research communications
μ-4-nitrobenzoato-κ2O:O′)bis[bis(4-methylpyridine-κN)(4-nitrobenzoato-κ2O,O′)manganese(II)]
of bis(aDepartment of Chemistry, Gauhati University, Guwahati 781 014, India, and bDepartment of Chemistry, Pandu College, Guwahati 781 012, India
*Correspondence e-mail: birinchi.das@gmail.com
The title compound, [Mn2(C7H4NO4)4(C6H7N)4] or [Mn2(μ-NBz)2(κ2-NBz)2(4-Mepy)4], where NBz is 4-nitrobenzoate and 4-Mepy is 4-methylpyridine, is a centrosymmetric dinuclear complex in which the MnII atoms are bridged by two NBz ligands with Mn⋯Mn = 4.1324 (4) Å. The MnII atom in this dimeric species is present in a distorted octahedral environment with the four coordinating O atoms forming the equatorial plane and the two pyridyl N atoms occupying the axial sites. An important structural feature of the dimeric complex is that each of the bridging carboxylate ligands binds to the metal ions in an asymmetric fashion involving bent and linear Mn—O—C units. The crystal packing is consolidated by C—H⋯O and C—H⋯π interactions.
Keywords: crystal structure; manganese 4-nitrobenzoate; MnII tetracarboxylate dimer; asymmetric carboxylate bridge.
CCDC reference: 1508004
1. Chemical context
Polynuclear manganese complexes with carboxylate ligation have received great attention due to their potential applications in catalysis (Arafa et al., 2014), magnetism (Miyasaka et al., 2004) and their antitumor activity (Dey et al., 2015) as well as in other areas. The occurrence of Mn in a number of oxidation states (II–IV) under normal conditions and also the ability of carboxylato ligands to display a variety of coordination modes are the main reasons why Mn–carboxylates have received a lot of attention in the recent past. It has been reported that an Mn-based binuclear complex of composition [Mn2(bbppnol)(μ-O2CCH3)2] [bbppnol = N,N′-bis(2-hydroxybenzyl)N,N′-bis(2-methylpyridyl)-2-ol-1,3-propanediamine] with two bridging acetato ligands is active as a catalyst in the epoxidation of cyclohexene and cyclooctene (Castaman et al., 2009). A series of dimeric complexes with the general formula [Mn2(O2CCH3)L] {where L = 2,2′-[2-hydroxy-5-(pivalamidomethyl)-1,3-phenylene]bis(1H-benzo[d]imidazole-4-carboxylic acid), 2,2′-(5-benzyl-2-hydroxy-1,3-phenylene)bis(1H-benzo[d]imidazole-4-carboxylic acid) etc.} have been explored as catalysts for the water-oxidation reaction with a view to generating O2 and H2 (Arafa et al., 2014). Microwave-assisted alcohol oxidation with tert-butylhydroperoxide (TBHP) has been carried out (Sutradhar et al., 2014) using a Schiff base-containing Mn dimer. Manganese complexes are also recognized for their magnetic behaviour since coordination compounds of this metal often display large ground-state spin (S) values and the polynuclear manganese cluster [Mn12O12(CH3COO)16(H2O)4]·2CH3COOH·4H2O is considered to be the first single molecule magnet (SMM) (Uhrecký et al., 2013; Sessoli et al., 1993). Complexes of manganese are also considered to be important in view of the occurrence of an Mn4Ca unit in the active site of Photosystem II that catalyses the water-splitting reaction to evolve oxygen in nature (Nocera, 2012).
Keeping in mind earlier results published from our laboratory (Chakrabarty et al., 2007) on the synthesis and catalytic properties of cobalt(III)–oxide pseudo-cubane units of the type [Co4O4(μ-O2CR)4L4], where R is an alkyl or aryl group and L is a monodentate pyridyl ligand, and also due to their relevance as catalysts for the water-oxidation reaction (McCool et al., 2011), we explored whether analogous manganese complexes could also be synthesized. These efforts have led to the synthesis of the title complex, among others. Herein we report the synthesis, and some salient properties of the dimeric manganese(II) compound [Mn2(μ-NBz)2(κ2-NBz)2(4-Mepy)4], I, which belongs to a structure type constituted of only a limited number of complexes (vide infra).
2. Structural commentary
Fig. 1 shows the molecular structure of the dimeric complex. The two Mn atoms are related by an inversion centre and are bridged by the carboxylate anions of two NBz ligands in a syn–syn fashion. Each MnII atom is further coordinated by a carboxylato ligand in chelating mode. The four oxygen atoms – two from a pair of bridging NBz ligands and two from a chelating NBz ligand - are nearly coplanar with each of the central Mn atoms, forming an equatorial plane; the axial positions for both are occupied by two 4-methylpyridine ligands completing the distorted octahedral geometry around each MnII atom. The bridging Mn—O(carboxyl) bond lengths (∼2.1 Å) are found to be shorter than the Mn—O(carboxyl) distances (∼2.3 Å) in the chelating ligands (Table 1). For the chelating NBz anions, the longer Mn—O distances can be attributed to the steric crowding imposed by the neighbouring bridging bis-monodentate NBz anions.
The Mn⋯Mn distance of 4.1324 (4) Å in I precludes any direct bonding interaction between the MnII atoms and is comparable to the corresponding distances in the structurally related CoII complexes [{Co(dpe)(NO2BDC)}·0.5(dpe)]n·nH2O (4.181 Å; Luo et al. 2003), [Co2(4,4′-bipy)2(O2CC6H5)4]n (4.060 Å; Zhang et al. 2007) and Co2(μ-4-nbz)2(κ2-4-nbz)2(4-CNpy)4 (4.226 Å; Chakravorty & Das, 2016). However, it is considerably shorter than in its most closely related analogue [Mn2(μ-OBz)2(κ2-OBz)2(py)4] in which the Mn⋯Mn separation is 4.531 Å (Ran et al., 2006).
The highly distorted nature of the MnO4N2 octahedron in the title species, which is probably due to the steric crowding of both the bridging and chelating NBz ligands surrounding the MnII atom, is manifested by the O—Mn—O and O—Mn—N angles. While the former are in the range 56.95 (4)–150.77 (4)°, the latter are in the range 88.02 (5)–94.59 (5)°.
In the title compound, the carboxyl –COO and –NOO planes of the chelating NBz anion deviate slightly from the phenyl ring plane, forming dihedral angles of 2.6 (3) and 23.6 (4)°, respectively. According to Kaduk (2000) and Kaduk & Golab (1999), completely planar phenyl carboxylates are associated with low conformational energy and any deviation from planarity leads to an increase in the energy of the system. However, this destabilization can be compensated for by efficient crystal packing in the solid state.
3. Supramolecular features
The I features several intramolecular as well as intermolecular C—H⋯O interactions wherein the O atoms from –NO2 and –CO2 groups of the NBz ligand act as hydrogen acceptors (Table 2 and Fig. 2). While the D⋯A separations for these weak contacts are in the range of 3.161 (2) to 3.369 (2) Å, the <C—H⋯O angles are generally lower than 130°, except in one case where a hydrogen bond with a greater D⋯A separation of 3.369 (2) Å forms has an angle of 172°. In addition, intermolecular C—H⋯π interactions involving the pyridyl ring π system of the 4-Mepy ligand link the complex molecules into chains along the a axis (Fig. 3). Although each of the above non-covalent contacts is individually weak, the presence of many of these supramolecular contacts clearly result in extra stability of the species in the solid state. Indeed, the involvement of the –NO2 and –CH3 groups at the 4-positions of the phenyl ring of the NBz ligand and the pyridyl ring of the 4-Mepy ligand may explain why the isolation of complexes analogous to I has not been possible for some combinations of carboxylato and pyridyl ligands.
of4. Database survey
A survey of the Cambridge Structural Database (Groom et al. 2016) shows that only a few dinuclear Mn complexes with both bridging and chelating carboxylate linkages are known. We have tabulated some of the available data for complexes of the type [Mn2(μ-O2CR)2(κ2-O2CR)2L4] in Table 3 in order to compare some of the important geometric parameters. For all complexes, the Mn—O bonds involving the chelating carboxylato ligands are longer than the corresponding Mn—O bonds in the bridging carboxylato ligands. Of particular note among the listed parameters is the near linearity of one of the the <Mn—O—C angles [178.20 (1)° and 116.68 (8)°] observed in the of I. For its most closely related known species, [Mn2(μ-OBz)2(κ2-OBz)2(py)4] (Ran et al. 2006), the corresponding angles are 149.32 (1) and 133.39 (1)°, respectively. The more pronounced asymmetry of bonding in the bridging carboxylato groups in I may be ascribed to steric factors and also to differences in molecular packing effects resulting from the presence of substituents on the aromatic rings of both types of ligand.
|
5. Synthesis and crystallization
A mixture of MnSO4·H2O (0.845 g, 5 mmol), NaNBz (1.89 g, 10 mmol) and 4-Mepy (1 ml, 10 mmol) was stirred mechanically in water (20 ml) at room temperature for 4 h. The yellow precipitate that appeared was washed thoroughly with water and then with methanol before being dried in a vacuum desiccator over fused CaCl2. Yield: 2.58 g (85% based on Mn). Light-yellow transparent crystals of I suitable for X-ray analysis were obtained in 2–3 days from a solution prepared by mixing 2 ml of a methanolic solution of NaNBz (1 mmol) with a solution (2 ml) of MnSO4·H2O (0.5 mmol) containing 4-Mepy (1 mmol) in methanol/water (1:1 v/v). Analysis calculated for C48H36N8O16Mn2: C, 52.84%; H, 3.30%; N, 10.27%; found: C, 52.04%; H, 3.02%; N, 9.8%; μeff (295 K)/Mn = 5.36 BM.
The method developed by us to prepare I is simpler than the reported procedure for preparing the related species [Mn2(μ-OBz)2(κ2-OBz)2(py)4] (Ran et al. 2006) and the present method can be easily extended to obtain other analogous manganese(II) complexes.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically (aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å) and were included in the in the riding-model approximation, with Uiso(H) set at 1.2–1.5Ueq(C).
details are summarized in Table 4
|
Supporting information
CCDC reference: 1508004
https://doi.org/10.1107/S2056989016015589/vn2116sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016015589/vn2116Isup2.hkl
Data collection: SMART (Bruker, 2012); cell
SMART (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).[Mn2(C7H4NO4)4(C6H7N)4] | Z = 1 |
Mr = 1146.83 | F(000) = 590 |
Triclinic, P1 | Dx = 1.430 Mg m−3 |
a = 8.8337 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 12.4240 (4) Å | Cell parameters from 31721 reflections |
c = 12.9995 (4) Å | θ = 2.5–30.0° |
α = 94.357 (1)° | µ = 0.55 mm−1 |
β = 99.607 (1)° | T = 293 K |
γ = 107.270 (1)° | Prism, yellow |
V = 1331.28 (7) Å3 | 0.28 × 0.24 × 0.18 mm |
Bruker SMART APEXII CCD diffractometer | 6595 reflections with I > 2σ(I) |
Radiation source: Sealed X-ray Tube | Rint = 0.022 |
phi and ω scans | θmax = 30.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −12→12 |
k = −15→17 | |
31721 measured reflections | l = −18→18 |
7705 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0619P)2 + 0.2308P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
7705 reflections | Δρmax = 0.33 e Å−3 |
354 parameters | Δρmin = −0.25 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.88391 (2) | 0.07843 (2) | 0.09236 (2) | 0.03854 (7) | |
N1 | 1.00416 (16) | 0.02174 (10) | 0.23777 (10) | 0.0501 (3) | |
N2 | 0.77004 (14) | 0.13048 (10) | −0.05684 (9) | 0.0468 (2) | |
C1 | 0.62898 (18) | 0.06804 (13) | −0.11848 (12) | 0.0520 (3) | |
H1 | 0.5724 | −0.0002 | −0.0982 | 0.062* | |
C2 | 0.5640 (2) | 0.09997 (16) | −0.21003 (13) | 0.0605 (4) | |
H2 | 0.4657 | 0.0536 | −0.2502 | 0.073* | |
C4 | 0.7884 (2) | 0.26701 (18) | −0.17717 (16) | 0.0701 (5) | |
H4 | 0.8456 | 0.3367 | −0.1947 | 0.084* | |
C5 | 0.8460 (2) | 0.22967 (16) | −0.08665 (15) | 0.0629 (4) | |
H5 | 0.9425 | 0.2755 | −0.0440 | 0.075* | |
C3 | 0.6444 (2) | 0.20080 (17) | −0.24265 (13) | 0.0617 (4) | |
C11 | 0.9461 (3) | −0.08110 (14) | 0.26426 (14) | 0.0697 (5) | |
H10 | 0.8573 | −0.1330 | 0.2190 | 0.084* | |
C7 | 1.1308 (2) | 0.09397 (17) | 0.30492 (16) | 0.0734 (5) | |
H6 | 1.1740 | 0.1670 | 0.2885 | 0.088* | |
C9 | 1.1406 (3) | −0.04168 (18) | 0.42468 (14) | 0.0672 (4) | |
C8 | 1.2006 (3) | 0.0656 (2) | 0.39734 (17) | 0.0845 (6) | |
H7 | 1.2888 | 0.1191 | 0.4416 | 0.101* | |
C10 | 1.0100 (3) | −0.11549 (16) | 0.35530 (16) | 0.0805 (6) | |
H9 | 0.9644 | −0.1890 | 0.3698 | 0.097* | |
O2 | 0.94565 (14) | 0.25815 (9) | 0.17435 (9) | 0.0561 (3) | |
O1 | 0.72129 (14) | 0.13417 (9) | 0.19520 (9) | 0.0562 (3) | |
C13 | 0.82251 (17) | 0.23111 (11) | 0.21416 (10) | 0.0435 (3) | |
C14 | 0.79795 (17) | 0.32023 (11) | 0.28965 (10) | 0.0432 (3) | |
C6 | 0.5793 (4) | 0.2384 (3) | −0.34382 (18) | 0.0925 (7) | |
H13A | 0.6391 | 0.3164 | −0.3456 | 0.139* | |
H13B | 0.4672 | 0.2312 | −0.3475 | 0.139* | |
H13C | 0.5901 | 0.1917 | −0.4027 | 0.139* | |
C15 | 0.9106 (2) | 0.42822 (13) | 0.31145 (12) | 0.0552 (3) | |
H18 | 0.9995 | 0.4456 | 0.2790 | 0.066* | |
C19 | 0.6653 (2) | 0.29372 (14) | 0.33749 (12) | 0.0529 (3) | |
H14 | 0.5888 | 0.2218 | 0.3207 | 0.063* | |
C17 | 0.7585 (3) | 0.47953 (16) | 0.43073 (12) | 0.0646 (4) | |
C16 | 0.8904 (3) | 0.51050 (14) | 0.38215 (14) | 0.0668 (5) | |
H17 | 0.9631 | 0.5839 | 0.3963 | 0.080* | |
C18 | 0.6454 (2) | 0.37356 (17) | 0.41029 (14) | 0.0639 (4) | |
H15 | 0.5581 | 0.3557 | 0.4442 | 0.077* | |
O3 | 1.11026 (12) | 0.12734 (10) | 0.04622 (11) | 0.0629 (3) | |
O4 | 0.72018 (12) | −0.08983 (8) | 0.04584 (8) | 0.0502 (2) | |
C20 | 0.75917 (14) | −0.15375 (10) | −0.01671 (9) | 0.0371 (2) | |
C12 | 1.2107 (4) | −0.0756 (3) | 0.52625 (19) | 0.0975 (8) | |
H20A | 1.3259 | −0.0563 | 0.5335 | 0.146* | |
H20B | 1.1647 | −0.1561 | 0.5256 | 0.146* | |
H20C | 1.1861 | −0.0360 | 0.5843 | 0.146* | |
O7 | 0.6629 (3) | 0.5287 (2) | 0.57701 (14) | 0.1149 (7) | |
N4 | 0.7411 (3) | 0.56459 (19) | 0.50990 (14) | 0.0906 (6) | |
O8 | 0.8087 (4) | 0.66309 (18) | 0.50708 (18) | 0.1545 (11) | |
C21 | 0.63841 (13) | −0.26916 (9) | −0.05861 (9) | 0.0351 (2) | |
C22 | 0.48941 (15) | −0.30059 (11) | −0.02844 (11) | 0.0436 (3) | |
H25 | 0.4642 | −0.2502 | 0.0173 | 0.052* | |
C26 | 0.67611 (16) | −0.34382 (11) | −0.12700 (11) | 0.0464 (3) | |
H26 | 0.7759 | −0.3226 | −0.1472 | 0.056* | |
C24 | 0.41926 (16) | −0.47908 (11) | −0.13350 (11) | 0.0450 (3) | |
C23 | 0.37778 (16) | −0.40726 (12) | −0.06645 (12) | 0.0488 (3) | |
H29 | 0.2776 | −0.4292 | −0.0468 | 0.059* | |
C25 | 0.56483 (18) | −0.45045 (12) | −0.16547 (12) | 0.0519 (3) | |
H27 | 0.5885 | −0.5011 | −0.2118 | 0.062* | |
N3 | 0.30228 (18) | −0.59308 (11) | −0.17352 (12) | 0.0619 (4) | |
O6 | 0.17528 (17) | −0.61927 (12) | −0.14453 (14) | 0.0885 (5) | |
O5 | 0.3380 (2) | −0.65513 (12) | −0.23506 (16) | 0.1027 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.03514 (10) | 0.03326 (10) | 0.04133 (11) | 0.00359 (7) | 0.00826 (7) | −0.00303 (7) |
N1 | 0.0530 (6) | 0.0418 (6) | 0.0483 (6) | 0.0099 (5) | 0.0026 (5) | −0.0001 (5) |
N2 | 0.0387 (5) | 0.0488 (6) | 0.0485 (6) | 0.0070 (5) | 0.0100 (4) | 0.0052 (5) |
C1 | 0.0444 (7) | 0.0508 (8) | 0.0530 (7) | 0.0058 (6) | 0.0067 (6) | 0.0035 (6) |
C2 | 0.0559 (9) | 0.0651 (10) | 0.0518 (8) | 0.0134 (7) | 0.0004 (6) | 0.0009 (7) |
C4 | 0.0625 (10) | 0.0703 (11) | 0.0750 (11) | 0.0090 (8) | 0.0192 (8) | 0.0299 (9) |
C5 | 0.0465 (8) | 0.0635 (10) | 0.0671 (10) | 0.0002 (7) | 0.0075 (7) | 0.0163 (8) |
C3 | 0.0668 (10) | 0.0764 (11) | 0.0482 (8) | 0.0293 (9) | 0.0148 (7) | 0.0126 (7) |
C11 | 0.0932 (13) | 0.0409 (7) | 0.0563 (9) | 0.0073 (8) | −0.0085 (9) | 0.0009 (6) |
C7 | 0.0692 (11) | 0.0588 (10) | 0.0678 (10) | −0.0029 (8) | −0.0121 (8) | 0.0113 (8) |
C9 | 0.0855 (12) | 0.0702 (11) | 0.0515 (8) | 0.0401 (9) | 0.0027 (8) | 0.0043 (7) |
C8 | 0.0787 (13) | 0.0807 (13) | 0.0687 (11) | 0.0079 (10) | −0.0214 (10) | 0.0055 (10) |
C10 | 0.1193 (18) | 0.0469 (9) | 0.0643 (10) | 0.0218 (10) | −0.0049 (11) | 0.0090 (8) |
O2 | 0.0551 (6) | 0.0512 (6) | 0.0608 (6) | 0.0120 (5) | 0.0226 (5) | −0.0055 (5) |
O1 | 0.0568 (6) | 0.0422 (5) | 0.0649 (6) | 0.0086 (4) | 0.0177 (5) | −0.0055 (4) |
C13 | 0.0488 (7) | 0.0408 (6) | 0.0414 (6) | 0.0162 (5) | 0.0085 (5) | 0.0004 (5) |
C14 | 0.0519 (7) | 0.0416 (6) | 0.0390 (6) | 0.0203 (5) | 0.0080 (5) | 0.0033 (5) |
C6 | 0.1128 (19) | 0.1115 (19) | 0.0593 (11) | 0.0439 (15) | 0.0106 (11) | 0.0272 (12) |
C15 | 0.0659 (9) | 0.0451 (7) | 0.0507 (7) | 0.0128 (7) | 0.0126 (7) | −0.0009 (6) |
C19 | 0.0585 (8) | 0.0535 (8) | 0.0534 (7) | 0.0251 (7) | 0.0162 (6) | 0.0064 (6) |
C17 | 0.0943 (13) | 0.0664 (10) | 0.0448 (7) | 0.0498 (10) | 0.0064 (8) | −0.0035 (7) |
C16 | 0.0943 (13) | 0.0436 (8) | 0.0567 (9) | 0.0219 (8) | 0.0038 (9) | −0.0056 (6) |
C18 | 0.0770 (11) | 0.0768 (11) | 0.0540 (8) | 0.0444 (10) | 0.0213 (8) | 0.0061 (8) |
O3 | 0.0379 (5) | 0.0517 (6) | 0.0875 (8) | −0.0050 (4) | 0.0227 (5) | −0.0058 (5) |
O4 | 0.0497 (5) | 0.0379 (5) | 0.0530 (5) | 0.0022 (4) | 0.0110 (4) | −0.0086 (4) |
C20 | 0.0335 (5) | 0.0327 (5) | 0.0383 (5) | 0.0035 (4) | 0.0020 (4) | 0.0020 (4) |
C12 | 0.123 (2) | 0.1125 (19) | 0.0656 (12) | 0.0615 (17) | −0.0041 (13) | 0.0184 (12) |
O7 | 0.1355 (16) | 0.1494 (18) | 0.0750 (10) | 0.0728 (14) | 0.0291 (10) | −0.0241 (11) |
N4 | 0.1326 (17) | 0.0931 (14) | 0.0602 (9) | 0.0709 (13) | 0.0042 (10) | −0.0155 (9) |
O8 | 0.302 (4) | 0.0794 (12) | 0.1036 (15) | 0.0949 (18) | 0.0474 (18) | −0.0120 (10) |
C21 | 0.0308 (5) | 0.0315 (5) | 0.0377 (5) | 0.0042 (4) | 0.0042 (4) | 0.0016 (4) |
C22 | 0.0354 (5) | 0.0406 (6) | 0.0504 (7) | 0.0056 (5) | 0.0109 (5) | 0.0000 (5) |
C26 | 0.0397 (6) | 0.0387 (6) | 0.0547 (7) | 0.0031 (5) | 0.0150 (5) | −0.0045 (5) |
C24 | 0.0412 (6) | 0.0326 (5) | 0.0486 (6) | −0.0010 (5) | −0.0018 (5) | 0.0048 (5) |
C23 | 0.0336 (6) | 0.0460 (7) | 0.0588 (8) | 0.0003 (5) | 0.0096 (5) | 0.0070 (6) |
C25 | 0.0540 (8) | 0.0366 (6) | 0.0567 (8) | 0.0053 (5) | 0.0114 (6) | −0.0079 (5) |
N3 | 0.0581 (8) | 0.0389 (6) | 0.0681 (8) | −0.0058 (5) | −0.0046 (6) | 0.0061 (6) |
O6 | 0.0597 (7) | 0.0637 (8) | 0.1117 (12) | −0.0219 (6) | 0.0109 (7) | 0.0083 (8) |
O5 | 0.1001 (12) | 0.0485 (7) | 0.1288 (14) | −0.0105 (7) | 0.0213 (10) | −0.0325 (8) |
Mn1—O3 | 2.1122 (10) | C6—H13A | 0.9600 |
Mn1—O4 | 2.1328 (9) | C6—H13B | 0.9600 |
Mn1—N2 | 2.2621 (12) | C6—H13C | 0.9600 |
Mn1—O2 | 2.2672 (11) | C15—C16 | 1.394 (2) |
Mn1—N1 | 2.2746 (13) | C15—H18 | 0.9300 |
Mn1—O1 | 2.3285 (11) | C19—C18 | 1.388 (2) |
Mn1—C13 | 2.6155 (13) | C19—H14 | 0.9300 |
Mn1—Mn1i | 4.1324 (4) | C17—C18 | 1.371 (3) |
N1—C11 | 1.323 (2) | C17—C16 | 1.385 (3) |
N1—C7 | 1.333 (2) | C17—N4 | 1.478 (2) |
N2—C5 | 1.337 (2) | C16—H17 | 0.9300 |
N2—C1 | 1.3398 (18) | C18—H15 | 0.9300 |
C1—C2 | 1.372 (2) | O3—C20i | 1.2358 (15) |
C1—H1 | 0.9300 | O4—C20 | 1.2523 (16) |
C2—C3 | 1.381 (3) | C20—O3i | 1.2358 (15) |
C2—H2 | 0.9300 | C20—C21 | 1.5065 (15) |
C4—C5 | 1.372 (3) | C12—H20A | 0.9600 |
C4—C3 | 1.389 (3) | C12—H20B | 0.9600 |
C4—H4 | 0.9300 | C12—H20C | 0.9600 |
C5—H5 | 0.9300 | O7—N4 | 1.230 (3) |
C3—C6 | 1.510 (3) | N4—O8 | 1.198 (3) |
C11—C10 | 1.378 (3) | C21—C26 | 1.3852 (17) |
C11—H10 | 0.9300 | C21—C22 | 1.3889 (16) |
C7—C8 | 1.377 (3) | C22—C23 | 1.3909 (18) |
C7—H6 | 0.9300 | C22—H25 | 0.9300 |
C9—C10 | 1.373 (3) | C26—C25 | 1.3905 (17) |
C9—C8 | 1.378 (3) | C26—H26 | 0.9300 |
C9—C12 | 1.507 (3) | C24—C23 | 1.369 (2) |
C8—H7 | 0.9300 | C24—C25 | 1.372 (2) |
C10—H9 | 0.9300 | C24—N3 | 1.4779 (16) |
O2—C13 | 1.2495 (17) | C23—H29 | 0.9300 |
O1—C13 | 1.2460 (17) | C25—H27 | 0.9300 |
C13—C14 | 1.5115 (18) | N3—O6 | 1.204 (2) |
C14—C19 | 1.383 (2) | N3—O5 | 1.212 (2) |
C14—C15 | 1.388 (2) | ||
O3—Mn1—O4 | 120.82 (4) | O1—C13—O2 | 122.88 (12) |
O3—Mn1—N2 | 89.91 (5) | O1—C13—C14 | 119.14 (12) |
O4—Mn1—N2 | 89.04 (4) | O2—C13—C14 | 117.98 (12) |
O3—Mn1—O2 | 88.38 (4) | O1—C13—Mn1 | 62.88 (7) |
O4—Mn1—O2 | 150.77 (4) | O2—C13—Mn1 | 60.06 (7) |
N2—Mn1—O2 | 89.75 (5) | C14—C13—Mn1 | 176.03 (10) |
O3—Mn1—N1 | 88.27 (5) | C19—C14—C15 | 120.42 (13) |
O4—Mn1—N1 | 90.22 (4) | C19—C14—C13 | 120.16 (13) |
N2—Mn1—N1 | 177.33 (4) | C15—C14—C13 | 119.42 (13) |
O2—Mn1—N1 | 92.15 (4) | C3—C6—H13A | 109.5 |
O3—Mn1—O1 | 144.94 (4) | C3—C6—H13B | 109.5 |
O4—Mn1—O1 | 94.05 (4) | H13A—C6—H13B | 109.5 |
N2—Mn1—O1 | 94.59 (4) | C3—C6—H13C | 109.5 |
O2—Mn1—O1 | 56.95 (4) | H13A—C6—H13C | 109.5 |
N1—Mn1—O1 | 88.02 (5) | H13B—C6—H13C | 109.5 |
O3—Mn1—C13 | 116.67 (4) | C14—C15—C16 | 119.86 (16) |
O4—Mn1—C13 | 122.47 (4) | C14—C15—H18 | 120.1 |
N2—Mn1—C13 | 93.26 (4) | C16—C15—H18 | 120.1 |
O2—Mn1—C13 | 28.53 (4) | C14—C19—C18 | 120.55 (16) |
N1—Mn1—C13 | 89.30 (4) | C14—C19—H14 | 119.7 |
O1—Mn1—C13 | 28.44 (4) | C18—C19—H14 | 119.7 |
O3—Mn1—Mn1i | 44.99 (3) | C18—C17—C16 | 123.28 (14) |
O4—Mn1—Mn1i | 75.87 (3) | C18—C17—N4 | 118.56 (19) |
N2—Mn1—Mn1i | 87.25 (3) | C16—C17—N4 | 118.15 (19) |
O2—Mn1—Mn1i | 133.23 (3) | C17—C16—C15 | 117.91 (16) |
N1—Mn1—Mn1i | 90.09 (3) | C17—C16—H17 | 121.0 |
O1—Mn1—Mn1i | 169.73 (3) | C15—C16—H17 | 121.0 |
C13—Mn1—Mn1i | 161.66 (3) | C17—C18—C19 | 117.93 (17) |
C11—N1—C7 | 116.50 (15) | C17—C18—H15 | 121.0 |
C11—N1—Mn1 | 122.21 (11) | C19—C18—H15 | 121.0 |
C7—N1—Mn1 | 121.12 (11) | C20i—O3—Mn1 | 178.20 (10) |
C5—N2—C1 | 116.88 (14) | C20—O4—Mn1 | 116.68 (8) |
C5—N2—Mn1 | 118.98 (10) | O3i—C20—O4 | 123.88 (11) |
C1—N2—Mn1 | 124.14 (10) | O3i—C20—C21 | 118.52 (11) |
N2—C1—C2 | 123.16 (15) | O4—C20—C21 | 117.61 (10) |
N2—C1—H1 | 118.4 | C9—C12—H20A | 109.5 |
C2—C1—H1 | 118.4 | C9—C12—H20B | 109.5 |
C1—C2—C3 | 120.12 (15) | H20A—C12—H20B | 109.5 |
C1—C2—H2 | 119.9 | C9—C12—H20C | 109.5 |
C3—C2—H2 | 119.9 | H20A—C12—H20C | 109.5 |
C5—C4—C3 | 119.99 (16) | H20B—C12—H20C | 109.5 |
C5—C4—H4 | 120.0 | O8—N4—O7 | 124.4 (2) |
C3—C4—H4 | 120.0 | O8—N4—C17 | 118.2 (2) |
N2—C5—C4 | 123.14 (16) | O7—N4—C17 | 117.4 (2) |
N2—C5—H5 | 118.4 | C26—C21—C22 | 120.08 (11) |
C4—C5—H5 | 118.4 | C26—C21—C20 | 120.01 (10) |
C2—C3—C4 | 116.67 (15) | C22—C21—C20 | 119.91 (11) |
C2—C3—C6 | 122.02 (18) | C21—C22—C23 | 120.16 (12) |
C4—C3—C6 | 121.31 (19) | C21—C22—H25 | 119.9 |
N1—C11—C10 | 123.56 (17) | C23—C22—H25 | 119.9 |
N1—C11—H10 | 118.2 | C21—C26—C25 | 120.02 (12) |
C10—C11—H10 | 118.2 | C21—C26—H26 | 120.0 |
N1—C7—C8 | 123.10 (17) | C25—C26—H26 | 120.0 |
N1—C7—H6 | 118.5 | C23—C24—C25 | 123.12 (11) |
C8—C7—H6 | 118.5 | C23—C24—N3 | 118.70 (13) |
C10—C9—C8 | 116.18 (16) | C25—C24—N3 | 118.17 (14) |
C10—C9—C12 | 121.6 (2) | C24—C23—C22 | 118.22 (12) |
C8—C9—C12 | 122.2 (2) | C24—C23—H29 | 120.9 |
C7—C8—C9 | 120.40 (18) | C22—C23—H29 | 120.9 |
C7—C8—H7 | 119.8 | C24—C25—C26 | 118.39 (13) |
C9—C8—H7 | 119.8 | C24—C25—H27 | 120.8 |
C9—C10—C11 | 120.27 (18) | C26—C25—H27 | 120.8 |
C9—C10—H9 | 119.9 | O6—N3—O5 | 123.18 (15) |
C11—C10—H9 | 119.9 | O6—N3—C24 | 118.46 (16) |
C13—O2—Mn1 | 91.41 (8) | O5—N3—C24 | 118.36 (15) |
C13—O1—Mn1 | 88.68 (8) |
Symmetry code: (i) −x+2, −y, −z. |
Cg is the centroid of the N2/C1–C5 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O4 | 0.93 | 2.61 | 3.172 (2) | 119 |
C2—H2···O1ii | 0.93 | 2.65 | 3.278 (2) | 125 |
C11—H10···O4 | 0.93 | 2.55 | 3.161 (2) | 124 |
C22—H25···Cgii | 0.93 | 2.80 | 3.6844 (16) | 160 |
Symmetry code: (ii) −x+1, −y, −z. |
Compound | Mn···Mn | Mn—O—C | M—O (chelate) | M—O(bridge) |
[Mn2(µ-NBz)2(η2-NBz)2(4-Mepy)4]a | 4.1324 (4) | 178.20 (1), 116.68 (8) | 2.267 (1), 2.329 (1) | 2.112 (1), 2.132 (1) |
[Mn2(µ-tolf)2(η2-tolf)2(bipyam)2]b | 4.548 | 150.37 (2), 139.28 (2) | 2.215 (2), 2.363 (2) | 2.087 (2), 2.102 (2) |
[Mn2(µ-OAc)2(η2-OAc)2(L1)2]c | 4.160 | 151.50 (3), 127.72 (3) | 2.280 (3), 2.294 (3) | 2.142 (5), 2.280 (4) |
[Mn2(µ-OBz)2(η2-OBz)2(py)4]d | 4.531 | 149.32 (1)/133.39 (1) | 2.305 (1), 2.232 (1) | 2.109 (1), 2.094 (1) |
[Mn2(µ-DFBz)2(η2-DFBz)2(THF)2]e | 4.299 | 155.76 (3), 131.40 (3) | 2.194 (3), 2.226 (3) | 2.061 (4), 2.040 (3) |
Notes: (a) present work (HNBz is 4-nitrobenzoic acid and 4-Mepy is 4-methylpyridine); (b) Zampakou et al. (2014) (Htolf is tolfenamic acid and bipyam is 2,2'-bipyridylamine); (c) Mukherjee et al. (2004) (HOAc is acetic acid and L1 is 1,8-bis(4-pyridylethynyl)anthracene); (d) Ran et al. (2006) (HOBz is benzoic acid); (e) Sivanesan et al. (2014) (HDFBz is 2,6-di(4-fluorophenyl)benzoic acid). |
Acknowledgements
The authors thank the Department of Science and Technology, Government of India, for a grant to carrying out this work. The SAIF, Gauhati University, is thanked for providing the X-ray diffraction data.
References
Arafa, W. A. A., Kärkäs, M. D., Lee, B.-L., Åkermark, T., Liao, R.-Z., Berends, H.-M., Messinger, J., Siegbahn, P. E. M. & Åkermark, B. (2014). Phys. Chem. Chem. Phys. 16, 11950–11964. Web of Science CrossRef CAS PubMed Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA. Google Scholar
Castaman, S. T., Nakagaki, S., Ribeiro, R. R., Ciuffi, K. J. & Drechsel, S. M. (2009). J. Mol. Catal. A Chem. 300, 89–97. Web of Science CrossRef CAS Google Scholar
Chakrabarty, R., Bora, S. J. & Das, B. K. (2007). Inorg. Chem. 46, 9450–9462. Web of Science CSD CrossRef PubMed CAS Google Scholar
Chakravorty, S. & Das, B. K. (2016). Unpublished results. Google Scholar
Dey, D., De, A.,Pal, S., Mitra, P., Ranjani, A., Gayethri, L., Chandraleka, S., Dhanasekaran, D., Akbarsha, M. A., Kole, N. & Biswas, B. (2015). Indian J. Chem. Sect. A, 54, 170–178. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kaduk, J. A. (2000). Acta Cryst. B56, 474–485. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kaduk, J. A. & Golab, J. T. (1999). Acta Cryst. B55, 85–94. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Luo, J., Hong, M., Wang, R., Cao, R., Han, L., Yuan, D., Lin, Z. & Zhou, Y. (2003). Inorg. Chem. 42, 4486–4488. Web of Science CSD CrossRef PubMed CAS Google Scholar
McCool, N. S., Robinson, D. M., Sheats, J. E. & Dismukes, G. C. (2011). J. Am. Chem. Soc. 133, 11446–11449. Web of Science CrossRef CAS PubMed Google Scholar
Miyasaka, H., Clérac, R., Wernsdorfer, W., Lecren, L., Bonhomme, C., Sugiura, K. & Yamashita, M. (2004). Angew. Chem. Int. Ed. 43, 2801–2805. Web of Science CSD CrossRef CAS Google Scholar
Mukherjee, P. S., Min, K. S., Arif, A. M. & Stang, P. J. (2004). Inorg. Chem. 43, 6345–6350. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nocera, D. G. (2012). Acc. Chem. Res. 45, 767–776. Web of Science CrossRef CAS PubMed Google Scholar
Ran, J.-W., Gong, D.-J. & Li, Y.-H. (2006). Acta Cryst. E62, m3142–m3143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sessoli, R., Tsai, H.-L., Schake, A. R., Wang, S., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. & Hendrickson, D. N. (1993). J. Am. Chem. Soc. 115, 1804–1816. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sivanesan, D., Kannan, S., Thangadurai, T. D., Jung, K.-D. & Yoon, S. (2014). Dalton Trans. 43, 11465–11469. Web of Science CSD CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Alegria, E. C. B. A., Liu, C.-M. & Pombeiro, A. J. L. (2014). Dalton Trans. 43, 3966–3977. Web of Science CSD CrossRef CAS PubMed Google Scholar
Uhrecký, R., Moncoľ, J., Koman, M., Titiš, J. & Boča, R. (2013). Dalton Trans. 42, 9490–9494. Web of Science PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zampakou, M., Rizeq, N., Tangoulis, V., Papadopoulos, A. N., Perdih, F., Turel, I. & Psomas, G. (2014). Inorg. Chem. 53, 2040–2052. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, Z. X., Li, Y., Li, K., Song, W. & Li, Q. (2007). Inorg. Chem. Commun. 10, 1276–1280. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.