research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the 1:2 co-crystal of 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) and 4-chloro­phenol (1/2)

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 110911, Colombia, bUniversidad Nacional de Colombia, Sede Manizales, Manizales, Colombia, and cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 13 October 2016; accepted 17 October 2016; online 25 October 2016)

In the title compound, C7H14N4·2C6H5ClO, which crystallized with two crystallographically independent 4-chloro­phenol mol­ecules and one 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) mol­ecule in the asymmetric unit, the independent components are linked by two O—H⋯N hydrogen bonds. The hydrogen-bond acceptor sites are two non-equivalent N atoms from the aminal cage structure, and the tricyclic system distorts by changing the C—N bond lengths. In the crystal, these hydrogen-bonded aggregates are linked into chains along the c axis by C—H⋯N hydrogen bonds. The crystal structure also features C—H⋯π contacts.

1. Chemical context

Following our previous work on phenol–amine adducts based on cyclic aminal cages with phenol derivatives (Rivera et al., 2015a[Rivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 1356-1360.],b[Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015b). Acta Cryst. E71, 737-740.],c[Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015c). Acta Cryst. E71, 463-465.]), we report herein the synthesis and crystal structure of the title 1:2 complex assembled through hydrogen-bonding inter­actions between the aminal cage, 1,3,6,8-tetra­aza­tri­cyclo [4.3.1.13,8]undecane (TATU), with 4-chloro­phenol under solvent-free conditions at low temperature.

[Scheme 1]

TATU, a small tricyclic aminal cage, is an inter­esting option for studying hydrogen-bonding situations as it has four nitro­gen atoms as potential hydrogen-bond acceptors. These N atoms have two different environments, N1 and N2 from the ethyl­ene fragment (NCH2CH2N) and N3 and N4 from the 1,1-gem-diaminic units. These present two discrete options for hydrogen bonding to the aminal cage. With different types of phenols, the preference for a particular hydrogen-bond-inter­action site depends strongly upon the lone-pair orbital hybridization of the nitro­gen atom (Rivera et al., 2007[Rivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142-146.]). Studies on phenol complexes with tertiary amines in the solid state show that the proton transfer depends not only on the ΔpKa (pKa amine − pKa acid) value but also on steric and packing effects (Majerz & Sawka-Dobrowolska, 1996[Majerz, I. & Sawka-Dobrowolska, W. (1996). J. Chem. Crystallogr. 26, 147-152.]). In the structure found for the three-component aggregates observed here, both types of nitro­gen atom mentioned above are involved in hydrogen bonding with N1 and N3 acting as hydrogen-bond acceptors. The reaction to produce the co-crystal occurs efficiently in the solid state by grinding a mixture of finely powdered TATU and 4-chloro­phenol at room temperature; there are no by-products, and the work-up procedure is easy.

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The asymmetric unit comprises two crystallographically independent 4-chloro­phenol mol­ecules and one 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) mol­ecule. The phenols are linked to the aminal cage by two O—H⋯N hydrogen bonds (Table 1[link]), forming 2:1 hydrogen-bonded aggregates. This is similar to the situation observed in the structure of the 2:1 co-crystal of 4-nitro­phenol and TATU (Rivera et al., 2015a[Rivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 1356-1360.]) which also crystallizes in the P21/c space group and has two different types of N atom acting as the hydrogen-bond acceptors. The measured dimensions of the aminal cage structure in the present adduct are similar to the corresponding values in this related structure. The observed N—CH2 bond lengths are longer than those found in a co-crystal formed between TATU and hydo­quinone (Rivera et al., 2007[Rivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142-146.]). This is presumably related to the formation of strong hydrogen bonds by the N1 and N3 hydrogen atoms.

Table 1
Hydrogen-bond geometry (Å, °)

Cg8 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.88 (3) 1.91 (3) 2.7824 (16) 172 (2)
O2—H2⋯N3 0.87 (2) 1.86 (2) 2.7186 (16) 167 (2)
C15—H15⋯N2i 0.95 2.56 3.4491 (18) 156
C2—H2ACg8ii 0.99 2.79 3.7348 (18) 160
Symmetry codes: (i) x, y, z-1; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms bonded to C atoms are omitted for clarity. Hydrogen bonds are drawn as dashed lines.

A comparison of the O—H⋯N hydrogen bonds in the title compound with those found for the nitro­phenyl analogue (Rivera, et al., 2015a[Rivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 1356-1360.]) reveal that both N⋯O distances are significantly longer in the current structure, suggesting that the hydrogen bonds may be somewhat weaker.

3. Supra­molecular features

In the crystal of title compound, O1—H1⋯N1 and C15—H15⋯N2 hydrogen bonds form columns of TATU mol­ecules and O1 chloro­phenol mol­ecules along the c axis, Fig. 2[link]. The columns are linked by O2—H2⋯N3 hydrogen bonds on one side and C2—H2ACg8 contacts on the other (Cg8 is the centroid of the C11–C16 ring).

[Figure 2]
Figure 2
The crystal packing of the title compound, showing the chain that extends along the c-axis direction. C—H⋯N and O—H⋯N hydrogen bonds are drawn as dashed lines

4. Database survey

Only three comparable structures were found in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]),, namely 1,3,6,8-tetra-aza­tri­cyclo­(4.3.1.13,8)undecane hydro­quinone (HICTOD; Rivera et al., 2007[Rivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142-146.]), 3,6,8-tri­aza-1-azoniatri­cyclo­[4.3.1.13,8]undecane penta­chloro­phenolate monohydrate (OMODEA; Rivera et al., 2011[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). J. Chem. Crystallogr. 41, 591-595.]) and 4-nitro­phenol 1,3,6,8-tetra-aza­tri­cyclo­[4.3.1.13,8]undecane (VUXMEI; Rivera et al., 2015a[Rivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 1356-1360.]). These structures have already been discussed above.

5. Synthesis and crystallization

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) (154 mg, 1 mmol) and 4-chloro­phenol (257 mg, 2 mmol) was mixed thoroughly in a mortar and then ground at room temperature for 15 min. Progress of the reaction was monitored by TLC. Crystals suitable for X-ray diffraction were obtained from a methanol solution upon slow evaporation of the solvent at room temperature (72% yield, m.p. = 334–336 K)

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in difference electron-density maps. The hydroxyl H atoms were refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95, 0.98 or 0.99 Å) and refined using a riding model, with Uiso(H) values set at 1.2Ueq of the parent atom (1.5 for methyl groups).

Table 2
Experimental details

Crystal data
Chemical formula C7H14N4·2C6H5ClO
Mr 411.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 5.9495 (3), 27.6927 (8), 11.9402 (5)
β (°) 92.585 (3)
V3) 1965.24 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.26 × 0.25 × 0.24
 
Data collection
Diffractometer STOE IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.604, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 37763, 4251, 4105
Rint 0.045
(sin θ/λ)max−1) 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.09
No. of reflections 4251
No. of parameters 253
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.26
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL-2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL-2014/7 (Sheldrick, 2015).

1,3,6,8-Tetraazatricyclo[4.3.1.13,8]undecane–4-chlorophenol (1/2) top
Crystal data top
C7H14N4·2C6H5ClOF(000) = 864
Mr = 411.32Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.9495 (3) ÅCell parameters from 37763 reflections
b = 27.6927 (8) Åθ = 1.7–27.6°
c = 11.9402 (5) ŵ = 0.35 mm1
β = 92.585 (3)°T = 173 K
V = 1965.24 (14) Å3Block, colourless
Z = 40.26 × 0.25 × 0.24 mm
Data collection top
STOE IPDS II two-circle
diffractometer
4105 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.045
ω scansθmax = 27.1°, θmin = 1.9°
Absorption correction: multi-scan
(X-Area; Stoe & Cie, 2001)
h = 77
Tmin = 0.604, Tmax = 1.000k = 3535
37763 measured reflectionsl = 1515
4251 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.6451P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max = 0.002
S = 1.09Δρmax = 0.40 e Å3
4251 reflectionsΔρmin = 0.26 e Å3
253 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.062 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.04590 (7)0.26962 (2)0.10224 (3)0.04449 (15)
O10.5641 (2)0.35658 (5)0.24199 (10)0.0479 (3)
H10.510 (4)0.3572 (9)0.310 (2)0.073 (7)*
C110.4191 (3)0.33578 (5)0.16530 (12)0.0356 (3)
C120.2099 (3)0.31750 (6)0.19246 (12)0.0387 (3)
H120.16440.31930.26760.046*
C130.0679 (2)0.29680 (5)0.11068 (12)0.0367 (3)
H130.07470.28450.12930.044*
C140.1366 (2)0.29428 (5)0.00163 (12)0.0339 (3)
C150.3445 (2)0.31185 (5)0.02693 (12)0.0348 (3)
H150.38980.30970.10200.042*
C160.4855 (2)0.33256 (5)0.05517 (12)0.0350 (3)
H160.62830.34470.03620.042*
Cl21.00806 (8)0.58275 (2)1.06573 (4)0.05235 (16)
O20.7563 (2)0.49889 (4)0.62512 (9)0.0406 (3)
H20.655 (4)0.4764 (8)0.6299 (19)0.059 (6)*
C210.8062 (2)0.51843 (5)0.72828 (12)0.0328 (3)
C221.0146 (2)0.54078 (5)0.74570 (13)0.0376 (3)
H221.11570.54210.68640.045*
C231.0755 (2)0.56101 (5)0.84860 (14)0.0391 (3)
H231.21750.57630.86010.047*
C240.9276 (3)0.55872 (5)0.93448 (13)0.0367 (3)
C250.7182 (3)0.53749 (5)0.91821 (14)0.0406 (3)
H250.61670.53670.97740.049*
C260.6576 (2)0.51743 (5)0.81477 (14)0.0382 (3)
H260.51370.50290.80300.046*
N10.43277 (18)0.36094 (4)0.46248 (10)0.0308 (3)
N20.44381 (19)0.33973 (4)0.69815 (10)0.0324 (3)
N30.47481 (19)0.42152 (4)0.61627 (10)0.0310 (3)
N40.12298 (18)0.37751 (4)0.59049 (9)0.0310 (3)
C10.5461 (3)0.31658 (5)0.49947 (13)0.0385 (3)
H1A0.70300.31790.47540.046*
H1B0.47170.28920.45950.046*
C20.5526 (3)0.30537 (6)0.62630 (14)0.0393 (3)
H2A0.48210.27340.63660.047*
H2B0.71220.30260.65270.047*
C30.5404 (2)0.40561 (5)0.50412 (11)0.0307 (3)
H3A0.50420.43180.44980.037*
H3B0.70550.40090.50640.037*
C40.1997 (2)0.34370 (5)0.67956 (11)0.0330 (3)
H4A0.13450.35390.75060.040*
H4B0.13890.31130.66090.040*
C50.1885 (2)0.36212 (5)0.47928 (11)0.0329 (3)
H5A0.11720.38410.42280.039*
H5B0.12680.32940.46460.039*
C60.5478 (2)0.38714 (5)0.70586 (11)0.0338 (3)
H6A0.71290.38310.70430.041*
H6B0.51450.40150.77920.041*
C70.2262 (2)0.42473 (5)0.61453 (12)0.0339 (3)
H7A0.17860.43650.68810.041*
H7B0.17370.44820.55660.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0475 (2)0.0507 (2)0.0351 (2)0.00710 (16)0.00008 (15)0.00103 (15)
O10.0452 (6)0.0666 (8)0.0328 (6)0.0153 (5)0.0091 (5)0.0071 (5)
C110.0382 (7)0.0384 (7)0.0307 (7)0.0009 (6)0.0052 (5)0.0002 (5)
C120.0437 (8)0.0445 (8)0.0288 (7)0.0034 (6)0.0106 (6)0.0010 (6)
C130.0364 (7)0.0390 (7)0.0353 (7)0.0010 (6)0.0087 (6)0.0023 (6)
C140.0385 (7)0.0332 (7)0.0301 (7)0.0036 (5)0.0016 (5)0.0031 (5)
C150.0396 (7)0.0375 (7)0.0278 (6)0.0049 (6)0.0070 (5)0.0053 (5)
C160.0365 (7)0.0377 (7)0.0314 (7)0.0014 (6)0.0084 (5)0.0040 (5)
Cl20.0697 (3)0.0430 (2)0.0434 (2)0.00721 (18)0.00754 (19)0.00895 (16)
O20.0466 (6)0.0377 (5)0.0373 (6)0.0086 (5)0.0001 (4)0.0005 (4)
C210.0355 (7)0.0269 (6)0.0360 (7)0.0002 (5)0.0003 (5)0.0035 (5)
C220.0357 (7)0.0348 (7)0.0428 (8)0.0045 (6)0.0079 (6)0.0012 (6)
C230.0342 (7)0.0344 (7)0.0486 (8)0.0033 (5)0.0004 (6)0.0018 (6)
C240.0437 (8)0.0279 (6)0.0381 (7)0.0051 (5)0.0018 (6)0.0006 (5)
C250.0431 (8)0.0358 (7)0.0437 (8)0.0002 (6)0.0104 (6)0.0003 (6)
C260.0317 (7)0.0348 (7)0.0485 (8)0.0032 (5)0.0051 (6)0.0005 (6)
N10.0275 (5)0.0360 (6)0.0291 (5)0.0013 (4)0.0036 (4)0.0042 (4)
N20.0306 (6)0.0366 (6)0.0300 (6)0.0007 (4)0.0005 (4)0.0031 (5)
N30.0308 (6)0.0320 (6)0.0301 (6)0.0003 (4)0.0017 (4)0.0026 (4)
N40.0257 (5)0.0392 (6)0.0282 (6)0.0020 (4)0.0030 (4)0.0008 (5)
C10.0364 (7)0.0358 (7)0.0438 (8)0.0028 (6)0.0076 (6)0.0058 (6)
C20.0353 (7)0.0367 (7)0.0459 (8)0.0047 (6)0.0016 (6)0.0015 (6)
C30.0291 (6)0.0340 (7)0.0294 (6)0.0022 (5)0.0041 (5)0.0003 (5)
C40.0294 (6)0.0400 (7)0.0298 (6)0.0017 (5)0.0051 (5)0.0032 (5)
C50.0259 (6)0.0457 (8)0.0270 (6)0.0020 (5)0.0005 (5)0.0027 (5)
C60.0328 (7)0.0403 (7)0.0280 (6)0.0016 (5)0.0030 (5)0.0024 (5)
C70.0318 (7)0.0347 (7)0.0354 (7)0.0057 (5)0.0038 (5)0.0025 (5)
Geometric parameters (Å, º) top
Cl1—C141.7497 (15)N1—C31.4692 (17)
O1—C111.3579 (19)N1—C51.4766 (17)
O1—H10.88 (3)N2—C61.4524 (18)
C11—C161.3929 (19)N2—C21.4529 (19)
C11—C121.395 (2)N2—C41.4635 (17)
C12—C131.386 (2)N3—C31.4789 (17)
C12—H120.9500N3—C71.4808 (17)
C13—C141.384 (2)N3—C61.4824 (18)
C13—H130.9500N4—C51.4639 (17)
C14—C151.386 (2)N4—C71.4675 (18)
C15—C161.386 (2)N4—C41.4739 (17)
C15—H150.9500C1—C21.545 (2)
C16—H160.9500C1—H1A0.9900
Cl2—C241.7494 (15)C1—H1B0.9900
O2—C211.3657 (18)C2—H2A0.9900
O2—H20.87 (2)C2—H2B0.9900
C21—C261.390 (2)C3—H3A0.9900
C21—C221.393 (2)C3—H3B0.9900
C22—C231.384 (2)C4—H4A0.9900
C22—H220.9500C4—H4B0.9900
C23—C241.382 (2)C5—H5A0.9900
C23—H230.9500C5—H5B0.9900
C24—C251.384 (2)C6—H6A0.9900
C25—C261.387 (2)C6—H6B0.9900
C25—H250.9500C7—H7A0.9900
C26—H260.9500C7—H7B0.9900
N1—C11.4601 (19)
C11—O1—H1112.3 (16)C7—N3—C6107.96 (11)
O1—C11—C16117.72 (13)C5—N4—C7108.10 (11)
O1—C11—C12122.92 (13)C5—N4—C4112.53 (11)
C16—C11—C12119.36 (14)C7—N4—C4108.15 (11)
C13—C12—C11120.54 (13)N1—C1—C2117.17 (12)
C13—C12—H12119.7N1—C1—H1A108.0
C11—C12—H12119.7C2—C1—H1A108.0
C14—C13—C12119.15 (13)N1—C1—H1B108.0
C14—C13—H13120.4C2—C1—H1B108.0
C12—C13—H13120.4H1A—C1—H1B107.2
C13—C14—C15121.22 (14)N2—C2—C1117.06 (12)
C13—C14—Cl1119.11 (12)N2—C2—H2A108.0
C15—C14—Cl1119.65 (11)C1—C2—H2A108.0
C16—C15—C14119.34 (13)N2—C2—H2B108.0
C16—C15—H15120.3C1—C2—H2B108.0
C14—C15—H15120.3H2A—C2—H2B107.3
C15—C16—C11120.39 (13)N1—C3—N3115.37 (11)
C15—C16—H16119.8N1—C3—H3A108.4
C11—C16—H16119.8N3—C3—H3A108.4
C21—O2—H2110.4 (15)N1—C3—H3B108.4
O2—C21—C26122.85 (13)N3—C3—H3B108.4
O2—C21—C22117.81 (13)H3A—C3—H3B107.5
C26—C21—C22119.33 (14)N2—C4—N4115.47 (11)
C23—C22—C21120.55 (14)N2—C4—H4A108.4
C23—C22—H22119.7N4—C4—H4A108.4
C21—C22—H22119.7N2—C4—H4B108.4
C24—C23—C22119.35 (14)N4—C4—H4B108.4
C24—C23—H23120.3H4A—C4—H4B107.5
C22—C23—H23120.3N4—C5—N1115.69 (11)
C23—C24—C25120.97 (14)N4—C5—H5A108.4
C23—C24—Cl2119.32 (12)N1—C5—H5A108.4
C25—C24—Cl2119.71 (12)N4—C5—H5B108.4
C24—C25—C26119.44 (14)N1—C5—H5B108.4
C24—C25—H25120.3H5A—C5—H5B107.4
C26—C25—H25120.3N2—C6—N3115.14 (11)
C25—C26—C21120.33 (14)N2—C6—H6A108.5
C25—C26—H26119.8N3—C6—H6A108.5
C21—C26—H26119.8N2—C6—H6B108.5
C1—N1—C3114.69 (11)N3—C6—H6B108.5
C1—N1—C5114.92 (11)H6A—C6—H6B107.5
C3—N1—C5110.62 (11)N4—C7—N3111.00 (11)
C6—N2—C2115.45 (12)N4—C7—H7A109.4
C6—N2—C4111.01 (11)N3—C7—H7A109.4
C2—N2—C4115.17 (12)N4—C7—H7B109.4
C3—N3—C7108.03 (10)N3—C7—H7B109.4
C3—N3—C6112.41 (11)H7A—C7—H7B108.0
O1—C11—C12—C13179.72 (15)C4—N2—C2—C165.17 (17)
C16—C11—C12—C130.7 (2)N1—C1—C2—N20.5 (2)
C11—C12—C13—C140.3 (2)C1—N1—C3—N385.46 (14)
C12—C13—C14—C150.3 (2)C5—N1—C3—N346.49 (15)
C12—C13—C14—Cl1178.29 (12)C7—N3—C3—N153.85 (15)
C13—C14—C15—C160.4 (2)C6—N3—C3—N165.16 (15)
Cl1—C14—C15—C16178.18 (11)C6—N2—C4—N447.85 (15)
C14—C15—C16—C110.1 (2)C2—N2—C4—N485.71 (15)
O1—C11—C16—C15179.79 (14)C5—N4—C4—N265.04 (15)
C12—C11—C16—C150.6 (2)C7—N4—C4—N254.30 (15)
O2—C21—C22—C23179.63 (13)C7—N4—C5—N154.75 (15)
C26—C21—C22—C231.2 (2)C4—N4—C5—N164.62 (16)
C21—C22—C23—C240.2 (2)C1—N1—C5—N484.81 (15)
C22—C23—C24—C251.5 (2)C3—N1—C5—N447.03 (16)
C22—C23—C24—Cl2178.15 (12)C2—N2—C6—N385.50 (15)
C23—C24—C25—C261.2 (2)C4—N2—C6—N347.92 (15)
Cl2—C24—C25—C26178.40 (12)C3—N3—C6—N264.54 (15)
C24—C25—C26—C210.3 (2)C7—N3—C6—N254.51 (15)
O2—C21—C26—C25179.42 (14)C5—N4—C7—N361.56 (14)
C22—C21—C26—C251.5 (2)C4—N4—C7—N360.53 (14)
C3—N1—C1—C264.76 (16)C3—N3—C7—N461.15 (14)
C5—N1—C1—C265.11 (16)C6—N3—C7—N460.65 (14)
C6—N2—C2—C166.31 (17)
Hydrogen-bond geometry (Å, º) top
Cg8 is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.88 (3)1.91 (3)2.7824 (16)172 (2)
O2—H2···N30.87 (2)1.86 (2)2.7186 (16)167 (2)
C15—H15···N2i0.952.563.4491 (18)156
C2—H2A···Cg8ii0.992.793.7348 (18)160
Symmetry codes: (i) x, y, z1; (ii) x, y1/2, z1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 28427). JJR is also grateful to COLCIENCIAS for his doctoral scholarship.

References

First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMajerz, I. & Sawka-Dobrowolska, W. (1996). J. Chem. Crystallogr. 26, 147–152.  CSD CrossRef CAS Web of Science Google Scholar
First citationRivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 1356–1360.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015b). Acta Cryst. E71, 737–740.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). J. Chem. Crystallogr. 41, 591–595.  CSD CrossRef CAS Google Scholar
First citationRivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015c). Acta Cryst. E71, 463–465.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds