research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-carb­­oxy-2-(3,4-di­hy­droxy­phen­yl)ethan-1-aminium bromide 2-ammonio-3-(3,4-di­hy­droxy­phen­yl)propano­ate

CROSSMARK_Color_square_no_text.svg

aCrystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR Government College (Autonomous), Tiruchirappalli 620 023, India, bLaboratorio de Polímeros, Centro de Química Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, C.P. 72570 Puebla, Puebla, Mexico, cCrystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, India, and dBiomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India
*Correspondence e-mail: balacrystalgrowth@gmail.com, thamu@scbt.sastra.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 19 September 2016; accepted 2 October 2016; online 7 October 2016)

In the title mol­ecular salt, C9H12NO4+·Br·C9H11NO4, one of the dopa mol­ecules is in the cationic form in which the α-amino group is protonated and the α-carb­oxy­lic acid group is uncharged, while the second dopa mol­ecule is in the zwitterion form. The Br anion occupies a special position and is located on a twofold rotation axis. The two dopa mol­ecules are inter­connected by short O—H⋯O hydrogen bonds. In the crystal, the various units are linked by O—H⋯O, N—H⋯Br and N—H⋯O hydrogen bonds, forming a three-dimensional framework. The title compound was refined as an inversion twin with an absolute structure parameter of 0.023 (8).

1. Chemical context

An aromatic amino acid enzyme hy­droxy­lase converts L-tyrosine into L-dopa (L-3,4-di­hydroxy­phenyl­alanine). After conversion, L-dopa acts as a precursor for the neurotransmitters dopamine, norepinephrine and epinephrine. The L-dopa mol­ecule is also effectively used in the symptomatic treatment of Parkinson's disease (Chan et al., 2012[Chan, S. W., Dunlop, R. A., Rowe, A., Double, K. L. & Rodgers, K. J. (2012). Exp. Neurol. 238, 29-37.]). In view of this inter­est, we have crystallized the title salt and report herein on its crystal structure. The hydrogen-bonding pattern and the relative contributions of various inter­molecular inter­actions present are compared with the closely related chloride counterpart reported on earlier (Jandacek & Earle, 1971[Jandacek, R. J. & Earle, K. M. (1971). Acta Cryst. B27, 841-845.]; Mostad & Rømming, 1974[Mostad, A. & Rømming, C. (1974). Acta Chem. Scand. Ser. B, 28, 1161-1168.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title salt, Fig. 1[link], is composed of a Br anion located on a twofold rotation axis, a dopa mol­ecule in the zwitterionic form and a cationic dopa mol­ecule. In the latter, the α-amino group is protonated and carries a positive charge and the hydrogen atom (H4O) of the α-carb­oxy­lic acid group is located on a general position and was refined with 50% occupancy.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, showing the atom labelling [symmetry code: (#) −x + 3, y, −z + 1]. Displacement ellipsoids are drawn at the 50% probability level.

The crystal structures of L-dopa (Mostad et al., 1971[Mostad, A., Otternsen, T. & Rømming, C. (1971). Acta Chem. Scand. 25, 3549-3560.]) and its hydro­chloride form (Jandacek & Earle, 1971[Jandacek, R. J. & Earle, K. M. (1971). Acta Cryst. B27, 841-845.]; Mostad & Rømming, 1974[Mostad, A. & Rømming, C. (1974). Acta Chem. Scand. Ser. B, 28, 1161-1168.]) have been reported. Both of these compounds crystallized in the monoclinic space group P21. In the crystal structure of L-dopa HCl, the α-amino group is protonated and the α-carb­oxy­lic acid is neutral. The stoichiometry between the cation and the Cl anion is 1:1. The authors of these structures concluded that L-dopa exists as the S enanti­omer, based on the R factor and the effects of anomalous scattering. However, the deposited coordinates for these structures belong to the R configuration. Therefore, the L-dopa HCl structure was inverted and used for superposition with one of the dopa mol­ecules of the title compound. These structures superimpose well, with an r.m.s. deviation of 0.045 Å (Fig. 2[link]).

[Figure 2]
Figure 2
Superposition of the cationic dopa mol­ecule in the title compound (red) and in L-dopa·HCl (blue).

3. Supra­molecular features

The structure of the title compound features a network of inter­molecular N—H⋯Br, N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]), forming a three-dimensional framework. The cationic dopa mol­ecules form dimers in which the carb­oxy­lic acid groups (O4) of the dopa mol­ecules are inter­connected via a short O—H⋯O hydrogen bond and the dimers are arranged as ribbons propagating along the b axis (Fig. 3[link]). The protonated amino group forms three hydrogen bonds; two of them with the Br anions and one with the carbonyl oxygen atom, O3, of the carb­oxy­lic acid group. The dopa mol­ecules aggregate in a head-to-tail sequence of the type ⋯NH3+—CHR—COO⋯NH3+—CHR—COO⋯, in which the α-amino atom, N1, and the α-carboxyl­ate atom O3 form a hydrogen-bonded peptide-like arrangement (layers), as observed in many amino acid–carb­oxy­lic acid complexes (Sharma et al., 2006[Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148-o152.]; Selvaraj et al., 2007[Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459-468.]). Adjacent layers are inter­connected by short O—H⋯O hydrogen bonds. These two inter­actions combine to form an R44(18) ring motif (Fig. 4[link]). Similar inter­actions are observed in dopa and its HCl form (Mostad et al., 1971[Mostad, A., Otternsen, T. & Rømming, C. (1971). Acta Chem. Scand. 25, 3549-3560.]; Jandacek & Earle, 1971[Jandacek, R. J. & Earle, K. M. (1971). Acta Cryst. B27, 841-845.]; Mostad & Rømming, 1974[Mostad, A. & Rømming, C. (1974). Acta Chem. Scand. Ser. B, 28, 1161-1168.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3i 0.82 1.98 2.782 (2) 166
O2—H2O⋯O1ii 0.82 2.32 3.004 (2) 142
O2—H2O⋯O2ii 0.82 2.26 2.9557 (8) 144
O4—H4O⋯O4iii 0.85 (4) 1.61 (4) 2.449 (2) 169 (6)
N1—H1A⋯Br1iv 0.95 (3) 2.41 (3) 3.359 (3) 179 (3)
N1—H1B⋯Br1 0.91 (3) 2.41 (3) 3.295 (3) 164 (2)
N1—H1C⋯O3v 0.89 (3) 1.95 (3) 2.821 (2) 164 (3)
Symmetry codes: (i) x-1, y+1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+3, y, -z+1; (iv) x, y+1, z; (v) x-1, y, z.
[Figure 3]
Figure 3
The crystal packing of the title mol­ecular salt, viewed along the b axis. H atoms have been omitted for clarity.
[Figure 4]
Figure 4
Part of the crystal structure of the title mol­ecular salt, showing the R44(18) ring motifs formed by N—H⋯O and O—H⋯O hydrogen bonds.

The amino group (via H1A and H1B) of the cationic dopa mol­ecule participates in inter­molecular N—H⋯Br inter­actions with two different Br anions (Table 1[link]). These inter­actions inter­connect the cations and anions into a cyclic motif that can be described as an R24(8) ring and it runs parallel to the b axis (Fig. 5[link]). This pattern is also observed in the crystal structure of L-dopa·HCl, where two inter­molecular N—H⋯Cl hydrogen bonds link the cations and anions into a chain. There, adjacent chains are inter­connected through O—H⋯Cl hydrogen bonds (carb­oxy­lic acid⋯Cl).

[Figure 5]
Figure 5
Part of the crystal structure of the title mol­ecular salt, showing the R24(8) ring motifs formed by N—H⋯Br hydrogen bonds.

One of the hy­droxy groups (O1—H1O) is involved in an inter­molecular O—H⋯O hydrogen bond with the carbonyl oxygen (O3) of the dopa mol­ecule. This inter­action links the dopa mol­ecules into a C(9) chain. The other hy­droxy (O2—H2O) group participates in bifurcated hydrogen bonds with two different hy­droxy O atoms (O1 and O2) of adjacent dopa layers. The side chain of the dopa mol­ecules in one layer is inter­connected by the side chain of the dopa mol­ecules in the adjacent layer through these inter­actions (Fig. 6[link]). These inter­actions are also observed in the dopa hydro­chloride structure.

[Figure 6]
Figure 6
The side chain⋯side chain inter­actions of the dopa mol­ecules in the title mol­ecular salt, through inter­molecular O—H⋯O hydrogen bonds.

4. Hirshfeld surface analysis

The Hirshfeld surfaces (HS) mapped with dnorm and 2D fingerprint plots were generated using the program CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]). The two different orientations of the HS diagram for complete dopa mol­ecules along with Br anion are shown in Fig. 7[link]. The two-dimensional fingerprint plots are illustrated in Fig. 8[link]. The HS analysis suggests that the inter­molecular O⋯H contacts contribute most (41.4%) to the crystal packing compared to other contacts. For example, the relative contributions of H⋯H, C⋯H and H⋯Br contacts are 29, 18.6 and 6.1%, respectively, with regard to the complete unit of the dopa mol­ecule. Concerning the Br anion, the relative contributions of H⋯Br and O⋯Br contacts are 64.1 and 10.2%, respectively.

[Figure 7]
Figure 7
Two different views of the Hirshfeld surfaces of the dimeric dopa mol­ecules along with a Br anion.
[Figure 8]
Figure 8
Two-dimensional fingerprint plots: (a) complete unit of dopa and (b) anionic Br in the title salt, and (c) cationic dopa and (d) anionic Cl in L-dopa hydro­chloride. The various types of contacts are indicated.

In the dopa HCl structure, the relative contributions of O⋯H, H⋯H, C⋯H and H⋯Cl contacts are 40.5, 25.2, 17.1 and 14.1%, respectively, with respect to the cationic dopa mol­ecule. It is of inter­est to note that O⋯H and H⋯H contacts are reduced by 1.1 and 3.8%, respectively, when compared to the title salt. Concerning the Cl anion, the relative contribution of H⋯Cl contacts is 90.4%. This is approximately 26% higher compared to the relative contributions of H⋯Br contacts in the title salt.

5. Synthesis and crystallization

L-dopa and HBr (1:1 molar ratio) were dissolved in double-distilled water and stirred well for 4 h. The homogeneous solution was filtered and the filtrate allowed to evaporate slowly. Colourless block-like crystals were harvested after a growth period of two weeks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The amino and carb­oxy­lic acid H atoms were located in a difference Fourier map and freely refined. The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å, O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O). The title compound was refined as an inversion twin; absolute structure parameter = 0.023 (8).

Table 2
Experimental details

Crystal data
Chemical formula C9H12NO4+·Br·C9H11NO4
Mr 475.29
Crystal system, space group Monoclinic, I2
Temperature (K) 293
a, b, c (Å) 6.1456 (3), 5.6385 (2), 28.2561 (10)
β (°) 94.147 (2)
V3) 976.57 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.16
Crystal size (mm) 0.30 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.562, 0.619
No. of measured, independent and observed [I > 2σ(I)] reflections 8138, 2827, 2421
Rint 0.024
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.056, 0.97
No. of reflections 2827
No. of parameters 151
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.31
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.023 (8)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

1-Carboxy-2-(3,4-dihydroxyphenyl)ethan-1-aminium bromide 2-ammonio-3-(3,4-dihydroxyphenyl)propanoate top
Crystal data top
C9H12NO4+·Br·C9H11NO4F(000) = 488
Mr = 475.29Dx = 1.616 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 6.1456 (3) ÅCell parameters from 4553 reflections
b = 5.6385 (2) Åθ = 2.4–32.1°
c = 28.2561 (10) ŵ = 2.16 mm1
β = 94.147 (2)°T = 293 K
V = 976.57 (7) Å3Block, colourless
Z = 20.30 × 0.25 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2421 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
ω and φ scanθmax = 36.3°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.562, Tmax = 0.619k = 79
8138 measured reflectionsl = 3737
2827 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0178P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2827 reflectionsΔρmax = 0.37 e Å3
151 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.023 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4002 (2)1.2639 (3)0.32975 (6)0.0314 (3)
H1O0.44441.34900.35190.047*
O20.3013 (2)0.9618 (3)0.26190 (5)0.0296 (3)
H2O0.27810.85200.24320.044*
O31.4783 (2)0.5473 (3)0.40977 (5)0.0317 (4)
O41.3241 (2)0.6326 (4)0.47670 (4)0.0279 (3)
H4O1.446 (6)0.614 (10)0.4922 (15)0.021 (11)*0.5
N10.9218 (2)0.6239 (5)0.43861 (5)0.0198 (3)
H1A0.943 (4)0.765 (6)0.4564 (11)0.033 (8)*
H1B0.927 (4)0.503 (5)0.4600 (9)0.020 (6)*
H1C0.788 (4)0.613 (7)0.4245 (8)0.042 (6)*
C10.8776 (3)0.8691 (4)0.34526 (6)0.0209 (4)
C20.7366 (3)1.0550 (4)0.35295 (7)0.0227 (4)
H20.77131.16160.37750.027*
C30.5451 (3)1.0840 (3)0.32468 (6)0.0198 (4)
C40.4911 (3)0.9215 (4)0.28859 (6)0.0205 (4)
C50.6293 (3)0.7354 (4)0.28093 (7)0.0248 (4)
H50.59350.62700.25680.030*
C60.8220 (3)0.7097 (4)0.30924 (7)0.0245 (4)
H60.91480.58380.30390.029*
C71.0906 (3)0.8400 (4)0.37490 (7)0.0230 (4)
H7A1.11310.97710.39540.028*
H7B1.20910.83490.35400.028*
C81.0982 (2)0.6168 (5)0.40531 (6)0.0183 (3)
H81.07530.47860.38450.022*
C91.3203 (3)0.5942 (4)0.43256 (6)0.0195 (4)
Br11.00000.13069 (5)0.50000.05492 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0287 (8)0.0279 (8)0.0363 (9)0.0055 (7)0.0067 (7)0.0073 (7)
O20.0219 (7)0.0347 (9)0.0306 (8)0.0001 (6)0.0101 (6)0.0027 (7)
O30.0150 (6)0.0536 (11)0.0260 (7)0.0049 (6)0.0012 (5)0.0099 (7)
O40.0154 (6)0.0493 (8)0.0180 (6)0.0013 (9)0.0051 (5)0.0025 (10)
N10.0134 (7)0.0274 (7)0.0183 (7)0.0010 (9)0.0006 (5)0.0023 (10)
C10.0184 (9)0.0280 (10)0.0159 (9)0.0020 (8)0.0010 (7)0.0059 (7)
C20.0241 (10)0.0240 (9)0.0193 (9)0.0038 (8)0.0029 (7)0.0005 (7)
C30.0199 (9)0.0199 (13)0.0195 (8)0.0005 (7)0.0011 (7)0.0028 (7)
C40.0172 (9)0.0260 (10)0.0180 (9)0.0024 (8)0.0017 (7)0.0046 (8)
C50.0265 (10)0.0280 (10)0.0193 (9)0.0016 (9)0.0018 (8)0.0040 (8)
C60.0217 (10)0.0292 (10)0.0225 (10)0.0054 (8)0.0001 (8)0.0005 (8)
C70.0169 (9)0.0307 (11)0.0207 (9)0.0045 (8)0.0035 (7)0.0072 (8)
C80.0128 (7)0.0256 (9)0.0163 (7)0.0001 (9)0.0011 (6)0.0009 (10)
C90.0149 (8)0.0232 (13)0.0197 (8)0.0002 (8)0.0032 (6)0.0022 (8)
Br10.1055 (3)0.01895 (14)0.03896 (18)0.0000.00415 (18)0.000
Geometric parameters (Å, º) top
O1—C31.364 (2)C1—C71.511 (3)
O1—H1O0.8200C2—C31.384 (3)
O2—C41.362 (2)C2—H20.9300
O2—H2O0.8200C3—C41.393 (3)
O3—C91.232 (2)C4—C51.377 (3)
O4—C91.265 (2)C5—C61.388 (3)
O4—H4O0.85 (4)C5—H50.9300
N1—C81.486 (2)C6—H60.9300
N1—H1A0.95 (3)C7—C81.523 (3)
N1—H1B0.91 (3)C7—H7A0.9700
N1—H1C0.89 (3)C7—H7B0.9700
C1—C61.382 (3)C8—C91.523 (2)
C1—C21.387 (3)C8—H80.9800
C3—O1—H1O109.5C4—C5—C6119.94 (19)
C4—O2—H2O109.5C4—C5—H5120.0
C9—O4—H4O116 (3)C6—C5—H5120.0
C8—N1—H1A106.1 (17)C1—C6—C5120.78 (19)
C8—N1—H1B114.1 (15)C1—C6—H6119.6
H1A—N1—H1B106.3 (17)C5—C6—H6119.6
C8—N1—H1C114.1 (14)C1—C7—C8113.12 (16)
H1A—N1—H1C113 (3)C1—C7—H7A109.0
H1B—N1—H1C103 (3)C8—C7—H7A109.0
C6—C1—C2118.87 (18)C1—C7—H7B109.0
C6—C1—C7119.72 (18)C8—C7—H7B109.0
C2—C1—C7121.41 (18)H7A—C7—H7B107.8
C3—C2—C1120.92 (18)N1—C8—C7109.9 (2)
C3—C2—H2119.5N1—C8—C9110.50 (14)
C1—C2—H2119.5C7—C8—C9110.12 (18)
O1—C3—C2124.17 (17)N1—C8—H8108.8
O1—C3—C4116.33 (17)C7—C8—H8108.8
C2—C3—C4119.50 (17)C9—C8—H8108.8
O2—C4—C5123.61 (18)O3—C9—O4126.40 (17)
O2—C4—C3116.40 (17)O3—C9—C8117.71 (15)
C5—C4—C3119.98 (18)O4—C9—C8115.85 (15)
C6—C1—C2—C31.1 (3)C7—C1—C6—C5178.73 (18)
C7—C1—C2—C3178.05 (17)C4—C5—C6—C10.1 (3)
C1—C2—C3—O1179.13 (18)C6—C1—C7—C866.3 (2)
C1—C2—C3—C41.3 (3)C2—C1—C7—C8114.5 (2)
O1—C3—C4—O20.9 (2)C1—C7—C8—N160.3 (2)
C2—C3—C4—O2179.49 (16)C1—C7—C8—C9177.70 (16)
O1—C3—C4—C5179.62 (17)N1—C8—C9—O3168.4 (2)
C2—C3—C4—C50.7 (3)C7—C8—C9—O370.0 (3)
O2—C4—C5—C6178.75 (18)N1—C8—C9—O413.5 (3)
C3—C4—C5—C60.1 (3)C7—C8—C9—O4108.1 (2)
C2—C1—C6—C50.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.821.982.782 (2)166
O2—H2O···O1ii0.822.323.004 (2)142
O2—H2O···O2ii0.822.262.9557 (8)144
O4—H4O···O4iii0.85 (4)1.61 (4)2.449 (2)169 (6)
N1—H1A···Br1iv0.95 (3)2.41 (3)3.359 (3)179 (3)
N1—H1B···Br10.91 (3)2.41 (3)3.295 (3)164 (2)
N1—H1C···O3v0.89 (3)1.95 (3)2.821 (2)164 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+3, y, z+1; (iv) x, y+1, z; (v) x1, y, z.
 

Acknowledgements

TB acknowledges the Council of Scientific and Industrial Research (CSIR), India for providing financial support [project ref. No. 03 (1314)/14/EMR-II dt.16–04-14]. ST is extremely grateful to the management of SASTRA University for their encouragement and financial support (Professor TRR fund), and also thanks the DST–SERB (SB/YS/LS-19/2014) for research funding.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, S. W., Dunlop, R. A., Rowe, A., Double, K. L. & Rodgers, K. J. (2012). Exp. Neurol. 238, 29–37.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJandacek, R. J. & Earle, K. M. (1971). Acta Cryst. B27, 841–845.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMostad, A., Otternsen, T. & Rømming, C. (1971). Acta Chem. Scand. 25, 3549–3560.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMostad, A. & Rømming, C. (1974). Acta Chem. Scand. Ser. B, 28, 1161–1168.  CrossRef CAS Web of Science Google Scholar
First citationSelvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds