research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1-carb­­oxy-2-(3,4-di­hy­droxy­phen­yl)ethan-1-aminium chloride 2-ammonio-3-(3,4-di­hy­droxy­phen­yl)propano­ate: a new polymorph of L-dopa HCl and isotypic with its bromide counterpart

CROSSMARK_Color_square_no_text.svg

aCrystal Growth Laboratory, PG and Research Department of Physics, Periyar EVR Government College (Autonomous), Tiruchirappalli 620 023, India, bLaboratorio de Polímeros, Centro de Química Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla (BUAP), Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, CP 72570 Puebla, Puebla, Mexico, cCrystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, SRM University, Kattankulathur 603 203, India, and dBiomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India
*Correspondence e-mail: balacrystalgrowth@gmail.com, thamu@scbt.sastra.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 October 2016; accepted 19 October 2016; online 25 October 2016)

The title mol­ecular salt, C9H12NO4+·Cl·C9H11NO4, is isotypic with that of the bromide counterpart [Kathiravan et al. (2016[Kathiravan, P., Balakrishnan, T., Venkatesan, P., Ramamurthi, K., Percino, M. J. & Thamotharan, S. (2016). Acta Cryst. E72, 1544-1548.]). Acta Cryst. E72, 1544–1548]. The title salt is a second monoclinic polymorph of the L-dopa HCl structure reported earlier in the monoclinic space group P21 [Jandacek & Earle (1971[Jandacek, R. J. & Earle, K. M. (1971). Acta Cryst. B27, 841-845.]). Acta Cryst. B27, 841–845; Mostad & Rømming (1974[Mostad, A. & Rømming, C. (1974). Acta Chem. Scand. B28, 1161-1168.]). Acta Chemica Scand. B28, 1161–1168]. In the title compound, monoclinic space group I2, one of the dopa mol­ecules has a positive charge with a protonated α-amino group and the α-carb­oxy­lic acid group uncharged, while the second dopa mol­ecule has a neutral charge, the α-amino group is protonated and the α-carb­oxy­lic acid is deprotonated. In the previously reported form, a single dopa mol­ecule is observed in which the α-amino group is protonated and the α-carb­oxy­lic acid group is uncharged. The invariant and variations of various types of inter­molecular inter­actions present in these two forms of dopa HCl structures are discussed with the aid of two-dimensional fingerprint plots.

1. Chemical context

The aromatic amino acid enzyme, tyrosine-3-hy­droxy­lase, catalyses the conversion of the amino acid L-tyrosine to L-dopa (L-3,4-di­hydroxy­phenyl­alanine). After successful conversion, the L-dopa mol­ecule acts as a precursor for neurotransmitter mol­ecules, such as dopamine, nor­epin­ephrine and epinephrine. The L-dopa mol­ecule is found to be an effective drug in the symptomatic treatment of Parkinson's disease (Chan et al., 2012[Chan, S. W., Dunlop, R. A., Rowe, A., Double, K. L. & Rodgers, K. J. (2012). Exp. Neurol. 238, 29-37.]). Polymorphism is very common amongst pharamaceutically important mol­ecules and is responsible for differences in many properties (Bernstein, 2002[Bernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford University Press.], 2011[Bernstein, J. (2011). Cryst. Growth Des. 11, 632-650.]; Nangia, 2008[Nangia, A. (2008). Acc. Chem. Res. 41, 595-604.]; Guranda & Deeva, 2010[Guranda, D. T. & Gil'deeva, G. N. (2010). Pharm. Chem. J. 44, 254-260.]). The first monoclinic form (I)[link] [space group P21 and z′ = 1] of L-dopa HCl was reported in the 1970s (Jandacek & Earle, 1971[Jandacek, R. J. & Earle, K. M. (1971). Acta Cryst. B27, 841-845.]; Mostad & Rømming, 1974[Mostad, A. & Rømming, C. (1974). Acta Chem. Scand. B28, 1161-1168.]). Herein, we report on the crystal and mol­ecular structure of a second monoclinic polymorph, form (II) (space group I2) of L-dopa HCl. The hydrogen-bonding patterns and the relative contributions of various inter­molecular inter­actions present in forms (I)[link] and (II) are compared.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, (II), is illustrated in Fig. 1[link]. It consists of two dopa mol­ecules, and a Cl anion located on a twofold rotation axis. As observed in the isotypic L-dopa HBr mol­ecular salt (III) (Kathiravan et al., 2016[Kathiravan, P., Balakrishnan, T., Venkatesan, P., Ramamurthi, K., Percino, M. J. & Thamotharan, S. (2016). Acta Cryst. E72, 1544-1548.]), one of the dopa mol­ecules is in the zwitterionic form and the other in the cationic form. In the cationic dopa mol­ecule, the α-amino group is protonated and carries a positive charge and the hydrogen atom (H4O) of the α-carb­oxy­lic acid group is located in a general position and was refined with 50% occupancy.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecular salt, (II), showing the atom labelling scheme [symmetry code: ($) −x + 3, y, −z + 1]. Displacement ellipsoids are drawn at the 50% probability level.

The crystal structures of L-dopa (Mostad et al., 1971[Mostad, A., Otternsen, T. & Rømming, C. (1971). Acta Chem. Scand. 25, 3549-3560.]), its hydro­chloride form (I)[link] (Jandacek & Earle, 1971[Jandacek, R. J. & Earle, K. M. (1971). Acta Cryst. B27, 841-845.]; Mostad & Rømming, 1974), the hydro­bromide form (III) (Kathiravan et al., 2016[Kathiravan, P., Balakrishnan, T., Venkatesan, P., Ramamurthi, K., Percino, M. J. & Thamotharan, S. (2016). Acta Cryst. E72, 1544-1548.]) and the dihydrate form (André & Duarte, 2014[André, V. & Duarte, M. T. (2014). J. Mol. Struct. 1076, 238-243.]), have been reported. The dihydrate form of dopa crystallizes in the ortho­rhom­bic space group P212121 with a single dopa mol­ecule in its zwitterionic form. The free dopa mol­ecule and its hydro­chloride form (I)[link] crystallized in the monoclinic space group P21. In the L-dopa structure, the dopa mol­ecule is in the zwitterionic form, while in the latter the α-amino group is proton­ated and the α-carb­oxy­lic acid is neutral. As mentioned earlier (Kathiravan et al., 2016[Kathiravan, P., Balakrishnan, T., Venkatesan, P., Ramamurthi, K., Percino, M. J. & Thamotharan, S. (2016). Acta Cryst. E72, 1544-1548.]), the deposited coordinates of the L-dopa HCl structure belong to the R configuration. Therefore, the L-dopa HCl structure was inverted and the inverted model used for superposition. As shown in Fig. 2[link], one of the dopa mol­ecules of the title mol­ecular salt (II) is superimposed with the inverted model of L-dopa HCl (I)[link] and one of the dopa mol­ecules of the isotypic Br compound (III). The r.m.s. deviation of the former pair is 0.105 Å while for the latter pair it is calculated to be 0.094 Å.

[Figure 2]
Figure 2
Structural superimposition of cationic dopa mol­ecules in (II) (red), bromide counterpart (green) and form (I)[link] L-dopa HCl (blue).

3. Supra­molecular features

The crystal structure of the title mol­ecular salt (II) displays a network of inter­molecular N—H⋯Cl, N—H⋯O and O—H⋯O hydrogen bonds (Table 1[link]), producing a three-dimensional framework (Fig. 3[link]). It is of inter­est to note that the N—H⋯O and O—H⋯O hydrogen-bonding geometries in the title compound are slightly different when compared to its isotypic bromide counterpart (III) (Kathiravan et al., 2016[Kathiravan, P., Balakrishnan, T., Venkatesan, P., Ramamurthi, K., Percino, M. J. & Thamotharan, S. (2016). Acta Cryst. E72, 1544-1548.]). A short inter­molecular O—H⋯O hydrogen bond links the carb­oxy­lic acid group of a dopa mol­ecule with the carboxyl­ate group of an adjacent dopa mol­ecule. This inter­action produces dopa dimers that are arranged as ribbons propagating along the b axis (Fig. 3[link]). As observed in the bromide counterpart (III), the protonated amino group acts as a threefold donor for three inter­molecular hydrogen bonds, two of them with Cl anions and one with the carbonyl oxygen atom, O3, of the dopa acid group. One of the characteristic features observed in many amino acid–carb­oxy­lic acid/metal complexes (Sharma et al., 2006[Sharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148-o152.]; Selvaraj et al., 2007[Selvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459-468.]; Balakrishnan, Ramamurthi & Thamotharan et al., 2013[Balakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60-m61.]; Balakrishnan, Ramamurthi, Jeyakanthan et al., 2013[Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2013). Acta Cryst. E69, o57.]; Sathiskumar et al., 2015a[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Acta Cryst. E71, 217-219.],b[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Spectrochim. Acta A Mol. Biomol. Spectrosc. 138, 187-194.],c[Sathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015c). Acta Cryst. E71, 1199-1202.]; Revathi et al., 2015[Revathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875-878.]) is that the amino acid mol­ecules aggregate in head-to-tail sequences of the type ⋯NH3+—CHR—COO⋯NH3+—CHR—COO⋯ in which α-amino and α-carboxyl­ate groups are brought into periodic hydrogen-bonded proximity in a peptide-like arrangements. Similar arrangements (as layers) are observed in the title compound, in which α-amino (atom N1) and α-carboxyl­ate (atom O3) groups inter­act via an N—H⋯O hydrogen bond. Adjacent layers are inter­connected by strong O—H⋯O hydrogen bonds. The former N—H⋯O and the latter O—H⋯O inter­actions collectively form an R44(18) ring motif (Fig. 4[link]). Similar inter­actions are presented in dopa and the HCl form (I)[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3i 0.82 1.98 2.746 (2) 155
O2—H2O⋯O1ii 0.82 2.33 2.999 (2) 140
O2—H2O⋯O2ii 0.82 2.16 2.8730 (8) 146
O4—H4O⋯O4iii 0.90 (3) 1.50 (3) 2.373 (2) 161 (8)
N1—H1A⋯Cl1iv 0.91 (3) 2.35 (4) 3.249 (2) 167 (3)
N1—H1B⋯Cl1 0.89 (3) 2.31 (3) 3.178 (2) 166 (2)
N1—H1C⋯O3v 0.90 (3) 1.93 (3) 2.7901 (19) 160 (3)
Symmetry codes: (i) x-1, y+1, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+3, y, -z+1; (iv) x, y+1, z; (v) x-1, y, z.
[Figure 3]
Figure 3
Crystal packing of the title mol­ecular salt, (II), viewed along the b axis. The hydrogen bonds are shown as dashed lines (see Table 1[link]), and C-bound H atoms have been omitted for clarity.
[Figure 4]
Figure 4
Part of the crystal structure of (II) showing the R44(18) motifs formed through N—H⋯O and O—H⋯O hydrogen bonds (see Table 1[link]).

As shown in Table 1[link], the amino group (via H1A and H1B) of the dopa mol­ecule participates in N—H⋯Cl inter­actions with two different Cl anions. As observed in the bromide counterpart (III), these inter­actions inter­connect the cations and anions into a chain of cyclic motifs that enclose R24(8) rings and runs parallel to the b axis (Fig. 5[link]a). Forms (I)[link] and (II) of the dopa HCl structures differ in the formation of cyclic motifs. In form (I)[link], two N—H⋯Cl hydrogen bonds link the cations and anions into a chain. Adjacent chains are inter­connected through O—H⋯Cl inter­actions (carb­oxy­lic acid⋯Cl). Collectively, these inter­actions generate cyclic motifs (Fig. 5[link]b).

[Figure 5]
Figure 5
(a) Part of the crystal structure of (II) showing the R24(8) motif formed by inter­molecular N—H⋯Cl hydrogen bonds (see Table 1[link]), and (b) part of the crystal structure of form (I)[link] dopa HCl showing the cyclic motif formed by N—H⋯Cl and O—H⋯Cl hydrogen bonds.

The side-chain hy­droxy groups (O1—H1O and O2—H2O) of the dopa mol­ecules are involved in O—H⋯O hydrogen-bonding inter­actions, the former with the carbonyl oxygen atom (O3) and the latter in a bifurcated mode with two different hy­droxy (O1 and O2) oxygen atoms of adjacent dopa layers (Fig. 6[link]). These inter­actions are invariant in the dopa structures reported earlier.

[Figure 6]
Figure 6
Adjacent dopa layers are inter­linked by side chain–side chain inter­actions in (II) through inter­molecular O—H⋯O hydrogen bonds (see Table 1[link]).

4. Hirshfeld surface analysis

The Hirshfeld surfaces (HS) and the decomposed two-dimensional fingerprint plots have been generated, using the program CrystalExplorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]), to investigate the similarities and differences in the crystal packing amongst polymorphs. The two different views of the HS diagram for the complete unit of dopa mol­ecules along with the Cl anion and the two-dimensional fingerprint plots are shown in Fig. 7[link].

[Figure 7]
Figure 7
(a) Two different views of Hirshfeld surfaces of dimeric dopa mol­ecules along with a Cl anion, (b) two-dimensional fingerprint plots for complete unit of dopa and (c) anionic Cl. Various types of contacts are indicated.

The analysis suggests that the O⋯H contacts contribute more (41.6%) to the crystal packing when compared to other contacts with respect to the dopa mol­ecules in the title compound. The relative contributions of H⋯H, C⋯H and H⋯Cl contacts are 29, 18.6 and 6.2%, respectively, with respect to the complete unit of dopa mol­ecule. These contacts are nearly identical in the case of the bromide counterpart. The H⋯Cl and O⋯Cl contacts contributions to the Hirshfeld surface area for the Cl ion are 71.9 and 13.7%, respectively. In the bromide counterpart (III), the corres­ponding contacts are found to be 64.1 (H⋯Br) and 10.2% (O⋯Br). It is clearly seen that these contacts are lower in the bromide counterpart (III) when compared to the title salt (II).

In form (I)[link] of the dopa HCl structure, the relative contributions of O⋯H, H⋯H, C⋯H and H⋯Cl contacts are 40.5, 25.2, 17.1 and 14.1%, respectively, with respect to the cationic dopa mol­ecule. It is worthy to note that O⋯H and H⋯H contacts are reduced by 1.1–3.8% when compared to form (II). The H⋯Cl contact is increased by 7.9% in (I)[link] when compared to (II) of the dopa HCl structure. In (I)[link] anionic Cl, the relative contribution of H⋯Cl contacts is found be 90.4%. This is approximately 18.5 and 26% higher when compared to (II) and its bromide counterpart (III). These contacts are used to discriminate between forms (I)[link] and (II).

5. Synthesis and crystallization

L-dopa and HCl (1:1 molar ratio) were dissolved in double-distilled water and stirred well for 6 h. The mixture was filtered and the filtrate left to evaporate slowly. Colourless block-shaped crystals of the title mol­ecular salt (II) were obtained after a growth period of 15 days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Since the title mol­ecular salt (I)[link] is isotypic with its bromide counterpart (III) (Kathiravan et al., 2016[Kathiravan, P., Balakrishnan, T., Venkatesan, P., Ramamurthi, K., Percino, M. J. & Thamotharan, S. (2016). Acta Cryst. E72, 1544-1548.]), it was refined with the coordinates of the dopa mol­ecule of the latter as a starting model. The Cl anion was located from a difference Fourier map. The amino and carb­oxy­lic acid H atoms were located from a difference Fourier map and freely refined. The OH groups of the dopa side chain and C-bound H atoms were treated as riding atoms and included in geometrically calculated positions: C—H = 0.93–0.98 and O—H = 0.82 Å, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). The carb­oxy­lic acid O—H bond length was restrained to 0.90 (2) Å, using a DFIX option.

Table 2
Experimental details

Crystal data
Chemical formula C9H12NO4+·Cl·C9H11NO4
Mr 430.83
Crystal system, space group Monoclinic, I2
Temperature (K) 293
a, b, c (Å) 6.1768 (3), 5.4349 (3), 28.7651 (16)
β (°) 98.140 (4)
V3) 955.92 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.25
Crystal size (mm) 0.30 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.927, 0.959
No. of measured, independent and observed [I > 2σ(I)] reflections 14303, 2982, 2623
Rint 0.024
(sin θ/λ)max−1) 0.777
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.05
No. of reflections 2982
No. of parameters 151
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.21
Absolute structure Flack x determined using 1021 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.033 (17)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]). Structure solution – isomorphous replacement.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: structure solution – isomorphous replacement; program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015) and publCIF (Westrip, 2010).

1-Carboxy-2-(3,4-dihydroxyphenyl)ethan-1-aminium chloride 2-ammonio-3-(3,4-dihydroxyphenyl)propanoate top
Crystal data top
C9H12NO4+·Cl·C9H11NO4F(000) = 452
Mr = 430.83Dx = 1.497 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
a = 6.1768 (3) ÅCell parameters from 7161 reflections
b = 5.4349 (3) Åθ = 3.8–31.1°
c = 28.7651 (16) ŵ = 0.25 mm1
β = 98.140 (4)°T = 293 K
V = 955.92 (9) Å3Block, colourless
Z = 20.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2623 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
ω and φ scanθmax = 33.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 89
Tmin = 0.927, Tmax = 0.959k = 77
14303 measured reflectionsl = 3940
2982 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.236P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2982 reflectionsΔρmax = 0.57 e Å3
151 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3951 (2)1.2691 (3)0.33134 (6)0.0290 (3)
H1O0.45091.36780.35100.044*
O20.3026 (2)0.9556 (3)0.26334 (5)0.0299 (3)
H2O0.27670.84110.24480.045*
O31.4771 (2)0.5509 (3)0.41112 (5)0.0329 (4)
O41.32315 (19)0.6323 (4)0.47766 (4)0.0276 (3)
H4O1.467 (5)0.623 (16)0.489 (3)0.07 (2)*0.5
N10.9230 (2)0.6219 (4)0.44032 (5)0.0192 (3)
H1A0.937 (4)0.751 (7)0.4608 (11)0.038 (8)*
H1B0.933 (3)0.498 (5)0.4608 (8)0.013 (5)*
H1C0.784 (5)0.629 (7)0.4261 (10)0.043 (7)*
C10.8763 (3)0.8689 (4)0.34670 (6)0.0203 (4)
C20.7324 (3)1.0590 (4)0.35439 (7)0.0216 (4)
H20.76911.16720.37930.026*
C30.5418 (3)1.0860 (3)0.32596 (6)0.0202 (4)
C40.4932 (3)0.9175 (4)0.29009 (6)0.0207 (4)
C50.6340 (3)0.7289 (4)0.28237 (7)0.0237 (4)
H50.59610.61940.25770.028*
C60.8254 (3)0.7042 (4)0.31046 (7)0.0238 (4)
H60.92170.57840.30560.029*
C71.0881 (3)0.8448 (4)0.37635 (7)0.0231 (4)
H7A1.11370.98880.39630.028*
H7B1.20300.83730.35660.028*
C81.0974 (2)0.6136 (4)0.40704 (6)0.0170 (3)
H81.07070.46920.38660.020*
C91.3196 (3)0.5949 (4)0.43384 (6)0.0193 (4)
Cl11.00000.12970 (14)0.50000.0428 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0242 (7)0.0254 (7)0.0347 (8)0.0052 (6)0.0053 (6)0.0063 (6)
O20.0210 (6)0.0325 (8)0.0314 (8)0.0000 (6)0.0127 (5)0.0043 (6)
O30.0148 (5)0.0560 (11)0.0263 (7)0.0060 (6)0.0025 (5)0.0092 (7)
O40.0137 (5)0.0486 (9)0.0186 (6)0.0019 (7)0.0049 (4)0.0034 (7)
N10.0122 (6)0.0258 (8)0.0185 (7)0.0008 (6)0.0015 (5)0.0018 (8)
C10.0176 (7)0.0246 (9)0.0175 (8)0.0016 (7)0.0022 (6)0.0054 (7)
C20.0201 (7)0.0237 (9)0.0192 (8)0.0031 (7)0.0028 (6)0.0007 (7)
C30.0180 (7)0.0205 (10)0.0210 (8)0.0009 (7)0.0007 (6)0.0025 (7)
C40.0178 (7)0.0240 (9)0.0188 (8)0.0028 (7)0.0029 (6)0.0025 (7)
C50.0240 (9)0.0258 (10)0.0197 (9)0.0012 (8)0.0021 (7)0.0029 (7)
C60.0216 (8)0.0265 (10)0.0224 (9)0.0041 (7)0.0003 (7)0.0007 (7)
C70.0151 (7)0.0291 (10)0.0233 (9)0.0042 (7)0.0038 (6)0.0065 (8)
C80.0122 (6)0.0215 (8)0.0161 (7)0.0002 (7)0.0022 (5)0.0005 (7)
C90.0130 (6)0.0237 (10)0.0197 (8)0.0003 (7)0.0033 (5)0.0012 (7)
Cl10.0677 (5)0.0189 (3)0.0390 (4)0.0000.0016 (4)0.000
Geometric parameters (Å, º) top
O1—C31.369 (2)C1—C71.463 (2)
O1—H1O0.8200C2—C31.343 (2)
O2—C41.329 (2)C2—H20.9300
O2—H2O0.8200C3—C41.380 (3)
O3—C91.269 (2)C4—C51.382 (3)
O4—C91.274 (2)C5—C61.341 (3)
O4—H4O0.90 (3)C5—H50.9300
N1—C81.540 (2)C6—H60.9300
N1—H1A0.91 (3)C7—C81.532 (3)
N1—H1B0.89 (3)C7—H7A0.9700
N1—H1C0.90 (3)C7—H7B0.9700
C1—C61.376 (3)C8—C91.479 (2)
C1—C21.401 (3)C8—H80.9800
C3—O1—H1O109.5C6—C5—C4119.90 (18)
C4—O2—H2O109.5C6—C5—H5120.0
C9—O4—H4O103 (5)C4—C5—H5120.0
C8—N1—H1A114.6 (18)C5—C6—C1118.60 (18)
C8—N1—H1B113.7 (14)C5—C6—H6120.7
H1A—N1—H1B99 (2)C1—C6—H6120.7
C8—N1—H1C115.1 (18)C1—C7—C8111.52 (15)
H1A—N1—H1C105 (3)C1—C7—H7A109.3
H1B—N1—H1C108 (3)C8—C7—H7A109.3
C6—C1—C2121.15 (15)C1—C7—H7B109.3
C6—C1—C7118.24 (18)C8—C7—H7B109.3
C2—C1—C7120.58 (17)H7A—C7—H7B108.0
C3—C2—C1120.37 (17)C9—C8—C7108.25 (15)
C3—C2—H2119.8C9—C8—N1110.92 (13)
C1—C2—H2119.8C7—C8—N1111.19 (16)
C2—C3—O1123.21 (17)C9—C8—H8108.8
C2—C3—C4117.50 (17)C7—C8—H8108.8
O1—C3—C4119.29 (15)N1—C8—H8108.8
O2—C4—C3114.24 (17)O3—C9—O4129.22 (14)
O2—C4—C5123.27 (17)O3—C9—C8117.83 (15)
C3—C4—C5122.47 (16)O4—C9—C8112.93 (14)
C6—C1—C2—C30.8 (3)C2—C1—C6—C50.0 (3)
C7—C1—C2—C3177.45 (18)C7—C1—C6—C5178.29 (19)
C1—C2—C3—O1179.42 (18)C6—C1—C7—C869.7 (2)
C1—C2—C3—C41.3 (3)C2—C1—C7—C8112.0 (2)
C2—C3—C4—O2179.88 (17)C1—C7—C8—C9176.83 (16)
O1—C3—C4—O20.8 (3)C1—C7—C8—N161.1 (2)
C2—C3—C4—C51.1 (3)C7—C8—C9—O367.7 (2)
O1—C3—C4—C5179.57 (18)N1—C8—C9—O3170.10 (19)
O2—C4—C5—C6179.00 (19)C7—C8—C9—O4110.8 (2)
C3—C4—C5—C60.4 (3)N1—C8—C9—O411.4 (3)
C4—C5—C6—C10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.821.982.746 (2)155
O2—H2O···O1ii0.822.332.999 (2)140
O2—H2O···O2ii0.822.162.8730 (8)146
O4—H4O···O4iii0.90 (3)1.50 (3)2.373 (2)161 (8)
N1—H1A···Cl1iv0.91 (3)2.35 (4)3.249 (2)167 (3)
N1—H1B···Cl10.89 (3)2.31 (3)3.178 (2)166 (2)
N1—H1C···O3v0.90 (3)1.93 (3)2.7901 (19)160 (3)
Symmetry codes: (i) x1, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+3, y, z+1; (iv) x, y+1, z; (v) x1, y, z.
 

Acknowledgements

TB acknowledges the Council of Scientific and Industrial Research (CSIR), India for providing financial support [Project ref. No. 03 (1314)/14/EMR – II dt.16-04-14]. ST is highly grateful to the management of SASTRA University for their encouragement and financial support (Prof. TRR fund), and also thanks the DST–SERB (SB/YS/LS-19/2014) for research funding.

References

First citationAndré, V. & Duarte, M. T. (2014). J. Mol. Struct. 1076, 238–243.  Google Scholar
First citationBalakrishnan, T., Ramamurthi, K., Jeyakanthan, J. & Thamotharan, S. (2013). Acta Cryst. E69, m60–m61.  CSD CrossRef IUCr Journals Google Scholar
First citationBalakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2013). Acta Cryst. E69, o57.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J. (2002). Polymorphism in Molecular Crystals. Oxford University Press.  Google Scholar
First citationBernstein, J. (2011). Cryst. Growth Des. 11, 632–650.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, S. W., Dunlop, R. A., Rowe, A., Double, K. L. & Rodgers, K. J. (2012). Exp. Neurol. 238, 29–37.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuranda, D. T. & Gil'deeva, G. N. (2010). Pharm. Chem. J. 44, 254–260.  CrossRef CAS Google Scholar
First citationJandacek, R. J. & Earle, K. M. (1971). Acta Cryst. B27, 841–845.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationKathiravan, P., Balakrishnan, T., Venkatesan, P., Ramamurthi, K., Percino, M. J. & Thamotharan, S. (2016). Acta Cryst. E72, 1544–1548.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMostad, A., Otternsen, T. & Rømming, C. (1971). Acta Chem. Scand. 25, 3549–3560.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMostad, A. & Rømming, C. (1974). Acta Chem. Scand. B28, 1161–1168.  CrossRef CAS Google Scholar
First citationNangia, A. (2008). Acc. Chem. Res. 41, 595–604.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRevathi, P., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015). Acta Cryst. E71, 875–878.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015a). Acta Cryst. E71, 217–219.  CSD CrossRef IUCr Journals Google Scholar
First citationSathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015b). Spectrochim. Acta A Mol. Biomol. Spectrosc. 138, 187–194.  CSD CrossRef CAS PubMed Google Scholar
First citationSathiskumar, S., Balakrishnan, T., Ramamurthi, K. & Thamotharan, S. (2015c). Acta Cryst. E71, 1199–1202.  CSD CrossRef IUCr Journals Google Scholar
First citationSelvaraj, M., Thamotharan, S., Roy, S. & Vijayan, M. (2007). Acta Cryst. B63, 459–468.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSharma, A., Thamotharan, S., Roy, S. & Vijayan, M. (2006). Acta Cryst. C62, o148–o152.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds