research communications
3,8]undecane (TATU) and 4-chlorophenol (1/2)
of the 1:2 of 1,3,6,8-tetraazatricyclo[4.3.1.1aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 110911, Colombia, bUniversidad Nacional de Colombia, Sede Manizales, Manizales, Colombia, and cInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co
In the title compound, C7H14N4·2C6H5ClO, which crystallized with two crystallographically independent 4-chlorophenol molecules and one 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) molecule in the the independent components are linked by two O—H⋯N hydrogen bonds. The hydrogen-bond acceptor sites are two non-equivalent N atoms from the aminal cage structure, and the tricyclic system distorts by changing the C—N bond lengths. In the crystal, these hydrogen-bonded aggregates are linked into chains along the c axis by C—H⋯N hydrogen bonds. The also features C—H⋯π contacts.
Keywords: crystal structure; co-crystalline adducts; hydrogen bonding; TATU.
CCDC reference: 1510135
1. Chemical context
Following our previous work on phenol–amine adducts based on cyclic aminal cages with phenol derivatives (Rivera et al., 2015a,b,c), we report herein the synthesis and of the title 1:2 complex assembled through hydrogen-bonding interactions between the aminal cage, 1,3,6,8-tetraazatricyclo [4.3.1.13,8]undecane (TATU), with 4-chlorophenol under solvent-free conditions at low temperature.
TATU, a small tricyclic aminal cage, is an interesting option for studying hydrogen-bonding situations as it has four nitrogen atoms as potential hydrogen-bond acceptors. These N atoms have two different environments, N1 and N2 from the ethylene fragment (NCH2CH2N) and N3 and N4 from the 1,1-gem-diaminic units. These present two discrete options for hydrogen bonding to the aminal cage. With different types of the preference for a particular hydrogen-bond-interaction site depends strongly upon the lone-pair orbital of the nitrogen atom (Rivera et al., 2007). Studies on phenol complexes with tertiary in the solid state show that the proton transfer depends not only on the ΔpKa (pKa amine − pKa acid) value but also on steric and packing effects (Majerz & Sawka-Dobrowolska, 1996). In the structure found for the three-component aggregates observed here, both types of nitrogen atom mentioned above are involved in hydrogen bonding with N1 and N3 acting as hydrogen-bond acceptors. The reaction to produce the occurs efficiently in the solid state by grinding a mixture of finely powdered TATU and 4-chlorophenol at room temperature; there are no by-products, and the work-up procedure is easy.
2. Structural commentary
The molecular structure of the title compound is illustrated in Fig. 1. The comprises two crystallographically independent 4-chlorophenol molecules and one 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) molecule. The are linked to the aminal cage by two O—H⋯N hydrogen bonds (Table 1), forming 2:1 hydrogen-bonded aggregates. This is similar to the situation observed in the structure of the 2:1 of 4-nitrophenol and TATU (Rivera et al., 2015a) which also crystallizes in the P21/c and has two different types of N atom acting as the hydrogen-bond acceptors. The measured dimensions of the aminal cage structure in the present adduct are similar to the corresponding values in this related structure. The observed N—CH2 bond lengths are longer than those found in a formed between TATU and hydoquinone (Rivera et al., 2007). This is presumably related to the formation of strong hydrogen bonds by the N1 and N3 hydrogen atoms.
A comparison of the O—H⋯N hydrogen bonds in the title compound with those found for the nitrophenyl analogue (Rivera, et al., 2015a) reveal that both N⋯O distances are significantly longer in the current structure, suggesting that the hydrogen bonds may be somewhat weaker.
3. Supramolecular features
In the crystal of title compound, O1—H1⋯N1 and C15—H15⋯N2 hydrogen bonds form columns of TATU molecules and O1 chlorophenol molecules along the c axis, Fig. 2. The columns are linked by O2—H2⋯N3 hydrogen bonds on one side and C2—H2A⋯Cg8 contacts on the other (Cg8 is the centroid of the C11–C16 ring).
4. Database survey
Only three comparable structures were found in the Cambridge Structural Database (Groom et al., 2016),, namely 1,3,6,8-tetra-azatricyclo(4.3.1.13,8)undecane hydroquinone (HICTOD; Rivera et al., 2007), 3,6,8-triaza-1-azoniatricyclo[4.3.1.13,8]undecane pentachlorophenolate monohydrate (OMODEA; Rivera et al., 2011) and 4-nitrophenol 1,3,6,8-tetra-azatricyclo[4.3.1.13,8]undecane (VUXMEI; Rivera et al., 2015a). These structures have already been discussed above.
5. Synthesis and crystallization
A mixture of 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU) (154 mg, 1 mmol) and 4-chlorophenol (257 mg, 2 mmol) was mixed thoroughly in a mortar and then ground at room temperature for 15 min. Progress of the reaction was monitored by TLC. Crystals suitable for X-ray diffraction were obtained from a methanol solution upon slow evaporation of the solvent at room temperature (72% yield, m.p. = 334–336 K)
6. Refinement
Crystal data, data collection and structure . All H atoms were located in difference electron-density maps. The hydroxyl H atoms were refined freely, while C-bound H atoms were fixed geometrically (C—H = 0.95, 0.98 or 0.99 Å) and refined using a riding model, with Uiso(H) values set at 1.2Ueq of the parent atom (1.5 for methyl groups).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1510135
https://doi.org/10.1107/S2056989016016546/sj5511sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016016546/sj5511Isup2.hkl
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL-2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL-2014/7 (Sheldrick, 2015).C7H14N4·2C6H5ClO | F(000) = 864 |
Mr = 411.32 | Dx = 1.390 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 5.9495 (3) Å | Cell parameters from 37763 reflections |
b = 27.6927 (8) Å | θ = 1.7–27.6° |
c = 11.9402 (5) Å | µ = 0.35 mm−1 |
β = 92.585 (3)° | T = 173 K |
V = 1965.24 (14) Å3 | Block, colourless |
Z = 4 | 0.26 × 0.25 × 0.24 mm |
STOE IPDS II two-circle diffractometer | 4105 reflections with I > 2σ(I) |
Radiation source: Genix 3D IµS microfocus X-ray source | Rint = 0.045 |
ω scans | θmax = 27.1°, θmin = 1.9° |
Absorption correction: multi-scan (X-Area; Stoe & Cie, 2001) | h = −7→7 |
Tmin = 0.604, Tmax = 1.000 | k = −35→35 |
37763 measured reflections | l = −15→15 |
4251 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0575P)2 + 0.6451P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.109 | (Δ/σ)max = 0.002 |
S = 1.09 | Δρmax = 0.40 e Å−3 |
4251 reflections | Δρmin = −0.26 e Å−3 |
253 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.062 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.04590 (7) | 0.26962 (2) | −0.10224 (3) | 0.04449 (15) | |
O1 | 0.5641 (2) | 0.35658 (5) | 0.24199 (10) | 0.0479 (3) | |
H1 | 0.510 (4) | 0.3572 (9) | 0.310 (2) | 0.073 (7)* | |
C11 | 0.4191 (3) | 0.33578 (5) | 0.16530 (12) | 0.0356 (3) | |
C12 | 0.2099 (3) | 0.31750 (6) | 0.19246 (12) | 0.0387 (3) | |
H12 | 0.1644 | 0.3193 | 0.2676 | 0.046* | |
C13 | 0.0679 (2) | 0.29680 (5) | 0.11068 (12) | 0.0367 (3) | |
H13 | −0.0747 | 0.2845 | 0.1293 | 0.044* | |
C14 | 0.1366 (2) | 0.29428 (5) | 0.00163 (12) | 0.0339 (3) | |
C15 | 0.3445 (2) | 0.31185 (5) | −0.02693 (12) | 0.0348 (3) | |
H15 | 0.3898 | 0.3097 | −0.1020 | 0.042* | |
C16 | 0.4855 (2) | 0.33256 (5) | 0.05517 (12) | 0.0350 (3) | |
H16 | 0.6283 | 0.3447 | 0.0362 | 0.042* | |
Cl2 | 1.00806 (8) | 0.58275 (2) | 1.06573 (4) | 0.05235 (16) | |
O2 | 0.7563 (2) | 0.49889 (4) | 0.62512 (9) | 0.0406 (3) | |
H2 | 0.655 (4) | 0.4764 (8) | 0.6299 (19) | 0.059 (6)* | |
C21 | 0.8062 (2) | 0.51843 (5) | 0.72828 (12) | 0.0328 (3) | |
C22 | 1.0146 (2) | 0.54078 (5) | 0.74570 (13) | 0.0376 (3) | |
H22 | 1.1157 | 0.5421 | 0.6864 | 0.045* | |
C23 | 1.0755 (2) | 0.56101 (5) | 0.84860 (14) | 0.0391 (3) | |
H23 | 1.2175 | 0.5763 | 0.8601 | 0.047* | |
C24 | 0.9276 (3) | 0.55872 (5) | 0.93448 (13) | 0.0367 (3) | |
C25 | 0.7182 (3) | 0.53749 (5) | 0.91821 (14) | 0.0406 (3) | |
H25 | 0.6167 | 0.5367 | 0.9774 | 0.049* | |
C26 | 0.6576 (2) | 0.51743 (5) | 0.81477 (14) | 0.0382 (3) | |
H26 | 0.5137 | 0.5029 | 0.8030 | 0.046* | |
N1 | 0.43277 (18) | 0.36094 (4) | 0.46248 (10) | 0.0308 (3) | |
N2 | 0.44381 (19) | 0.33973 (4) | 0.69815 (10) | 0.0324 (3) | |
N3 | 0.47481 (19) | 0.42152 (4) | 0.61627 (10) | 0.0310 (3) | |
N4 | 0.12298 (18) | 0.37751 (4) | 0.59049 (9) | 0.0310 (3) | |
C1 | 0.5461 (3) | 0.31658 (5) | 0.49947 (13) | 0.0385 (3) | |
H1A | 0.7030 | 0.3179 | 0.4754 | 0.046* | |
H1B | 0.4717 | 0.2892 | 0.4595 | 0.046* | |
C2 | 0.5526 (3) | 0.30537 (6) | 0.62630 (14) | 0.0393 (3) | |
H2A | 0.4821 | 0.2734 | 0.6366 | 0.047* | |
H2B | 0.7122 | 0.3026 | 0.6527 | 0.047* | |
C3 | 0.5404 (2) | 0.40561 (5) | 0.50412 (11) | 0.0307 (3) | |
H3A | 0.5042 | 0.4318 | 0.4498 | 0.037* | |
H3B | 0.7055 | 0.4009 | 0.5064 | 0.037* | |
C4 | 0.1997 (2) | 0.34370 (5) | 0.67956 (11) | 0.0330 (3) | |
H4A | 0.1345 | 0.3539 | 0.7506 | 0.040* | |
H4B | 0.1389 | 0.3113 | 0.6609 | 0.040* | |
C5 | 0.1885 (2) | 0.36212 (5) | 0.47928 (11) | 0.0329 (3) | |
H5A | 0.1172 | 0.3841 | 0.4228 | 0.039* | |
H5B | 0.1268 | 0.3294 | 0.4646 | 0.039* | |
C6 | 0.5478 (2) | 0.38714 (5) | 0.70586 (11) | 0.0338 (3) | |
H6A | 0.7129 | 0.3831 | 0.7043 | 0.041* | |
H6B | 0.5145 | 0.4015 | 0.7792 | 0.041* | |
C7 | 0.2262 (2) | 0.42473 (5) | 0.61453 (12) | 0.0339 (3) | |
H7A | 0.1786 | 0.4365 | 0.6881 | 0.041* | |
H7B | 0.1737 | 0.4482 | 0.5566 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0475 (2) | 0.0507 (2) | 0.0351 (2) | −0.00710 (16) | 0.00008 (15) | −0.00103 (15) |
O1 | 0.0452 (6) | 0.0666 (8) | 0.0328 (6) | −0.0153 (5) | 0.0091 (5) | −0.0071 (5) |
C11 | 0.0382 (7) | 0.0384 (7) | 0.0307 (7) | −0.0009 (6) | 0.0052 (5) | −0.0002 (5) |
C12 | 0.0437 (8) | 0.0445 (8) | 0.0288 (7) | −0.0034 (6) | 0.0106 (6) | −0.0010 (6) |
C13 | 0.0364 (7) | 0.0390 (7) | 0.0353 (7) | −0.0010 (6) | 0.0087 (6) | 0.0023 (6) |
C14 | 0.0385 (7) | 0.0332 (7) | 0.0301 (7) | 0.0036 (5) | 0.0016 (5) | 0.0031 (5) |
C15 | 0.0396 (7) | 0.0375 (7) | 0.0278 (6) | 0.0049 (6) | 0.0070 (5) | 0.0053 (5) |
C16 | 0.0365 (7) | 0.0377 (7) | 0.0314 (7) | 0.0014 (6) | 0.0084 (5) | 0.0040 (5) |
Cl2 | 0.0697 (3) | 0.0430 (2) | 0.0434 (2) | 0.00721 (18) | −0.00754 (19) | −0.00895 (16) |
O2 | 0.0466 (6) | 0.0377 (5) | 0.0373 (6) | −0.0086 (5) | 0.0001 (4) | 0.0005 (4) |
C21 | 0.0355 (7) | 0.0269 (6) | 0.0360 (7) | 0.0002 (5) | 0.0003 (5) | 0.0035 (5) |
C22 | 0.0357 (7) | 0.0348 (7) | 0.0428 (8) | −0.0045 (6) | 0.0079 (6) | 0.0012 (6) |
C23 | 0.0342 (7) | 0.0344 (7) | 0.0486 (8) | −0.0033 (5) | −0.0004 (6) | −0.0018 (6) |
C24 | 0.0437 (8) | 0.0279 (6) | 0.0381 (7) | 0.0051 (5) | −0.0018 (6) | −0.0006 (5) |
C25 | 0.0431 (8) | 0.0358 (7) | 0.0437 (8) | −0.0002 (6) | 0.0104 (6) | 0.0003 (6) |
C26 | 0.0317 (7) | 0.0348 (7) | 0.0485 (8) | −0.0032 (5) | 0.0051 (6) | −0.0005 (6) |
N1 | 0.0275 (5) | 0.0360 (6) | 0.0291 (5) | −0.0013 (4) | 0.0036 (4) | −0.0042 (4) |
N2 | 0.0306 (6) | 0.0366 (6) | 0.0300 (6) | 0.0007 (4) | 0.0005 (4) | 0.0031 (5) |
N3 | 0.0308 (6) | 0.0320 (6) | 0.0301 (6) | −0.0003 (4) | 0.0017 (4) | −0.0026 (4) |
N4 | 0.0257 (5) | 0.0392 (6) | 0.0282 (6) | 0.0020 (4) | 0.0030 (4) | −0.0008 (5) |
C1 | 0.0364 (7) | 0.0358 (7) | 0.0438 (8) | 0.0028 (6) | 0.0076 (6) | −0.0058 (6) |
C2 | 0.0353 (7) | 0.0367 (7) | 0.0459 (8) | 0.0047 (6) | 0.0016 (6) | 0.0015 (6) |
C3 | 0.0291 (6) | 0.0340 (7) | 0.0294 (6) | −0.0022 (5) | 0.0041 (5) | 0.0003 (5) |
C4 | 0.0294 (6) | 0.0400 (7) | 0.0298 (6) | −0.0017 (5) | 0.0051 (5) | 0.0032 (5) |
C5 | 0.0259 (6) | 0.0457 (8) | 0.0270 (6) | −0.0020 (5) | 0.0005 (5) | −0.0027 (5) |
C6 | 0.0328 (7) | 0.0403 (7) | 0.0280 (6) | −0.0016 (5) | −0.0030 (5) | −0.0024 (5) |
C7 | 0.0318 (7) | 0.0347 (7) | 0.0354 (7) | 0.0057 (5) | 0.0038 (5) | −0.0025 (5) |
Cl1—C14 | 1.7497 (15) | N1—C3 | 1.4692 (17) |
O1—C11 | 1.3579 (19) | N1—C5 | 1.4766 (17) |
O1—H1 | 0.88 (3) | N2—C6 | 1.4524 (18) |
C11—C16 | 1.3929 (19) | N2—C2 | 1.4529 (19) |
C11—C12 | 1.395 (2) | N2—C4 | 1.4635 (17) |
C12—C13 | 1.386 (2) | N3—C3 | 1.4789 (17) |
C12—H12 | 0.9500 | N3—C7 | 1.4808 (17) |
C13—C14 | 1.384 (2) | N3—C6 | 1.4824 (18) |
C13—H13 | 0.9500 | N4—C5 | 1.4639 (17) |
C14—C15 | 1.386 (2) | N4—C7 | 1.4675 (18) |
C15—C16 | 1.386 (2) | N4—C4 | 1.4739 (17) |
C15—H15 | 0.9500 | C1—C2 | 1.545 (2) |
C16—H16 | 0.9500 | C1—H1A | 0.9900 |
Cl2—C24 | 1.7494 (15) | C1—H1B | 0.9900 |
O2—C21 | 1.3657 (18) | C2—H2A | 0.9900 |
O2—H2 | 0.87 (2) | C2—H2B | 0.9900 |
C21—C26 | 1.390 (2) | C3—H3A | 0.9900 |
C21—C22 | 1.393 (2) | C3—H3B | 0.9900 |
C22—C23 | 1.384 (2) | C4—H4A | 0.9900 |
C22—H22 | 0.9500 | C4—H4B | 0.9900 |
C23—C24 | 1.382 (2) | C5—H5A | 0.9900 |
C23—H23 | 0.9500 | C5—H5B | 0.9900 |
C24—C25 | 1.384 (2) | C6—H6A | 0.9900 |
C25—C26 | 1.387 (2) | C6—H6B | 0.9900 |
C25—H25 | 0.9500 | C7—H7A | 0.9900 |
C26—H26 | 0.9500 | C7—H7B | 0.9900 |
N1—C1 | 1.4601 (19) | ||
C11—O1—H1 | 112.3 (16) | C7—N3—C6 | 107.96 (11) |
O1—C11—C16 | 117.72 (13) | C5—N4—C7 | 108.10 (11) |
O1—C11—C12 | 122.92 (13) | C5—N4—C4 | 112.53 (11) |
C16—C11—C12 | 119.36 (14) | C7—N4—C4 | 108.15 (11) |
C13—C12—C11 | 120.54 (13) | N1—C1—C2 | 117.17 (12) |
C13—C12—H12 | 119.7 | N1—C1—H1A | 108.0 |
C11—C12—H12 | 119.7 | C2—C1—H1A | 108.0 |
C14—C13—C12 | 119.15 (13) | N1—C1—H1B | 108.0 |
C14—C13—H13 | 120.4 | C2—C1—H1B | 108.0 |
C12—C13—H13 | 120.4 | H1A—C1—H1B | 107.2 |
C13—C14—C15 | 121.22 (14) | N2—C2—C1 | 117.06 (12) |
C13—C14—Cl1 | 119.11 (12) | N2—C2—H2A | 108.0 |
C15—C14—Cl1 | 119.65 (11) | C1—C2—H2A | 108.0 |
C16—C15—C14 | 119.34 (13) | N2—C2—H2B | 108.0 |
C16—C15—H15 | 120.3 | C1—C2—H2B | 108.0 |
C14—C15—H15 | 120.3 | H2A—C2—H2B | 107.3 |
C15—C16—C11 | 120.39 (13) | N1—C3—N3 | 115.37 (11) |
C15—C16—H16 | 119.8 | N1—C3—H3A | 108.4 |
C11—C16—H16 | 119.8 | N3—C3—H3A | 108.4 |
C21—O2—H2 | 110.4 (15) | N1—C3—H3B | 108.4 |
O2—C21—C26 | 122.85 (13) | N3—C3—H3B | 108.4 |
O2—C21—C22 | 117.81 (13) | H3A—C3—H3B | 107.5 |
C26—C21—C22 | 119.33 (14) | N2—C4—N4 | 115.47 (11) |
C23—C22—C21 | 120.55 (14) | N2—C4—H4A | 108.4 |
C23—C22—H22 | 119.7 | N4—C4—H4A | 108.4 |
C21—C22—H22 | 119.7 | N2—C4—H4B | 108.4 |
C24—C23—C22 | 119.35 (14) | N4—C4—H4B | 108.4 |
C24—C23—H23 | 120.3 | H4A—C4—H4B | 107.5 |
C22—C23—H23 | 120.3 | N4—C5—N1 | 115.69 (11) |
C23—C24—C25 | 120.97 (14) | N4—C5—H5A | 108.4 |
C23—C24—Cl2 | 119.32 (12) | N1—C5—H5A | 108.4 |
C25—C24—Cl2 | 119.71 (12) | N4—C5—H5B | 108.4 |
C24—C25—C26 | 119.44 (14) | N1—C5—H5B | 108.4 |
C24—C25—H25 | 120.3 | H5A—C5—H5B | 107.4 |
C26—C25—H25 | 120.3 | N2—C6—N3 | 115.14 (11) |
C25—C26—C21 | 120.33 (14) | N2—C6—H6A | 108.5 |
C25—C26—H26 | 119.8 | N3—C6—H6A | 108.5 |
C21—C26—H26 | 119.8 | N2—C6—H6B | 108.5 |
C1—N1—C3 | 114.69 (11) | N3—C6—H6B | 108.5 |
C1—N1—C5 | 114.92 (11) | H6A—C6—H6B | 107.5 |
C3—N1—C5 | 110.62 (11) | N4—C7—N3 | 111.00 (11) |
C6—N2—C2 | 115.45 (12) | N4—C7—H7A | 109.4 |
C6—N2—C4 | 111.01 (11) | N3—C7—H7A | 109.4 |
C2—N2—C4 | 115.17 (12) | N4—C7—H7B | 109.4 |
C3—N3—C7 | 108.03 (10) | N3—C7—H7B | 109.4 |
C3—N3—C6 | 112.41 (11) | H7A—C7—H7B | 108.0 |
O1—C11—C12—C13 | 179.72 (15) | C4—N2—C2—C1 | 65.17 (17) |
C16—C11—C12—C13 | −0.7 (2) | N1—C1—C2—N2 | 0.5 (2) |
C11—C12—C13—C14 | 0.3 (2) | C1—N1—C3—N3 | −85.46 (14) |
C12—C13—C14—C15 | 0.3 (2) | C5—N1—C3—N3 | 46.49 (15) |
C12—C13—C14—Cl1 | −178.29 (12) | C7—N3—C3—N1 | −53.85 (15) |
C13—C14—C15—C16 | −0.4 (2) | C6—N3—C3—N1 | 65.16 (15) |
Cl1—C14—C15—C16 | 178.18 (11) | C6—N2—C4—N4 | 47.85 (15) |
C14—C15—C16—C11 | −0.1 (2) | C2—N2—C4—N4 | −85.71 (15) |
O1—C11—C16—C15 | −179.79 (14) | C5—N4—C4—N2 | 65.04 (15) |
C12—C11—C16—C15 | 0.6 (2) | C7—N4—C4—N2 | −54.30 (15) |
O2—C21—C22—C23 | −179.63 (13) | C7—N4—C5—N1 | 54.75 (15) |
C26—C21—C22—C23 | 1.2 (2) | C4—N4—C5—N1 | −64.62 (16) |
C21—C22—C23—C24 | 0.2 (2) | C1—N1—C5—N4 | 84.81 (15) |
C22—C23—C24—C25 | −1.5 (2) | C3—N1—C5—N4 | −47.03 (16) |
C22—C23—C24—Cl2 | 178.15 (12) | C2—N2—C6—N3 | 85.50 (15) |
C23—C24—C25—C26 | 1.2 (2) | C4—N2—C6—N3 | −47.92 (15) |
Cl2—C24—C25—C26 | −178.40 (12) | C3—N3—C6—N2 | −64.54 (15) |
C24—C25—C26—C21 | 0.3 (2) | C7—N3—C6—N2 | 54.51 (15) |
O2—C21—C26—C25 | 179.42 (14) | C5—N4—C7—N3 | −61.56 (14) |
C22—C21—C26—C25 | −1.5 (2) | C4—N4—C7—N3 | 60.53 (14) |
C3—N1—C1—C2 | 64.76 (16) | C3—N3—C7—N4 | 61.15 (14) |
C5—N1—C1—C2 | −65.11 (16) | C6—N3—C7—N4 | −60.65 (14) |
C6—N2—C2—C1 | −66.31 (17) |
Cg8 is the centroid of the C11–C16 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.88 (3) | 1.91 (3) | 2.7824 (16) | 172 (2) |
O2—H2···N3 | 0.87 (2) | 1.86 (2) | 2.7186 (16) | 167 (2) |
C15—H15···N2i | 0.95 | 2.56 | 3.4491 (18) | 156 |
C2—H2A···Cg8ii | 0.99 | 2.79 | 3.7348 (18) | 160 |
Symmetry codes: (i) x, y, z−1; (ii) x, −y−1/2, z−1/2. |
Acknowledgements
We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 28427). JJR is also grateful to COLCIENCIAS for his doctoral scholarship.
References
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Majerz, I. & Sawka-Dobrowolska, W. (1996). J. Chem. Crystallogr. 26, 147–152. CSD CrossRef CAS Web of Science Google Scholar
Rivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142–146. Web of Science CSD CrossRef CAS Google Scholar
Rivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015a). Acta Cryst. E71, 1356–1360. CSD CrossRef IUCr Journals Google Scholar
Rivera, A., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015b). Acta Cryst. E71, 737–740. CSD CrossRef IUCr Journals Google Scholar
Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). J. Chem. Crystallogr. 41, 591–595. CSD CrossRef CAS Google Scholar
Rivera, A., Uribe, J. M., Rojas, J. J., Ríos-Motta, J. & Bolte, M. (2015c). Acta Cryst. E71, 463–465. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.