research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 6-chloro­indan-1-one and 6-bromo­indan-1-one exhibit different inter­molecular packing inter­actions

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

Edited by J. Simpson, University of Otago, New Zealand (Received 28 September 2016; accepted 29 September 2016; online 7 October 2016)

The two title compounds are analogs of 1-indanone that are substituted at the 6-position with chlorine and bromine. Although very similar in mol­ecular structure, the crystal structures are not isomorphous and reveal that 6-chloro­indan-1-one, C9H7ClO (I), and 6-bromo­indan-1-one, C9H7BrO (II), exhibit unique inter­molecular packing motifs. The mol­ecules of the chloro analog (I) pack with a herringbone packing motif of C—H⋯O inter­actions, whereas the bromo derivative (II) packs with offset face-to-face π-stacking, C—H⋯O, C—H⋯Br and Br⋯O inter­actions. Compound (II) was refined as a two-component non-merohedral twin, BASF 0.0762 (5).

1. Chemical context

Halogenated derivatives of the common bicyclic organic framework 1-indanone have been shown to be useful in a variety of synthetic and biologically related applications (Ruiz et al., 2004[Ruiz, T. P., Fernández-Gómez, M., González, J. J. L., Koziol, A. E. & Roldán, J. M. G. (2004). J. Mol. Struct. 707, 33-46.]). A search of the Cambridge Structural Database (Version 5.31, September 2016 with updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returns four simple aryl­halide substituted 1-indanones, although several more are commercially available. The title compounds represent two analogs of 6-haloindan-1-one that are notably not isomorphous. In addition, they are not isomorphous with the fluorine derivative 6-fluoro­indan-1-one, which is one of the four that has previously been reported (Slaw & Tanski, 2014[Slaw, B. R. & Tanski, J. M. (2014). Acta Cryst. E70, o841.]). In the chloro analog, 6-chloro­indan-1-one (I)[link], the mol­ecules pack together via a series of C—H⋯O inter­actions. C—H⋯X inter­actions are common and have been discussed in the literature (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.]), as well as specifically in the case of 1-indanone itself (Ruiz et al., 2004[Ruiz, T. P., Fernández-Gómez, M., González, J. J. L., Koziol, A. E. & Roldán, J. M. G. (2004). J. Mol. Struct. 707, 33-46.]). The bromo derivative 6-bromo­indan-1-one (II)[link] packs with offset face-to-face π-stacking (Hunter & Saunders, 1990[Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.]; Lueckheide et al., 2013[Lueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79-84.]) and several different inter­molecular contacts including C—H⋯O, C—H⋯Br weak hydrogen bonds and Br⋯O inter­actions.

[Scheme 1]

The compounds 6-chloro­indan-1-one (I)[link] and 6-bromo­indan-1-one (II)[link] may be synthesized by the microwave or ultrasound-aided ring closure of 4-chloro- or 4-bromo­benzene­propanoic acid, respectively, catalyzed by triflic acid in di­chloro­methane (Oliverio et al., 2014[Oliverio, M., Nardi, M., Costanzo, P., Cariati, L., Cravotto, G., Giofrè, S. V. & Procopio, A. (2014). Molecules, 19, 5599-5610.]). 6-Haloindan-1-ones have featured in the synthesis of biologically or pharmacologically active compounds. In recent examples, 6-chloro­indan-1-one (I)[link] has been employed in the total synthesis of the anti­cancer natural product chartarin (Unzner et al., 2016[Unzner, T. A., Grossmann, A. S. & Magauer, T. (2016). Angew. Chem. Int. Ed. 55, 9763-9767.]), and in the synthesis of triazole-quinoline derivatives that are acetyl­cholinesterase inhibitors relevant to the treatment of Alzheimer's disease (Mantoani et al., 2016[Mantoani, S. P., Chierrito, T. P. C., Vilela, A. F. L., Cardoso, C. L., Martínez, A. & Carvalho, I. (2016). Molecules, 21, 193.]). 6-Bromo­indan-1-one has been used as the starting material for the synthesis of small mol­ecules that inhibit cell entry by HIV-1 (Melillo et al., 2016[Melillo, B., Liang, S., Park, J., Schön, A., Courter, J. R., LaLonde, J. M., Wendler, D. J., Princiotto, A. M., Seaman, M. S., Freire, E., Sodroski, J., Madani, N., Hendrickson, W. A. & Smith, A. B. III (2016). ACS Med. Chem. Lett. 7, 330-334.]), and both 6-chloro­indan-1-one and 6-bromo­indan-1-one have been used as the starting material for the preparation of C-7 substituted 3,4-di­hydro­isoquinolin-1(2H)-one analogues that selectively inhibit unique poly-ADP-ribose polymerases (Morgan et al., 2015[Morgan, R. K., Carter-O'Connell, I. & Cohen, M. S. (2015). Bioorg. Med. Chem. Lett. 25, 4770-4773.]).

2. Structural commentary

The mol­ecular features of 6-chloro­indan-1-one (I)[link] (Fig. 1[link]) and 6-bromo­indan-1-one (II)[link] (Fig. 2[link]) are similar to those reported for the analogous structure 6-fluoro­indan-1-one (Slaw & Tanski, 2014[Slaw, B. R. & Tanski, J. M. (2014). Acta Cryst. E70, o841.]), although the analogues are not isomorphous and exhibit different inter­molecular packing. In the chloro derivative (I)[link], the aryl C—Cl bond length, 1.7435 (11) Å, is similar to that found in the isomeric compound 5-chloro­indan-1-one [C—Cl = 1.735 (2) Å; Ruiz et al., 2006[Ruiz, T. P., Gómez, M. F., González, J. J. L. & Koziol, A. E. (2006). Chem. Phys. 320, 164-180.]]. The aryl C—Br bond length in the bromo analog (II)[link], 1.907 (3) Å, is similar to that found in the isomeric compound 4-bromo­indan-1-one [1.894 (1) Å; Aldeborgh et al., 2014[Aldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. & Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 70-81.]]. The C=O bond lengths in 6-chloro­indan-1-one (I)[link], 1.2200 (12) Å, and 6-bromo­indan-1-one (II)[link], 1.216 (3) Å, are also very similar to those found in the other four reported structures of simple aryl­halide-substituted 1-indanones: 6-fluoro­indan-1-one, 1.2172 (13) Å (Slaw & Tanski, 2014[Slaw, B. R. & Tanski, J. M. (2014). Acta Cryst. E70, o841.]); 5-fluoro­indan-1-one, 1.218 (2) Å (Garcia et al.,1995[Garcia, J. G., Enas, J. D., VanBrocklin, H. F. & Fronczek, F. R. (1995). Acta Cryst. C51, 301-304.]); 5-chloro­indan-1-one, 1.210 (3) Å (Ruiz et al., 2006[Ruiz, T. P., Gómez, M. F., González, J. J. L. & Koziol, A. E. (2006). Chem. Phys. 320, 164-180.]); 4-bromo­indan-1-one, 1.215 (2) Å (Aldeborgh et al., 2014[Aldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. & Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 70-81.]). These carbonyl C=O bond lengths are also similar to that found in the structure of the parent compound, 1-indanone, 1.217 (2) Å (Ruiz et al., 2004[Ruiz, T. P., Fernández-Gómez, M., González, J. J. L., Koziol, A. E. & Roldán, J. M. G. (2004). J. Mol. Struct. 707, 33-46.]). With the exception of the methyl­ene hydrogen atoms, both (I)[link] and (II)[link] are nearly planar, with r.m.s. deviations from the mean planes of all non-H atoms of 0.0460 and 0.0107 Å, respectively.

[Figure 1]
Figure 1
A view of 6-chloro­indan-1-one (I)[link] with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
A view of 6-bromo­indan-1-one (II)[link] with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

In the crystal structure of 6-chloro­indan-1-one (I)[link], the mol­ecules pack together via van der Waals contacts, specifically C—H⋯O inter­actions, without any π-stacking. The C—H⋯O inter­actions (Fig. 3[link] and Table 1[link]) connect the indanone oxygen atom with methyl­ene hydrogen atoms on neighboring mol­ecules into a two-mol­ecule-thick sheet parallel to the (100) plane (Fig. 4[link]). These sheets further pack together without any notable inter­molecular contacts. The closest Cl⋯Cl contact between the sheets, 3.728 Å, is somewhat longer than the sum of the van der Waals radii of chlorine, 3.50 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O1i 0.99 2.56 3.1933 (15) 121
C2—H2B⋯O1ii 0.99 2.59 3.5448 (14) 161
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+2, -z.
[Figure 3]
Figure 3
A view of the inter­molecular C—H⋯O contacts in 6-chloro­indan-1-one (I)[link]. See Table 1[link] for symmetry codes (i) and (ii). In this and subsequent figures the C—H⋯X inter­actions are shown as dashed lines.
[Figure 4]
Figure 4
A view of the sheet structure in 6-chloro­indan-1-one (I)[link] formed by C—H⋯O contacts. See Table 1[link] for symmetry codes (i) and (ii).

The mol­ecular packing in the bromo analog, 6-bromo­indan-1-one (II)[link], is distinct from that found in (I)[link]. The notable inter­molecular inter­actions observed include π-stacking, Br⋯O, C—H⋯O, and C—H⋯Br inter­actions. The offset face-to-face π-stacking can be seen to extend along the crystallographic c axis (Fig. 5[link]), with the mol­ecules stacking in an alternating head-to-tail fashion featuring a C—H⋯Br inter­action with an H⋯Br distance of 3.05 Å (Fig. 5[link] and Table 2[link]). The π-stacking is characterized by a centroid-to-centroid distance of 3.850 (3) Å, centroid-to-plane distances of 3.530 (2) and 3.603 (2) Å, and ring offsets of 1.358 (3) and 1.536 (3) Å that result in a plane-to-plane angle of 3.1 (1)°. The π-stacked chains of (II)[link] are linked into a three-dimensional lattice by C—H⋯O inter­actions and a Br⋯O contact (Fig. 6[link] and Table 2[link]). The Br⋯O contact, at a distance of 3.018 (2) Å, is slightly shorter than the sum of the van der Waals radii, 3.37 Å (Bondi 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). This inter­action is even shorter than the Br⋯O contact in the isomeric 4-bromo­indan-1-one [3.129 (1) Å; Aldeborgh et al., 2014[Aldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. & Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 70-81.]].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O1i 0.99 2.45 3.408 (4) 162
C5—H5A⋯O1ii 0.95 2.55 3.253 (4) 131
C2—H2B⋯Br1iii 0.99 3.05 3.898 (3) 145
Symmetry codes: (i) x-1, y, z; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 5]
Figure 5
A view of the alternating offset face-to-face π-stacking and C—H⋯Br inter­action in 6-bromo­indan-1-one (II)[link] with the thick black line indicating a centroid-to-centroid inter­action. See Table 2[link] for symmetry code (iii).
[Figure 6]
Figure 6
A view of the inter­molecular C—H⋯O and Br⋯O contacts (dashed lines) in 6-bromo­indan-1-one (II)[link]. See Table 2[link] for symmetry codes (i) and (ii).

4. Database survey

A survey of the Cambridge Structural Database reveals that in addition to the two structures reported here, there are four other simple aryl­halide-substituted 1-indanone structures known. These include 6-fluoro­indan-1-one (Slaw & Tanski, 2014[Slaw, B. R. & Tanski, J. M. (2014). Acta Cryst. E70, o841.]), 5-fluoro­indan-1-one (Garcia et al., 1995[Garcia, J. G., Enas, J. D., VanBrocklin, H. F. & Fronczek, F. R. (1995). Acta Cryst. C51, 301-304.]), 5-chloro­indan-1-one (Ruiz et al., 2006[Ruiz, T. P., Gómez, M. F., González, J. J. L. & Koziol, A. E. (2006). Chem. Phys. 320, 164-180.]) and 4-bromo­indan-1-one (Aldeborgh et al., 2014[Aldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. & Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 70-81.]). The crystal structure of 1-indanone itself was first reported in 1974 (Morin et al., 1974[Morin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461-469.]) and was later described in a more detailed structural and spectroscopic analysis (Ruiz et al., 2004[Ruiz, T. P., Fernández-Gómez, M., González, J. J. L., Koziol, A. E. & Roldán, J. M. G. (2004). J. Mol. Struct. 707, 33-46.]).

5. Synthesis and crystallization

6-Chloro­indan-1-one (96%) and 6-bromo­indan-1-one (98%) were purchased from Aldrich Chemical Company, USA, and were used as received.

6. Analytical data

6-Chloro­indan-1-one (I)[link]: 1H NMR (Bruker Avance 300 MHz, CDCl3): δ 2.72 (t, 2 H, J = 5.9 Hz, CH2), 3.12 (t, 2H, J = 5.9 Hz, CH2), 7.42 (d, 1 H, Jortho = 8.2 Hz, Car­ylH), 7.53 (dd, 1H, Jmeta = 1.6 Hz, Jortho = 8.1 Hz, Car­ylH), 7.69 (s, 1 H, Car­ylH). 13C NMR (13C{1H}, 75.5 MHz, CDCl3): δ 25.37 (CH2), 36.57 (CH2), 123.45 (Car­ylH), 127.85 (Car­ylH), 133.63 (Car­yl), 134.50 (Car­ylH), 138.49 (Car­yl), 153.07 (Car­yl), 205.43 (C=O). IR (Thermo Nicolet iS50, KBr pellet, cm−1): 3391 (w), 3076 (w), 3051 (w), 2964 (w), 2935 (w), 1702 (vs, C=O str), 1595 (w), 1576 (w), 1466 (m), 1435 (m), 1409 (m), 1318 (w), 1285 (w), 1276 (w), 1250 (m), 1214 (w), 1187 (m), 1173 (m), 1115 (m), 1037 (w), 895 (m), 854 (m), 836 (s), 815 (m), 678 (m), 623 (m), 561 (m), 518 (w), 484 (m). GC/MS (Hewlett-Packard MS 5975/GC 7890): M+ = 166 (calculated exact mass 166.02).

6-Bromo­indan-1-one (II)[link]: 1H NMR (Bruker Avance 300 MHz, CDCl3): δ 2.71 (t, 2 H, J = 5.8 Hz, CH2), 3.09 (t, 2H, J = 5.9 Hz, CH2), 7.37 (d, 1 H, Jortho = 8.1 Hz, Car­ylH), 7.65 (dd, 1H, Jmeta = 1.9 Hz, Jortho = 8.1 Hz, Car­ylH), 7.83 (s, 1 H, Car­ylH). 13C NMR (13C{1H}, 75.5 MHz, CDCl3): δ 25.37 (CH2), 36.34 (CH2), 121.35 (Car­yl), 126.46 (Car­ylH), 128.16 (Car­ylH), 137.14 (Car­ylH), 138.73 (Car­yl), 153.47 (Car­yl), 205.19 (C=O). IR (Thermo Nicolet iS50, ATR, cm−1): 3394 (w), 3066 (w), 2962 (w), 2925 (w), 1698 (vs, C=O str), 1598 (w), 1577 (w), 1468 (w), 1438 (s), 1417 (w), 1398 (m), 1322 (w), 1295 (w), 1279 (w), 1253 (m), 1238 (m), 1213 (w), 1191 (s), 1171 (w), 1112 (m), 1038 (w), 978 (w), 887 (w), 829 (s), 668 (m), 609 (w), 557 (m), 509 (w), 478 (m). GC/MS (Hewlett-Packard MS 5975/GC 7890): M+ = 210 (calculated exact mass 209.97).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. After indexing with Cell_Now (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), 6-bromo­indan-1-one (II)[link] was refined as a two-component non-merohedral twin, BASF 0.0762 (5). Carbon-bound hydrogen atoms were included in calculated positions and refined using a riding model at C—H = 0.95 and 0.99 Å and Uiso(H) = 1.2Ueq(C) of the aryl and methyl­ene C atoms, respectively.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C9H7ClO C9H7BrO
Mr 166.60 211.06
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 125 125
a, b, c (Å) 16.319 (6), 6.024 (2), 7.745 (3) 6.489 (2), 17.101 (6), 7.224 (3)
β (°) 99.524 (5) 102.964 (5)
V3) 750.9 (5) 781.2 (5)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.44 5.19
Crystal size (mm) 0.28 × 0.25 × 0.14 0.40 × 0.21 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (TWINABS; Bruker 2013[Bruker (2013). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.94 0.55, 0.78
No. of measured, independent and observed [I > 2σ(I)] reflections 18572, 2291, 2158 4453, 4453, 3600
Rint 0.027 0.046
(sin θ/λ)max−1) 0.716 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.08 0.030, 0.152, 1.03
No. of reflections 2291 4453
No. of parameters 100 101
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.23 1.15, −1.15
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

(I) 6-Chloroindan-1-one top
Crystal data top
C9H7ClOF(000) = 344
Mr = 166.60Dx = 1.474 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.319 (6) ÅCell parameters from 9875 reflections
b = 6.024 (2) Åθ = 2.5–30.5°
c = 7.745 (3) ŵ = 0.44 mm1
β = 99.524 (5)°T = 125 K
V = 750.9 (5) Å3Block, colourless
Z = 40.28 × 0.25 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2291 independent reflections
Radiation source: fine-focus sealed tube2158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.3333 pixels mm-1θmax = 30.6°, θmin = 2.5°
φ and ω scansh = 2323
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 88
Tmin = 0.84, Tmax = 0.94l = 1111
18572 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.2902P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2291 reflectionsΔρmax = 0.47 e Å3
100 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.44180 (2)0.68505 (5)0.30384 (4)0.02625 (9)
O10.09308 (5)0.71579 (13)0.08199 (10)0.02037 (16)
C10.12100 (5)0.87485 (15)0.17008 (11)0.01444 (17)
C20.07137 (6)1.06661 (17)0.22843 (12)0.01704 (18)
H2A0.0351.01360.31020.02*
H2B0.03631.13630.12620.02*
C30.13555 (6)1.23410 (17)0.32015 (14)0.02079 (19)
H3A0.13281.37530.2540.025*
H3B0.12571.26530.44050.025*
C40.21867 (6)1.12199 (16)0.32313 (12)0.01535 (17)
C50.29771 (6)1.19687 (16)0.39740 (13)0.01873 (19)
H5A0.30461.33740.45360.022*
C60.36615 (6)1.06251 (17)0.38780 (13)0.01935 (19)
H6A0.42031.11140.43740.023*
C70.35530 (6)0.85462 (17)0.30482 (13)0.01715 (18)
C80.27767 (6)0.77850 (16)0.22694 (12)0.01593 (17)
H8A0.27080.63940.16850.019*
C90.21000 (5)0.91673 (15)0.23876 (11)0.01374 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01319 (12)0.03164 (15)0.03279 (15)0.00500 (8)0.00046 (9)0.00599 (10)
O10.0170 (3)0.0196 (3)0.0230 (3)0.0015 (3)0.0012 (3)0.0029 (3)
C10.0134 (4)0.0153 (4)0.0143 (4)0.0008 (3)0.0012 (3)0.0028 (3)
C20.0153 (4)0.0186 (4)0.0174 (4)0.0039 (3)0.0033 (3)0.0016 (3)
C30.0202 (4)0.0180 (4)0.0233 (4)0.0050 (4)0.0013 (4)0.0045 (4)
C40.0174 (4)0.0145 (4)0.0138 (4)0.0008 (3)0.0017 (3)0.0006 (3)
C50.0211 (4)0.0158 (4)0.0181 (4)0.0026 (3)0.0001 (3)0.0020 (3)
C60.0164 (4)0.0208 (4)0.0197 (4)0.0041 (3)0.0004 (3)0.0003 (3)
C70.0124 (4)0.0203 (4)0.0184 (4)0.0012 (3)0.0014 (3)0.0000 (3)
C80.0138 (4)0.0161 (4)0.0175 (4)0.0007 (3)0.0015 (3)0.0017 (3)
C90.0133 (4)0.0142 (4)0.0134 (4)0.0000 (3)0.0011 (3)0.0003 (3)
Geometric parameters (Å, º) top
Cl1—C71.7435 (11)C4—C91.3947 (13)
O1—C11.2200 (12)C4—C51.3974 (14)
C1—C91.4834 (13)C5—C61.3913 (15)
C1—C21.5218 (13)C5—H5A0.95
C2—C31.5406 (15)C6—C71.4054 (14)
C2—H2A0.99C6—H6A0.95
C2—H2B0.99C7—C81.3880 (13)
C3—C41.5120 (14)C8—C91.3981 (13)
C3—H3A0.99C8—H8A0.95
C3—H3B0.99
O1—C1—C9125.95 (9)C5—C4—C3128.81 (9)
O1—C1—C2126.46 (9)C6—C5—C4119.00 (9)
C9—C1—C2107.58 (8)C6—C5—H5A120.5
C1—C2—C3106.23 (8)C4—C5—H5A120.5
C1—C2—H2A110.5C5—C6—C7120.09 (9)
C3—C2—H2A110.5C5—C6—H6A120.0
C1—C2—H2B110.5C7—C6—H6A120.0
C3—C2—H2B110.5C8—C7—C6122.01 (9)
H2A—C2—H2B108.7C8—C7—Cl1119.08 (8)
C4—C3—C2104.73 (8)C6—C7—Cl1118.90 (7)
C4—C3—H3A110.8C7—C8—C9116.67 (9)
C2—C3—H3A110.8C7—C8—H8A121.7
C4—C3—H3B110.8C9—C8—H8A121.7
C2—C3—H3B110.8C4—C9—C8122.60 (8)
H3A—C3—H3B108.9C4—C9—C1109.64 (8)
C9—C4—C5119.62 (9)C8—C9—C1127.76 (9)
C9—C4—C3111.57 (8)
O1—C1—C2—C3174.57 (9)Cl1—C7—C8—C9177.06 (7)
C9—C1—C2—C35.05 (10)C5—C4—C9—C80.96 (14)
C1—C2—C3—C44.48 (10)C3—C4—C9—C8178.67 (9)
C2—C3—C4—C92.39 (11)C5—C4—C9—C1179.59 (8)
C2—C3—C4—C5177.19 (9)C3—C4—C9—C10.78 (11)
C9—C4—C5—C61.02 (14)C7—C8—C9—C40.33 (14)
C3—C4—C5—C6178.54 (9)C7—C8—C9—C1179.02 (9)
C4—C5—C6—C70.18 (15)O1—C1—C9—C4175.91 (9)
C5—C6—C7—C81.53 (15)C2—C1—C9—C43.71 (10)
C5—C6—C7—Cl1177.11 (8)O1—C1—C9—C84.67 (15)
C6—C7—C8—C91.57 (14)C2—C1—C9—C8175.71 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.992.563.1933 (15)121
C2—H2B···O1ii0.992.593.5448 (14)161
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z.
(II) 6-Bromoindan-1-one top
Crystal data top
C9H7BrOF(000) = 416
Mr = 211.06Dx = 1.794 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.489 (2) ÅCell parameters from 9955 reflections
b = 17.101 (6) Åθ = 2.4–30.6°
c = 7.224 (3) ŵ = 5.19 mm1
β = 102.964 (5)°T = 125 K
V = 781.2 (5) Å3Block, colourless
Z = 40.40 × 0.21 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
4453 independent reflections
Radiation source: fine-focus sealed tube3600 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.3333 pixels mm-1θmax = 30.6°, θmin = 2.4°
φ and ω scansh = 99
Absorption correction: multi-scan
(TWINABS; Bruker 2013)
k = 024
Tmin = 0.55, Tmax = 0.78l = 010
4453 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.1149P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4453 reflectionsΔρmax = 1.15 e Å3
101 parametersΔρmin = 1.15 e Å3
Special details top

Experimental. BASF 0.0762 (5)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.34409 (5)0.45945 (2)0.19485 (4)0.02009 (16)
O10.4929 (3)0.12531 (11)0.2717 (4)0.0233 (5)
C10.3083 (4)0.14135 (17)0.2062 (4)0.0159 (5)
C20.1260 (4)0.08352 (17)0.1453 (4)0.0179 (5)
H2A0.11170.05020.25370.021*
H2B0.15150.04940.04190.021*
C30.0764 (5)0.13304 (17)0.0755 (4)0.0192 (6)
H3A0.14240.12120.05890.023*
H3B0.18060.12290.15390.023*
C40.0002 (4)0.21670 (16)0.0973 (4)0.0154 (5)
C50.1162 (5)0.28574 (17)0.0538 (4)0.0194 (5)
H5A0.26460.28380.00390.023*
C60.0119 (4)0.35734 (17)0.0842 (4)0.0178 (5)
H6A0.08950.40450.05440.021*
C70.2070 (4)0.36019 (16)0.1585 (4)0.0158 (5)
C80.3257 (4)0.29262 (17)0.2034 (4)0.0155 (5)
H8A0.4740.29470.25380.019*
C90.2184 (4)0.22114 (15)0.1714 (4)0.0143 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0266 (2)0.0106 (2)0.0232 (2)0.00221 (8)0.00597 (15)0.00020 (8)
O10.0173 (10)0.0158 (10)0.0356 (13)0.0027 (8)0.0034 (9)0.0001 (9)
C10.0176 (11)0.0125 (12)0.0182 (13)0.0028 (9)0.0054 (10)0.0013 (9)
C20.0192 (12)0.0131 (12)0.0217 (13)0.0026 (10)0.0052 (10)0.0006 (10)
C30.0195 (13)0.0168 (13)0.0209 (13)0.0060 (10)0.0035 (11)0.0010 (10)
C40.0165 (11)0.0153 (12)0.0144 (11)0.0011 (9)0.0033 (9)0.0006 (9)
C50.0157 (11)0.0193 (13)0.0220 (13)0.0006 (10)0.0015 (10)0.0025 (10)
C60.0194 (12)0.0145 (12)0.0192 (13)0.0043 (10)0.0038 (10)0.0026 (10)
C70.0184 (12)0.0132 (11)0.0161 (12)0.0018 (9)0.0042 (10)0.0002 (9)
C80.0155 (11)0.0130 (13)0.0177 (13)0.0011 (9)0.0033 (10)0.0002 (9)
C90.0156 (11)0.0122 (11)0.0151 (11)0.0010 (9)0.0036 (9)0.0001 (9)
Geometric parameters (Å, º) top
Br1—C71.907 (3)C4—C51.398 (4)
O1—C11.216 (3)C4—C91.401 (4)
C1—C91.483 (4)C5—C61.392 (4)
C1—C21.529 (4)C5—H5A0.95
C2—C31.549 (4)C6—C71.402 (4)
C2—H2A0.99C6—H6A0.95
C2—H2B0.99C7—C81.386 (4)
C3—C41.510 (4)C8—C91.400 (4)
C3—H3A0.99C8—H8A0.95
C3—H3B0.99
O1—C1—C9126.1 (3)C9—C4—C3111.8 (2)
O1—C1—C2126.6 (3)C6—C5—C4119.3 (3)
C9—C1—C2107.3 (2)C6—C5—H5A120.4
C1—C2—C3106.6 (2)C4—C5—H5A120.4
C1—C2—H2A110.4C5—C6—C7120.4 (3)
C3—C2—H2A110.4C5—C6—H6A119.8
C1—C2—H2B110.4C7—C6—H6A119.8
C3—C2—H2B110.4C8—C7—C6121.5 (3)
H2A—C2—H2B108.6C8—C7—Br1119.5 (2)
C4—C3—C2104.5 (2)C6—C7—Br1119.0 (2)
C4—C3—H3A110.9C7—C8—C9117.3 (2)
C2—C3—H3A110.9C7—C8—H8A121.3
C4—C3—H3B110.9C9—C8—H8A121.3
C2—C3—H3B110.9C8—C9—C4122.3 (2)
H3A—C3—H3B108.9C8—C9—C1127.8 (2)
C5—C4—C9119.2 (2)C4—C9—C1109.9 (2)
C5—C4—C3129.0 (2)
O1—C1—C2—C3179.0 (3)Br1—C7—C8—C9179.01 (19)
C9—C1—C2—C30.8 (3)C7—C8—C9—C40.1 (4)
C1—C2—C3—C40.7 (3)C7—C8—C9—C1179.6 (3)
C2—C3—C4—C5179.3 (3)C5—C4—C9—C80.1 (4)
C2—C3—C4—C90.4 (3)C3—C4—C9—C8179.6 (2)
C9—C4—C5—C60.3 (4)C5—C4—C9—C1179.8 (2)
C3—C4—C5—C6179.4 (3)C3—C4—C9—C10.1 (3)
C4—C5—C6—C70.3 (4)O1—C1—C9—C81.1 (5)
C5—C6—C7—C80.1 (4)C2—C1—C9—C8179.2 (3)
C5—C6—C7—Br1179.2 (2)O1—C1—C9—C4179.2 (3)
C6—C7—C8—C90.0 (4)C2—C1—C9—C40.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O1i0.992.453.408 (4)162
C5—H5A···O1ii0.952.553.253 (4)131
C2—H2B···Br1iii0.993.053.898 (3)145
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (Grant No. 0521237 to JMT). We acknowledge the Salmon Fund of Vassar College for funding publication expenses.

References

First citationAldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. & Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 70–81.  Web of Science CSD CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcia, J. G., Enas, J. D., VanBrocklin, H. F. & Fronczek, F. R. (1995). Acta Cryst. C51, 301–304.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534.  CrossRef CAS Web of Science Google Scholar
First citationLueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMantoani, S. P., Chierrito, T. P. C., Vilela, A. F. L., Cardoso, C. L., Martínez, A. & Carvalho, I. (2016). Molecules, 21, 193.  Web of Science CrossRef Google Scholar
First citationMelillo, B., Liang, S., Park, J., Schön, A., Courter, J. R., LaLonde, J. M., Wendler, D. J., Princiotto, A. M., Seaman, M. S., Freire, E., Sodroski, J., Madani, N., Hendrickson, W. A. & Smith, A. B. III (2016). ACS Med. Chem. Lett. 7, 330–334.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMorgan, R. K., Carter-O'Connell, I. & Cohen, M. S. (2015). Bioorg. Med. Chem. Lett. 25, 4770–4773.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMorin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461–469.  CSD CrossRef CAS Web of Science Google Scholar
First citationOliverio, M., Nardi, M., Costanzo, P., Cariati, L., Cravotto, G., Giofrè, S. V. & Procopio, A. (2014). Molecules, 19, 5599–5610.  Web of Science CrossRef PubMed Google Scholar
First citationRuiz, T. P., Fernández-Gómez, M., González, J. J. L., Koziol, A. E. & Roldán, J. M. G. (2004). J. Mol. Struct. 707, 33–46.  Google Scholar
First citationRuiz, T. P., Gómez, M. F., González, J. J. L. & Koziol, A. E. (2006). Chem. Phys. 320, 164–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlaw, B. R. & Tanski, J. M. (2014). Acta Cryst. E70, o841.  CSD CrossRef IUCr Journals Google Scholar
First citationUnzner, T. A., Grossmann, A. S. & Magauer, T. (2016). Angew. Chem. Int. Ed. 55, 9763–9767.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds