research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of an HgII coordination polymer with an unsymmetrical di­pyridyl ligand: catena-poly[[[di­chlorido­mercury(II)]-μ-N-(pyridin-4-ylmeth­yl)pyridin-3-amine-κ2N:N′] chloro­form hemisolvate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, bDepartment of Science Education, Kyungnam University, Changwon 51767, Republic of Korea, and cResearch Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: dh2232@kyungnam.ac.kr, kmpark@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 28 September 2016; accepted 29 September 2016; online 4 October 2016)

The asymmetric unit of the title compound, {[HgLCl2]·0.5CHCl3}n (L = N-(pyridin-4-ylmeth­yl)pyridin-3-amine, C11H11N3), contains one HgII ion, one bridging L ligand, two chloride ligands and a chloro­form solvent mol­ecule with half-occupancy that is disordered about a crystallographic twofold rotation axis. Each HgII ion is coordinated by two pyridine N atoms from two symmetry-related L ligands and two chloride anions in a highly distorted tetra­hedral geometry with bond angles falling in the range 99.05 (17)–142.96 (7)°. Each L ligand bridges two HgII ions, forming polymeric zigzag chains propagating in [010]. In the crystal, the chains are linked by inter­molecular N/C—H⋯Cl hydrogen bonds together with weak C—H⋯π inter­actions, resulting in the formation of a three-dimensional supra­molecular network, which is further stabilized by C—Cl⋯π inter­actions between the solvent chloro­form mol­ecules and the pyridine rings of L [chloride-to-centroid distances = 3.442 (11) and 3.626 (13) Å]. In addition, weak Cl⋯Cl contacts [3.320 (5) Å] between the chloro­form solvent mol­ecules and the coordinating chloride anions are also observed.

1. Chemical context

A variety of coordination polymers have been explored extensively over the last two decades because of their fascinating architectures and their useful applications in materials chemistry (Silva et al., 2015[Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774-6803.]; Furukawa et al., 2014[Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700-5734.]; Robson, 2008[Robson, R. (2008). Dalton Trans. pp. 5113-5131.]; Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]). In this area of research, symmetrical dipyridyl ligands composed of two terminal pyridines with same substituted nitro­gen positions have been used mainly for the design and construction of the coordination polymers. By contrast, investigations based on unsymmetrical dipyridyl ligands, with the nitro­gen atoms in different positions on each of the two terminal pyridines, are still rare (Uemura et al., 2008[Uemura, K., Kumamoto, Y. & Kitagawa, S. (2008). Chem. Eur. J. 14, 9565-9576.]; Khlobystov et al., 2003[Khlobystov, A. N., Brett, M. T., Blake, A. J., Champness, N. R., Gill, P. M. W., O'Neill, D. P., Teat, S. J., Wilson, C. & Schröder, M. (2003). J. Am. Chem. Soc. 125, 6753-6761.]). Recently, our group and that of Gao have already reported AgI coordination polymers with some unsymmetrical dipyridyl ligands such as N-(pyridine-3-ylmeth­yl)pyridine-2-amine (Lee et al., 2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]; Zhang et al., 2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]), N-(pyridine-2-ylmeth­yl)pyridine-3-amine (Ju et al., 2014[Ju, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658-3660.]; Moon & Park, 2014[Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, m233.]; Moon et al., 2014[Moon, S.-H., Cho, S. & Park, K.-M. (2014). Acta Cryst. E70, 389-391.]; Zhang et al., 2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]) and N-(pyridine-4-ylmeth­yl)pyridine-3-amine (Lee et al., 2015[Lee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532-1535.]; Moon et al., 2015[Moon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287-1289.]; Zhang et al., 2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]). As a part of our ongoing efforts to construct coordination polymers with such unsymmetrical dipyridyl ligands, we prepared the title compound obtained by the reaction of mercury(II) chloride with an unsymmetrical dipyridyl ligand, namely N-(pyridine-4-ylmeth­yl)pyridine-3-amine, synthesized according to a literature procedure (Lee et al., 2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]). Herein, we report the crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, {[HgLCl2]·0.5CHCl3}n, L = N-(pyridine-4-ylmeth­yl)pyridine-3-amine, C11H11N3, comprises one HgII ion, one L ligand, two chloride anions and one half-mol­ecule of chloro­form. The solvent mol­ecule is disordered over two orientations of equal occupancy about the crystallographic twofold rotation axis. As shown in Fig. 1[link], the coordination geometry of each HgII ion is highly distorted tetra­hedral with two coordination sites being occupied by two pyridine N atoms from two symmetry-related L ligands. The geometry of the HgII ion is completed by the coordination of two chloride ions. The tetra­hedral angles around the HgII ion fall in the range of 99.05 (17)–142.96 (7)° (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Hg1—N1 2.367 (5) Hg1—Cl1 2.3759 (18)
Hg1—Cl2 2.3718 (19) Hg1—N2i 2.385 (5)
       
N1—Hg1—Cl2 103.82 (14) N1—Hg1—N2i 99.05 (17)
N1—Hg1—Cl1 102.31 (14) Cl2—Hg1—N2i 101.20 (14)
Cl2—Hg1—Cl1 142.96 (7) Cl1—Hg1—N2i 100.11 (13)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom-numbering scheme [symmetry code: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]]. Displacement ellipsoids are drawn at the 30% probability level. Only one component of the disordered chloro­form mol­ecule is shown. The dashed line represents the inter­molecular C—Cl⋯π inter­action [Cl4⋯Cg2 = 3.442 (11) Å; Cg2 is the centroid of the N2/C7–C11 ring].

Each L ligand bridges two HgII ions into an infinite zigzag chain propagating along the b axis (Fig. 2[link]). The separation between the HgII ions through a L ligand in the chain is 8.1033 (6) Å. In the L ligand, the Cpy—N—C—Cpy torsion angle is −70.9 (7)° while the dihedral angle between two terminal pyridine ring planes is 85.0 (2)°. The conformation of the L ligand, along with the the Npy—Hg—Npy coordination angle [99.05 (17)°], may induce the zigzag topology of the chain.

[Figure 2]
Figure 2
The layer formed through inter­molecular N—H⋯Cl hydrogen bonds (black dashed lines) and weak C—H⋯π inter­actions (red dashed lines). Disordered chloro­form mol­ecules and inter­molecular C—Cl⋯π inter­actions are shown as two-colored dashed lines and yellow dashed lines, respectively. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

3. Supra­molecular features

In the crystal, adjacent zigzag chains are linked by inter­molecular N—H⋯Cl hydrogen bonds and weak inter­molecular C—H⋯π inter­actions (Table 2[link]), forming a layer extending parallel to the bc plane (Figs. 2[link] and 3[link]). Furthermore, neighboring layers are packed by C—H⋯Cl hydrogen bonds (Table 2[link]), resulting in the formation of a three-dimensional supra­molecular network (Fig. 3[link]). This three-dimensional network is further stabilized by C—Cl⋯π inter­actions (Chifotides & Dunbar, 2013[Chifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894-906.]; Matter et al., 2009[Matter, H., Nazaré, M., Güssregen, S., Will, D. W., Schreuder, H., Bauer, A., Urmann, M., Ritter, K., Wagner, M. & Wehner, V. (2009). Angew. Chem. Int. Ed. 48, 2911-2916.]) between the solvent chloro­form mol­ecules and the pyridine rings of L with Cl4⋯Cg2 = 3.442 (11) Å, C12—Cl4⋯Cg2 = 170.7 (8)°, Cl5⋯Cg2iv = 3.626 (13) Å and C12—Cl5⋯Cg2iv 144.1 (8)° [yellow dashed lines in Figs. 1[link], 2[link] and 3[link]; Cg2 is the centroid of the N2/C7–C11 ring; symmetry code: (iv) −x, y, −z + [{1\over 2}]]. In addition, weak inter­molecular Cl⋯Cl contacts between the solvent chloro­form mol­ecule and the coordinating chloride anion [Cl1⋯Cl3v = 3.320 (5) Å, Hg1—Cl1⋯Cl3v = 126.70 (14) and Cl1⋯Cl3v—C12v = 169.2 (8)°; symmetry code: (v) x + [{1\over 2}], y + [{3\over 2}], z] are observed.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl2ii 0.86 2.78 3.467 (5) 138
C8—H8⋯Cl1iii 0.93 2.80 3.654 (6) 153
C6—H6BCg1ii 0.97 2.71 3.465 (7) 135
Symmetry codes: (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 3]
Figure 3
The three-dimensional supra­molecular network constructed through inter­molecular C—H⋯Cl hydrogen bonds (light-blue dashed lines) and C—Cl⋯π inter­actions (yellow dashed lines) between the layers formed through N—H⋯Cl (black dashed lines) and C—H⋯π (red dashed lines) inter­actions. Disordered chloro­form mol­ecules are shown as two-colored dashed lines. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

The L ligand was synthesized according to a literature method (Lee et al., 2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]). X-ray-quality single crystals of the title compound were obtained by slow diffusion of a methanol solution of HgCl2 into a chloro­form solution of the L ligand.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. A reflection affected by the beamstop was omitted from the final refinement. The chloro­form mol­ecule is disordered over two sets of sites about a twofold rotation axis with equal occupancy. The C—Cl bond lengths were restrained using the DFIX instructions in SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). All H atoms were positioned geometrically with d(C—H) = 0.93 Å for Csp2—H, 0.97 Å for methyl­ene C—H, 0.98 Å for methine C—H, and 0.86 Å for amine N—H, and were refined as riding with Uiso(H) = 1.2Ueq(C,N).

Table 3
Experimental details

Crystal data
Chemical formula [HgCl2(C11H11N3)]·0.5CHCl3
Mr 516.40
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 16.6906 (14), 9.1942 (8), 21.0159 (17)
β (°) 95.501 (2)
V3) 3210.2 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 10.16
Crystal size (mm) 0.4 × 0.3 × 0.3
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.521, 0.928
No. of measured, independent and observed [I > 2σ(I)] reflections 8852, 3151, 2189
Rint 0.044
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 0.99
No. of reflections 3151
No. of parameters 190
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.83
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

catena-Poly[[[dichloridomercury(II)]-µ-N- (pyridin-4-ylmethyl)pyridin-3-amine-κ2N:N'] chloroform hemisolvate] top
Crystal data top
[HgCl2(C11H11N3)]·0.5CHCl3F(000) = 1928
Mr = 516.40Dx = 2.137 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.6906 (14) ÅCell parameters from 3870 reflections
b = 9.1942 (8) Åθ = 2.0–28.3°
c = 21.0159 (17) ŵ = 10.16 mm1
β = 95.501 (2)°T = 298 K
V = 3210.2 (5) Å3Block, colorless
Z = 80.4 × 0.3 × 0.3 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
2189 reflections with I > 2σ(I)
phi and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.0°, θmin = 2.5°
Tmin = 0.521, Tmax = 0.928h = 1220
8852 measured reflectionsk = 1110
3151 independent reflectionsl = 2425
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.034P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3151 reflectionsΔρmax = 0.58 e Å3
190 parametersΔρmin = 0.83 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.32126 (2)0.66479 (3)0.10699 (2)0.06180 (11)
Cl10.44104 (11)0.8055 (2)0.11123 (9)0.0766 (5)
Cl20.18389 (11)0.6629 (2)0.06581 (9)0.0839 (6)
N10.3676 (3)0.4300 (6)0.0825 (2)0.0548 (13)
N20.1898 (3)0.1323 (5)0.2816 (2)0.0568 (13)
N30.2853 (4)0.0648 (6)0.0611 (2)0.0641 (15)
H30.30150.01820.04860.077*
C10.3176 (4)0.3179 (7)0.0811 (3)0.0522 (15)
H10.26630.33300.09380.063*
C20.4398 (4)0.4134 (8)0.0648 (3)0.0693 (18)
H20.47490.49220.06620.083*
C30.4649 (5)0.2790 (10)0.0439 (4)0.080 (2)
H3A0.51630.26870.03100.096*
C40.4152 (5)0.1641 (8)0.0423 (3)0.075 (2)
H40.43220.07420.02840.090*
C50.3372 (4)0.1798 (7)0.0618 (3)0.0562 (16)
C60.2052 (4)0.0749 (7)0.0800 (3)0.0615 (17)
H6A0.17610.01300.06670.074*
H6B0.17800.15590.05760.074*
C70.2007 (4)0.0955 (7)0.1513 (2)0.0499 (15)
C80.1386 (4)0.1686 (7)0.1738 (3)0.0636 (17)
H80.09860.20930.14540.076*
C90.1348 (4)0.1821 (7)0.2375 (3)0.0664 (18)
H90.09040.22980.25120.080*
C100.2502 (4)0.0629 (7)0.2600 (3)0.0677 (19)
H100.28950.02490.28970.081*
C110.2594 (4)0.0424 (7)0.1953 (3)0.0618 (18)
H110.30400.00600.18250.074*
C120.0095 (13)0.2965 (16)0.2726 (7)0.128 (8)0.5
H120.03550.33560.31280.153*0.5
Cl30.0016 (4)0.4392 (6)0.2177 (3)0.1288 (19)0.5
Cl40.0705 (7)0.1706 (11)0.2464 (6)0.201 (5)0.5
Cl50.0803 (8)0.2208 (14)0.2885 (6)0.230 (7)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.06149 (17)0.07271 (18)0.05193 (16)0.00720 (15)0.00918 (12)0.00275 (14)
Cl10.0576 (10)0.0833 (12)0.0887 (13)0.0035 (9)0.0056 (10)0.0198 (10)
Cl20.0639 (11)0.1104 (15)0.0748 (11)0.0191 (11)0.0065 (9)0.0262 (11)
N10.052 (3)0.069 (3)0.044 (3)0.012 (3)0.006 (3)0.001 (2)
N20.053 (3)0.078 (4)0.040 (3)0.007 (3)0.009 (3)0.006 (2)
N30.096 (4)0.052 (3)0.047 (3)0.018 (3)0.019 (3)0.004 (2)
C10.053 (4)0.063 (4)0.041 (3)0.017 (3)0.007 (3)0.001 (3)
C20.056 (4)0.083 (5)0.070 (4)0.019 (4)0.011 (4)0.008 (4)
C30.065 (5)0.097 (6)0.083 (6)0.030 (5)0.026 (4)0.020 (5)
C40.099 (6)0.072 (5)0.057 (4)0.032 (5)0.027 (4)0.010 (4)
C50.070 (4)0.066 (4)0.034 (3)0.023 (4)0.010 (3)0.007 (3)
C60.074 (5)0.061 (4)0.047 (4)0.002 (4)0.004 (4)0.001 (3)
C70.061 (4)0.053 (3)0.036 (3)0.000 (3)0.002 (3)0.006 (3)
C80.052 (4)0.082 (4)0.053 (4)0.017 (4)0.011 (3)0.007 (4)
C90.052 (4)0.089 (5)0.059 (4)0.015 (4)0.005 (3)0.002 (4)
C100.065 (4)0.083 (5)0.055 (4)0.018 (4)0.004 (4)0.017 (3)
C110.061 (4)0.083 (5)0.042 (3)0.029 (4)0.008 (3)0.003 (3)
C120.18 (2)0.108 (14)0.098 (18)0.000 (18)0.04 (2)0.024 (10)
Cl30.147 (5)0.100 (3)0.135 (4)0.006 (4)0.011 (5)0.026 (3)
Cl40.208 (10)0.167 (7)0.234 (11)0.120 (7)0.051 (8)0.057 (7)
Cl50.184 (9)0.242 (12)0.281 (15)0.077 (9)0.110 (10)0.150 (11)
Geometric parameters (Å, º) top
Hg1—N12.367 (5)C4—C51.409 (10)
Hg1—Cl22.3718 (19)C4—H40.9300
Hg1—Cl12.3759 (18)C6—C71.519 (7)
Hg1—N2i2.385 (5)C6—H6A0.9700
N1—C21.303 (8)C6—H6B0.9700
N1—C11.326 (8)C7—C81.358 (8)
N2—C101.310 (8)C7—C111.371 (8)
N2—C91.323 (8)C8—C91.352 (9)
N2—Hg1ii2.386 (5)C8—H80.9300
N3—C51.366 (8)C9—H90.9300
N3—C61.434 (8)C10—C111.394 (8)
N3—H30.8600C10—H100.9300
C1—C51.382 (8)C11—H110.9300
C1—H10.9300C12—Cl41.670 (15)
C2—C31.389 (11)C12—Cl51.713 (17)
C2—H20.9300C12—Cl31.746 (13)
C3—C41.342 (10)C12—H120.9800
C3—H3A0.9300
N1—Hg1—Cl2103.82 (14)C1—C5—C4115.5 (7)
N1—Hg1—Cl1102.31 (14)N3—C6—C7114.6 (5)
Cl2—Hg1—Cl1142.96 (7)N3—C6—H6A108.6
N1—Hg1—N2i99.05 (17)C7—C6—H6A108.6
Cl2—Hg1—N2i101.20 (14)N3—C6—H6B108.6
Cl1—Hg1—N2i100.11 (13)C7—C6—H6B108.6
C2—N1—C1120.0 (6)H6A—C6—H6B107.6
C2—N1—Hg1120.0 (5)C8—C7—C11117.5 (5)
C1—N1—Hg1119.7 (4)C8—C7—C6121.0 (5)
C10—N2—C9115.6 (5)C11—C7—C6121.5 (6)
C10—N2—Hg1ii122.4 (4)C9—C8—C7119.9 (6)
C9—N2—Hg1ii122.0 (4)C9—C8—H8120.0
C5—N3—C6123.7 (5)C7—C8—H8120.0
C5—N3—H3118.2N2—C9—C8124.5 (6)
C6—N3—H3118.2N2—C9—H9117.7
N1—C1—C5123.7 (6)C8—C9—H9117.7
N1—C1—H1118.2N2—C10—C11124.3 (6)
C5—C1—H1118.2N2—C10—H10117.8
N1—C2—C3120.6 (7)C11—C10—H10117.8
N1—C2—H2119.7C7—C11—C10118.1 (6)
C3—C2—H2119.7C7—C11—H11120.9
C4—C3—C2120.3 (7)C10—C11—H11120.9
C4—C3—H3A119.8Cl4—C12—Cl5110.8 (10)
C2—C3—H3A119.8Cl4—C12—Cl3109.4 (9)
C3—C4—C5119.9 (7)Cl5—C12—Cl3113.3 (11)
C3—C4—H4120.1Cl4—C12—H12107.7
C5—C4—H4120.1Cl5—C12—H12107.7
N3—C5—C1123.1 (6)Cl3—C12—H12107.7
N3—C5—C4121.4 (6)
C2—N1—C1—C50.3 (9)N3—C6—C7—C8150.4 (6)
Hg1—N1—C1—C5174.1 (4)N3—C6—C7—C1129.1 (9)
C1—N1—C2—C30.6 (9)C11—C7—C8—C92.3 (10)
Hg1—N1—C2—C3173.3 (5)C6—C7—C8—C9178.2 (6)
N1—C2—C3—C40.8 (11)C10—N2—C9—C81.6 (10)
C2—C3—C4—C50.1 (11)Hg1ii—N2—C9—C8179.0 (5)
C6—N3—C5—C10.1 (9)C7—C8—C9—N22.3 (11)
C6—N3—C5—C4179.6 (5)C9—N2—C10—C111.1 (10)
N1—C1—C5—N3179.5 (5)Hg1ii—N2—C10—C11179.5 (5)
N1—C1—C5—C40.8 (9)C8—C7—C11—C101.9 (10)
C3—C4—C5—N3179.7 (6)C6—C7—C11—C10178.7 (6)
C3—C4—C5—C10.6 (9)N2—C10—C11—C71.4 (11)
C5—N3—C6—C770.9 (7)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl2iii0.862.783.467 (5)138
C8—H8···Cl1iv0.932.803.654 (6)153
C6—H6B···Cg1iii0.972.713.465 (7)135
Symmetry codes: (iii) x+1/2, y+1/2, z; (iv) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) project (2015R1D1A3A01020410).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChifotides, H. T. & Dunbar, K. R. (2013). Acc. Chem. Res. 46, 894–906.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFurukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700–5734.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJu, H., Lee, E., Moon, S.-H., Lee, S. S. & Park, K.-M. (2014). Bull. Korean Chem. Soc. 35, 3658–3660.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhlobystov, A. N., Brett, M. T., Blake, A. J., Champness, N. R., Gill, P. M. W., O'Neill, D. P., Teat, S. J., Wilson, C. & Schröder, M. (2003). J. Am. Chem. Soc. 125, 6753–6761.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLee, E., Ju, H., Moon, S.-H., Lee, S. S. & Park, K.-M. (2015). Bull. Korean Chem. Soc. 36, 1532–1535.  Web of Science CrossRef CAS Google Scholar
First citationLee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatter, H., Nazaré, M., Güssregen, S., Will, D. W., Schreuder, H., Bauer, A., Urmann, M., Ritter, K., Wagner, M. & Wehner, V. (2009). Angew. Chem. Int. Ed. 48, 2911–2916.  Web of Science CrossRef CAS Google Scholar
First citationMoon, S.-H., Cho, S. & Park, K.-M. (2014). Acta Cryst. E70, 389–391.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, S.-H., Kang, Y. & Park, K.-M. (2015). Acta Cryst. E71, 1287–1289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, m233.  CSD CrossRef IUCr Journals Google Scholar
First citationRobson, R. (2008). Dalton Trans. pp. 5113–5131.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774–6803.  Web of Science CrossRef CAS PubMed Google Scholar
First citationUemura, K., Kumamoto, Y. & Kitagawa, S. (2008). Chem. Eur. J. 14, 9565–9576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914–5923.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds