) | C42—H42C | 0.9800 |
C16—O11—H11A | 109.5 | C22—C21—C20 | 118.3 (3) |
C17—O14—H14A | 109.5 | C22—C21—C27 | 114.6 (3) |
C19—O17—H17A | 109.5 | C20—C21—C27 | 127.2 (3) |
C26—O22—H22A | 111.4 | C23—C22—C21 | 122.9 (3) |
C28—O25—H25A | 109.5 | C23—C22—H22 | 118.6 |
C29—O28—H28 | 109.5 | C21—C22—H22 | 118.6 |
C31—N3—C32 | 113.5 (5) | C22—C23—C24 | 118.9 (3) |
C31—N3—H3A | 108.9 | C22—C23—C28 | 119.6 (3) |
C32—N3—H3A | 108.9 | C24—C23—C28 | 121.2 (3) |
C31—N3—H3B | 108.9 | C25—C24—C23 | 119.0 (3) |
C32—N3—H3B | 108.9 | C25—C24—C29 | 118.3 (3) |
H3A—N3—H3B | 107.7 | C23—C24—C29 | 122.5 (3) |
C42—N4—C41 | 114.6 (3) | C24—C25—C20 | 122.6 (3) |
C42—N4—H4A | 108.6 | C24—C25—H25 | 118.7 |
C41—N4—H4A | 108.6 | C20—C25—H25 | 118.7 |
C42—N4—H4B | 108.6 | O21—C26—O22 | 121.7 (3) |
C41—N4—H4B | 108.6 | O21—C26—C20 | 117.3 (3) |
H4A—N4—H4B | 107.6 | O22—C26—C20 | 121.0 (3) |
C15—C10—C11 | 118.7 (3) | O24—C27—O23 | 120.9 (3) |
C15—C10—C16 | 118.0 (3) | O24—C27—C21 | 118.0 (3) |
C11—C10—C16 | 123.1 (3) | O23—C27—C21 | 121.1 (3) |
C12—C11—C10 | 119.4 (3) | O26—C28—O25 | 125.5 (3) |
C12—C11—C17 | 119.4 (3) | O26—C28—C23 | 122.2 (3) |
C10—C11—C17 | 121.1 (3) | O25—C28—C23 | 112.2 (3) |
C11—C12—C13 | 122.2 (3) | O27—C29—O28 | 124.7 (3) |
C11—C12—H12 | 118.9 | O27—C29—C24 | 122.0 (3) |
C13—C12—H12 | 118.9 | O28—C29—C24 | 113.1 (3) |
C12—C13—C14 | 118.5 (3) | N3—C31—H31A | 109.5 |
C12—C13—C18 | 113.3 (3) | N3—C31—H31B | 109.5 |
C14—C13—C18 | 128.2 (3) | H31A—C31—H31B | 109.5 |
C15—C14—C13 | 118.3 (3) | N3—C31—H31C | 109.5 |
C15—C14—C19 | 113.7 (3) | H31A—C31—H31C | 109.5 |
C13—C14—C19 | 127.9 (3) | H31B—C31—H31C | 109.5 |
C10—C15—C14 | 122.8 (3) | N3—C32—H32A | 109.5 |
C10—C15—H15 | 118.6 | N3—C32—H32B | 109.5 |
C14—C15—H15 | 118.6 | H32A—C32—H32B | 109.5 |
O12—C16—O11 | 125.4 (3) | N3—C32—H32C | 109.5 |
O12—C16—C10 | 122.5 (3) | H32A—C32—H32C | 109.5 |
O11—C16—C10 | 112.0 (3) | H32B—C32—H32C | 109.5 |
O13—C17—O14 | 124.8 (3) | N4—C41—H41A | 109.5 |
O13—C17—C11 | 121.9 (3) | N4—C41—H41B | 109.5 |
O14—C17—C11 | 113.2 (3) | H41A—C41—H41B | 109.5 |
O15—C18—O16 | 122.8 (3) | N4—C41—H41C | 109.5 |
O15—C18—C13 | 117.7 (3) | H41A—C41—H41C | 109.5 |
O16—C18—C13 | 119.4 (3) | H41B—C41—H41C | 109.5 |
O18—C19—O17 | 120.8 (3) | N4—C42—H42A | 109.5 |
O18—C19—C14 | 117.8 (3) | N4—C42—H42B | 109.5 |
O17—C19—C14 | 121.5 (3) | H42A—C42—H42B | 109.5 |
C25—C20—C21 | 118.4 (3) | N4—C42—H42C | 109.5 |
C25—C20—C26 | 113.6 (3) | H42A—C42—H42C | 109.5 |
C21—C20—C26 | 128.0 (3) | H42B—C42—H42C | 109.5 |
C15—C10—C11—C12 | −1.0 (5) | C25—C20—C21—C22 | 1.4 (5) |
C16—C10—C11—C12 | 173.4 (3) | C26—C20—C21—C22 | −178.3 (3) |
C15—C10—C11—C17 | 174.9 (3) | C25—C20—C21—C27 | −177.2 (4) |
C16—C10—C11—C17 | −10.6 (5) | C26—C20—C21—C27 | 3.0 (6) |
C10—C11—C12—C13 | 2.7 (5) | C20—C21—C22—C23 | 0.3 (5) |
C17—C11—C12—C13 | −173.3 (3) | C27—C21—C22—C23 | 179.1 (3) |
C11—C12—C13—C14 | −2.7 (5) | C21—C22—C23—C24 | −2.0 (5) |
C11—C12—C13—C18 | 175.6 (3) | C21—C22—C23—C28 | 171.1 (3) |
C12—C13—C14—C15 | 0.9 (5) | C22—C23—C24—C25 | 2.0 (5) |
C18—C13—C14—C15 | −177.0 (3) | C28—C23—C24—C25 | −171.1 (3) |
C12—C13—C14—C19 | −177.3 (3) | C22—C23—C24—C29 | −172.2 (3) |
C18—C13—C14—C19 | 4.7 (6) | C28—C23—C24—C29 | 14.7 (5) |
C11—C10—C15—C14 | −0.7 (5) | C23—C24—C25—C20 | −0.2 (5) |
C16—C10—C15—C14 | −175.4 (3) | C29—C24—C25—C20 | 174.2 (3) |
C13—C14—C15—C10 | 0.7 (5) | C21—C20—C25—C24 | −1.5 (5) |
C19—C14—C15—C10 | 179.2 (3) | C26—C20—C25—C24 | 178.3 (3) |
C15—C10—C16—O12 | 123.0 (4) | C25—C20—C26—O21 | 4.0 (5) |
C11—C10—C16—O12 | −51.5 (5) | C21—C20—C26—O21 | −176.3 (4) |
C15—C10—C16—O11 | −53.8 (4) | C25—C20—C26—O22 | −173.7 (4) |
C11—C10—C16—O11 | 131.6 (4) | C21—C20—C26—O22 | 6.1 (6) |
C12—C11—C17—O13 | 150.8 (4) | C22—C21—C27—O24 | −4.8 (5) |
C10—C11—C17—O13 | −25.2 (5) | C20—C21—C27—O24 | 173.9 (4) |
C12—C11—C17—O14 | −26.7 (5) | C22—C21—C27—O23 | 174.9 (4) |
C10—C11—C17—O14 | 157.3 (3) | C20—C21—C27—O23 | −6.4 (7) |
C12—C13—C18—O15 | 14.0 (5) | C22—C23—C28—O26 | −138.4 (4) |
C14—C13—C18—O15 | −168.0 (4) | C24—C23—C28—O26 | 34.7 (5) |
C12—C13—C18—O16 | −163.2 (4) | C22—C23—C28—O25 | 38.4 (5) |
C14—C13—C18—O16 | 14.8 (6) | C24—C23—C28—O25 | −148.6 (3) |
C15—C14—C19—O18 | −4.7 (5) | C25—C24—C29—O27 | −138.4 (4) |
C13—C14—C19—O18 | 173.7 (4) | C23—C24—C29—O27 | 35.8 (5) |
C15—C14—C19—O17 | 175.2 (4) | C25—C24—C29—O28 | 37.1 (5) |
C13—C14—C19—O17 | −6.4 (6) | C23—C24—C29—O28 | −148.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3A···O13i | 0.91 | 1.86 | 2.762 (4) | 169 |
N3—H3B···O27 | 0.91 | 1.99 | 2.798 (5) | 147 |
N4—H4A···O26ii | 0.91 | 2.32 | 3.025 (4) | 134 |
N4—H4A···O27ii | 0.91 | 2.49 | 2.918 (4) | 110 |
N4—H4A···O12iii | 0.91 | 2.19 | 2.830 (5) | 127 |
N4—H4B···O16 | 0.91 | 1.99 | 2.879 (5) | 167 |
O11—H11A···O15iv | 0.84 | 1.73 | 2.560 (4) | 171 |
O14—H14A···O17v | 0.84 | 2.55 | 3.119 (4) | 126 |
O14—H14A···O18v | 0.84 | 1.77 | 2.583 (4) | 161 |
O17—H17A···O16 | 0.84 | 1.57 | 2.409 (4) | 176 |
O22—H22A···O23 | 0.88 | 1.49 | 2.370 (4) | 179 |
O25—H25A···O21v | 0.84 | 1.75 | 2.572 (4) | 164 |
O25—H25A···O22v | 0.84 | 2.59 | 3.181 (4) | 129 |
O28—H28···O24i | 0.84 | 1.74 | 2.571 (3) | 168 |
C32—H32C···O15 | 0.98 | 2.54 | 3.234 (6) | 128 |
C41—H41C···O11i | 0.98 | 2.41 | 3.235 (5) | 142 |
C42—H42C···O21 | 0.98 | 2.57 | 3.519 (6) | 164 |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) y−1, −x+1, z−1/4; (iv) x, y+1, z; (v) x+1, y, z. |
Acknowledgements
This work is funded by Rhodes University Research Council.
References
Bruker. (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, D.-C., Li, X.-H. & Ding, J.-C. (2007). Acta Cryst. E63, o1133–o1135. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cunha-Silva, L., Girginova, P. I., Trindade, T., Rocha, J., Klinowski, J. & Almeida Paz, F. A. (2008). Acta Cryst. E64, o69–o70. Web of Science CSD CrossRef IUCr Journals Google Scholar
Dale, S. H. & Elsegood, M. R. J. (2004). Acta Cryst. C60, o444–o448. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Karpova, E. V., Zakharov, M. A., Gutnikov, S. I. & Alekseyev, R. S. (2004). Acta Cryst. E60, o2491–o2492. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, T., Koteswara Rao, V., Zeller, M. & Lovelace-Cameron, S. R. (2012). Acta Cryst. E68, o1778. CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.