research communications
Crystal structures of 6-chloroindan-1-one and 6-bromoindan-1-one exhibit different intermolecular packing interactions
aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu
The two title compounds are analogs of 1-indanone that are substituted at the 6-position with chlorine and bromine. Although very similar in molecular structure, the crystal structures are not isomorphous and reveal that 6-chloroindan-1-one, C9H7ClO (I), and 6-bromoindan-1-one, C9H7BrO (II), exhibit unique intermolecular packing motifs. The molecules of the chloro analog (I) pack with a herringbone packing motif of C—H⋯O interactions, whereas the bromo derivative (II) packs with offset face-to-face π-stacking, C—H⋯O, C—H⋯Br and Br⋯O interactions. Compound (II) was refined as a two-component non-merohedral twin, BASF 0.0762 (5).
Keywords: crystal structure; haloindanones; π-stacking; C—H⋯X interactions.
1. Chemical context
Halogenated derivatives of the common bicyclic organic framework 1-indanone have been shown to be useful in a variety of synthetic and biologically related applications (Ruiz et al., 2004). A search of the Cambridge Structural Database (Version 5.31, September 2016 with updates; Groom et al., 2016) returns four simple arylhalide substituted 1-indanones, although several more are commercially available. The title compounds represent two analogs of 6-haloindan-1-one that are notably not isomorphous. In addition, they are not isomorphous with the fluorine derivative 6-fluoroindan-1-one, which is one of the four that has previously been reported (Slaw & Tanski, 2014). In the chloro analog, 6-chloroindan-1-one (I), the molecules pack together via a series of C—H⋯O interactions. C—H⋯X interactions are common and have been discussed in the literature (Desiraju & Steiner, 1999), as well as specifically in the case of 1-indanone itself (Ruiz et al., 2004). The bromo derivative 6-bromoindan-1-one (II) packs with offset face-to-face π-stacking (Hunter & Saunders, 1990; Lueckheide et al., 2013) and several different intermolecular contacts including C—H⋯O, C—H⋯Br weak hydrogen bonds and Br⋯O interactions.
The compounds 6-chloroindan-1-one (I) and 6-bromoindan-1-one (II) may be synthesized by the microwave or ultrasound-aided ring closure of 4-chloro- or 4-bromobenzenepropanoic acid, respectively, catalyzed by triflic acid in dichloromethane (Oliverio et al., 2014). 6-Haloindan-1-ones have featured in the synthesis of biologically or pharmacologically active compounds. In recent examples, 6-chloroindan-1-one (I) has been employed in the total synthesis of the anticancer natural product chartarin (Unzner et al., 2016), and in the synthesis of triazole-quinoline derivatives that are acetylcholinesterase inhibitors relevant to the treatment of Alzheimer's disease (Mantoani et al., 2016). 6-Bromoindan-1-one has been used as the starting material for the synthesis of small molecules that inhibit cell entry by HIV-1 (Melillo et al., 2016), and both 6-chloroindan-1-one and 6-bromoindan-1-one have been used as the starting material for the preparation of C-7 substituted 3,4-dihydroisoquinolin-1(2H)-one analogues that selectively inhibit unique poly-ADP-ribose polymerases (Morgan et al., 2015).
2. Structural commentary
The molecular features of 6-chloroindan-1-one (I) (Fig. 1) and 6-bromoindan-1-one (II) (Fig. 2) are similar to those reported for the analogous structure 6-fluoroindan-1-one (Slaw & Tanski, 2014), although the analogues are not isomorphous and exhibit different intermolecular packing. In the chloro derivative (I), the aryl C—Cl bond length, 1.7435 (11) Å, is similar to that found in the isomeric compound 5-chloroindan-1-one [C—Cl = 1.735 (2) Å; Ruiz et al., 2006]. The aryl C—Br bond length in the bromo analog (II), 1.907 (3) Å, is similar to that found in the isomeric compound 4-bromoindan-1-one [1.894 (1) Å; Aldeborgh et al., 2014]. The C=O bond lengths in 6-chloroindan-1-one (I), 1.2200 (12) Å, and 6-bromoindan-1-one (II), 1.216 (3) Å, are also very similar to those found in the other four reported structures of simple arylhalide-substituted 1-indanones: 6-fluoroindan-1-one, 1.2172 (13) Å (Slaw & Tanski, 2014); 5-fluoroindan-1-one, 1.218 (2) Å (Garcia et al.,1995); 5-chloroindan-1-one, 1.210 (3) Å (Ruiz et al., 2006); 4-bromoindan-1-one, 1.215 (2) Å (Aldeborgh et al., 2014). These carbonyl C=O bond lengths are also similar to that found in the structure of the parent compound, 1-indanone, 1.217 (2) Å (Ruiz et al., 2004). With the exception of the methylene hydrogen atoms, both (I) and (II) are nearly planar, with r.m.s. deviations from the mean planes of all non-H atoms of 0.0460 and 0.0107 Å, respectively.
3. Supramolecular features
In the , the molecules pack together via van der Waals contacts, specifically C—H⋯O interactions, without any π-stacking. The C—H⋯O interactions (Fig. 3 and Table 1) connect the indanone oxygen atom with methylene hydrogen atoms on neighboring molecules into a two-molecule-thick sheet parallel to the (100) plane (Fig. 4). These sheets further pack together without any notable intermolecular contacts. The closest Cl⋯Cl contact between the sheets, 3.728 Å, is somewhat longer than the sum of the van der Waals radii of chlorine, 3.50 Å (Bondi, 1964).
of 6-chloroindan-1-one (I)
|
The molecular packing in the bromo analog, 6-bromoindan-1-one (II), is distinct from that found in (I). The notable intermolecular interactions observed include π-stacking, Br⋯O, C—H⋯O, and C—H⋯Br interactions. The offset face-to-face π-stacking can be seen to extend along the crystallographic c axis (Fig. 5), with the molecules stacking in an alternating head-to-tail fashion featuring a C—H⋯Br interaction with an H⋯Br distance of 3.05 Å (Fig. 5 and Table 2). The π-stacking is characterized by a centroid-to-centroid distance of 3.850 (3) Å, centroid-to-plane distances of 3.530 (2) and 3.603 (2) Å, and ring offsets of 1.358 (3) and 1.536 (3) Å that result in a plane-to-plane angle of 3.1 (1)°. The π-stacked chains of (II) are linked into a three-dimensional lattice by C—H⋯O interactions and a Br⋯O contact (Fig. 6 and Table 2). The Br⋯O contact, at a distance of 3.018 (2) Å, is slightly shorter than the sum of the van der Waals radii, 3.37 Å (Bondi 1964). This interaction is even shorter than the Br⋯O contact in the isomeric 4-bromoindan-1-one [3.129 (1) Å; Aldeborgh et al., 2014].
4. Database survey
A survey of the Cambridge Structural Database reveals that in addition to the two structures reported here, there are four other simple arylhalide-substituted 1-indanone structures known. These include 6-fluoroindan-1-one (Slaw & Tanski, 2014), 5-fluoroindan-1-one (Garcia et al., 1995), 5-chloroindan-1-one (Ruiz et al., 2006) and 4-bromoindan-1-one (Aldeborgh et al., 2014). The of 1-indanone itself was first reported in 1974 (Morin et al., 1974) and was later described in a more detailed structural and spectroscopic analysis (Ruiz et al., 2004).
5. Synthesis and crystallization
6-Chloroindan-1-one (96%) and 6-bromoindan-1-one (98%) were purchased from Aldrich Chemical Company, USA, and were used as received.
6. Analytical data
6-Chloroindan-1-one (I): 1H NMR (Bruker Avance 300 MHz, CDCl3): δ 2.72 (t, 2 H, J = 5.9 Hz, CH2), 3.12 (t, 2H, J = 5.9 Hz, CH2), 7.42 (d, 1 H, Jortho = 8.2 Hz, CarylH), 7.53 (dd, 1H, Jmeta = 1.6 Hz, Jortho = 8.1 Hz, CarylH), 7.69 (s, 1 H, CarylH). 13C NMR (13C{1H}, 75.5 MHz, CDCl3): δ 25.37 (CH2), 36.57 (CH2), 123.45 (CarylH), 127.85 (CarylH), 133.63 (Caryl), 134.50 (CarylH), 138.49 (Caryl), 153.07 (Caryl), 205.43 (C=O). IR (Thermo Nicolet iS50, KBr pellet, cm−1): 3391 (w), 3076 (w), 3051 (w), 2964 (w), 2935 (w), 1702 (vs, C=O str), 1595 (w), 1576 (w), 1466 (m), 1435 (m), 1409 (m), 1318 (w), 1285 (w), 1276 (w), 1250 (m), 1214 (w), 1187 (m), 1173 (m), 1115 (m), 1037 (w), 895 (m), 854 (m), 836 (s), 815 (m), 678 (m), 623 (m), 561 (m), 518 (w), 484 (m). GC/MS (Hewlett-Packard MS 5975/GC 7890): M+ = 166 (calculated exact mass 166.02).
6-Bromoindan-1-one (II): 1H NMR (Bruker Avance 300 MHz, CDCl3): δ 2.71 (t, 2 H, J = 5.8 Hz, CH2), 3.09 (t, 2H, J = 5.9 Hz, CH2), 7.37 (d, 1 H, Jortho = 8.1 Hz, CarylH), 7.65 (dd, 1H, Jmeta = 1.9 Hz, Jortho = 8.1 Hz, CarylH), 7.83 (s, 1 H, CarylH). 13C NMR (13C{1H}, 75.5 MHz, CDCl3): δ 25.37 (CH2), 36.34 (CH2), 121.35 (Caryl), 126.46 (CarylH), 128.16 (CarylH), 137.14 (CarylH), 138.73 (Caryl), 153.47 (Caryl), 205.19 (C=O). IR (Thermo Nicolet iS50, ATR, cm−1): 3394 (w), 3066 (w), 2962 (w), 2925 (w), 1698 (vs, C=O str), 1598 (w), 1577 (w), 1468 (w), 1438 (s), 1417 (w), 1398 (m), 1322 (w), 1295 (w), 1279 (w), 1253 (m), 1238 (m), 1213 (w), 1191 (s), 1171 (w), 1112 (m), 1038 (w), 978 (w), 887 (w), 829 (s), 668 (m), 609 (w), 557 (m), 509 (w), 478 (m). GC/MS (Hewlett-Packard MS 5975/GC 7890): M+ = 210 (calculated exact mass 209.97).
7. Refinement
Crystal data, data collection and structure . After indexing with Cell_Now (Sheldrick, 2008), 6-bromoindan-1-one (II) was refined as a two-component non-merohedral twin, BASF 0.0762 (5). Carbon-bound hydrogen atoms were included in calculated positions and refined using a riding model at C—H = 0.95 and 0.99 Å and Uiso(H) = 1.2Ueq(C) of the aryl and methylene C atoms, respectively.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989016015371/sj5508sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016015371/sj5508Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989016015371/sj5508IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016015371/sj5508Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989016015371/sj5508IIsup5.cml
For both compounds, data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).C9H7ClO | F(000) = 344 |
Mr = 166.60 | Dx = 1.474 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.319 (6) Å | Cell parameters from 9875 reflections |
b = 6.024 (2) Å | θ = 2.5–30.5° |
c = 7.745 (3) Å | µ = 0.44 mm−1 |
β = 99.524 (5)° | T = 125 K |
V = 750.9 (5) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.25 × 0.14 mm |
Bruker APEXII CCD diffractometer | 2291 independent reflections |
Radiation source: fine-focus sealed tube | 2158 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.6°, θmin = 2.5° |
φ and ω scans | h = −23→23 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −8→8 |
Tmin = 0.84, Tmax = 0.94 | l = −11→11 |
18572 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0439P)2 + 0.2902P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
2291 reflections | Δρmax = 0.47 e Å−3 |
100 parameters | Δρmin = −0.23 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.44180 (2) | 0.68505 (5) | 0.30384 (4) | 0.02625 (9) | |
O1 | 0.09308 (5) | 0.71579 (13) | 0.08199 (10) | 0.02037 (16) | |
C1 | 0.12100 (5) | 0.87485 (15) | 0.17008 (11) | 0.01444 (17) | |
C2 | 0.07137 (6) | 1.06661 (17) | 0.22843 (12) | 0.01704 (18) | |
H2A | 0.035 | 1.0136 | 0.3102 | 0.02* | |
H2B | 0.0363 | 1.1363 | 0.1262 | 0.02* | |
C3 | 0.13555 (6) | 1.23410 (17) | 0.32015 (14) | 0.02079 (19) | |
H3A | 0.1328 | 1.3753 | 0.254 | 0.025* | |
H3B | 0.1257 | 1.2653 | 0.4405 | 0.025* | |
C4 | 0.21867 (6) | 1.12199 (16) | 0.32313 (12) | 0.01535 (17) | |
C5 | 0.29771 (6) | 1.19687 (16) | 0.39740 (13) | 0.01873 (19) | |
H5A | 0.3046 | 1.3374 | 0.4536 | 0.022* | |
C6 | 0.36615 (6) | 1.06251 (17) | 0.38780 (13) | 0.01935 (19) | |
H6A | 0.4203 | 1.1114 | 0.4374 | 0.023* | |
C7 | 0.35530 (6) | 0.85462 (17) | 0.30482 (13) | 0.01715 (18) | |
C8 | 0.27767 (6) | 0.77850 (16) | 0.22694 (12) | 0.01593 (17) | |
H8A | 0.2708 | 0.6394 | 0.1685 | 0.019* | |
C9 | 0.21000 (5) | 0.91673 (15) | 0.23876 (11) | 0.01374 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01319 (12) | 0.03164 (15) | 0.03279 (15) | 0.00500 (8) | 0.00046 (9) | −0.00599 (10) |
O1 | 0.0170 (3) | 0.0196 (3) | 0.0230 (3) | −0.0015 (3) | −0.0012 (3) | −0.0029 (3) |
C1 | 0.0134 (4) | 0.0153 (4) | 0.0143 (4) | 0.0008 (3) | 0.0012 (3) | 0.0028 (3) |
C2 | 0.0153 (4) | 0.0186 (4) | 0.0174 (4) | 0.0039 (3) | 0.0033 (3) | 0.0016 (3) |
C3 | 0.0202 (4) | 0.0180 (4) | 0.0233 (4) | 0.0050 (4) | 0.0013 (4) | −0.0045 (4) |
C4 | 0.0174 (4) | 0.0145 (4) | 0.0138 (4) | 0.0008 (3) | 0.0017 (3) | 0.0006 (3) |
C5 | 0.0211 (4) | 0.0158 (4) | 0.0181 (4) | −0.0026 (3) | −0.0001 (3) | −0.0020 (3) |
C6 | 0.0164 (4) | 0.0208 (4) | 0.0197 (4) | −0.0041 (3) | −0.0004 (3) | −0.0003 (3) |
C7 | 0.0124 (4) | 0.0203 (4) | 0.0184 (4) | 0.0012 (3) | 0.0014 (3) | 0.0000 (3) |
C8 | 0.0138 (4) | 0.0161 (4) | 0.0175 (4) | 0.0007 (3) | 0.0015 (3) | −0.0017 (3) |
C9 | 0.0133 (4) | 0.0142 (4) | 0.0134 (4) | 0.0000 (3) | 0.0011 (3) | 0.0003 (3) |
Cl1—C7 | 1.7435 (11) | C4—C9 | 1.3947 (13) |
O1—C1 | 1.2200 (12) | C4—C5 | 1.3974 (14) |
C1—C9 | 1.4834 (13) | C5—C6 | 1.3913 (15) |
C1—C2 | 1.5218 (13) | C5—H5A | 0.95 |
C2—C3 | 1.5406 (15) | C6—C7 | 1.4054 (14) |
C2—H2A | 0.99 | C6—H6A | 0.95 |
C2—H2B | 0.99 | C7—C8 | 1.3880 (13) |
C3—C4 | 1.5120 (14) | C8—C9 | 1.3981 (13) |
C3—H3A | 0.99 | C8—H8A | 0.95 |
C3—H3B | 0.99 | ||
O1—C1—C9 | 125.95 (9) | C5—C4—C3 | 128.81 (9) |
O1—C1—C2 | 126.46 (9) | C6—C5—C4 | 119.00 (9) |
C9—C1—C2 | 107.58 (8) | C6—C5—H5A | 120.5 |
C1—C2—C3 | 106.23 (8) | C4—C5—H5A | 120.5 |
C1—C2—H2A | 110.5 | C5—C6—C7 | 120.09 (9) |
C3—C2—H2A | 110.5 | C5—C6—H6A | 120.0 |
C1—C2—H2B | 110.5 | C7—C6—H6A | 120.0 |
C3—C2—H2B | 110.5 | C8—C7—C6 | 122.01 (9) |
H2A—C2—H2B | 108.7 | C8—C7—Cl1 | 119.08 (8) |
C4—C3—C2 | 104.73 (8) | C6—C7—Cl1 | 118.90 (7) |
C4—C3—H3A | 110.8 | C7—C8—C9 | 116.67 (9) |
C2—C3—H3A | 110.8 | C7—C8—H8A | 121.7 |
C4—C3—H3B | 110.8 | C9—C8—H8A | 121.7 |
C2—C3—H3B | 110.8 | C4—C9—C8 | 122.60 (8) |
H3A—C3—H3B | 108.9 | C4—C9—C1 | 109.64 (8) |
C9—C4—C5 | 119.62 (9) | C8—C9—C1 | 127.76 (9) |
C9—C4—C3 | 111.57 (8) | ||
O1—C1—C2—C3 | −174.57 (9) | Cl1—C7—C8—C9 | 177.06 (7) |
C9—C1—C2—C3 | 5.05 (10) | C5—C4—C9—C8 | 0.96 (14) |
C1—C2—C3—C4 | −4.48 (10) | C3—C4—C9—C8 | −178.67 (9) |
C2—C3—C4—C9 | 2.39 (11) | C5—C4—C9—C1 | −179.59 (8) |
C2—C3—C4—C5 | −177.19 (9) | C3—C4—C9—C1 | 0.78 (11) |
C9—C4—C5—C6 | −1.02 (14) | C7—C8—C9—C4 | 0.33 (14) |
C3—C4—C5—C6 | 178.54 (9) | C7—C8—C9—C1 | −179.02 (9) |
C4—C5—C6—C7 | −0.18 (15) | O1—C1—C9—C4 | 175.91 (9) |
C5—C6—C7—C8 | 1.53 (15) | C2—C1—C9—C4 | −3.71 (10) |
C5—C6—C7—Cl1 | −177.11 (8) | O1—C1—C9—C8 | −4.67 (15) |
C6—C7—C8—C9 | −1.57 (14) | C2—C1—C9—C8 | 175.71 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···O1i | 0.99 | 2.56 | 3.1933 (15) | 121 |
C2—H2B···O1ii | 0.99 | 2.59 | 3.5448 (14) | 161 |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, −y+2, −z. |
C9H7BrO | F(000) = 416 |
Mr = 211.06 | Dx = 1.794 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.489 (2) Å | Cell parameters from 9955 reflections |
b = 17.101 (6) Å | θ = 2.4–30.6° |
c = 7.224 (3) Å | µ = 5.19 mm−1 |
β = 102.964 (5)° | T = 125 K |
V = 781.2 (5) Å3 | Block, colourless |
Z = 4 | 0.40 × 0.21 × 0.05 mm |
Bruker APEXII CCD diffractometer | 4453 independent reflections |
Radiation source: fine-focus sealed tube | 3600 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 8.3333 pixels mm-1 | θmax = 30.6°, θmin = 2.4° |
φ and ω scans | h = −9→9 |
Absorption correction: multi-scan (TWINABS; Bruker 2013) | k = 0→24 |
Tmin = 0.55, Tmax = 0.78 | l = 0→10 |
4453 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.152 | w = 1/[σ2(Fo2) + (0.1149P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
4453 reflections | Δρmax = 1.15 e Å−3 |
101 parameters | Δρmin = −1.15 e Å−3 |
Experimental. BASF 0.0762 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.34409 (5) | 0.45945 (2) | 0.19485 (4) | 0.02009 (16) | |
O1 | 0.4929 (3) | 0.12531 (11) | 0.2717 (4) | 0.0233 (5) | |
C1 | 0.3083 (4) | 0.14135 (17) | 0.2062 (4) | 0.0159 (5) | |
C2 | 0.1260 (4) | 0.08352 (17) | 0.1453 (4) | 0.0179 (5) | |
H2A | 0.1117 | 0.0502 | 0.2537 | 0.021* | |
H2B | 0.1515 | 0.0494 | 0.0419 | 0.021* | |
C3 | −0.0764 (5) | 0.13304 (17) | 0.0755 (4) | 0.0192 (6) | |
H3A | −0.1424 | 0.1212 | −0.0589 | 0.023* | |
H3B | −0.1806 | 0.1229 | 0.1539 | 0.023* | |
C4 | −0.0002 (4) | 0.21670 (16) | 0.0973 (4) | 0.0154 (5) | |
C5 | −0.1162 (5) | 0.28574 (17) | 0.0538 (4) | 0.0194 (5) | |
H5A | −0.2646 | 0.2838 | 0.0039 | 0.023* | |
C6 | −0.0119 (4) | 0.35734 (17) | 0.0842 (4) | 0.0178 (5) | |
H6A | −0.0895 | 0.4045 | 0.0544 | 0.021* | |
C7 | 0.2070 (4) | 0.36019 (16) | 0.1585 (4) | 0.0158 (5) | |
C8 | 0.3257 (4) | 0.29262 (17) | 0.2034 (4) | 0.0155 (5) | |
H8A | 0.474 | 0.2947 | 0.2538 | 0.019* | |
C9 | 0.2184 (4) | 0.22114 (15) | 0.1714 (4) | 0.0143 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0266 (2) | 0.0106 (2) | 0.0232 (2) | −0.00221 (8) | 0.00597 (15) | −0.00020 (8) |
O1 | 0.0173 (10) | 0.0158 (10) | 0.0356 (13) | 0.0027 (8) | 0.0034 (9) | −0.0001 (9) |
C1 | 0.0176 (11) | 0.0125 (12) | 0.0182 (13) | −0.0028 (9) | 0.0054 (10) | −0.0013 (9) |
C2 | 0.0192 (12) | 0.0131 (12) | 0.0217 (13) | −0.0026 (10) | 0.0052 (10) | −0.0006 (10) |
C3 | 0.0195 (13) | 0.0168 (13) | 0.0209 (13) | −0.0060 (10) | 0.0035 (11) | −0.0010 (10) |
C4 | 0.0165 (11) | 0.0153 (12) | 0.0144 (11) | −0.0011 (9) | 0.0033 (9) | 0.0006 (9) |
C5 | 0.0157 (11) | 0.0193 (13) | 0.0220 (13) | 0.0006 (10) | 0.0015 (10) | 0.0025 (10) |
C6 | 0.0194 (12) | 0.0145 (12) | 0.0192 (13) | 0.0043 (10) | 0.0038 (10) | 0.0026 (10) |
C7 | 0.0184 (12) | 0.0132 (11) | 0.0161 (12) | −0.0018 (9) | 0.0042 (10) | 0.0002 (9) |
C8 | 0.0155 (11) | 0.0130 (13) | 0.0177 (13) | −0.0011 (9) | 0.0033 (10) | 0.0002 (9) |
C9 | 0.0156 (11) | 0.0122 (11) | 0.0151 (11) | −0.0010 (9) | 0.0036 (9) | −0.0001 (9) |
Br1—C7 | 1.907 (3) | C4—C5 | 1.398 (4) |
O1—C1 | 1.216 (3) | C4—C9 | 1.401 (4) |
C1—C9 | 1.483 (4) | C5—C6 | 1.392 (4) |
C1—C2 | 1.529 (4) | C5—H5A | 0.95 |
C2—C3 | 1.549 (4) | C6—C7 | 1.402 (4) |
C2—H2A | 0.99 | C6—H6A | 0.95 |
C2—H2B | 0.99 | C7—C8 | 1.386 (4) |
C3—C4 | 1.510 (4) | C8—C9 | 1.400 (4) |
C3—H3A | 0.99 | C8—H8A | 0.95 |
C3—H3B | 0.99 | ||
O1—C1—C9 | 126.1 (3) | C9—C4—C3 | 111.8 (2) |
O1—C1—C2 | 126.6 (3) | C6—C5—C4 | 119.3 (3) |
C9—C1—C2 | 107.3 (2) | C6—C5—H5A | 120.4 |
C1—C2—C3 | 106.6 (2) | C4—C5—H5A | 120.4 |
C1—C2—H2A | 110.4 | C5—C6—C7 | 120.4 (3) |
C3—C2—H2A | 110.4 | C5—C6—H6A | 119.8 |
C1—C2—H2B | 110.4 | C7—C6—H6A | 119.8 |
C3—C2—H2B | 110.4 | C8—C7—C6 | 121.5 (3) |
H2A—C2—H2B | 108.6 | C8—C7—Br1 | 119.5 (2) |
C4—C3—C2 | 104.5 (2) | C6—C7—Br1 | 119.0 (2) |
C4—C3—H3A | 110.9 | C7—C8—C9 | 117.3 (2) |
C2—C3—H3A | 110.9 | C7—C8—H8A | 121.3 |
C4—C3—H3B | 110.9 | C9—C8—H8A | 121.3 |
C2—C3—H3B | 110.9 | C8—C9—C4 | 122.3 (2) |
H3A—C3—H3B | 108.9 | C8—C9—C1 | 127.8 (2) |
C5—C4—C9 | 119.2 (2) | C4—C9—C1 | 109.9 (2) |
C5—C4—C3 | 129.0 (2) | ||
O1—C1—C2—C3 | 179.0 (3) | Br1—C7—C8—C9 | −179.01 (19) |
C9—C1—C2—C3 | −0.8 (3) | C7—C8—C9—C4 | −0.1 (4) |
C1—C2—C3—C4 | 0.7 (3) | C7—C8—C9—C1 | 179.6 (3) |
C2—C3—C4—C5 | 179.3 (3) | C5—C4—C9—C8 | −0.1 (4) |
C2—C3—C4—C9 | −0.4 (3) | C3—C4—C9—C8 | 179.6 (2) |
C9—C4—C5—C6 | 0.3 (4) | C5—C4—C9—C1 | −179.8 (2) |
C3—C4—C5—C6 | −179.4 (3) | C3—C4—C9—C1 | −0.1 (3) |
C4—C5—C6—C7 | −0.3 (4) | O1—C1—C9—C8 | 1.1 (5) |
C5—C6—C7—C8 | 0.1 (4) | C2—C1—C9—C8 | −179.2 (3) |
C5—C6—C7—Br1 | 179.2 (2) | O1—C1—C9—C4 | −179.2 (3) |
C6—C7—C8—C9 | 0.0 (4) | C2—C1—C9—C4 | 0.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3B···O1i | 0.99 | 2.45 | 3.408 (4) | 162 |
C5—H5A···O1ii | 0.95 | 2.55 | 3.253 (4) | 131 |
C2—H2B···Br1iii | 0.99 | 3.05 | 3.898 (3) | 145 |
Symmetry codes: (i) x−1, y, z; (ii) x−1, −y+1/2, z−1/2; (iii) x, −y+1/2, z−1/2. |
Acknowledgements
This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (Grant No. 0521237 to JMT). We acknowledge the Salmon Fund of Vassar College for funding publication expenses.
References
Aldeborgh, H., George, K., Howe, M., Lowman, H., Moustakas, H., Strunsky, N. & Tanski, J. M. (2014). J. Chem. Crystallogr. 44, 70–81. Web of Science CSD CrossRef CAS Google Scholar
Bondi, A. (1964). J. Phys. Chem. 68, 441–451. CrossRef CAS Web of Science Google Scholar
Bruker (2013). APEX2, SAINT, SADABS and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garcia, J. G., Enas, J. D., VanBrocklin, H. F. & Fronczek, F. R. (1995). Acta Cryst. C51, 301–304. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534. CrossRef CAS Web of Science Google Scholar
Lueckheide, M., Rothman, N., Ko, B. & Tanski, J. M. (2013). Polyhedron, 58, 79–84. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mantoani, S. P., Chierrito, T. P. C., Vilela, A. F. L., Cardoso, C. L., Martínez, A. & Carvalho, I. (2016). Molecules, 21, 193. Web of Science CrossRef Google Scholar
Melillo, B., Liang, S., Park, J., Schön, A., Courter, J. R., LaLonde, J. M., Wendler, D. J., Princiotto, A. M., Seaman, M. S., Freire, E., Sodroski, J., Madani, N., Hendrickson, W. A. & Smith, A. B. III (2016). ACS Med. Chem. Lett. 7, 330–334. Web of Science CrossRef CAS PubMed Google Scholar
Morgan, R. K., Carter-O'Connell, I. & Cohen, M. S. (2015). Bioorg. Med. Chem. Lett. 25, 4770–4773. Web of Science CrossRef CAS PubMed Google Scholar
Morin, Y., Brassy, C. & Mellier, A. (1974). J. Mol. Struct. 20, 461–469. CSD CrossRef CAS Web of Science Google Scholar
Oliverio, M., Nardi, M., Costanzo, P., Cariati, L., Cravotto, G., Giofrè, S. V. & Procopio, A. (2014). Molecules, 19, 5599–5610. Web of Science CrossRef PubMed Google Scholar
Ruiz, T. P., Fernández-Gómez, M., González, J. J. L., Koziol, A. E. & Roldán, J. M. G. (2004). J. Mol. Struct. 707, 33–46. Google Scholar
Ruiz, T. P., Gómez, M. F., González, J. J. L. & Koziol, A. E. (2006). Chem. Phys. 320, 164–180. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Slaw, B. R. & Tanski, J. M. (2014). Acta Cryst. E70, o841. CSD CrossRef IUCr Journals Google Scholar
Unzner, T. A., Grossmann, A. S. & Magauer, T. (2016). Angew. Chem. Int. Ed. 55, 9763–9767. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.