research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(μ-4-nitro­benzoato-κ2O:O′)bis­­[bis­­(4-methyl­pyridine-κN)(4-nitro­benzoato-κ2O,O′)manganese(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Gauhati University, Guwahati 781 014, India, and bDepartment of Chemistry, Pandu College, Guwahati 781 012, India
*Correspondence e-mail: birinchi.das@gmail.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 18 September 2016; accepted 4 October 2016; online 11 October 2016)

The title compound, [Mn2(C7H4NO4)4(C6H7N)4] or [Mn2(μ-NBz)2(κ2-NBz)2(4-Mepy)4], where NBz is 4-nitro­benzoate and 4-Mepy is 4-methyl­pyridine, is a centrosymmetric dinuclear complex in which the MnII atoms are bridged by two NBz ligands with Mn⋯Mn = 4.1324 (4) Å. The MnII atom in this dimeric species is present in a distorted octa­hedral environment with the four coordinating O atoms forming the equatorial plane and the two pyridyl N atoms occupying the axial sites. An important structural feature of the dimeric complex is that each of the bridging carboxyl­ate ligands binds to the metal ions in an asymmetric fashion involving bent and linear Mn—O—C units. The crystal packing is consolidated by C—H⋯O and C—H⋯π interactions.

1. Chemical context

Polynuclear manganese complexes with carboxyl­ate ligation have received great attention due to their potential applications in catalysis (Arafa et al., 2014[Arafa, W. A. A., Kärkäs, M. D., Lee, B.-L., Åkermark, T., Liao, R.-Z., Berends, H.-M., Messinger, J., Siegbahn, P. E. M. & Åkermark, B. (2014). Phys. Chem. Chem. Phys. 16, 11950-11964.]), magnetism (Miyasaka et al., 2004[Miyasaka, H., Clérac, R., Wernsdorfer, W., Lecren, L., Bonhomme, C., Sugiura, K. & Yamashita, M. (2004). Angew. Chem. Int. Ed. 43, 2801-2805.]) and their anti­tumor activity (Dey et al., 2015[Dey, D., De, A.,Pal, S., Mitra, P., Ranjani, A., Gayethri, L., Chandraleka, S., Dhanasekaran, D., Akbarsha, M. A., Kole, N. & Biswas, B. (2015). Indian J. Chem. Sect. A, 54, 170-178.]) as well as in other areas. The occurrence of Mn in a number of oxidation states (II–IV) under normal conditions and also the ability of carboxyl­ato ligands to display a variety of coordin­ation modes are the main reasons why Mn–carboxyl­ates have received a lot of attention in the recent past. It has been reported that an Mn-based binuclear complex of composition [Mn2(bbppnol)(μ-O2CCH3)2] [bbppnol = N,N′-bis­(2-hydroxy­benz­yl)N,N′-bis­(2-methyl­pyrid­yl)-2-ol-1,3-propanediamine] with two bridging acetato ligands is active as a catalyst in the epoxidation of cyclo­hexene and cyclo­octene (Castaman et al., 2009[Castaman, S. T., Nakagaki, S., Ribeiro, R. R., Ciuffi, K. J. & Drechsel, S. M. (2009). J. Mol. Catal. A Chem. 300, 89-97.]). A series of dimeric complexes with the general formula [Mn2(O2CCH3)L] {where L = 2,2′-[2-hy­droxy-5-(pivalamido­meth­yl)-1,3-phenyl­ene]bis­(1H-benzo[d]imidazole-4-carb­oxy­lic acid), 2,2′-(5-benzyl-2-hy­droxy-1,3-phenyl­ene)bis­(1H-benzo[d]imidazole-4-carb­oxy­lic acid) etc.} have been explored as catalysts for the water-oxidation reaction with a view to generating O2 and H2 (Arafa et al., 2014[Arafa, W. A. A., Kärkäs, M. D., Lee, B.-L., Åkermark, T., Liao, R.-Z., Berends, H.-M., Messinger, J., Siegbahn, P. E. M. & Åkermark, B. (2014). Phys. Chem. Chem. Phys. 16, 11950-11964.]). Microwave-assisted alcohol oxidation with tert-butyl­hydro­peroxide (TBHP) has been carried out (Sutradhar et al., 2014[Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Alegria, E. C. B. A., Liu, C.-M. & Pombeiro, A. J. L. (2014). Dalton Trans. 43, 3966-3977.]) using a Schiff base-containing Mn dimer. Manganese complexes are also recognized for their magnetic behaviour since coordination compounds of this metal often display large ground-state spin (S) values and the polynuclear manganese cluster [Mn12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O is considered to be the first single mol­ecule magnet (SMM) (Uhrecký et al., 2013[Uhrecký, R., Moncoľ, J., Koman, M., Titiš, J. & Boča, R. (2013). Dalton Trans. 42, 9490-9494.]; Sessoli et al., 1993[Sessoli, R., Tsai, H.-L., Schake, A. R., Wang, S., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. & Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1804-1816.]). Complexes of manganese are also considered to be important in view of the occurrence of an Mn4Ca unit in the active site of Photosystem II that catalyses the water-splitting reaction to evolve oxygen in nature (Nocera, 2012[Nocera, D. G. (2012). Acc. Chem. Res. 45, 767-776.]).

[Scheme 1]

Keeping in mind earlier results published from our laboratory (Chakrabarty et al., 2007[Chakrabarty, R., Bora, S. J. & Das, B. K. (2007). Inorg. Chem. 46, 9450-9462.]) on the synthesis and catalytic properties of cobalt(III)–oxide pseudo-cubane units of the type [Co4O4(μ-O2CR)4L4], where R is an alkyl or aryl group and L is a monodentate pyridyl ligand, and also due to their relevance as catalysts for the water-oxidation reaction (McCool et al., 2011[McCool, N. S., Robinson, D. M., Sheats, J. E. & Dismukes, G. C. (2011). J. Am. Chem. Soc. 133, 11446-11449.]), we explored whether analogous manganese complexes could also be synthesized. These efforts have led to the synthesis of the title complex, among others. Herein we report the synthesis, crystal structure and some salient properties of the dimeric manganese(II) compound [Mn2(μ-NBz)2(κ2-NBz)2(4-Mepy)4], I[link], which belongs to a structure type constituted of only a limited number of complexes (vide infra).

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of the dimeric complex. The two Mn atoms are related by an inversion centre and are bridged by the carboxyl­ate anions of two NBz ligands in a syn–syn fashion. Each MnII atom is further coordinated by a carboxyl­ato ligand in chelating mode. The four oxygen atoms – two from a pair of bridging NBz ligands and two from a chelating NBz ligand - are nearly coplanar with each of the central Mn atoms, forming an equatorial plane; the axial positions for both are occupied by two 4-methyl­pyridine ligands completing the distorted octa­hedral geometry around each MnII atom. The bridging Mn—O(carbox­yl) bond lengths (∼2.1 Å) are found to be shorter than the Mn—O(carbox­yl) distances (∼2.3 Å) in the chelating ligands (Table 1[link]). For the chelating NBz anions, the longer Mn—O distances can be attributed to the steric crowding imposed by the neighbouring bridging bis-monodentate NBz anions.

Table 1
Selected geometric parameters (Å, °)

Mn1—O3 2.1122 (10) O1—C13 1.2460 (17)
Mn1—O4 2.1328 (9) O3—C20i 1.2358 (15)
Mn1—N2 2.2621 (12) O4—C20 1.2523 (16)
Mn1—O2 2.2672 (11) O7—N4 1.230 (3)
Mn1—N1 2.2746 (13) N4—O8 1.198 (3)
Mn1—O1 2.3285 (11) N3—O6 1.204 (2)
O2—C13 1.2495 (17) N3—O5 1.212 (2)
       
O3—Mn1—O4 120.82 (4) O3—Mn1—O1 144.94 (4)
O3—Mn1—N2 89.91 (5) O4—Mn1—O1 94.05 (4)
O4—Mn1—N2 89.04 (4) N2—Mn1—O1 94.59 (4)
O3—Mn1—O2 88.38 (4) O2—Mn1—O1 56.95 (4)
O4—Mn1—O2 150.77 (4) N1—Mn1—O1 88.02 (5)
N2—Mn1—O2 89.75 (5) C13—O2—Mn1 91.41 (8)
O3—Mn1—N1 88.27 (5) C13—O1—Mn1 88.68 (8)
O4—Mn1—N1 90.22 (4) C20i—O3—Mn1 178.20 (10)
N2—Mn1—N1 177.33 (4) C20—O4—Mn1 116.68 (8)
O2—Mn1—N1 92.15 (4)    
Symmetry code: (i) -x+2, -y, -z.
[Figure 1]
Figure 1
An ORTEP-style view of the mol­ecular structure of [Mn2(μ-NBz)2(κ2-NBz)2(4-Mepy)4] I[link] with displacement ellipsoids drawn at the 50% probability level.

The Mn⋯Mn distance of 4.1324 (4) Å in I[link] precludes any direct bonding inter­action between the MnII atoms and is comparable to the corresponding distances in the structurally related CoII complexes [{Co(dpe)(NO2BDC)}·0.5(dpe)]n·nH2O (4.181 Å; Luo et al. 2003[Luo, J., Hong, M., Wang, R., Cao, R., Han, L., Yuan, D., Lin, Z. & Zhou, Y. (2003). Inorg. Chem. 42, 4486-4488.]), [Co2(4,4′-bipy)2(O2CC6H5)4]n (4.060 Å; Zhang et al. 2007[Zhang, Z. X., Li, Y., Li, K., Song, W. & Li, Q. (2007). Inorg. Chem. Commun. 10, 1276-1280.]) and Co2(μ-4-nbz)2(κ2-4-nbz)2(4-CNpy)4 (4.226 Å; Chakravorty & Das, 2016[Chakravorty, S. & Das, B. K. (2016). Unpublished results.]). However, it is considerably shorter than in its most closely related analogue [Mn2(μ-OBz)2(κ2-OBz)2(py)4] in which the Mn⋯Mn separation is 4.531 Å (Ran et al., 2006[Ran, J.-W., Gong, D.-J. & Li, Y.-H. (2006). Acta Cryst. E62, m3142-m3143.]).

The highly distorted nature of the MnO4N2 octa­hedron in the title species, which is probably due to the steric crowding of both the bridging and chelating NBz ligands surrounding the MnII atom, is manifested by the O—Mn—O and O—Mn—N angles. While the former are in the range 56.95 (4)–150.77 (4)°, the latter are in the range 88.02 (5)–94.59 (5)°.

In the title compound, the carboxyl –COO and –NOO planes of the chelating NBz anion deviate slightly from the phenyl ring plane, forming dihedral angles of 2.6 (3) and 23.6 (4)°, respectively. According to Kaduk (2000[Kaduk, J. A. (2000). Acta Cryst. B56, 474-485.]) and Kaduk & Golab (1999[Kaduk, J. A. & Golab, J. T. (1999). Acta Cryst. B55, 85-94.]), completely planar phenyl carboxyl­ates are associated with low conformational energy and any deviation from planarity leads to an increase in the energy of the system. However, this destabilization can be compensated for by efficient crystal packing in the solid state.

3. Supra­molecular features

The crystal structure of I[link] features several intra­molecular as well as inter­molecular C—H⋯O inter­actions wherein the O atoms from –NO2 and –CO2 groups of the NBz ligand act as hydrogen acceptors (Table 2[link] and Fig. 2[link]). While the DA separations for these weak contacts are in the range of 3.161 (2) to 3.369 (2) Å, the <C—H⋯O angles are generally lower than 130°, except in one case where a hydrogen bond with a greater DA separation of 3.369 (2) Å forms has an angle of 172°. In addition, inter­molecular C—H⋯π inter­actions involving the pyridyl ring π system of the 4-Mepy ligand link the complex mol­ecules into chains along the a axis (Fig. 3[link]). Although each of the above non-covalent contacts is individually weak, the presence of many of these supra­molecular contacts clearly result in extra stability of the species in the solid state. Indeed, the involvement of the –NO2 and –CH3 groups at the 4-positions of the phenyl ring of the NBz ligand and the pyridyl ring of the 4-Mepy ligand may explain why the isolation of complexes analogous to I[link] has not been possible for some combinations of carboxyl­ato and pyridyl ligands.

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N2/C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O4 0.93 2.61 3.172 (2) 119
C2—H2⋯O1ii 0.93 2.65 3.278 (2) 125
C11—H10⋯O4 0.93 2.55 3.161 (2) 124
C22—H25⋯Cgii 0.93 2.80 3.6844 (16) 160
Symmetry code: (ii) -x+1, -y, -z.
[Figure 2]
Figure 2
Packing diagram showing C—H⋯O inter­actions (dashed lines) in the crystal structure of I[link].
[Figure 3]
Figure 3
Inter­molecular C—H⋯π inter­actions observed between phenyl-ring H atoms of NBz and phenyl ring π-systems of 4-Mepy in the crystal structure of I[link].

4. Database survey

A survey of the Cambridge Structural Database (Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that only a few dinuclear Mn complexes with both bridging and chelating carboxyl­ate linkages are known. We have tabulated some of the available data for complexes of the type [Mn2(μ-O2CR)2(κ2-O2CR)2L4] in Table 3[link] in order to compare some of the important geometric parameters. For all complexes, the Mn—O bonds involving the chelating carboxyl­ato ligands are longer than the corresponding Mn—O bonds in the bridging carboxyl­ato ligands. Of particular note among the listed parameters is the near linearity of one of the the <Mn—O—C angles [178.20 (1)° and 116.68 (8)°] observed in the crystal structure of I[link]. For its most closely related known species, [Mn2(μ-OBz)2(κ2-OBz)2(py)4] (Ran et al. 2006[Ran, J.-W., Gong, D.-J. & Li, Y.-H. (2006). Acta Cryst. E62, m3142-m3143.]), the corresponding angles are 149.32 (1) and 133.39 (1)°, respectively. The more pronounced asymmetry of bonding in the bridging carboxyl­ato groups in I[link] may be ascribed to steric factors and also to differences in mol­ecular packing effects resulting from the presence of substituents on the aromatic rings of both types of ligand.

Table 3
Comparison of geometrical parameters (Å, °) for [Mn2(μ-NBz)22-NBz)2(4-Mepy)4] I[link] and structurally related MnII–carboxyl­ate complexes

Compound Mn⋯Mn Mn—O—C M—O (chelate) M—O(bridge)
[Mn2(μ-NBz)2(κ2-NBz)2(4-Mepy)4]a 4.1324 (4) 178.20 (1), 116.68 (8) 2.267 (1), 2.329 (1) 2.112 (1), 2.132 (1)
[Mn2(μ-tolf)2(κ2-tolf)2(bipyam)2]b 4.548 150.37 (2), 139.28 (2) 2.215 (2), 2.363 (2) 2.087 (2), 2.102 (2)
[Mn2(μ-OAc)2(κ2-OAc)2(L1)2]c 4.160 151.50 (3), 127.72 (3) 2.280 (3), 2.294 (3) 2.142 (5), 2.280 (4)
[Mn2(μ-OBz)2(κ2-OBz)2(py)4]d 4.531 149.32 (1), 133.39 (1) 2.305 (1), 2.232 (1) 2.109 (1), 2.094 (1)
[Mn2(μ-DFBz)2(κ2-DFBz)2(THF)2]e 4.299 155.76 (3), 131.40 (3) 2.194 (3), 2.226 (3) 2.061 (4), 2.040 (3)
Notes: (a) present work (HNBz is 4-nitro­benzoic acid and 4-Mepy is 4-methyl­pyridine); (b) Zampakou et al. (2014[Zampakou, M., Rizeq, N., Tangoulis, V., Papadopoulos, A. N., Perdih, F., Turel, I. & Psomas, G. (2014). Inorg. Chem. 53, 2040-2052.]) (Htolf is tolfenamic acid and bipyam is 2,2′-bi­pyridyl­amine); (c) Mukherjee et al. (2004[Mukherjee, P. S., Min, K. S., Arif, A. M. & Stang, P. J. (2004). Inorg. Chem. 43, 6345-6350.]) (HOAc is acetic acid and L1 is 1,8-bis­(4-pyridyl­ethyn­yl)anthracene); (d) Ran et al. (2006[Ran, J.-W., Gong, D.-J. & Li, Y.-H. (2006). Acta Cryst. E62, m3142-m3143.]) (HOBz is benzoic acid); (e) Sivanesan et al. (2014[Sivanesan, D., Kannan, S., Thangadurai, T. D., Jung, K.-D. & Yoon, S. (2014). Dalton Trans. 43, 11465-11469.]) (HDFBz is 2,6-di(4-fluoro­phen­yl)benzoic acid).

5. Synthesis and crystallization

A mixture of MnSO4·H2O (0.845 g, 5 mmol), NaNBz (1.89 g, 10 mmol) and 4-Mepy (1 ml, 10 mmol) was stirred mechanically in water (20 ml) at room temperature for 4 h. The yellow precipitate that appeared was washed thoroughly with water and then with methanol before being dried in a vacuum desiccator over fused CaCl2. Yield: 2.58 g (85% based on Mn). Light-yellow transparent crystals of I[link] suitable for X-ray analysis were obtained in 2–3 days from a solution prepared by mixing 2 ml of a methano­lic solution of NaNBz (1 mmol) with a solution (2 ml) of MnSO4·H2O (0.5 mmol) containing 4-Mepy (1 mmol) in methanol/water (1:1 v/v). Analysis calculated for C48H36N8O16Mn2: C, 52.84%; H, 3.30%; N, 10.27%; found: C, 52.04%; H, 3.02%; N, 9.8%; μeff (295 K)/Mn = 5.36 BM.

The method developed by us to prepare I[link] is simpler than the reported procedure for preparing the related species [Mn2(μ-OBz)2(κ2-OBz)2(py)4] (Ran et al. 2006[Ran, J.-W., Gong, D.-J. & Li, Y.-H. (2006). Acta Cryst. E62, m3142-m3143.]) and the present method can be easily extended to obtain other analogous manganese(II) complexes.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms were positioned geometrically (aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set at 1.2–1.5Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula [Mn2(C7H4NO4)4(C6H7N)4]
Mr 1146.83
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.8337 (3), 12.4240 (4), 12.9995 (4)
α, β, γ (°) 94.357 (1), 99.607 (1), 107.270 (1)
V3) 1331.28 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.28 × 0.24 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 31721, 7705, 6595
Rint 0.022
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.03
No. of reflections 7705
No. of parameters 354
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.25
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.]), SHELXT2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2012); cell refinement: SMART (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Bis(µ-4-nitrobenzoato-κ2O:O')bis[bis(4-methylpyridine-κN)(4-nitrobenzoato-κ2O,O')manganese(II)] top
Crystal data top
[Mn2(C7H4NO4)4(C6H7N)4]Z = 1
Mr = 1146.83F(000) = 590
Triclinic, P1Dx = 1.430 Mg m3
a = 8.8337 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4240 (4) ÅCell parameters from 31721 reflections
c = 12.9995 (4) Åθ = 2.5–30.0°
α = 94.357 (1)°µ = 0.55 mm1
β = 99.607 (1)°T = 293 K
γ = 107.270 (1)°Prism, yellow
V = 1331.28 (7) Å30.28 × 0.24 × 0.18 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
6595 reflections with I > 2σ(I)
Radiation source: Sealed X-ray TubeRint = 0.022
phi and ω scansθmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1212
k = 1517
31721 measured reflectionsl = 1818
7705 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.2308P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
7705 reflectionsΔρmax = 0.33 e Å3
354 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.88391 (2)0.07843 (2)0.09236 (2)0.03854 (7)
N11.00416 (16)0.02174 (10)0.23777 (10)0.0501 (3)
N20.77004 (14)0.13048 (10)0.05684 (9)0.0468 (2)
C10.62898 (18)0.06804 (13)0.11848 (12)0.0520 (3)
H10.57240.00020.09820.062*
C20.5640 (2)0.09997 (16)0.21003 (13)0.0605 (4)
H20.46570.05360.25020.073*
C40.7884 (2)0.26701 (18)0.17717 (16)0.0701 (5)
H40.84560.33670.19470.084*
C50.8460 (2)0.22967 (16)0.08665 (15)0.0629 (4)
H50.94250.27550.04400.075*
C30.6444 (2)0.20080 (17)0.24265 (13)0.0617 (4)
C110.9461 (3)0.08110 (14)0.26426 (14)0.0697 (5)
H100.85730.13300.21900.084*
C71.1308 (2)0.09397 (17)0.30492 (16)0.0734 (5)
H61.17400.16700.28850.088*
C91.1406 (3)0.04168 (18)0.42468 (14)0.0672 (4)
C81.2006 (3)0.0656 (2)0.39734 (17)0.0845 (6)
H71.28880.11910.44160.101*
C101.0100 (3)0.11549 (16)0.35530 (16)0.0805 (6)
H90.96440.18900.36980.097*
O20.94565 (14)0.25815 (9)0.17435 (9)0.0561 (3)
O10.72129 (14)0.13417 (9)0.19520 (9)0.0562 (3)
C130.82251 (17)0.23111 (11)0.21416 (10)0.0435 (3)
C140.79795 (17)0.32023 (11)0.28965 (10)0.0432 (3)
C60.5793 (4)0.2384 (3)0.34382 (18)0.0925 (7)
H13A0.63910.31640.34560.139*
H13B0.46720.23120.34750.139*
H13C0.59010.19170.40270.139*
C150.9106 (2)0.42822 (13)0.31145 (12)0.0552 (3)
H180.99950.44560.27900.066*
C190.6653 (2)0.29372 (14)0.33749 (12)0.0529 (3)
H140.58880.22180.32070.063*
C170.7585 (3)0.47953 (16)0.43073 (12)0.0646 (4)
C160.8904 (3)0.51050 (14)0.38215 (14)0.0668 (5)
H170.96310.58390.39630.080*
C180.6454 (2)0.37356 (17)0.41029 (14)0.0639 (4)
H150.55810.35570.44420.077*
O31.11026 (12)0.12734 (10)0.04622 (11)0.0629 (3)
O40.72018 (12)0.08983 (8)0.04584 (8)0.0502 (2)
C200.75917 (14)0.15375 (10)0.01671 (9)0.0371 (2)
C121.2107 (4)0.0756 (3)0.52625 (19)0.0975 (8)
H20A1.32590.05630.53350.146*
H20B1.16470.15610.52560.146*
H20C1.18610.03600.58430.146*
O70.6629 (3)0.5287 (2)0.57701 (14)0.1149 (7)
N40.7411 (3)0.56459 (19)0.50990 (14)0.0906 (6)
O80.8087 (4)0.66309 (18)0.50708 (18)0.1545 (11)
C210.63841 (13)0.26916 (9)0.05861 (9)0.0351 (2)
C220.48941 (15)0.30059 (11)0.02844 (11)0.0436 (3)
H250.46420.25020.01730.052*
C260.67611 (16)0.34382 (11)0.12700 (11)0.0464 (3)
H260.77590.32260.14720.056*
C240.41926 (16)0.47908 (11)0.13350 (11)0.0450 (3)
C230.37778 (16)0.40726 (12)0.06645 (12)0.0488 (3)
H290.27760.42920.04680.059*
C250.56483 (18)0.45045 (12)0.16547 (12)0.0519 (3)
H270.58850.50110.21180.062*
N30.30228 (18)0.59308 (11)0.17352 (12)0.0619 (4)
O60.17528 (17)0.61927 (12)0.14453 (14)0.0885 (5)
O50.3380 (2)0.65513 (12)0.23506 (16)0.1027 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.03514 (10)0.03326 (10)0.04133 (11)0.00359 (7)0.00826 (7)0.00303 (7)
N10.0530 (6)0.0418 (6)0.0483 (6)0.0099 (5)0.0026 (5)0.0001 (5)
N20.0387 (5)0.0488 (6)0.0485 (6)0.0070 (5)0.0100 (4)0.0052 (5)
C10.0444 (7)0.0508 (8)0.0530 (7)0.0058 (6)0.0067 (6)0.0035 (6)
C20.0559 (9)0.0651 (10)0.0518 (8)0.0134 (7)0.0004 (6)0.0009 (7)
C40.0625 (10)0.0703 (11)0.0750 (11)0.0090 (8)0.0192 (8)0.0299 (9)
C50.0465 (8)0.0635 (10)0.0671 (10)0.0002 (7)0.0075 (7)0.0163 (8)
C30.0668 (10)0.0764 (11)0.0482 (8)0.0293 (9)0.0148 (7)0.0126 (7)
C110.0932 (13)0.0409 (7)0.0563 (9)0.0073 (8)0.0085 (9)0.0009 (6)
C70.0692 (11)0.0588 (10)0.0678 (10)0.0029 (8)0.0121 (8)0.0113 (8)
C90.0855 (12)0.0702 (11)0.0515 (8)0.0401 (9)0.0027 (8)0.0043 (7)
C80.0787 (13)0.0807 (13)0.0687 (11)0.0079 (10)0.0214 (10)0.0055 (10)
C100.1193 (18)0.0469 (9)0.0643 (10)0.0218 (10)0.0049 (11)0.0090 (8)
O20.0551 (6)0.0512 (6)0.0608 (6)0.0120 (5)0.0226 (5)0.0055 (5)
O10.0568 (6)0.0422 (5)0.0649 (6)0.0086 (4)0.0177 (5)0.0055 (4)
C130.0488 (7)0.0408 (6)0.0414 (6)0.0162 (5)0.0085 (5)0.0004 (5)
C140.0519 (7)0.0416 (6)0.0390 (6)0.0203 (5)0.0080 (5)0.0033 (5)
C60.1128 (19)0.1115 (19)0.0593 (11)0.0439 (15)0.0106 (11)0.0272 (12)
C150.0659 (9)0.0451 (7)0.0507 (7)0.0128 (7)0.0126 (7)0.0009 (6)
C190.0585 (8)0.0535 (8)0.0534 (7)0.0251 (7)0.0162 (6)0.0064 (6)
C170.0943 (13)0.0664 (10)0.0448 (7)0.0498 (10)0.0064 (8)0.0035 (7)
C160.0943 (13)0.0436 (8)0.0567 (9)0.0219 (8)0.0038 (9)0.0056 (6)
C180.0770 (11)0.0768 (11)0.0540 (8)0.0444 (10)0.0213 (8)0.0061 (8)
O30.0379 (5)0.0517 (6)0.0875 (8)0.0050 (4)0.0227 (5)0.0058 (5)
O40.0497 (5)0.0379 (5)0.0530 (5)0.0022 (4)0.0110 (4)0.0086 (4)
C200.0335 (5)0.0327 (5)0.0383 (5)0.0035 (4)0.0020 (4)0.0020 (4)
C120.123 (2)0.1125 (19)0.0656 (12)0.0615 (17)0.0041 (13)0.0184 (12)
O70.1355 (16)0.1494 (18)0.0750 (10)0.0728 (14)0.0291 (10)0.0241 (11)
N40.1326 (17)0.0931 (14)0.0602 (9)0.0709 (13)0.0042 (10)0.0155 (9)
O80.302 (4)0.0794 (12)0.1036 (15)0.0949 (18)0.0474 (18)0.0120 (10)
C210.0308 (5)0.0315 (5)0.0377 (5)0.0042 (4)0.0042 (4)0.0016 (4)
C220.0354 (5)0.0406 (6)0.0504 (7)0.0056 (5)0.0109 (5)0.0000 (5)
C260.0397 (6)0.0387 (6)0.0547 (7)0.0031 (5)0.0150 (5)0.0045 (5)
C240.0412 (6)0.0326 (5)0.0486 (6)0.0010 (5)0.0018 (5)0.0048 (5)
C230.0336 (6)0.0460 (7)0.0588 (8)0.0003 (5)0.0096 (5)0.0070 (6)
C250.0540 (8)0.0366 (6)0.0567 (8)0.0053 (5)0.0114 (6)0.0079 (5)
N30.0581 (8)0.0389 (6)0.0681 (8)0.0058 (5)0.0046 (6)0.0061 (6)
O60.0597 (7)0.0637 (8)0.1117 (12)0.0219 (6)0.0109 (7)0.0083 (8)
O50.1001 (12)0.0485 (7)0.1288 (14)0.0105 (7)0.0213 (10)0.0325 (8)
Geometric parameters (Å, º) top
Mn1—O32.1122 (10)C6—H13A0.9600
Mn1—O42.1328 (9)C6—H13B0.9600
Mn1—N22.2621 (12)C6—H13C0.9600
Mn1—O22.2672 (11)C15—C161.394 (2)
Mn1—N12.2746 (13)C15—H180.9300
Mn1—O12.3285 (11)C19—C181.388 (2)
Mn1—C132.6155 (13)C19—H140.9300
Mn1—Mn1i4.1324 (4)C17—C181.371 (3)
N1—C111.323 (2)C17—C161.385 (3)
N1—C71.333 (2)C17—N41.478 (2)
N2—C51.337 (2)C16—H170.9300
N2—C11.3398 (18)C18—H150.9300
C1—C21.372 (2)O3—C20i1.2358 (15)
C1—H10.9300O4—C201.2523 (16)
C2—C31.381 (3)C20—O3i1.2358 (15)
C2—H20.9300C20—C211.5065 (15)
C4—C51.372 (3)C12—H20A0.9600
C4—C31.389 (3)C12—H20B0.9600
C4—H40.9300C12—H20C0.9600
C5—H50.9300O7—N41.230 (3)
C3—C61.510 (3)N4—O81.198 (3)
C11—C101.378 (3)C21—C261.3852 (17)
C11—H100.9300C21—C221.3889 (16)
C7—C81.377 (3)C22—C231.3909 (18)
C7—H60.9300C22—H250.9300
C9—C101.373 (3)C26—C251.3905 (17)
C9—C81.378 (3)C26—H260.9300
C9—C121.507 (3)C24—C231.369 (2)
C8—H70.9300C24—C251.372 (2)
C10—H90.9300C24—N31.4779 (16)
O2—C131.2495 (17)C23—H290.9300
O1—C131.2460 (17)C25—H270.9300
C13—C141.5115 (18)N3—O61.204 (2)
C14—C191.383 (2)N3—O51.212 (2)
C14—C151.388 (2)
O3—Mn1—O4120.82 (4)O1—C13—O2122.88 (12)
O3—Mn1—N289.91 (5)O1—C13—C14119.14 (12)
O4—Mn1—N289.04 (4)O2—C13—C14117.98 (12)
O3—Mn1—O288.38 (4)O1—C13—Mn162.88 (7)
O4—Mn1—O2150.77 (4)O2—C13—Mn160.06 (7)
N2—Mn1—O289.75 (5)C14—C13—Mn1176.03 (10)
O3—Mn1—N188.27 (5)C19—C14—C15120.42 (13)
O4—Mn1—N190.22 (4)C19—C14—C13120.16 (13)
N2—Mn1—N1177.33 (4)C15—C14—C13119.42 (13)
O2—Mn1—N192.15 (4)C3—C6—H13A109.5
O3—Mn1—O1144.94 (4)C3—C6—H13B109.5
O4—Mn1—O194.05 (4)H13A—C6—H13B109.5
N2—Mn1—O194.59 (4)C3—C6—H13C109.5
O2—Mn1—O156.95 (4)H13A—C6—H13C109.5
N1—Mn1—O188.02 (5)H13B—C6—H13C109.5
O3—Mn1—C13116.67 (4)C14—C15—C16119.86 (16)
O4—Mn1—C13122.47 (4)C14—C15—H18120.1
N2—Mn1—C1393.26 (4)C16—C15—H18120.1
O2—Mn1—C1328.53 (4)C14—C19—C18120.55 (16)
N1—Mn1—C1389.30 (4)C14—C19—H14119.7
O1—Mn1—C1328.44 (4)C18—C19—H14119.7
O3—Mn1—Mn1i44.99 (3)C18—C17—C16123.28 (14)
O4—Mn1—Mn1i75.87 (3)C18—C17—N4118.56 (19)
N2—Mn1—Mn1i87.25 (3)C16—C17—N4118.15 (19)
O2—Mn1—Mn1i133.23 (3)C17—C16—C15117.91 (16)
N1—Mn1—Mn1i90.09 (3)C17—C16—H17121.0
O1—Mn1—Mn1i169.73 (3)C15—C16—H17121.0
C13—Mn1—Mn1i161.66 (3)C17—C18—C19117.93 (17)
C11—N1—C7116.50 (15)C17—C18—H15121.0
C11—N1—Mn1122.21 (11)C19—C18—H15121.0
C7—N1—Mn1121.12 (11)C20i—O3—Mn1178.20 (10)
C5—N2—C1116.88 (14)C20—O4—Mn1116.68 (8)
C5—N2—Mn1118.98 (10)O3i—C20—O4123.88 (11)
C1—N2—Mn1124.14 (10)O3i—C20—C21118.52 (11)
N2—C1—C2123.16 (15)O4—C20—C21117.61 (10)
N2—C1—H1118.4C9—C12—H20A109.5
C2—C1—H1118.4C9—C12—H20B109.5
C1—C2—C3120.12 (15)H20A—C12—H20B109.5
C1—C2—H2119.9C9—C12—H20C109.5
C3—C2—H2119.9H20A—C12—H20C109.5
C5—C4—C3119.99 (16)H20B—C12—H20C109.5
C5—C4—H4120.0O8—N4—O7124.4 (2)
C3—C4—H4120.0O8—N4—C17118.2 (2)
N2—C5—C4123.14 (16)O7—N4—C17117.4 (2)
N2—C5—H5118.4C26—C21—C22120.08 (11)
C4—C5—H5118.4C26—C21—C20120.01 (10)
C2—C3—C4116.67 (15)C22—C21—C20119.91 (11)
C2—C3—C6122.02 (18)C21—C22—C23120.16 (12)
C4—C3—C6121.31 (19)C21—C22—H25119.9
N1—C11—C10123.56 (17)C23—C22—H25119.9
N1—C11—H10118.2C21—C26—C25120.02 (12)
C10—C11—H10118.2C21—C26—H26120.0
N1—C7—C8123.10 (17)C25—C26—H26120.0
N1—C7—H6118.5C23—C24—C25123.12 (11)
C8—C7—H6118.5C23—C24—N3118.70 (13)
C10—C9—C8116.18 (16)C25—C24—N3118.17 (14)
C10—C9—C12121.6 (2)C24—C23—C22118.22 (12)
C8—C9—C12122.2 (2)C24—C23—H29120.9
C7—C8—C9120.40 (18)C22—C23—H29120.9
C7—C8—H7119.8C24—C25—C26118.39 (13)
C9—C8—H7119.8C24—C25—H27120.8
C9—C10—C11120.27 (18)C26—C25—H27120.8
C9—C10—H9119.9O6—N3—O5123.18 (15)
C11—C10—H9119.9O6—N3—C24118.46 (16)
C13—O2—Mn191.41 (8)O5—N3—C24118.36 (15)
C13—O1—Mn188.68 (8)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N2/C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
C1—H1···O40.932.613.172 (2)119
C2—H2···O1ii0.932.653.278 (2)125
C11—H10···O40.932.553.161 (2)124
C22—H25···Cgii0.932.803.6844 (16)160
Symmetry code: (ii) x+1, y, z.
Comparison of geometrical parameters (Å, °) for [Mn2(µ-NBz)2(η2-NBz)2(4-Mepy)4] (I) and structurally related MnII–carboxylate complexes top
CompoundMn···MnMn—O—CM—O (chelate)M—O(bridge)
[Mn2(µ-NBz)2(η2-NBz)2(4-Mepy)4]a4.1324 (4)178.20 (1), 116.68 (8)2.267 (1), 2.329 (1)2.112 (1), 2.132 (1)
[Mn2(µ-tolf)2(η2-tolf)2(bipyam)2]b4.548150.37 (2), 139.28 (2)2.215 (2), 2.363 (2)2.087 (2), 2.102 (2)
[Mn2(µ-OAc)2(η2-OAc)2(L1)2]c4.160151.50 (3), 127.72 (3)2.280 (3), 2.294 (3)2.142 (5), 2.280 (4)
[Mn2(µ-OBz)2(η2-OBz)2(py)4]d4.531149.32 (1)/133.39 (1)2.305 (1), 2.232 (1)2.109 (1), 2.094 (1)
[Mn2(µ-DFBz)2(η2-DFBz)2(THF)2]e4.299155.76 (3), 131.40 (3)2.194 (3), 2.226 (3)2.061 (4), 2.040 (3)
Notes: (a) present work (HNBz is 4-nitrobenzoic acid and 4-Mepy is 4-methylpyridine); (b) Zampakou et al. (2014) (Htolf is tolfenamic acid and bipyam is 2,2'-bipyridylamine); (c) Mukherjee et al. (2004) (HOAc is acetic acid and L1 is 1,8-bis(4-pyridylethynyl)anthracene); (d) Ran et al. (2006) (HOBz is benzoic acid); (e) Sivanesan et al. (2014) (HDFBz is 2,6-di(4-fluorophenyl)benzoic acid).
 

Acknowledgements

The authors thank the Department of Science and Technology, Government of India, for a grant to carrying out this work. The SAIF, Gauhati University, is thanked for providing the X-ray diffraction data.

References

First citationArafa, W. A. A., Kärkäs, M. D., Lee, B.-L., Åkermark, T., Liao, R.-Z., Berends, H.-M., Messinger, J., Siegbahn, P. E. M. & Åkermark, B. (2014). Phys. Chem. Chem. Phys. 16, 11950–11964.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCastaman, S. T., Nakagaki, S., Ribeiro, R. R., Ciuffi, K. J. & Drechsel, S. M. (2009). J. Mol. Catal. A Chem. 300, 89–97.  Web of Science CrossRef CAS Google Scholar
First citationChakrabarty, R., Bora, S. J. & Das, B. K. (2007). Inorg. Chem. 46, 9450–9462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChakravorty, S. & Das, B. K. (2016). Unpublished results.  Google Scholar
First citationDey, D., De, A.,Pal, S., Mitra, P., Ranjani, A., Gayethri, L., Chandraleka, S., Dhanasekaran, D., Akbarsha, M. A., Kole, N. & Biswas, B. (2015). Indian J. Chem. Sect. A, 54, 170–178.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaduk, J. A. (2000). Acta Cryst. B56, 474–485.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKaduk, J. A. & Golab, J. T. (1999). Acta Cryst. B55, 85–94.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLuo, J., Hong, M., Wang, R., Cao, R., Han, L., Yuan, D., Lin, Z. & Zhou, Y. (2003). Inorg. Chem. 42, 4486–4488.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMcCool, N. S., Robinson, D. M., Sheats, J. E. & Dismukes, G. C. (2011). J. Am. Chem. Soc. 133, 11446–11449.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMiyasaka, H., Clérac, R., Wernsdorfer, W., Lecren, L., Bonhomme, C., Sugiura, K. & Yamashita, M. (2004). Angew. Chem. Int. Ed. 43, 2801–2805.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, P. S., Min, K. S., Arif, A. M. & Stang, P. J. (2004). Inorg. Chem. 43, 6345–6350.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNocera, D. G. (2012). Acc. Chem. Res. 45, 767–776.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRan, J.-W., Gong, D.-J. & Li, Y.-H. (2006). Acta Cryst. E62, m3142–m3143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSessoli, R., Tsai, H.-L., Schake, A. R., Wang, S., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. & Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1804–1816.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivanesan, D., Kannan, S., Thangadurai, T. D., Jung, K.-D. & Yoon, S. (2014). Dalton Trans. 43, 11465–11469.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Alegria, E. C. B. A., Liu, C.-M. & Pombeiro, A. J. L. (2014). Dalton Trans. 43, 3966–3977.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationUhrecký, R., Moncoľ, J., Koman, M., Titiš, J. & Boča, R. (2013). Dalton Trans. 42, 9490–9494.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZampakou, M., Rizeq, N., Tangoulis, V., Papadopoulos, A. N., Perdih, F., Turel, I. & Psomas, G. (2014). Inorg. Chem. 53, 2040–2052.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Z. X., Li, Y., Li, K., Song, W. & Li, Q. (2007). Inorg. Chem. Commun. 10, 1276–1280.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds