research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal and geometry-optimized structure, and Hirshfeld surface analysis of 1-(2-bromo­eth­yl)indoline-2,3-dione

CROSSMARK_Color_square_no_text.svg

aPostgraduate and Research Department of Physics, National College (Autonomous), Tiruchirappalli 620 001, Tamilnadu, India, bSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, and cLaboratorio de Políimeros, Centro de Química Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, C.P. 72570 Puebla, Puebla, Mexico
*Correspondence e-mail: sunvag@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 September 2016; accepted 6 October 2016; online 11 October 2016)

In the title compound, C10H8BrNO2, the isatin (1H-indole-2,3-dione) moiety is nearly planar (r.m.s. deviation = 0.026 Å). In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming layers parallel to the ab plane, and enclosing R44(24) loops. There are a low percentage (19.3%) of inter­molecular H⋯H contacts in the structure, as estimated by the analysis of Hirshfeld surfaces. This could be due to the presence of the Br atom, present in the bromo­ethyl­ene group, which makes ca 18.7% Br⋯H contacts.

1. Chemical context

Isatin (1H-indole-2,3-dione) is an endogenous compound that has been identified in humans and possesses a wide range of biological activities, such as anxiogenic and sedative activities. It serves as a synthetically useful substrate which can be used to prepare a broad range of heterocyclic compounds, including mol­ecules of pharmacological significance (Bekircan & Bektas, 2008[Bekircan, O. & Bektas, H. (2008). Molecules, 13, 2126-2135.]). A variety of biological activities are associated with isatin, including central nervous system (CNS) activities (Raj, 2012[Raj, V. (2012). Int. J. Curr. Pharm. Res. 4, 1-9.]). As part of our inter­est in the identification of bioactive compounds, we report herein on the synthesis, the crystal structure, and the geometry optimization and Hirshfeld surface analysis of the title isatin derivative, (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title isatin derivative, (I)[link], is illustrated in Fig. 1[link]. It crystallized in the ortho­rhom­bic space group P212121 with an absolute structure parameter of 0.015 (8). The bond lengths and angles of the isatin moiety are comparable with those reported for similar N-substituted isatin derivatives (Qachchachi et al., 2016a[Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, H., Essassi, E. M., Capet, F. & Zouihri, H. (2016a). IUCrData, 1, x160593.],b[Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, H., Essassi, E. M., Capet, F. & Zouihri, H. (2016b). IUCrData, 1, x160609.]).

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

In compound (I)[link], the isatin ring system is almost planar, with an r.m.s. deviation of the fitted atoms C1–C8/N1/O1/O2 of 0.026 Å. The sum of the bond angles around atom N1 is ca 360°, indicating little evidence for the presence of an sp3 lone pair.

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by C—H⋯O hydrogen bonds, viz C2—H2⋯O1 and C10—H10A⋯O2 (Table 1[link]), which individually form C(6) and C(7) chains, respectively. Together they form layers parallel to the ab plane and enclose [R_{4}^{4}](24) loops (Table 1[link] and Fig. 2[link]). An analysis of the crystal packing of (I)[link] indicated that no further significant inter­molecular inter­actions were present (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.41 3.286 (6) 156
C10—H10A⋯O2ii 0.97 2.42 3.309 (6) 151
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the c axis of the crystal packing of compound (I)[link]. The hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only H atoms H2 and H10A have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for N-substituted isatin derivatives yielded 58 hits. These include five reports of the structure of isatin itself and four reports of the structure of N-methyl­isatin. 13 of the structures involve an alkyl chain of two or more C atoms. The compound most similar to the title compound is 1-(3-bromo­prop­yl)-1H-indole-2,3-dione (AKO­BIN), whose structure was published very recently (Qachchachi et al., 2016a[Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, H., Essassi, E. M., Capet, F. & Zouihri, H. (2016a). IUCrData, 1, x160593.]). A view of the structural overlap of this compound with that of compound (I)[link] is shown in Fig. 3[link].

[Figure 3]
Figure 3
The structural fit of compound (I)[link] and 1-(3-bromo­prop­yl)-1H-indole-2,3-dione (AKOBIN; Qachchachi et al., 2016a[Qachchachi, F. Z., Kandri Rodi, Y., Haoudi, H., Essassi, E. M., Capet, F. & Zouihri, H. (2016a). IUCrData, 1, x160593.]); mol­ecules are shown in blue and red, respectively.

5. Geometry optimization

The geometry optimization of compound (I)[link] was performed using the density functional theory (DFT) method with a 6-311++G** basis set. The crystal structure in the solid state was used as the starting structure for the calculations. The DFT calculations are performed with the GAUSSIAN09 program package (Frisch et al., 2013[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2013). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.]). The resulting geometrical parameters are compared with those obtained from an X-ray crystallography study. A superimposed analysis of (I)[link] with its optimized structure gives an r.m.s. deviation of 0.068 Å (Fig. 4[link]). This indicates a twist leading to further separation between the isatin moiety and the benzene ring. Also, this suggests that the crystal packing could be influenced by the collective effect of the inter­molecular inter­actions. To probe further, structure-based theoretical parameters, viz. HOMO and LUMO energy levels, total energy and dipole moment, were calculated and found to be −6.860 eV, −3.091 eV, −86134.81 eV and 7.2176 Debye, respectively. As a further structure-based test, semi-empirical mol­ecular orbital calculations are carried out using the PM7 method in MOPAC2012 (Stewart, 2012[Stewart, J. J. P. (2012). MOPAC2012. https://OpenMOPAC.net.]; Maia et al., 2012[Maia, J. D. C., Carvalho, G. A. U., Mangueira, C. P. Jr, Santana, S. R., Cabral, L. A. F. & Rocha, G. B. (2012). J. Chem. Theory Comput. 8, 3072-3081.]). The PM7 method gave the HOMO and LUMO energy levels, total energy and dipole moment as −9.276 eV, −1.271 eV, −2334.96 eV and 5.8952 Debye, respectively. Also, the superimposed analysis of the X-ray structure with the isolated mol­ecule in the gas phase by the PM7 method gave an r.m.s. deviation of 0.211 Å. Further, the N1—C8 and N1—C1 (X-ray: 1.367 Å; DFT: 1.392 Å; PM7: 1.424 Å) bond lengths increased, while the bond angles O2—C7—C6 (X-ray: 131.3°; DFT: 130.8°; PM7: 131.2°) and O1—C8—N1 (X-ray: 127.4°; DFT: 126.8°; PM7: 123.8°) decreased. These confirm the influence of the packing inter­actions in the solid state of the mol­ecule. The relative conformation about the bond joining the isatin and bromo­ethyl­ene moieties of (I)[link] is defined by the N1—C9—C10—Br1 torsion angle of 62.0 (5)°. This indicates that the conformation of the mol­ecule is (+)-synclinal.

[Figure 4]
Figure 4
Superimposed fit of the mol­ecule of compound (I)[link] in the crystalline state (red) and after energy minimization (blue).

6. Hirshfeld surface analysis

A detailed Hirshfeld surface analysis is useful for identifing the various inter­molecular inter­actions and inter­molecular contacts present in crystal structures, with the aid of decomposed two-dimensional fingerprint plots. The Hirshfeld surface (HS) and the two-dimensional fingerprint plots were generated based on the di and de distances using Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]); di is the distance from the nearest atom inside the surface, while de is the distance from the HS to the nearest atom outside the surface. This analysis identified the various inter­molecular contacts (O—H, H—H, C—H, C—C and H—Br) and their relative contributions in the crystal structure. The bond lengths (C—H = 1.083 Å, N—H = 1.009 Å and O—H = 0.983 Å) were adjusted to typical neutron diffraction values before the HS calculation (Venkatesan et al., 2015[Venkatesan, P., Thamotharan, S., Kumara, R. G. & Ilangovan, A. (2015). CrystEngComm, 17, 904-915.], 2016a[Venkatesan, P., Rajakannan, V., Venkataramanan, N. S., Ilangovan, A., Sundius, T. & Thamotharan, S. (2016a). J. Mol. Struct. 1119, 259-268.],b[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016b). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). In Hirshfeld surface diagrams, the contacts with distances shorter than the sum of the van der Waals radii are indicated as red and the contacts with distances longer than the van der Waals radii are represented as blue, whereas the contacts with distances equal to the sum of the van der Waals radii are indicated as white. The HS area of compound (I)[link] is shown in Fig. 5[link], and the respective points of inter­molecular inter­actions are labelled.

[Figure 5]
Figure 5
Views of the Hirshfeld surfaces mapped with dnorm in two different orientations for compound (I)[link]. The represented inter­actions are labelled (see Table 1[link]).

Two-dimensional fingerprint plots are used to qu­antify and visualize the inter­molecular inter­actions present in the crystal structure and the same for the title compound is shown in Fig. 6[link]. The result suggests that the share of inter­molecular H⋯H contacts in (I)[link] is about 19.3%. The low percentage could be attributed to the presence of the Br atom in the bromo­ethyl­ene group, which makes ca 18.7% contacts with H atoms (Br⋯H). The next significant inter­molecular contacts observed in the structure, i.e. O⋯H, C⋯H and C⋯C, have relative contributions of 30.6, 18.8 and 3.1%, respectively.

[Figure 6]
Figure 6
Decomposed two-dimensional fingerprint plots for compound (I)[link]. Various close contacts and their relative contributions are indicated.

7. Synthesis and crystallization

To a solution of 1-{2-[(2-bromo­eth­yl)amino]­phen­yl}ethanone (1 equivalent) in DMSO were added I2 (0.1 equivalents) and TBHP (1 equivalent, 70% in H2O) at ambient temperature, and the mixture was heated to 353 K. The progress of the reaction was monitored by thin-layer chromatography. Upon completion, the reaction mixture was allowed to cool to ambient temperature and was quenched with aqueous sodium thio­sulfate and ethyl acetate. The organic phase was separated, dried over Na2SO4, filtered and concentrated. The crude product was purified by silica-gel column chromatography using hexa­ne–ethyl acetate (9:1 v/v) as eluent. The title compound was obtained as a red solid (yield: 71%, 74.5 mg; m.p. 404–406 K). It was dissolved in a mixture of hexa­ne–ethyl acetate (9:1 v/v) and left to slowly evaporate at room temperature, yielding brown block-like crystals after a period of 3 d.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C10H8BrNO2
Mr 254.08
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 4.6834 (2), 12.9567 (7), 16.1130 (8)
V3) 977.76 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.18
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.419, 0.498
No. of measured, independent and observed [I > 2σ(I)] reflections 8226, 3150, 1663
Rint 0.037
(sin θ/λ)max−1) 0.762
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.084, 1.02
No. of reflections 3150
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.70, −0.59
Absolute structure Flack x determined using 503 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.015 (8)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), QMOL (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: QMOL (Gans & Shalloway, 2001) and Mercury (Macrae et al., 2008).; software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

1-(2-Bromoethyl)indoline-2,3-dione top
Crystal data top
C10H8BrNO2Dx = 1.726 Mg m3
Mr = 254.08Melting point: 406 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 4.6834 (2) ÅCell parameters from 2844 reflections
b = 12.9567 (7) Åθ = 2.5–26.7°
c = 16.1130 (8) ŵ = 4.18 mm1
V = 977.76 (8) Å3T = 293 K
Z = 4Block, brown
F(000) = 5040.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1663 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
ω and φ scanθmax = 32.8°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 76
Tmin = 0.419, Tmax = 0.498k = 1917
8226 measured reflectionsl = 2218
3150 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0167P)2 + 0.3638P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3150 reflectionsΔρmax = 0.70 e Å3
127 parametersΔρmin = 0.59 e Å3
0 restraintsAbsolute structure: Flack x determined using 503 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.83217 (12)0.83821 (4)0.06227 (4)0.0609 (2)
O10.4527 (9)0.7005 (3)0.2349 (3)0.0719 (13)
O20.8447 (9)0.6409 (2)0.3684 (2)0.0688 (10)
N10.6516 (8)0.8607 (2)0.2584 (2)0.0378 (8)
C10.8490 (10)0.9005 (3)0.3156 (3)0.0326 (9)
C20.9288 (9)1.0020 (3)0.3268 (3)0.0429 (12)
H20.85201.05480.29470.051*
C31.1289 (12)1.0218 (4)0.3883 (3)0.0538 (14)
H31.18961.08940.39660.065*
C41.2414 (10)0.9446 (4)0.4377 (4)0.0572 (14)
H41.37550.96060.47830.069*
C51.1551 (10)0.8445 (4)0.4267 (3)0.0503 (11)
H51.22760.79200.45990.060*
C60.9592 (9)0.8233 (4)0.3656 (3)0.0362 (11)
C70.8222 (12)0.7276 (3)0.3414 (3)0.0447 (12)
C80.6167 (11)0.7569 (4)0.2703 (3)0.0458 (13)
C90.4985 (10)0.9198 (4)0.1964 (3)0.0464 (12)
H9A0.41790.98050.22270.056*
H9B0.34120.87840.17570.056*
C100.6765 (12)0.9533 (3)0.1248 (3)0.0499 (12)
H10A0.83250.99560.14510.060*
H10B0.56120.99550.08810.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0714 (3)0.0570 (3)0.0543 (3)0.0008 (3)0.0059 (3)0.0069 (3)
O10.090 (3)0.055 (2)0.071 (3)0.036 (2)0.003 (2)0.012 (2)
O20.102 (3)0.0323 (18)0.072 (3)0.005 (2)0.013 (3)0.0138 (17)
N10.042 (2)0.035 (2)0.036 (2)0.0055 (19)0.001 (2)0.0022 (16)
C10.038 (2)0.032 (2)0.028 (2)0.001 (2)0.007 (2)0.0028 (18)
C20.057 (3)0.029 (2)0.043 (3)0.001 (2)0.006 (2)0.000 (2)
C30.069 (4)0.045 (3)0.047 (3)0.016 (3)0.011 (3)0.015 (3)
C40.060 (3)0.078 (4)0.034 (3)0.011 (2)0.003 (3)0.007 (3)
C50.053 (2)0.063 (3)0.036 (3)0.006 (3)0.004 (3)0.008 (3)
C60.045 (2)0.038 (3)0.026 (3)0.002 (2)0.006 (2)0.001 (2)
C70.060 (3)0.032 (2)0.043 (3)0.003 (3)0.017 (3)0.002 (2)
C80.058 (3)0.038 (3)0.041 (3)0.011 (3)0.010 (3)0.005 (2)
C90.041 (3)0.053 (3)0.045 (3)0.004 (2)0.004 (3)0.000 (3)
C100.061 (3)0.040 (2)0.048 (3)0.005 (3)0.005 (3)0.005 (2)
Geometric parameters (Å, º) top
Br1—C101.942 (5)C4—C51.370 (7)
O1—C81.204 (6)C4—H40.9300
O2—C71.210 (5)C5—C61.373 (6)
N1—C81.367 (5)C5—H50.9300
N1—C11.404 (6)C6—C71.449 (6)
N1—C91.449 (6)C7—C81.544 (7)
C1—C21.380 (6)C9—C101.488 (7)
C1—C61.384 (6)C9—H9A0.9700
C2—C31.388 (7)C9—H9B0.9700
C2—H20.9300C10—H10A0.9700
C3—C41.382 (7)C10—H10B0.9700
C3—H30.9300
C8—N1—C1110.4 (4)C1—C6—C7107.2 (4)
C8—N1—C9123.9 (4)O2—C7—C6131.3 (5)
C1—N1—C9125.7 (4)O2—C7—C8123.3 (5)
C2—C1—C6120.7 (4)C6—C7—C8105.4 (4)
C2—C1—N1128.0 (4)O1—C8—N1127.4 (5)
C6—C1—N1111.2 (4)O1—C8—C7126.9 (5)
C1—C2—C3116.9 (4)N1—C8—C7105.7 (4)
C1—C2—H2121.5N1—C9—C10114.3 (4)
C3—C2—H2121.5N1—C9—H9A108.7
C4—C3—C2122.3 (5)C10—C9—H9A108.7
C4—C3—H3118.8N1—C9—H9B108.7
C2—C3—H3118.8C10—C9—H9B108.7
C5—C4—C3119.9 (5)H9A—C9—H9B107.6
C5—C4—H4120.1C9—C10—Br1112.9 (3)
C3—C4—H4120.1C9—C10—H10A109.0
C4—C5—C6118.6 (5)Br1—C10—H10A109.0
C4—C5—H5120.7C9—C10—H10B109.0
C6—C5—H5120.7Br1—C10—H10B109.0
C5—C6—C1121.5 (4)H10A—C10—H10B107.8
C5—C6—C7131.3 (5)
C8—N1—C1—C2175.9 (5)C5—C6—C7—O20.3 (9)
C9—N1—C1—C22.7 (7)C1—C6—C7—O2178.2 (6)
C8—N1—C1—C62.1 (5)C5—C6—C7—C8178.1 (5)
C9—N1—C1—C6179.4 (4)C1—C6—C7—C80.2 (5)
C6—C1—C2—C31.9 (7)C1—N1—C8—O1175.8 (5)
N1—C1—C2—C3179.7 (4)C9—N1—C8—O12.8 (8)
C1—C2—C3—C41.2 (7)C1—N1—C8—C71.8 (5)
C2—C3—C4—C50.1 (8)C9—N1—C8—C7179.6 (4)
C3—C4—C5—C60.7 (8)O2—C7—C8—O12.0 (8)
C4—C5—C6—C10.0 (7)C6—C7—C8—O1176.6 (5)
C4—C5—C6—C7177.6 (5)O2—C7—C8—N1179.6 (5)
C2—C1—C6—C51.4 (7)C6—C7—C8—N11.0 (5)
N1—C1—C6—C5179.5 (4)C8—N1—C9—C10107.9 (5)
C2—C1—C6—C7176.8 (4)C1—N1—C9—C1073.7 (6)
N1—C1—C6—C71.3 (5)N1—C9—C10—Br162.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.413.286 (6)156
C10—H10A···O2ii0.972.423.309 (6)151
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

NS thanks the Sophisticated Analytical Instrumentation Facility (SAIF), Indian Institute of Technology Madras, India, for help with the data collection and Professor A. Ilangovan, School of Chemistry, Bharathidasan University, India, for fruitful discussions.

References

First citationBekircan, O. & Bektas, H. (2008). Molecules, 13, 2126–2135.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2013). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaia, J. D. C., Carvalho, G. A. U., Mangueira, C. P. Jr, Santana, S. R., Cabral, L. A. F. & Rocha, G. B. (2012). J. Chem. Theory Comput. 8, 3072–3081.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQachchachi, F. Z., Kandri Rodi, Y., Haoudi, H., Essassi, E. M., Capet, F. & Zouihri, H. (2016a). IUCrData, 1, x160593.  Google Scholar
First citationQachchachi, F. Z., Kandri Rodi, Y., Haoudi, H., Essassi, E. M., Capet, F. & Zouihri, H. (2016b). IUCrData, 1, x160609.  Google Scholar
First citationRaj, V. (2012). Int. J. Curr. Pharm. Res. 4, 1–9.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. J. P. (2012). MOPAC2012. https://OpenMOPAC.net.  Google Scholar
First citationVenkatesan, P., Rajakannan, V., Venkataramanan, N. S., Ilangovan, A., Sundius, T. & Thamotharan, S. (2016a). J. Mol. Struct. 1119, 259–268.  Web of Science CSD CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016b). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVenkatesan, P., Thamotharan, S., Kumara, R. G. & Ilangovan, A. (2015). CrystEngComm, 17, 904–915.  Web of Science CSD CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds