research communications
catena-poly[[(N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide-κN1)silver(I)]-μ-nitrato-κ3O,O′:O]
ofaDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea, and bPhotodynamic Therapy Research Institute, School of Nanoscience and Engineering, Inje University, 197 Injero, Gimhae, Gyeongnam 50834, Republic of Korea
*Correspondence e-mail: yoonil71@inje.ac.kr, jekim@gnu.ac.kr
The reaction of silver nitrate and cafenstrole (N,N-diethyl-3-mesitylsulfonyl-1H-1,2,4-triazole-1-carboxamide), a triazole herbicide, leads to the title coordination polymer, [Ag(NO3)(C16H22N4O3S)]n, whose comprises one cafenstrole ligand molecule, one AgI atom and one nitrate ion. The AgI atom, with a distorted trigonal–pyramidal environment, is coordinated by one nitrogen atom of a triazole ring, two oxygen atoms of a nitrate ion and one oxygen atom of a neighboring nitrate ion. The coordination bonds between silver and oxygen atoms give rise to a one-dimensional (1D) coordination polymer structure along [001]. The dihedral angle between the planes of the triazole and benzene rings is 87.13 (11)°. In the crystal, the coordination polymer is stabilized by C—H⋯O hydrogen bonds and C—H⋯π interactions, resulting in a three-dimensional architecture.
Keywords: crystal structure; cafenstrole; coordination polymer; silver; triazole; herbicide.
CCDC reference: 1510357
1. Chemical context
Recently, we have reported the L; Kang et al., 2015). Cafenstrole is a triazole herbicide and has been used for rice cultivation as an inhibitor of the germination of grass weeds (Takahashi et al., 2001). Triazole derivatives have been investigated intensively over the years for pharmaceutical and agricultural purposes (Kumar et al., 2013; Zhang et al., 2014). It is very likely that triazole–metal interactions play a major role in the biological actions of triazole-containing drugs and agricultural chemicals. 1,2,4-Triazole and its derivatives have gained great attention as ligands to transition metals (Haasnoot, 2000). To understand the interactions of triazoles with metals, further research on the structures of triazole–metal compounds is of great necessity. Thus, our attention will be focused on the diversity of the coordination geometries of 1,2,4-triazole complexes with transition metal ions. Herein, we report the reaction of silver nitrate and cafenstrole to produce the title compound, which is a 1D silver(I) coordination polymer.
of the ligand cafenstrole (2. Structural commentary
The . It contains one L ligand and one silver nitrate ion. Reaction between silver nitrate and L afforded a 1D coordination polymer, in which the AgI atom has a distorted trigonal–pyramidal environment with one nitrogen atom (N1) [Ag1—N1 = 2.250 (3) Å] and three oxygen atoms (O4, O5, O5i) [Ag1—O4 = 2.708 (3), Ag1—O5 = 2.450 (3) and Ag1—O5i = 2.396 (3) Å; symmetry code: (i) −x + 1, −y + 1, z − ], as shown in Fig. 2.
of the title compound is shown in Fig. 1Atom Ag1 lies almost in the plane constituted by atoms O5, N1, and O5i [deviation = 0.0436 (12) Å]. The Ag1, O5, N1, and O5i atoms form a slightly distorted triangular basal plane with bond angles O5—Ag1—O5i = 106.52 (5), O5—Ag1—N1 = 118.75 (11) and O5i—Ag1—N1 = 134.63 (11)°. The apex atom, O4, deviates considerably from the normal to the basal plane, as indicated by the O4—Ag1—N1 bond angle of 149.66 (10)°. Other bond angles are 48.93 (10) and 67.18 (10)° for O4—Ag1—O5 and O4—Ag1—O5i, respectively. One oxygen atom of the nitrate ion (O6) is not bound to the AgI ion, whereas the other two oxygen atoms of the nitrate ion (O4 and O5) are bound to the AgI ion. One of the bound O atoms (O5) links neighbouring AgI ion ions, thus forming a 1D polymer along [001]. The triazole plane is rotated about the S1–C10 axis in the opposite direction in comparison with free cafenstrol (Kang et al., 2015). Thus, the diethyl amino group is located above the phenyl ring in the title compound, while that of free cafenstrol is placed outside the phenyl ring.
3. Supramolecular features
The O5 atom is bound to both Ag1 and neighboring Ag1ii [symmetry code: (ii) −x + 1, −y + 1, z + ], where the neighbouring is related to the by 21 symmetry, resulting in a 1D chain along [001] (Fig. 3). C—H⋯O hydrogen bonds between the 1D chains (yellow dashed lines) lead to the formation of layers parallel to (100). The layers are packed in an ABAB pattern along [010] (Fig. 4). Weak intermolecular C—H⋯π interactions (black dashed lines) between the A and B layers generate a three-dimensional network structure (Fig. 4). Thus the structure of the AgI coordination polymer is stabilized by C13—H13B⋯O2 and C16—H16B⋯O2 hydrogen bonds and weak intermolecular C8—H8C⋯Cg1 (Cg1 is the centroid of the C1–C6 ring) interactions (Fig. 4 and Table 1).
4. Database survey
The et al., 2015). The of a 1,2,3-thiadiazole compound containing a 1,2,4-triazole moiety, C15H14FN5O2S2, has been determined by Min et al. (2014) whereas the structure of a similar triazole herbicide, methyl 2-(1-diethylcarbamoyl-1,2,4-triazole-3-ylsulfonyl)acetate, has been reported by Ohkata et al. (2002). The structure of 5-{4-cyclopropyl-5-[(3-fluorobenzyl)sulfinyl]-4H-1,2,4-triazol-3-yl}-4-methyl-1,2,3-thiadiazole (C15H14FN5OS2), was determined by Min et al. (2015) and the of 1-(mesityl-2-sulfonyl)-3-nitro-1,2,4-triazole has been determined by Kuroda et al. (1982). The complex, [Pr(C7H5O3)2(NO3)(C12H8N2)]·2C12H8N2, has a polymeric chain structure, where nitrate ions show similar coordination bonds compared to those in the title compound, but with AgI ions replaced by with PrIII atoms (Wang et al., 2012).
of cafenstrole has been reported (Kang5. Synthesis and crystallization
The title compound was prepared from a mixed solution of the cafenstrole ligand (0.05 g, 0.14 mmol) in acetone (5 mL) and Ag(NO3) (0.06 g, 0.35 mmol) in methanol (5 mL). The ligand was purchased from the Dr Ehrenstorfer GmbH Company. Single crystals suitable for X-ray crystallography were obtained by slow evaporation of the solvent at room temperature after one week.
6. Refinement
Crystal data, data collection and structure . All H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.98 Å, Uiso(H) = 1.5Ueq(C) for methyl group, d(C—H) = 0.99 Å, Uiso(H) = 1.2Ueq(C) for Csp3—H and d(C—H) = 0.95 Å, Uiso(H) = 1.2Ueq(C) for aromatic C—H.
details are summarized in Table 2Supporting information
CCDC reference: 1510357
https://doi.org/10.1107/S2056989016016662/vn2117sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016016662/vn2117Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Ag(C16H22N4O3S)(NO3)] | Dx = 1.703 Mg m−3 |
Mr = 520.31 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 7087 reflections |
a = 9.0947 (2) Å | θ = 2.3–27.1° |
b = 31.0133 (6) Å | µ = 1.14 mm−1 |
c = 7.1934 (1) Å | T = 173 K |
V = 2028.95 (7) Å3 | Plate, colourless |
Z = 4 | 0.48 × 0.10 × 0.02 mm |
F(000) = 1056 |
Bruker APEXII CCD diffractometer | 4259 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.042 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 28.3°, θmin = 2.3° |
Tmin = 0.579, Tmax = 0.746 | h = −12→11 |
17454 measured reflections | k = −39→41 |
4760 independent reflections | l = −9→9 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0179P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.053 | (Δ/σ)max = 0.002 |
S = 0.98 | Δρmax = 0.65 e Å−3 |
4760 reflections | Δρmin = −0.39 e Å−3 |
267 parameters | Absolute structure: Flack x determined using 1577 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.003 (14) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.62392 (3) | 0.52477 (2) | 0.76161 (6) | 0.03314 (9) | |
S1 | 0.73402 (9) | 0.64406 (3) | 0.83512 (13) | 0.01964 (19) | |
O1 | 0.6829 (3) | 0.66757 (8) | 0.9943 (4) | 0.0300 (7) | |
O2 | 0.6265 (2) | 0.62494 (9) | 0.7166 (4) | 0.0309 (8) | |
O3 | 1.1685 (2) | 0.53847 (7) | 1.2570 (5) | 0.0290 (5) | |
O4 | 0.3336 (4) | 0.51667 (11) | 0.6854 (5) | 0.0486 (9) | |
O5 | 0.4227 (3) | 0.49348 (10) | 0.9434 (4) | 0.0382 (7) | |
O6 | 0.1895 (3) | 0.48605 (10) | 0.8835 (5) | 0.0424 (8) | |
N1 | 0.8072 (3) | 0.55871 (9) | 0.9126 (4) | 0.0206 (7) | |
N2 | 0.9749 (3) | 0.60970 (9) | 0.9892 (4) | 0.0187 (6) | |
N3 | 1.0242 (3) | 0.56942 (9) | 1.0338 (4) | 0.0183 (6) | |
N4 | 1.2736 (3) | 0.58767 (9) | 1.0626 (4) | 0.0206 (7) | |
N5 | 0.3120 (4) | 0.49853 (10) | 0.8351 (5) | 0.0266 (8) | |
C1 | 0.8614 (3) | 0.67468 (11) | 0.7068 (5) | 0.0205 (9) | |
C2 | 0.9148 (3) | 0.71461 (10) | 0.7730 (7) | 0.0218 (7) | |
C3 | 1.0110 (4) | 0.73701 (13) | 0.6569 (6) | 0.0286 (9) | |
H3 | 1.0465 | 0.7642 | 0.6973 | 0.034* | |
C4 | 1.0571 (4) | 0.72185 (14) | 0.4873 (6) | 0.0300 (9) | |
C5 | 1.0073 (4) | 0.68155 (14) | 0.4304 (6) | 0.0303 (10) | |
H5 | 1.0412 | 0.6703 | 0.3152 | 0.036* | |
C6 | 0.9102 (4) | 0.65722 (12) | 0.5352 (5) | 0.0232 (8) | |
C7 | 0.8791 (4) | 0.73432 (14) | 0.9579 (6) | 0.0353 (10) | |
H7A | 0.9450 | 0.7587 | 0.9811 | 0.053* | |
H7B | 0.8919 | 0.7127 | 1.0559 | 0.053* | |
H7C | 0.7769 | 0.7444 | 0.9576 | 0.053* | |
C8 | 1.1603 (5) | 0.74778 (18) | 0.3669 (7) | 0.0526 (14) | |
H8A | 1.1032 | 0.7677 | 0.2896 | 0.079* | |
H8B | 1.2166 | 0.7283 | 0.2868 | 0.079* | |
H8C | 1.2279 | 0.7642 | 0.4459 | 0.079* | |
C9 | 0.8679 (5) | 0.61345 (14) | 0.4610 (6) | 0.0391 (11) | |
H9A | 0.7697 | 0.6150 | 0.4054 | 0.059* | |
H9B | 0.8673 | 0.5925 | 0.5630 | 0.059* | |
H9C | 0.9391 | 0.6044 | 0.3665 | 0.059* | |
C10 | 0.8450 (3) | 0.60100 (11) | 0.9190 (5) | 0.0177 (8) | |
C11 | 0.9224 (4) | 0.53946 (12) | 0.9906 (5) | 0.0216 (8) | |
H11 | 0.9315 | 0.5094 | 1.0124 | 0.026* | |
C12 | 1.1648 (4) | 0.56330 (12) | 1.1294 (5) | 0.0193 (8) | |
C13 | 1.2803 (4) | 0.60769 (12) | 0.8765 (6) | 0.0254 (9) | |
H13A | 1.1939 | 0.5983 | 0.8031 | 0.030* | |
H13B | 1.3697 | 0.5974 | 0.8116 | 0.030* | |
C14 | 1.2828 (4) | 0.65612 (13) | 0.8847 (7) | 0.0365 (11) | |
H14A | 1.1910 | 0.6666 | 0.9400 | 0.055* | |
H14B | 1.2929 | 0.6678 | 0.7587 | 0.055* | |
H14C | 1.3661 | 0.6656 | 0.9608 | 0.055* | |
C15 | 1.4092 (4) | 0.58914 (14) | 1.1768 (6) | 0.0319 (10) | |
H15A | 1.4890 | 0.6026 | 1.1035 | 0.038* | |
H15B | 1.4398 | 0.5593 | 1.2073 | 0.038* | |
C16 | 1.3886 (5) | 0.6139 (2) | 1.3531 (8) | 0.0642 (17) | |
H16A | 1.3571 | 0.6433 | 1.3238 | 0.096* | |
H16B | 1.4816 | 0.6148 | 1.4217 | 0.096* | |
H16C | 1.3134 | 0.5998 | 1.4294 | 0.096* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.01833 (12) | 0.03174 (15) | 0.04934 (19) | −0.00517 (11) | −0.00399 (18) | −0.01117 (19) |
S1 | 0.0136 (4) | 0.0221 (4) | 0.0232 (5) | 0.0013 (3) | 0.0017 (4) | 0.0027 (4) |
O1 | 0.0276 (14) | 0.0292 (15) | 0.0333 (18) | 0.0050 (11) | 0.0131 (13) | 0.0002 (13) |
O2 | 0.0178 (11) | 0.0376 (15) | 0.037 (2) | −0.0045 (10) | −0.0073 (12) | 0.0054 (13) |
O3 | 0.0248 (12) | 0.0308 (13) | 0.0315 (14) | −0.0015 (9) | −0.0036 (18) | 0.0114 (18) |
O4 | 0.064 (2) | 0.044 (2) | 0.037 (2) | −0.0106 (17) | 0.0084 (16) | 0.0004 (17) |
O5 | 0.0227 (13) | 0.057 (2) | 0.0346 (19) | 0.0013 (14) | −0.0001 (14) | −0.0022 (16) |
O6 | 0.0200 (14) | 0.053 (2) | 0.054 (2) | −0.0094 (13) | 0.0092 (14) | −0.0063 (16) |
N1 | 0.0154 (14) | 0.0192 (16) | 0.0272 (19) | −0.0024 (12) | 0.0000 (13) | −0.0001 (14) |
N2 | 0.0189 (14) | 0.0181 (15) | 0.0192 (17) | 0.0011 (11) | −0.0022 (13) | 0.0017 (13) |
N3 | 0.0164 (14) | 0.0183 (16) | 0.0203 (17) | −0.0009 (11) | −0.0002 (13) | 0.0040 (14) |
N4 | 0.0152 (14) | 0.0212 (16) | 0.0253 (19) | −0.0034 (12) | −0.0062 (13) | 0.0060 (14) |
N5 | 0.0290 (18) | 0.0226 (18) | 0.028 (2) | −0.0009 (14) | 0.0059 (16) | −0.0059 (16) |
C1 | 0.0175 (16) | 0.0221 (18) | 0.022 (2) | 0.0025 (13) | 0.0002 (15) | 0.0049 (14) |
C2 | 0.0220 (15) | 0.0231 (16) | 0.0204 (19) | 0.0025 (12) | −0.006 (2) | 0.003 (2) |
C3 | 0.029 (2) | 0.028 (2) | 0.029 (2) | −0.0089 (17) | −0.0079 (18) | 0.0088 (19) |
C4 | 0.0210 (19) | 0.045 (3) | 0.024 (2) | −0.0072 (17) | −0.0035 (18) | 0.013 (2) |
C5 | 0.026 (2) | 0.045 (3) | 0.019 (2) | 0.0022 (18) | 0.0054 (18) | 0.0061 (19) |
C6 | 0.0224 (18) | 0.026 (2) | 0.021 (2) | 0.0042 (15) | 0.0016 (16) | 0.0023 (17) |
C7 | 0.044 (2) | 0.025 (2) | 0.037 (3) | −0.0028 (18) | −0.001 (2) | −0.0045 (19) |
C8 | 0.043 (3) | 0.078 (4) | 0.037 (3) | −0.026 (3) | 0.002 (2) | 0.019 (3) |
C9 | 0.059 (3) | 0.031 (2) | 0.027 (3) | −0.004 (2) | 0.008 (2) | −0.008 (2) |
C10 | 0.0126 (16) | 0.0185 (18) | 0.022 (2) | 0.0003 (13) | 0.0030 (15) | 0.0006 (16) |
C11 | 0.0222 (18) | 0.0211 (18) | 0.021 (2) | −0.0047 (14) | 0.0032 (17) | 0.0029 (16) |
C12 | 0.0166 (17) | 0.0185 (19) | 0.023 (2) | 0.0010 (13) | 0.0000 (16) | 0.0005 (16) |
C13 | 0.0181 (17) | 0.031 (2) | 0.027 (2) | −0.0019 (15) | 0.0039 (16) | 0.0053 (17) |
C14 | 0.030 (2) | 0.027 (2) | 0.052 (3) | −0.0036 (17) | 0.000 (2) | 0.016 (2) |
C15 | 0.0199 (19) | 0.033 (2) | 0.042 (3) | −0.0039 (17) | −0.0091 (18) | 0.007 (2) |
C16 | 0.045 (3) | 0.095 (5) | 0.053 (3) | −0.001 (3) | −0.026 (3) | −0.025 (3) |
Ag1—N1 | 2.250 (3) | C4—C5 | 1.391 (6) |
Ag1—O5i | 2.396 (3) | C4—C8 | 1.509 (5) |
Ag1—O5 | 2.450 (3) | C5—C6 | 1.385 (5) |
S1—O2 | 1.426 (3) | C5—H5 | 0.9500 |
S1—O1 | 1.435 (3) | C6—C9 | 1.509 (5) |
S1—C1 | 1.760 (4) | C7—H7A | 0.9800 |
S1—C10 | 1.779 (3) | C7—H7B | 0.9800 |
O3—C12 | 1.198 (5) | C7—H7C | 0.9800 |
O4—N5 | 1.231 (4) | C8—H8A | 0.9800 |
O5—N5 | 1.282 (4) | C8—H8B | 0.9800 |
O5—Ag1ii | 2.396 (3) | C8—H8C | 0.9800 |
O6—N5 | 1.230 (4) | C9—H9A | 0.9800 |
N1—C11 | 1.330 (5) | C9—H9B | 0.9800 |
N1—C10 | 1.357 (4) | C9—H9C | 0.9800 |
N2—C10 | 1.313 (4) | C11—H11 | 0.9500 |
N2—N3 | 1.365 (4) | C13—C14 | 1.503 (5) |
N3—C11 | 1.348 (4) | C13—H13A | 0.9900 |
N3—C12 | 1.465 (4) | C13—H13B | 0.9900 |
N4—C12 | 1.334 (4) | C14—H14A | 0.9800 |
N4—C13 | 1.477 (5) | C14—H14B | 0.9800 |
N4—C15 | 1.483 (5) | C14—H14C | 0.9800 |
C1—C2 | 1.413 (5) | C15—C16 | 1.494 (6) |
C1—C6 | 1.419 (5) | C15—H15A | 0.9900 |
C2—C3 | 1.395 (5) | C15—H15B | 0.9900 |
C2—C7 | 1.499 (7) | C16—H16A | 0.9800 |
C3—C4 | 1.373 (6) | C16—H16B | 0.9800 |
C3—H3 | 0.9500 | C16—H16C | 0.9800 |
N1—Ag1—O5i | 134.63 (11) | H7A—C7—H7C | 109.5 |
N1—Ag1—O5 | 118.75 (11) | H7B—C7—H7C | 109.5 |
O5i—Ag1—O5 | 106.52 (5) | C4—C8—H8A | 109.5 |
O2—S1—O1 | 117.78 (16) | C4—C8—H8B | 109.5 |
O2—S1—C1 | 111.23 (17) | H8A—C8—H8B | 109.5 |
O1—S1—C1 | 110.96 (16) | C4—C8—H8C | 109.5 |
O2—S1—C10 | 106.22 (17) | H8A—C8—H8C | 109.5 |
O1—S1—C10 | 107.14 (17) | H8B—C8—H8C | 109.5 |
C1—S1—C10 | 102.10 (16) | C6—C9—H9A | 109.5 |
N5—O5—Ag1ii | 118.1 (2) | C6—C9—H9B | 109.5 |
N5—O5—Ag1 | 102.3 (2) | H9A—C9—H9B | 109.5 |
Ag1ii—O5—Ag1 | 137.37 (12) | C6—C9—H9C | 109.5 |
C11—N1—C10 | 102.7 (3) | H9A—C9—H9C | 109.5 |
C11—N1—Ag1 | 125.2 (2) | H9B—C9—H9C | 109.5 |
C10—N1—Ag1 | 131.0 (2) | N2—C10—N1 | 116.1 (3) |
C10—N2—N3 | 101.4 (3) | N2—C10—S1 | 119.1 (3) |
C11—N3—N2 | 110.5 (3) | N1—C10—S1 | 124.8 (3) |
C11—N3—C12 | 128.2 (3) | N1—C11—N3 | 109.2 (3) |
N2—N3—C12 | 121.0 (3) | N1—C11—H11 | 125.4 |
C12—N4—C13 | 126.5 (3) | N3—C11—H11 | 125.4 |
C12—N4—C15 | 115.7 (3) | O3—C12—N4 | 128.3 (3) |
C13—N4—C15 | 117.1 (3) | O3—C12—N3 | 117.9 (3) |
O6—N5—O4 | 122.4 (4) | N4—C12—N3 | 113.9 (3) |
O6—N5—O5 | 120.0 (4) | N4—C13—C14 | 112.6 (3) |
O4—N5—O5 | 117.6 (4) | N4—C13—H13A | 109.1 |
C2—C1—C6 | 121.3 (3) | C14—C13—H13A | 109.1 |
C2—C1—S1 | 121.5 (3) | N4—C13—H13B | 109.1 |
C6—C1—S1 | 117.2 (3) | C14—C13—H13B | 109.1 |
C3—C2—C1 | 116.8 (4) | H13A—C13—H13B | 107.8 |
C3—C2—C7 | 117.6 (3) | C13—C14—H14A | 109.5 |
C1—C2—C7 | 125.6 (3) | C13—C14—H14B | 109.5 |
C4—C3—C2 | 123.6 (4) | H14A—C14—H14B | 109.5 |
C4—C3—H3 | 118.2 | C13—C14—H14C | 109.5 |
C2—C3—H3 | 118.2 | H14A—C14—H14C | 109.5 |
C3—C4—C5 | 118.0 (4) | H14B—C14—H14C | 109.5 |
C3—C4—C8 | 121.2 (4) | N4—C15—C16 | 112.4 (4) |
C5—C4—C8 | 120.8 (4) | N4—C15—H15A | 109.1 |
C6—C5—C4 | 122.5 (4) | C16—C15—H15A | 109.1 |
C6—C5—H5 | 118.8 | N4—C15—H15B | 109.1 |
C4—C5—H5 | 118.8 | C16—C15—H15B | 109.1 |
C5—C6—C1 | 117.7 (4) | H15A—C15—H15B | 107.9 |
C5—C6—C9 | 117.4 (4) | C15—C16—H16A | 109.5 |
C1—C6—C9 | 124.8 (3) | C15—C16—H16B | 109.5 |
C2—C7—H7A | 109.5 | H16A—C16—H16B | 109.5 |
C2—C7—H7B | 109.5 | C15—C16—H16C | 109.5 |
H7A—C7—H7B | 109.5 | H16A—C16—H16C | 109.5 |
C2—C7—H7C | 109.5 | H16B—C16—H16C | 109.5 |
C10—N2—N3—C11 | −0.7 (4) | N3—N2—C10—N1 | −0.7 (4) |
C10—N2—N3—C12 | −176.0 (3) | N3—N2—C10—S1 | −179.2 (2) |
Ag1ii—O5—N5—O6 | −14.1 (4) | C11—N1—C10—N2 | 1.8 (4) |
Ag1—O5—N5—O6 | 179.9 (3) | Ag1—N1—C10—N2 | −166.7 (3) |
Ag1ii—O5—N5—O4 | 164.7 (3) | C11—N1—C10—S1 | −179.8 (3) |
Ag1—O5—N5—O4 | −1.3 (4) | Ag1—N1—C10—S1 | 11.7 (5) |
O2—S1—C1—C2 | 140.4 (3) | O2—S1—C10—N2 | 161.7 (3) |
O1—S1—C1—C2 | 7.2 (3) | O1—S1—C10—N2 | −71.6 (3) |
C10—S1—C1—C2 | −106.7 (3) | C1—S1—C10—N2 | 45.1 (3) |
O2—S1—C1—C6 | −40.6 (3) | O2—S1—C10—N1 | −16.7 (4) |
O1—S1—C1—C6 | −173.8 (3) | O1—S1—C10—N1 | 110.0 (3) |
C10—S1—C1—C6 | 72.3 (3) | C1—S1—C10—N1 | −133.3 (3) |
C6—C1—C2—C3 | 3.5 (5) | C10—N1—C11—N3 | −2.1 (4) |
S1—C1—C2—C3 | −177.6 (3) | Ag1—N1—C11—N3 | 167.3 (2) |
C6—C1—C2—C7 | −175.3 (3) | N2—N3—C11—N1 | 1.9 (4) |
S1—C1—C2—C7 | 3.6 (5) | C12—N3—C11—N1 | 176.8 (3) |
C1—C2—C3—C4 | −1.4 (5) | C13—N4—C12—O3 | 160.4 (4) |
C7—C2—C3—C4 | 177.5 (4) | C15—N4—C12—O3 | −10.0 (6) |
C2—C3—C4—C5 | −1.3 (6) | C13—N4—C12—N3 | −21.2 (5) |
C2—C3—C4—C8 | 179.4 (4) | C15—N4—C12—N3 | 168.4 (3) |
C3—C4—C5—C6 | 2.1 (6) | C11—N3—C12—O3 | −39.4 (5) |
C8—C4—C5—C6 | −178.6 (4) | N2—N3—C12—O3 | 135.0 (4) |
C4—C5—C6—C1 | −0.1 (6) | C11—N3—C12—N4 | 142.0 (4) |
C4—C5—C6—C9 | −178.3 (4) | N2—N3—C12—N4 | −43.6 (4) |
C2—C1—C6—C5 | −2.8 (5) | C12—N4—C13—C14 | 116.8 (4) |
S1—C1—C6—C5 | 178.2 (3) | C15—N4—C13—C14 | −73.0 (4) |
C2—C1—C6—C9 | 175.2 (4) | C12—N4—C15—C16 | −70.8 (5) |
S1—C1—C6—C9 | −3.8 (5) | C13—N4—C15—C16 | 117.9 (4) |
Symmetry codes: (i) −x+1, −y+1, z−1/2; (ii) −x+1, −y+1, z+1/2. |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8C···Cg1iii | 0.98 | 2.66 | 3.614 (5) | 166 |
C13—H13B···O2iv | 0.99 | 2.58 | 3.395 (4) | 140 |
C16—H16B···O2v | 0.98 | 2.52 | 3.412 (6) | 152 |
Symmetry codes: (iii) x+1/2, −y+3/2, z; (iv) x+1, y, z; (v) x+1, y, z+1. |
Acknowledgements
This work was supported by the National Research Foundation (NRF) of Korea, Grant funded by the Ministry of Education, Science and Technology (2014R1A1A4A01008346 and 2014R1A1A4A01009105).
References
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Haasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185. Web of Science CrossRef CAS Google Scholar
Kang, G., Kim, J., Park, H. & Kim, T. H. (2015). Acta Cryst. E71, o614. CSD CrossRef IUCr Journals Google Scholar
Kumar, R., Yar, M. S., Chaturvedi, S. & Srivastava, A. (2013). Int. J. PharmTech Res. 5, 1844–1869. CAS Google Scholar
Kuroda, R., Sanderson, M. R., Neidle, S. & Reese, C. B. (1982). J. Chem. Soc. Perkin Trans. 2. pp. 617–620. CSD CrossRef Google Scholar
Min, L.-J., Tan, C.-X., Weng, J.-Q. & Liu, X.-H. (2014). Phosphorus Sulfur Silicon, 189, 379–386. CSD CrossRef CAS Google Scholar
Min, L.-J., Yang, M.-Y., Mu, J.-X., Sun, Z.-H., Tan, C.-X., Weng, J.-Q., Liu, X.-H. & Zhang, Y.-G. (2015). Phosphorus Sulfur Silicon, 190, 1884–1892. CSD CrossRef CAS Google Scholar
Ohkata, K., Yano, T., Kojima, S., Hiraga, Y., Yoshii, T. & Hori, M. (2002). Bull. Chem. Soc. Jpn, 75, 567–574. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Takahashi, H., Ohki, A., Kanzaki, M., Tanaka, A., Sato, Y., Matthes, B., Böger, P. & Wakabayashi, K. (2001). J. Biosci. 56, 781–786. CAS Google Scholar
Wang, P., Xu, D. & Wang, X. (2012). Acta Cryst. E68, m1148. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, H.-Z., Damu, G. L. V., Cai, G.-X. & Zhou, C.-H. (2014). Curr. Org. Chem. 18, 359–406. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.