research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Mechanochemical synthesis and crystal structure of a 1:2 co-crystal of 1,3,6,8-tetra­aza­tri­cyclo[4.3.1.13,8]undecane (TATU) and 4-chloro-3,5-di­methyl­phenol

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 110911, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by J. Simpson, University of Otago, New Zealand (Received 14 October 2016; accepted 18 October 2016; online 25 October 2016)

Solvent-free treatment of 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecano (TATU) with 4-chloro-3,5-di­methyl­phenol led to the formation of the title co-crystal, C7H14N4·2C8H9ClO. The asymmetric unit contains one aminal cage mol­ecule and two phenol mol­ecules linked via two O—H⋯N hydrogen bonds. In the aminal cage, the N–CH2–CH2–N unit is slightly distorted from a syn periplanar geometry. Aromatic ππ stacking between the benzene rings from two different neighbouring phenol mol­ecules [centroid–centroid distance = 4.0570 (11) Å] consolidates the crystal packing.

1. Chemical context

Phenols and cyclic aminals are known to form a variety of supra­molecular aggregates via O—H⋯N hydrogen bonds, and complexes of phenols with various nitro­gen bases are model systems often applied in the study of the nature of the hydrogen bond (Majerz et al. 2007[Majerz, I., Kwiatkowska, E. & Koll, A. (2007). J. Mol. Struct. 831, 106-113.]). Previously, hydrogen bonding between the hydroxyl group of acidic groups such as phenols and heterocyclic nitro­gen atoms has proved to be a useful and powerful organizing force for the formation of supra­molecules (Jin et al., 2014[Jin, S., Liu, H., Gao, X. J., Lin, Z., Chen, G. & Wang, D. (2014). J. Mol. Struct. 1075, 124-138.]). In a continuation of our previously published work in this area (Rivera et al., 2007[Rivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142-146.], 2015[Rivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 1356-1360.]) and as a part of our research on compounds in which a cyclic aminal acts as a central host and organizes guest mol­ecules around it via hydrogen bonding, we report herein the synthesis and crystal structure of title compound. This was assembled through hydrogen-bonding inter­actions between the cyclic aminal 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecane (TATU) and 4-chloro-3,5-di­methyl­phenol.

[Scheme 1]

In recent years, we have become inter­ested in this cage aminal, which contains two pairs of non-equivalent nitro­gen atoms. Another intriguing feature of TATU is that, in contrast with the related aminal 1,3,6,8-tetra­aza­tri­cyclo­[4.4.1.13,8]dodecane (TATD) for example (Riddell & Murray-Rust, 1970[Riddell, F. G. & Murray-Rust, P. (1970). J. Chem. Soc. D, Chem. Commun. pp. 1074-1075.]), TATU did not react with phenols when the reaction was attempted under standard conditions in various organic solvents. Instead, the reaction only took place when the mixture was at heated in an oil-bath at 393 K for 15 min under solvent-free conditions, affording symmetrical 1,3-bis­(2-hy­droxy­benz­yl)imidazolidines (BISBIAs) in good yields (Hernández, 2007[Hernández, M. C. (2007). M. Sc. Thesis, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D. C., Colombia.]). We also discovered that, under mechanochemical conditions, grinding the reagents in a mortar and pestle, the reaction of TATU with phenols affords phenol–aminal aggregates in excellent yields. Furthermore, no side products form in the reaction mixture. Usually, washing the homogeneous mixture with an appropriate solvent and filtration of the solid gives the pure adduct. In this article, we report the crystal structure of the title compound, an adduct obtained on milling a 1:2 stoichiometric mixture of TATU and 4-chloro-3,5-di­methyl­phenol in an agate mortar. This mechanochemical process provides a convenient and efficient method to produce these adducts, and is also environmentally friendly.

2. Structural commentary

The title compound crystallizes in space group P21/n with one aminal cage mol­ecule and two 4-chloro-3,5-di­methyl­phenol mol­ecules in the asymmetric unit (Fig. 1[link]) linked by two hydrogen bonds (Table 1[link]). Nitro­gen atoms with the higher sp3 character act as acceptors in this case, with Σα(C–N–C) = 328.18 and 327.77° for N3 and N4, respectively, as seen with a previous reported TATU hydro­quinone adduct (Rivera et al., 2007[Rivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142-146.]). The geometry of the N–C–C–N group of the adamanzane cage in the title compound is slightly distorted from a syn periplanar geometry, as evidenced by the N1—C1—C2—N2 dihedral angle [2.7 (3)°].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.82 (3) 1.96 (3) 2.766 (2) 166 (3)
O2—H2⋯N4 0.89 (3) 1.90 (3) 2.760 (2) 160 (2)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

In addition to the O—H⋯N contacts that form the 1:2 co-crystals, weak offset ππ stacking inter­actions link adjacent O1 and O2 phenol rings with a rather long separation between the centroids [Cg8⋯Cg9i = 4.0570 (11); symmetry code: (i) [{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z; Cg8 and Cg9 are the centroids of the C11–16 and C21–C26 rings, respectively] and the benzene ring planes are inclined to one another by 0.58 (9)°. These additional contacts link the three-membered co-crystal units into chains approximately parallel to ([\overline{3}]03), Fig. 2[link].

[Figure 2]
Figure 2
Packing diagram for title compound, viewed along the b axis.

4. Database survey

Only three comparable structures were found in the Cambridge Structural Database (Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), namely 1,3,6,8-tetra-aza­tri­cyclo­(4.3.1.13,8)undecane hydro­quinone (HICTOD; Rivera et al., 2007[Rivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142-146.]), 3,6,8-tri­aza-1-azoniatri­cyclo­[4.3.1.13,8]undecane penta­chloro­phenolate monohydrate (OMODEA; Rivera et al., 2011[Rivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). J. Chem. Crystallogr. 41, 591-595.]), and 4-nitro­phenol 1,3,6,8-tetra-aza­tri­cyclo­[4.3.1.13,8]undecane (VUXMEI; Rivera et al., 2015[Rivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 1356-1360.]).

5. Synthesis and crystallization

A mixture of 1,3,6,8-tetra­aza­tri­cyclo­[4.3.1.13,8]undecano (TATU) (154 mg, 1 mmol) and 4-chloro-3,5-di­methyl­phenol (313 mg, 2 mmol) was ground using a mortar and pestle at room temperature for 15 min. Completion of the reaction was monitored by TLC. The mixture was recrystallized from n-hexane solution to obtain colourless crystals suitable for X-ray analysis, m.p. = 375–376 K. (yield: 63%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference electron-density map. C-bound H atoms were fixed geometrically (C—H = 0.95 or 0.99Å) and refined using a riding-model approximation, with Uiso(H) set to 1.2Ueq of the parent atom. The hydroxyl H atoms were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C7H14N4·2C8H9ClO
Mr 467.42
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 14.5170 (8), 7.6178 (4), 22.1756 (11)
β (°) 101.824 (4)
V3) 2400.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.28 × 0.24 × 0.24
 
Data collection
Diffractometer STOE IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.609, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23030, 4501, 3584
Rint 0.032
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 1.03
No. of reflections 4501
No. of parameters 292
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.30
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015).

1,3,6,8-Tetraazatricyclo[4.3.1.13,8]undecane–4-chloro-3,5-dimethylphenol (1/2) top
Crystal data top
C7H14N4·2C8H9ClOF(000) = 992
Mr = 467.42Dx = 1.293 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.5170 (8) ÅCell parameters from 23030 reflections
b = 7.6178 (4) Åθ = 3.3–25.9°
c = 22.1756 (11) ŵ = 0.30 mm1
β = 101.824 (4)°T = 173 K
V = 2400.3 (2) Å3Block, colourless
Z = 40.28 × 0.24 × 0.24 mm
Data collection top
STOE IPDS II two-circle
diffractometer
3584 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.032
ω scansθmax = 25.7°, θmin = 3.3°
Absorption correction: multi-scan
(X-Area; Stoe & Cie, 2001)
h = 1717
Tmin = 0.609, Tmax = 1.000k = 99
23030 measured reflectionsl = 2626
4501 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.6672P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4501 reflectionsΔρmax = 0.28 e Å3
292 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.32321 (11)1.00388 (19)0.72849 (7)0.0303 (3)
N20.48631 (12)0.9345 (2)0.67795 (8)0.0386 (4)
N30.43541 (11)0.75773 (19)0.75911 (7)0.0287 (3)
N40.33805 (11)0.76332 (19)0.65546 (7)0.0291 (3)
C10.37625 (16)1.1541 (3)0.71281 (10)0.0417 (5)
H1A0.39501.22680.75030.050*
H1B0.33311.22590.68210.050*
C20.46513 (17)1.1172 (3)0.68706 (11)0.0488 (5)
H2A0.45851.17840.64700.059*
H2B0.51971.16970.71550.059*
C30.37388 (13)0.8935 (2)0.77837 (8)0.0305 (4)
H3A0.32740.83430.79840.037*
H3B0.41300.97000.80960.037*
C40.41772 (15)0.8403 (3)0.63247 (9)0.0373 (5)
H4A0.45060.74480.61520.045*
H4B0.39220.92190.59840.045*
C50.27736 (14)0.8983 (2)0.67616 (8)0.0310 (4)
H5A0.25330.97780.64120.037*
H5B0.22240.83870.68710.037*
C60.51400 (14)0.8331 (3)0.73454 (9)0.0368 (4)
H6A0.55140.90970.76650.044*
H6B0.55550.73610.72680.044*
C70.37716 (14)0.6537 (2)0.70954 (8)0.0307 (4)
H7A0.32490.59850.72520.037*
H7B0.41590.55880.69700.037*
Cl10.76106 (5)0.00986 (9)0.86534 (3)0.0680 (2)
O10.45719 (10)0.5078 (2)0.85145 (7)0.0395 (3)
H10.461 (2)0.582 (4)0.8252 (13)0.066 (9)*
C110.52937 (13)0.3920 (2)0.85398 (8)0.0299 (4)
C120.60769 (14)0.4285 (3)0.82904 (8)0.0340 (4)
H120.61180.53830.80940.041*
C130.68020 (15)0.3070 (3)0.83229 (9)0.0394 (5)
C140.67140 (15)0.1475 (3)0.86136 (9)0.0391 (5)
C150.59503 (15)0.1077 (2)0.88797 (8)0.0369 (5)
C160.52400 (14)0.2321 (2)0.88326 (8)0.0328 (4)
H160.47060.20730.90040.039*
C170.76413 (18)0.3517 (4)0.80495 (12)0.0633 (7)
H17A0.75700.47080.78790.095*
H17B0.76850.26800.77210.095*
H17C0.82150.34530.83710.095*
C180.58762 (19)0.0650 (3)0.92064 (11)0.0518 (6)
H18A0.53290.06190.94010.078*
H18B0.64480.08350.95220.078*
H18C0.58040.16120.89070.078*
Cl20.31094 (4)0.07547 (7)0.46192 (3)0.05106 (17)
O20.20265 (11)0.53522 (18)0.59453 (7)0.0378 (3)
H20.252 (2)0.606 (4)0.6060 (12)0.057 (7)*
C210.23133 (14)0.3965 (2)0.56384 (8)0.0295 (4)
C220.17280 (14)0.2507 (2)0.55338 (8)0.0297 (4)
H220.11570.25070.56810.036*
C230.19606 (13)0.1043 (2)0.52177 (8)0.0298 (4)
C240.28058 (15)0.1093 (2)0.50121 (8)0.0343 (4)
C250.34103 (15)0.2525 (3)0.51093 (10)0.0406 (5)
C260.31481 (15)0.3973 (3)0.54264 (9)0.0365 (4)
H260.35470.49720.54970.044*
C270.13190 (16)0.0528 (3)0.51162 (9)0.0389 (5)
H27A0.10590.06640.46750.058*
H27B0.08040.03600.53360.058*
H27C0.16760.15830.52720.058*
C280.4326 (2)0.2544 (4)0.48876 (15)0.0711 (8)
H28A0.47590.16820.51210.107*
H28B0.46080.37160.49490.107*
H28C0.42070.22450.44490.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0329 (9)0.0276 (8)0.0293 (8)0.0056 (7)0.0039 (7)0.0013 (6)
N20.0354 (9)0.0409 (9)0.0402 (9)0.0042 (8)0.0095 (8)0.0104 (7)
N30.0250 (8)0.0308 (8)0.0310 (8)0.0028 (6)0.0070 (6)0.0059 (6)
N40.0319 (9)0.0288 (8)0.0276 (7)0.0004 (7)0.0082 (7)0.0025 (6)
C10.0506 (13)0.0288 (10)0.0423 (11)0.0006 (9)0.0015 (10)0.0027 (8)
C20.0509 (14)0.0415 (12)0.0519 (13)0.0107 (10)0.0053 (11)0.0087 (10)
C30.0334 (10)0.0332 (9)0.0246 (8)0.0036 (8)0.0053 (8)0.0007 (7)
C40.0407 (12)0.0431 (11)0.0309 (10)0.0008 (9)0.0138 (9)0.0035 (8)
C50.0296 (10)0.0330 (9)0.0285 (9)0.0039 (8)0.0014 (7)0.0018 (8)
C60.0267 (10)0.0452 (11)0.0386 (10)0.0007 (9)0.0068 (8)0.0098 (9)
C70.0340 (10)0.0249 (8)0.0354 (10)0.0029 (8)0.0118 (8)0.0021 (7)
Cl10.0767 (5)0.0679 (4)0.0573 (4)0.0424 (4)0.0085 (3)0.0006 (3)
O10.0345 (8)0.0433 (8)0.0426 (8)0.0090 (6)0.0122 (6)0.0165 (7)
C110.0282 (10)0.0333 (9)0.0262 (8)0.0007 (8)0.0011 (7)0.0004 (7)
C120.0347 (11)0.0367 (10)0.0299 (9)0.0003 (8)0.0049 (8)0.0060 (8)
C130.0359 (11)0.0503 (12)0.0315 (10)0.0066 (9)0.0056 (9)0.0006 (9)
C140.0438 (12)0.0394 (11)0.0306 (10)0.0132 (9)0.0010 (9)0.0045 (8)
C150.0481 (12)0.0283 (10)0.0275 (9)0.0005 (9)0.0080 (9)0.0018 (7)
C160.0339 (11)0.0343 (10)0.0278 (9)0.0065 (8)0.0004 (8)0.0022 (8)
C170.0464 (15)0.0883 (19)0.0611 (15)0.0167 (14)0.0248 (13)0.0160 (14)
C180.0695 (17)0.0326 (11)0.0457 (12)0.0027 (11)0.0063 (11)0.0054 (9)
Cl20.0568 (4)0.0446 (3)0.0520 (3)0.0121 (3)0.0117 (3)0.0150 (2)
O20.0397 (8)0.0314 (7)0.0422 (8)0.0010 (6)0.0079 (6)0.0103 (6)
C210.0357 (10)0.0258 (9)0.0254 (8)0.0051 (8)0.0021 (8)0.0006 (7)
C220.0297 (10)0.0326 (9)0.0258 (9)0.0019 (8)0.0033 (7)0.0006 (7)
C230.0343 (10)0.0297 (9)0.0225 (8)0.0027 (8)0.0009 (7)0.0019 (7)
C240.0402 (11)0.0313 (10)0.0303 (9)0.0075 (8)0.0048 (8)0.0029 (8)
C250.0386 (12)0.0407 (11)0.0447 (11)0.0030 (9)0.0139 (9)0.0002 (9)
C260.0362 (11)0.0319 (10)0.0418 (11)0.0041 (8)0.0091 (9)0.0004 (8)
C270.0461 (12)0.0317 (10)0.0360 (10)0.0050 (9)0.0017 (9)0.0023 (8)
C280.0551 (17)0.0679 (17)0.102 (2)0.0075 (14)0.0432 (16)0.0208 (16)
Geometric parameters (Å, º) top
N1—C51.456 (2)C12—H120.9500
N1—C11.460 (3)C13—C141.393 (3)
N1—C31.462 (2)C13—C171.507 (3)
N2—C21.448 (3)C14—C151.392 (3)
N2—C41.453 (3)C15—C161.388 (3)
N2—C61.458 (2)C15—C181.516 (3)
N3—C71.473 (2)C16—H160.9500
N3—C61.477 (2)C17—H17A0.9800
N3—C31.485 (2)C17—H17B0.9800
N4—C71.476 (2)C17—H17C0.9800
N4—C41.478 (2)C18—H18A0.9800
N4—C51.487 (2)C18—H18B0.9800
C1—C21.540 (3)C18—H18C0.9800
C1—H1A0.9900Cl2—C241.7585 (19)
C1—H1B0.9900O2—C211.367 (2)
C2—H2A0.9900O2—H20.89 (3)
C2—H2B0.9900C21—C261.387 (3)
C3—H3A0.9900C21—C221.389 (3)
C3—H3B0.9900C22—C231.395 (3)
C4—H4A0.9900C22—H220.9500
C4—H4B0.9900C23—C241.394 (3)
C5—H5A0.9900C23—C271.505 (3)
C5—H5B0.9900C24—C251.389 (3)
C6—H6A0.9900C25—C261.402 (3)
C6—H6B0.9900C25—C281.509 (3)
C7—H7A0.9900C26—H260.9500
C7—H7B0.9900C27—H27A0.9800
Cl1—C141.759 (2)C27—H27B0.9800
O1—C111.362 (2)C27—H27C0.9800
O1—H10.82 (3)C28—H28A0.9800
C11—C161.390 (3)C28—H28B0.9800
C11—C121.390 (3)C28—H28C0.9800
C12—C131.392 (3)
C5—N1—C1114.85 (15)C11—C12—C13121.18 (18)
C5—N1—C3111.23 (14)C11—C12—H12119.4
C1—N1—C3115.00 (16)C13—C12—H12119.4
C2—N2—C4115.88 (18)C12—C13—C14117.61 (18)
C2—N2—C6114.72 (17)C12—C13—C17119.6 (2)
C4—N2—C6111.36 (16)C14—C13—C17122.8 (2)
C7—N3—C6107.59 (14)C15—C14—C13122.87 (18)
C7—N3—C3107.58 (14)C15—C14—Cl1118.40 (16)
C6—N3—C3113.01 (15)C13—C14—Cl1118.73 (16)
C7—N4—C4107.88 (15)C16—C15—C14117.60 (18)
C7—N4—C5107.10 (13)C16—C15—C18120.2 (2)
C4—N4—C5112.79 (15)C14—C15—C18122.2 (2)
N1—C1—C2117.90 (16)C15—C16—C11121.41 (18)
N1—C1—H1A107.8C15—C16—H16119.3
C2—C1—H1A107.8C11—C16—H16119.3
N1—C1—H1B107.8C13—C17—H17A109.5
C2—C1—H1B107.8C13—C17—H17B109.5
H1A—C1—H1B107.2H17A—C17—H17B109.5
N2—C2—C1116.43 (17)C13—C17—H17C109.5
N2—C2—H2A108.2H17A—C17—H17C109.5
C1—C2—H2A108.2H17B—C17—H17C109.5
N2—C2—H2B108.2C15—C18—H18A109.5
C1—C2—H2B108.2C15—C18—H18B109.5
H2A—C2—H2B107.3H18A—C18—H18B109.5
N1—C3—N3114.96 (14)C15—C18—H18C109.5
N1—C3—H3A108.5H18A—C18—H18C109.5
N3—C3—H3A108.5H18B—C18—H18C109.5
N1—C3—H3B108.5C21—O2—H2107.7 (17)
N3—C3—H3B108.5O2—C21—C26122.80 (17)
H3A—C3—H3B107.5O2—C21—C22117.58 (17)
N2—C4—N4115.46 (15)C26—C21—C22119.62 (16)
N2—C4—H4A108.4C21—C22—C23121.36 (17)
N4—C4—H4A108.4C21—C22—H22119.3
N2—C4—H4B108.4C23—C22—H22119.3
N4—C4—H4B108.4C24—C23—C22117.53 (17)
H4A—C4—H4B107.5C24—C23—C27122.14 (17)
N1—C5—N4115.16 (15)C22—C23—C27120.33 (17)
N1—C5—H5A108.5C25—C24—C23122.76 (17)
N4—C5—H5A108.5C25—C24—Cl2119.41 (15)
N1—C5—H5B108.5C23—C24—Cl2117.82 (15)
N4—C5—H5B108.5C24—C25—C26117.89 (18)
H5A—C5—H5B107.5C24—C25—C28121.85 (19)
N2—C6—N3115.20 (16)C26—C25—C28120.3 (2)
N2—C6—H6A108.5C21—C26—C25120.83 (18)
N3—C6—H6A108.5C21—C26—H26119.6
N2—C6—H6B108.5C25—C26—H26119.6
N3—C6—H6B108.5C23—C27—H27A109.5
H6A—C6—H6B107.5C23—C27—H27B109.5
N3—C7—N4111.60 (14)H27A—C27—H27B109.5
N3—C7—H7A109.3C23—C27—H27C109.5
N4—C7—H7A109.3H27A—C27—H27C109.5
N3—C7—H7B109.3H27B—C27—H27C109.5
N4—C7—H7B109.3C25—C28—H28A109.5
H7A—C7—H7B108.0C25—C28—H28B109.5
C11—O1—H1109 (2)H28A—C28—H28B109.5
O1—C11—C16118.06 (17)C25—C28—H28C109.5
O1—C11—C12122.63 (17)H28A—C28—H28C109.5
C16—C11—C12119.31 (18)H28B—C28—H28C109.5
C5—N1—C1—C267.1 (2)C12—C13—C14—C151.4 (3)
C3—N1—C1—C263.9 (2)C17—C13—C14—C15178.4 (2)
C4—N2—C2—C164.0 (2)C12—C13—C14—Cl1179.18 (15)
C6—N2—C2—C168.0 (3)C17—C13—C14—Cl11.0 (3)
N1—C1—C2—N22.7 (3)C13—C14—C15—C161.9 (3)
C5—N1—C3—N348.2 (2)Cl1—C14—C15—C16178.69 (14)
C1—N1—C3—N384.51 (19)C13—C14—C15—C18178.64 (19)
C7—N3—C3—N154.22 (19)Cl1—C14—C15—C180.7 (3)
C6—N3—C3—N164.4 (2)C14—C15—C16—C111.1 (3)
C2—N2—C4—N485.9 (2)C18—C15—C16—C11179.49 (18)
C6—N2—C4—N447.6 (2)O1—C11—C16—C15179.65 (17)
C7—N4—C4—N253.5 (2)C12—C11—C16—C150.2 (3)
C5—N4—C4—N264.6 (2)O2—C21—C22—C23179.19 (16)
C1—N1—C5—N484.1 (2)C26—C21—C22—C230.1 (3)
C3—N1—C5—N448.8 (2)C21—C22—C23—C240.2 (3)
C7—N4—C5—N154.95 (19)C21—C22—C23—C27179.35 (17)
C4—N4—C5—N163.6 (2)C22—C23—C24—C250.1 (3)
C2—N2—C6—N385.9 (2)C27—C23—C24—C25179.16 (19)
C4—N2—C6—N348.2 (2)C22—C23—C24—Cl2179.44 (13)
C7—N3—C6—N254.5 (2)C27—C23—C24—Cl20.4 (2)
C3—N3—C6—N264.1 (2)C23—C24—C25—C260.2 (3)
C6—N3—C7—N460.74 (18)Cl2—C24—C25—C26179.73 (15)
C3—N3—C7—N461.31 (17)C23—C24—C25—C28179.4 (2)
C4—N4—C7—N360.23 (18)Cl2—C24—C25—C280.1 (3)
C5—N4—C7—N361.44 (18)O2—C21—C26—C25179.47 (18)
O1—C11—C12—C13179.85 (18)C22—C21—C26—C250.2 (3)
C16—C11—C12—C130.7 (3)C24—C25—C26—C210.4 (3)
C11—C12—C13—C140.1 (3)C28—C25—C26—C21179.3 (2)
C11—C12—C13—C17179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.82 (3)1.96 (3)2.766 (2)166 (3)
O2—H2···N40.89 (3)1.90 (3)2.760 (2)160 (2)
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 28427). JJR is also grateful to COLCIENCIAS for his doctoral scholarship

References

First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHernández, M. C. (2007). M. Sc. Thesis, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá D. C., Colombia.  Google Scholar
First citationJin, S., Liu, H., Gao, X. J., Lin, Z., Chen, G. & Wang, D. (2014). J. Mol. Struct. 1075, 124–138.  CSD CrossRef CAS Google Scholar
First citationMajerz, I., Kwiatkowska, E. & Koll, A. (2007). J. Mol. Struct. 831, 106–113.  CrossRef CAS Google Scholar
First citationRiddell, F. G. & Murray-Rust, P. (1970). J. Chem. Soc. D, Chem. Commun. pp. 1074–1075.  Google Scholar
First citationRivera, A., González-Salas, D., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 837, 142–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Osorio, H. J., Uribe, J. M., Ríos-Motta, J. & Bolte, M. (2015). Acta Cryst. E71, 1356–1360.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Sadat-Bernal, J., Ríos-Motta, J., Dušek, M. & Fejfarová, K. (2011). J. Chem. Crystallogr. 41, 591–595.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds