research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl 1-allyl-4-methyl-1H-benzo[c][1,2]thia­zine-3-carboxyl­ate 2,2-dioxide

CROSSMARK_Color_square_no_text.svg

aNational Polytechnic Institute, CIITEC, Cerrada Cecati S/N, Colonia Santa Catarina de Azcapotzalco, CP 02250, Mexico, DF, Mexico, bSSI `Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine, cNational University of Pharmacy, 4 Blyukhera St., Kharkiv 61168, Ukraine, and dMexican Institute of Petroleum, Eje Central Lazaro Cardenas Norte 152, Col. San Bartolo Atepehuacan, 07730 Mexico, DF, Mexico
*Correspondence e-mail: sveta@xray.isc.kharkov.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 5 October 2016; accepted 10 October 2016; online 14 October 2016)

In the title compound, C14H15NO4S, the di­hydro­thia­zine ring adopts a distorted sofa conformation with the S atom displaced from the mean plane through the N and C ring atoms by 0.767 (1) Å. The allyl substituent (C—C=C) is inclined to this mean plane by 78.5 (7)° and the acetate group [C(=O)—O—C] by 66.5 (3)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions forming chains propagating along the a-axis direction.

1. Chemical context

Alkyl­ation of nitro­gen heterocycles, particularly those containing reactive exocyclic groups, always attracts attention with its ambiguity and dependence on a variety of factors. For example, esters of 4-hy­droxy-2-oxo-1,2-di­hydro­quinoline-3-carb­oxy­lic acids are primarily alkyl­ated exclusively at the 4-OH group (Ukrainets et al., 1996[Ukrainets, I. V., Taran, S. G., Gorokhova, O. V., Gorlacheva, I. V., Bezuglyi, P. A. & Turov, A. V. (1996). Chem. Heterocycl. Compd. 32, 952-959.]). However, methyl 4-hy­droxy-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carboxyl­ates that are structurally close to them easily form mixtures of isomeric 3-C- and 4-O-alkyl­ation products under the same conditions (Ukrainets et al., 2015[Ukrainets, I. V., Petrushova, L. A., Shishkina, S. V. & Sim, G. (2015). Chem. Heterocycl. Compds, 50, 1741-1747.]). Consequently, it is quite difficult to predict their behaviour in the alkyl­ation reactions of the esters of 4-methyl-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carb­oxy­lic acids, and the determination of the true structure is essential. It has been found that methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carboxyl­ate 1 in the K2CO3/DMSO system is rapidly alkyl­ated with allyl bromide 2 by the cyclic nitro­gen atom, with formation of the main product of the reaction studied viz. compound 3 (see Fig. 1[link]).

[Figure 1]
Figure 1
The synthesis of the title compound, 3.

2. Structural commentary

The mol­ecular structure of the title compound, 3, is illustrated in Fig. 2[link]. The di­hydro­thia­zine ring adopts a distorted sofa conformation: the puckering parameters (Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]) are: S = 0.67, Θ = 57.1°, Ψ = 19.0°. Atom S1 deviates from the mean plane of the remaining atoms (N1/C1/C6–C8) by 0.767 (1) Å. The allyl substituent (C—C=C) is inclined to this mean plane by 78.5 (7)° and the acetate group (O=C—O—C) by 66.5 (3)°. Atom N1 has a planar configuration, the sum of the bond angles being 359.1°.

[Scheme 1]
[Figure 2]
Figure 2
The mol­ecular structure of compound 3, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The strong steric repulsion between methyl group at the C7 atom and the aromatic ring {there are short intra­molecular contacts H5⋯C11 = 2.63 and H11A⋯C5 = 2.47 Å in this fragment [the sum of the van der Waals radii (Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]) is 2.87 Å]} causes a disturbance of the conjugation between the π-systems of the aromatic ring and the C7=C8 double bond; the C5—C6—C7—C8 torsion angle is −164.7 (4)°. The ester substituent is twisted relatively to the C7=C8 endocyclic double bond [the C7—C8—C9—O1 torsion angle is 46.0 (7)°], leading to its elongation: the C7=C8 bond length is 1.348 (6) Å as compared to the mean value of 1.326 Å (Bürgi & Dunitz, 1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]). The methyl group of the ester substituent is located in the ap-position to the C8—C9 bond [C8—C9—O2—C10 = −171.5 (5)°]. The allyl group is orthogonal to the benzo­thia­zine fragment plane while the terminal double bond is synperiplanar to the N1—C12 bond [torsion angles C1—N1—C12—C13 and N1—C12—C13—C14 are 97.2 (5) and 3.5 (8)°, respectively]. The steric repulsion between the allyl substituent and the aromatic cycle (short intra­molecular contacts H2⋯C12 = 2.77 Å and H12A⋯C2 = 2.83 Å) results in the elongation of the C1—N1 bond [1.411 (5) Å], compared with the mean value of 1.371 Å (Bürgi & Dunitz, 1994[Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.]).

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming chains propagating along the a-axis direction. (Table 1[link] and Fig. 3[link]). There are no other significant inter­molecular inter­actions in the crystal structure, despite the presence of a number of potential donor and acceptor atoms.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12ACgi 0.97 2.95 3.576 (5) 123
Symmetry code: (i) [-x-{\script{1\over 2}}, y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A view along the c axis of the crystal packing of compound 3. The C—H⋯π inter­actions are represented by dashed lines (see Table 1[link]) and, for clarity, only H atom H12A (grey ball) is included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 1H-benzo[c][1,2]thia­zine 2,2-dioxide yielded 15 hits. These include the 4-hy­droxy analogue of the title compound, viz. methyl 1-allyl-4-hy­droxy-1H-benzo[c][1,2]thia­zine-3-carboxyl­ate 2,2-dioxide (MINJAW; Shishkina et al., 2013[Shishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2013). Acta Cryst. E69, o1698.]). This compound crystallized with two mol­ecules in the asymmetric unit. The conformation of the di­hydro­thia­zine ring in both mol­ecules resembles that in the title compound, which has a distorted sofa conformation. A view of the structural overlap of the three mol­ecules is shown in Fig. 4[link].

[Figure 4]
Figure 4
The structural overlap of the two independent mol­ecules of the 4-hy­droxy analogue (MINJAW; Shishkina et al., 2013[Shishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2013). Acta Cryst. E69, o1698.]), and the title compound 3, shown in blue.

5. Synthesis and crystallization

The synthesis of the title compound, 3, is illustrated in Fig. 1[link]. To a solution of 2.53 g (0.01 mol) of methyl 4-methyl-2,2-dioxo-1H-2λ6,1-benzo­thia­zine-3-carboxyl­ate, 1, in 20 ml DMSO were added 2.07 g (0.015 mol) of K2CO3 and the mixture was stirred for 30 min. Allyl bromide (1.81 g, 0.015 mol) was then added and the mixture was stirred for a further 30 min at 298 K. It was then diluted with cold water and acidified with dilute HCl to pH 4. It was extracted with CH2Cl2 (3 × 10 ml). The organic extracts were combined and the solvent removed by distillation (at reduced pressure at the end). The residue was dissolved in 20 ml of hot methanol and filtered over charcoal. The resulting solution was then placed in a freezer (253 K) for 24 h, after which crystals of the title compound were harvested (yield 2.55 g, 87%; m.p. 360–362 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms could all be located in difference Fourier maps. During refinement they were included in calculated positions and treated as riding: C—H = 0.93–0.97 Å with Uiso = 1.5Ueq(C-meth­yl) and 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C14H15NO4S
Mr 293.33
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 293
a, b, c (Å) 10.1970 (7), 18.6174 (12), 7.5136 (5)
V3) 1426.39 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.20 × 0.10 × 0.02
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.706, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9346, 2425, 2111
Rint 0.056
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.05
No. of reflections 2425
No. of parameters 181
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.20
Absolute structure Flack x determined using 785 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.09 (8)
Computer programs: CrysAlis CCD and CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Agilent, 2012); cell refinement: CrysAlis CCD (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Methyl 1-allyl-4-methyl-1H-benzo[c][1,2]thiazine-3-carboxylate 2,2-dioxide top
Crystal data top
C14H15NO4SDx = 1.366 Mg m3
Mr = 293.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 2163 reflections
a = 10.1970 (7) Åθ = 3.8–25.1°
b = 18.6174 (12) ŵ = 0.24 mm1
c = 7.5136 (5) ÅT = 293 K
V = 1426.39 (16) Å3Plate, colourless
Z = 40.20 × 0.10 × 0.02 mm
F(000) = 616
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
2425 independent reflections
Radiation source: Enhance (Mo) X-ray Source2111 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.056
ω–scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 1210
Tmin = 0.706, Tmax = 1.000k = 2222
9346 measured reflectionsl = 78
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.1291P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2425 reflectionsΔρmax = 0.19 e Å3
181 parametersΔρmin = 0.20 e Å3
1 restraintAbsolute structure: Flack x determined using 785 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88243 (9)0.65549 (5)0.26457 (17)0.0457 (3)
O10.6502 (4)0.5240 (2)0.4865 (7)0.0975 (14)
O20.7649 (4)0.51032 (18)0.2347 (6)0.0801 (11)
O30.7789 (3)0.66144 (16)0.1376 (5)0.0645 (9)
O41.0109 (3)0.63899 (17)0.2033 (4)0.0590 (9)
N10.8881 (3)0.73110 (17)0.3775 (5)0.0457 (8)
C10.9692 (4)0.7307 (2)0.5295 (6)0.0443 (9)
C21.0333 (4)0.7933 (3)0.5818 (7)0.0559 (11)
H21.02050.83550.51800.067*
C31.1146 (4)0.7932 (3)0.7260 (7)0.0652 (14)
H31.15570.83550.76110.078*
C41.1362 (5)0.7308 (3)0.8195 (7)0.0722 (15)
H41.19560.73050.91350.087*
C51.0705 (5)0.6690 (3)0.7747 (8)0.0605 (11)
H51.08370.62770.84190.073*
C60.9842 (4)0.6670 (2)0.6302 (6)0.0461 (10)
C70.9017 (4)0.6034 (2)0.5943 (6)0.0490 (10)
C80.8424 (4)0.5951 (2)0.4353 (6)0.0497 (11)
C90.7425 (5)0.5388 (2)0.3921 (8)0.0623 (13)
C100.6651 (7)0.4617 (4)0.1624 (12)0.110 (3)
H10A0.69270.44460.04780.165*
H10B0.65370.42170.24150.165*
H10C0.58350.48700.15060.165*
C110.8826 (5)0.5494 (3)0.7415 (9)0.0715 (15)
H11A0.93190.56400.84420.107*
H11B0.79130.54670.77170.107*
H11C0.91260.50310.70250.107*
C120.7970 (4)0.7897 (2)0.3411 (7)0.0547 (11)
H12A0.77530.81270.45300.066*
H12B0.71680.76930.29360.066*
C130.8440 (5)0.8458 (2)0.2154 (8)0.0661 (15)
H130.78880.88480.19610.079*
C140.9528 (6)0.8455 (3)0.1316 (9)0.0829 (18)
H14A1.01120.80760.14660.099*
H14B0.97370.88320.05550.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0486 (5)0.0440 (5)0.0446 (5)0.0024 (4)0.0040 (5)0.0029 (5)
O10.087 (3)0.089 (3)0.116 (4)0.038 (2)0.020 (3)0.007 (3)
O20.084 (2)0.063 (2)0.094 (3)0.0162 (18)0.005 (2)0.028 (2)
O30.070 (2)0.062 (2)0.062 (2)0.0037 (16)0.0255 (17)0.0033 (16)
O40.0587 (18)0.0636 (19)0.0546 (19)0.0032 (15)0.0108 (14)0.0081 (14)
N10.0528 (19)0.0364 (17)0.048 (2)0.0005 (14)0.0052 (15)0.0030 (17)
C10.044 (2)0.046 (2)0.043 (2)0.0011 (18)0.0033 (18)0.0031 (18)
C20.061 (3)0.053 (3)0.053 (3)0.008 (2)0.004 (2)0.005 (2)
C30.070 (3)0.075 (3)0.051 (3)0.020 (3)0.005 (2)0.015 (2)
C40.075 (3)0.096 (4)0.046 (3)0.009 (3)0.013 (2)0.008 (3)
C50.070 (3)0.067 (3)0.045 (2)0.005 (2)0.009 (3)0.001 (3)
C60.049 (2)0.047 (2)0.042 (2)0.0024 (18)0.0034 (18)0.0002 (18)
C70.055 (2)0.042 (2)0.050 (3)0.0070 (18)0.003 (2)0.0025 (19)
C80.051 (2)0.038 (2)0.060 (3)0.0031 (18)0.003 (2)0.0031 (19)
C90.062 (3)0.046 (2)0.079 (4)0.009 (2)0.000 (3)0.000 (2)
C100.112 (5)0.070 (4)0.149 (7)0.028 (4)0.040 (5)0.028 (4)
C110.093 (4)0.053 (3)0.068 (4)0.001 (2)0.002 (3)0.014 (3)
C120.054 (2)0.046 (2)0.064 (3)0.0025 (19)0.001 (2)0.001 (2)
C130.067 (3)0.051 (3)0.081 (4)0.003 (2)0.000 (3)0.011 (2)
C140.076 (4)0.090 (4)0.082 (4)0.001 (3)0.001 (3)0.026 (3)
Geometric parameters (Å, º) top
S1—O41.422 (3)C5—H50.9300
S1—O31.427 (3)C6—C71.477 (6)
S1—N11.645 (3)C7—C81.348 (6)
S1—C81.754 (4)C7—C111.508 (7)
O1—C91.210 (6)C8—C91.497 (6)
O2—C91.316 (6)C10—H10A0.9600
O2—C101.466 (6)C10—H10B0.9600
N1—C11.411 (5)C10—H10C0.9600
N1—C121.458 (5)C11—H11A0.9600
C1—C21.392 (6)C11—H11B0.9600
C1—C61.415 (6)C11—H11C0.9600
C2—C31.364 (7)C12—C131.487 (7)
C2—H20.9300C12—H12A0.9700
C3—C41.376 (8)C12—H12B0.9700
C3—H30.9300C13—C141.276 (8)
C4—C51.373 (7)C13—H130.9300
C4—H40.9300C14—H14A0.9300
C5—C61.398 (6)C14—H14B0.9300
O4—S1—O3118.8 (2)C7—C8—C9125.3 (4)
O4—S1—N1108.66 (18)C7—C8—S1118.0 (3)
O3—S1—N1107.72 (19)C9—C8—S1116.6 (4)
O4—S1—C8108.2 (2)O1—C9—O2124.8 (5)
O3—S1—C8111.5 (2)O1—C9—C8124.1 (5)
N1—S1—C8100.3 (2)O2—C9—C8111.0 (4)
C9—O2—C10117.4 (5)O2—C10—H10A109.5
C1—N1—C12122.0 (3)O2—C10—H10B109.5
C1—N1—S1115.7 (3)H10A—C10—H10B109.5
C12—N1—S1121.4 (3)O2—C10—H10C109.5
C2—C1—N1120.0 (4)H10A—C10—H10C109.5
C2—C1—C6120.0 (4)H10B—C10—H10C109.5
N1—C1—C6120.0 (3)C7—C11—H11A109.5
C3—C2—C1120.5 (5)C7—C11—H11B109.5
C3—C2—H2119.7H11A—C11—H11B109.5
C1—C2—H2119.7C7—C11—H11C109.5
C2—C3—C4120.3 (5)H11A—C11—H11C109.5
C2—C3—H3119.9H11B—C11—H11C109.5
C4—C3—H3119.9N1—C12—C13116.1 (4)
C5—C4—C3120.3 (5)N1—C12—H12A108.3
C5—C4—H4119.9C13—C12—H12A108.3
C3—C4—H4119.9N1—C12—H12B108.3
C4—C5—C6121.4 (5)C13—C12—H12B108.3
C4—C5—H5119.3H12A—C12—H12B107.4
C6—C5—H5119.3C14—C13—C12126.2 (5)
C5—C6—C1117.4 (4)C14—C13—H13116.9
C5—C6—C7121.5 (4)C12—C13—H13116.9
C1—C6—C7120.8 (4)C13—C14—H14A120.0
C8—C7—C6120.7 (4)C13—C14—H14B120.0
C8—C7—C11121.0 (4)H14A—C14—H14B120.0
C6—C7—C11118.3 (4)
O4—S1—N1—C160.7 (3)C1—C6—C7—C821.7 (6)
O3—S1—N1—C1169.5 (3)C5—C6—C7—C1117.0 (6)
C8—S1—N1—C152.7 (3)C1—C6—C7—C11156.7 (4)
O4—S1—N1—C12130.1 (3)C6—C7—C8—C9171.1 (4)
O3—S1—N1—C120.2 (4)C11—C7—C8—C97.3 (7)
C8—S1—N1—C12116.5 (3)C6—C7—C8—S17.8 (6)
C12—N1—C1—C242.8 (5)C11—C7—C8—S1173.9 (4)
S1—N1—C1—C2147.9 (3)O4—S1—C8—C772.8 (4)
C12—N1—C1—C6136.3 (4)O3—S1—C8—C7154.8 (3)
S1—N1—C1—C632.9 (5)N1—S1—C8—C740.9 (4)
N1—C1—C2—C3178.4 (4)O4—S1—C8—C9108.2 (4)
C6—C1—C2—C32.5 (6)O3—S1—C8—C924.2 (4)
C1—C2—C3—C41.2 (7)N1—S1—C8—C9138.1 (3)
C2—C3—C4—C53.6 (8)C10—O2—C9—O15.4 (8)
C3—C4—C5—C62.4 (8)C10—O2—C9—C8171.5 (5)
C4—C5—C6—C11.2 (7)C7—C8—C9—O146.0 (7)
C4—C5—C6—C7172.6 (5)S1—C8—C9—O1132.9 (5)
C2—C1—C6—C53.6 (6)C7—C8—C9—O2137.1 (5)
N1—C1—C6—C5177.2 (4)S1—C8—C9—O244.0 (5)
C2—C1—C6—C7170.3 (4)C1—N1—C12—C1397.2 (5)
N1—C1—C6—C78.9 (6)S1—N1—C12—C1394.2 (4)
C5—C6—C7—C8164.7 (4)N1—C12—C13—C143.5 (8)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12A···Cgi0.972.953.576 (5)123
Symmetry code: (i) x1/2, y+3/2, z+1/2.
 

References

First citationAgilent (2012). CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishkina, S. V., Ukrainets, I. V. & Petrushova, L. A. (2013). Acta Cryst. E69, o1698.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Shishkina, S. V. & Sim, G. (2015). Chem. Heterocycl. Compds, 50, 1741–1747.  Web of Science CrossRef CAS Google Scholar
First citationUkrainets, I. V., Taran, S. G., Gorokhova, O. V., Gorlacheva, I. V., Bezuglyi, P. A. & Turov, A. V. (1996). Chem. Heterocycl. Compd. 32, 952–959.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds