research communications
Channels with ordered water and bipyridine molecules in the porous coordination polymer {[Cu(SiF6)(C10H8N2)2]·2C10N2H8·5H2O}n
aCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS, 7036, Université de Lorraine, BP 70239, Bd des Aiguillettes, 54506, Vandoeuvre-les-Nancy, France, bIstituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, I-07100 Li Punti - Sassari, Italy, and cInstitut de Chimie de Strasbourg, UMR 7177, Equipe LASYROC, 1 rue Blaise Pascal, BP 296 R8, 67008 Strasbourg Cedex, France
*Correspondence e-mail: emmanuel.aubert@univ-lorraine.fr
The coordination polymer {[Cu(SiF6)(C10H8N2)2]·2C10H8N2·5H2O}n, poly[[bis(μ2-4,4′-bipyridine)(μ2-hexafluoridosilicato)copper(II)] 4,4′-bipyridine disolvate pentahydrate], contains pores which are filled with water and 4,4′-bipyridine molecules. As a result of the presence of these ordered species, the framework changes its symmetry from P4/mmm to P21/c. The 4,4′-bipyridine guest molecules form chains inside the 6.5 × 6.9 Å pores parallel to [100] in which the molecules interact through π–π stacking. Ordered water molecules form infinite hydrogen-bonded chains inside a second pore system (1.6 × 5.3 Å free aperture) perpendicular to the 4,4′-bipyridine channels.
Keywords: Porous coordination polymer; adsorption; hydrogen bonding; π–π stacking; copper(II); 4,4′-bipyridine; crystal structure.
CCDC reference: 1510381
1. Chemical context
The title compound was obtained in an attempt to reproduce the synthesis of [Cu(μ-4,4′-bipy)(H2O)2(BF4)2]·4,4′-bipy (Blake et al., 1997). A contamination with SiF62− is, however, at the origin of the formation of {[Cu(SiF6)(C10H8N2)2]·2C10N2H8·5H2O}n, whose framework was previously described by Noro et al. (2000, 2002). This framework has shown interesting gas adsorption properties in recent years (Burd et al., 2012; Yu et al., 2012; Fan et al., 2013). Several structures based on this porous framework have been published since its discovery [CSD refcodes: GORWUF (Noro et al., 2000), AFEKAX (Noro et al., 2002), HAPKOA (Burd et al., 2012)]. However, these structures which are reported in the tetragonal type P4/mmm are disordered: the framework bipyridines are disordered by symmetry whereas solvent molecules are not clearly identified within the pores. In this article, we show that this porous coordination polymer is capable of firmly stabilizing guest entities such as 4,4′-bipyridine and water molecules within its channels. The synthesis conditions thus seem a key factor in producing the ordering of guest molecules within this porous material.
2. Structural commentary
The ) contains two copper(II) atoms, both lying on inversion centers; each of these two atoms is coordinated by N atoms of four symmetrically related 4,4′-bipyridine molecules (with one independent bipyridine for each copper atom), forming slightly distorted two-dimensional square grids parallel to (100). The copper(II) atoms are both at the center of elongated octahedra (Table 1).
of the title compound (Fig. 1The basal plane is composed of four nitrogen atoms coming from the 4,4′-bipyridine molecules, whereas the apical positions are occupied by fluorine atoms belonging to the SiF62− anions pillaring the structure (Fig. 2).
The 2D coordination grids are stacked along the [100] direction through the SiF62− anions, leading to a three-dimensional coordination polymer, which displays channels having a free aperture of 6.5 × 6.9 Å parallel to [100] and smaller pores of 1.6 × 5.3 Å along the [011] direction (as measured in projection in the plane perpendicular to the channels and using van der Waals radii). These interconnected pores are filled with two other 4,4′-bipyridine molecules and five water molecules (Figs. 3 and 4). In comparison, the previously reported structures with this framework are described in the P4/mmm type, implying a squared Cu grid and channels; here, the Cu–Cu–Cu grid angle significantly deviates from 90° (96.62°) and this may be related to the fact that, in the present compound, guest molecules fill the pores and interact significantly with the framework atoms (see below).
The Si—F bond lengths in SiF62− show some variations (Table 1), ranging from 1.6534 (11) to 1.7145 (10) Å. The two longest bond lengths are associated with opposite fluorine atoms bounded to a CuII metal atom. Among the four remaining fluorine atoms, three of them form short hydrogen bonds with water molecules and display longer bond lengths than the last one, which only forms a weaker hydrogen-bonding interaction with a 4,4′-bipyridine molecule (Table 2). A search for SiF62− anions within the Cambridge Structural Database (CSD Version 5.36; Groom et al., 2016) leads to 241 hits (using options `not disordered'" and `no errors'); the reported Si—F bond lengths range from 1.577 to 1.748 Å with a mean of 1.684 Å and a standard deviation of 0.022 Å.
|
3. Supramolecular features
Four of the five water molecules (O49 to O52) form infinite C44(2) chains running in the [001] direction throughout the pores (Fig. 5). The fifth water molecule (O53) interacts with these chains and several hydrogen bonds anchor these water molecules to the coordination polymer framework (Table 2). The 4,4′-bipyridine molecules filling the [100] channels form chains through π–π stacking (Fig. 6; Table 3), and are connected to three of the water molecules (O50, O51 and O53) and framework fluorine and aromatic hydrogen atoms by hydrogen bonds (Table 2); these intermolecular interactions induce different dihedral angles within the two symmetry-independent 4,4′-bipyridine molecules [bipy(N25–N31): 45.29 (7)°; bipy(N37–N43): 30.31 (7)°]. Whereas the 4,4′-bipyridine molecules belonging to the coordination network are rather rigid between the metal atoms [average Ueq = 0.014 (2) Å2 as calculated on C,N atoms], the adsorbed 4,4′-bipyridine molecules display significantly larger atomic displacement parameters [Ueq = 0.025 (5) Å2].
|
4. Database survey
A survey was performed in the Cambridge Structural Database (CSD Version 5.36; Groom et al., 2016). Beside the structures corresponding to the bare or hydrated [Cu(SiF6)(C10H8N2)2]n coordination polymer framework [CSD refcodes: GORWUF (Noro et al., 2000), AFEKAX (Noro et al., 2002), HAPKOA (Burd et al., 2012)], several structures related to the title compound have been described. In particular, Noro et al. showed that the hydrated form of the title compound {[Cu(SiF6)(4,4′-bpy)2]·8H2O}n undergoes a structural conversion when immersed in water, leading to an interpenetrated network where SiF62− anions are shifted out of the coordination sphere of copper ions and are replaced by water molecules [CSD refcodes: AFEHOI (Noro et al., 2002); JEZRUB (Gable et al., 1990)]. When copper is replaced by zinc, an isostructural compound is obtained [CSD refcodes: WONZIJ (Lin et al., 2009); ZESFUY (Subramanian & Zaworotko, 1995)].
5. Synthesis and crystallization
An aqueous solution (5 cm3) of hydrated copper(II) tetrafluoridoborate (47.43 mg, 0.2 mmol) was added to a refluxing acetonitrile solution (5 cm3) of 4,4′-bipyridine (62.48 mg, 0.4 mmol). After filtration, Et2O vapor was diffused into the mother liquor for seven days, and then the solvent was allowed to evaporate very slowly. A mixture of blue and violet crystals was obtained; whereas the diffraction spots of the blue crystals could not be properly indexed, the violet crystals were of very good quality and led to the structure reported on herein.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms of water molecules were freely refined in an isotropic approximation. Aromatic hydrogen atoms were refined with riding coordinates and Uiso(H) = 1.2Uiso(C).
details are summarized in Table 4
|
Supporting information
CCDC reference: 1510381
https://doi.org/10.1107/S2056989016016686/vn2118sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016016686/vn2118Isup2.hkl
Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell
CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(SiF6)(C10H8N2)2]·2C10H8N2·5H2O | F(000) = 1900 |
Mr = 920.44 | Dx = 1.518 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 16.3875 (2) Å | Cell parameters from 32121 reflections |
b = 16.6136 (2) Å | θ = 3.7–76.5° |
c = 14.7959 (2) Å | µ = 1.78 mm−1 |
β = 90.654 (1)° | T = 110 K |
V = 4028.00 (9) Å3 | Prism, violet |
Z = 4 | 0.25 × 0.16 × 0.14 mm |
Rigaku Oxford Diffraction SuperNova (Cu) X-ray Source diffractometer | 7846 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.029 |
ω scans | θmax = 76.2°, θmin = 3.8° |
Absorption correction: analytical [CrysAlis PRO (Rigaku Oxford Diffraction, 2015)]; analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995) | h = −20→20 |
Tmin = 0.708, Tmax = 0.824 | k = 0→20 |
68271 measured reflections | l = 0→18 |
8435 independent reflections |
Refinement on F2 | Primary atom site location: iterative |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0562P)2 + 2.6502P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.002 |
8435 reflections | Δρmax = 0.47 e Å−3 |
593 parameters | Δρmin = −0.50 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.5000 | 0.5000 | 0.00740 (9) | |
Cu2 | 0.5000 | 0.5000 | 0.5000 | 0.00808 (9) | |
Si1 | 0.24851 (2) | 0.50181 (2) | 0.49951 (2) | 0.01085 (11) | |
F1 | 0.14392 (6) | 0.50149 (4) | 0.50157 (6) | 0.01423 (19) | |
F2 | 0.35288 (6) | 0.49872 (4) | 0.49705 (6) | 0.01514 (19) | |
F5 | 0.25214 (6) | 0.49217 (7) | 0.61255 (7) | 0.0327 (3) | |
F6 | 0.25001 (5) | 0.60099 (6) | 0.50857 (8) | 0.0313 (3) | |
F3 | 0.24470 (6) | 0.51068 (7) | 0.38628 (7) | 0.0305 (2) | |
F4 | 0.24575 (5) | 0.40086 (6) | 0.48849 (9) | 0.0356 (3) | |
N1 | −0.00035 (7) | 0.41543 (7) | 0.59766 (8) | 0.0104 (2) | |
O52 | 0.24669 (7) | 0.22533 (8) | 0.69796 (10) | 0.0304 (3) | |
N7 | −0.00003 (7) | 0.09067 (7) | 0.90635 (7) | 0.0104 (2) | |
N19 | 0.50157 (7) | 0.08206 (7) | 0.10342 (7) | 0.0103 (2) | |
N13 | 0.50009 (7) | 0.40834 (7) | 0.41061 (7) | 0.0102 (2) | |
O53 | 0.29213 (8) | 0.07136 (8) | 0.73649 (9) | 0.0319 (3) | |
O50 | 0.27901 (8) | 0.11159 (8) | 0.42810 (9) | 0.0326 (3) | |
O51 | 0.29696 (9) | 0.24956 (9) | 0.52512 (10) | 0.0374 (3) | |
N43 | 0.55301 (8) | 0.94138 (8) | 0.35053 (9) | 0.0224 (3) | |
O49 | 0.22422 (9) | 0.11500 (9) | 0.25239 (9) | 0.0375 (3) | |
N37 | 0.23466 (8) | 0.82015 (8) | 0.64527 (10) | 0.0244 (3) | |
N31 | 0.26526 (8) | 0.82439 (10) | 0.32164 (10) | 0.0281 (3) | |
C16 | 0.50172 (8) | 0.27683 (8) | 0.29304 (9) | 0.0117 (3) | |
C17 | 0.56598 (8) | 0.33166 (8) | 0.29579 (9) | 0.0136 (3) | |
H17 | 0.6114 | 0.3250 | 0.2572 | 0.016* | |
C22 | 0.50242 (8) | 0.20746 (8) | 0.23027 (9) | 0.0113 (3) | |
C4 | −0.00106 (8) | 0.28967 (8) | 0.72282 (9) | 0.0131 (3) | |
C20 | 0.43162 (8) | 0.11255 (8) | 0.13529 (9) | 0.0141 (3) | |
H20 | 0.3814 | 0.0907 | 0.1139 | 0.017* | |
C10 | −0.00090 (8) | 0.22170 (8) | 0.78738 (9) | 0.0132 (3) | |
C15 | 0.43615 (8) | 0.29027 (8) | 0.35038 (9) | 0.0146 (3) | |
H15 | 0.3911 | 0.2543 | 0.3504 | 0.018* | |
C18 | 0.56320 (8) | 0.39594 (8) | 0.35523 (9) | 0.0125 (3) | |
H18 | 0.6076 | 0.4327 | 0.3569 | 0.015* | |
C9 | 0.07202 (8) | 0.18464 (9) | 0.81404 (10) | 0.0164 (3) | |
H9 | 0.1227 | 0.2038 | 0.7920 | 0.020* | |
C3 | −0.06460 (8) | 0.34570 (8) | 0.71891 (9) | 0.0144 (3) | |
H3 | −0.1089 | 0.3418 | 0.7595 | 0.017* | |
C21 | 0.42956 (8) | 0.17432 (9) | 0.19781 (9) | 0.0145 (3) | |
H21 | 0.3787 | 0.1941 | 0.2186 | 0.017* | |
C14 | 0.43721 (8) | 0.35642 (8) | 0.40738 (9) | 0.0147 (3) | |
H14 | 0.3919 | 0.3654 | 0.4455 | 0.018* | |
C8 | 0.06999 (8) | 0.11997 (9) | 0.87270 (10) | 0.0155 (3) | |
H8 | 0.1200 | 0.0952 | 0.8900 | 0.019* | |
C5 | 0.06262 (8) | 0.29879 (9) | 0.66202 (10) | 0.0162 (3) | |
H5 | 0.1066 | 0.2616 | 0.6620 | 0.019* | |
C24 | 0.57206 (8) | 0.11186 (9) | 0.13636 (10) | 0.0156 (3) | |
H24 | 0.6220 | 0.0897 | 0.1158 | 0.019* | |
C23 | 0.57484 (8) | 0.17385 (9) | 0.19922 (10) | 0.0160 (3) | |
H23 | 0.6259 | 0.1933 | 0.2210 | 0.019* | |
C11 | −0.07321 (8) | 0.19167 (9) | 0.82304 (9) | 0.0147 (3) | |
H11 | −0.1240 | 0.2156 | 0.8072 | 0.018* | |
C12 | −0.07035 (8) | 0.12663 (9) | 0.88184 (9) | 0.0142 (3) | |
H12 | −0.1200 | 0.1068 | 0.9057 | 0.017* | |
C2 | −0.06252 (8) | 0.40681 (8) | 0.65549 (9) | 0.0130 (3) | |
H2 | −0.1065 | 0.4440 | 0.6527 | 0.016* | |
C45 | 0.42153 (9) | 0.96535 (9) | 0.41679 (11) | 0.0208 (3) | |
H45 | 0.3752 | 0.9994 | 0.4215 | 0.025* | |
C6 | 0.06131 (8) | 0.36237 (9) | 0.60178 (10) | 0.0152 (3) | |
H6 | 0.1058 | 0.3687 | 0.5618 | 0.018* | |
C46 | 0.42614 (9) | 0.89392 (9) | 0.46622 (10) | 0.0173 (3) | |
C44 | 0.48547 (10) | 0.98589 (10) | 0.36069 (11) | 0.0226 (3) | |
H44 | 0.4811 | 1.0346 | 0.3273 | 0.027* | |
C47 | 0.49637 (9) | 0.84765 (9) | 0.45646 (10) | 0.0201 (3) | |
H47 | 0.5025 | 0.7986 | 0.4889 | 0.024* | |
C38 | 0.28158 (9) | 0.76657 (9) | 0.60272 (10) | 0.0208 (3) | |
H38 | 0.2714 | 0.7110 | 0.6125 | 0.025* | |
N25 | −0.12407 (9) | 0.91210 (10) | 0.49597 (11) | 0.0340 (4) | |
C39 | 0.34424 (9) | 0.78762 (9) | 0.54526 (10) | 0.0195 (3) | |
H39 | 0.3764 | 0.7470 | 0.5179 | 0.023* | |
C40 | 0.36000 (9) | 0.86869 (9) | 0.52772 (10) | 0.0180 (3) | |
C36 | 0.22422 (10) | 0.77389 (11) | 0.37480 (11) | 0.0253 (3) | |
H36 | 0.2459 | 0.7215 | 0.3846 | 0.030* | |
C48 | 0.55719 (9) | 0.87357 (10) | 0.39917 (11) | 0.0222 (3) | |
H48 | 0.6047 | 0.8413 | 0.3941 | 0.027* | |
C34 | 0.11765 (9) | 0.86961 (10) | 0.40037 (10) | 0.0224 (3) | |
C35 | 0.15162 (9) | 0.79402 (10) | 0.41632 (11) | 0.0231 (3) | |
H35 | 0.1254 | 0.7568 | 0.4551 | 0.028* | |
C33 | 0.16047 (10) | 0.92295 (10) | 0.34582 (11) | 0.0266 (3) | |
H33 | 0.1399 | 0.9754 | 0.3338 | 0.032* | |
C28 | 0.03559 (10) | 0.88875 (10) | 0.43575 (11) | 0.0232 (3) | |
C41 | 0.31092 (10) | 0.92455 (10) | 0.57120 (12) | 0.0254 (3) | |
H41 | 0.3184 | 0.9805 | 0.5613 | 0.030* | |
C27 | 0.01285 (10) | 0.86650 (11) | 0.52287 (12) | 0.0286 (4) | |
H27 | 0.0513 | 0.8423 | 0.5630 | 0.034* | |
C32 | 0.23375 (10) | 0.89772 (11) | 0.30952 (12) | 0.0286 (4) | |
H32 | 0.2634 | 0.9349 | 0.2738 | 0.034* | |
C42 | 0.25108 (10) | 0.89764 (10) | 0.62910 (13) | 0.0299 (4) | |
H42 | 0.2195 | 0.9370 | 0.6595 | 0.036* | |
C26 | −0.06647 (11) | 0.88027 (12) | 0.54980 (13) | 0.0335 (4) | |
H26 | −0.0808 | 0.8663 | 0.6098 | 0.040* | |
C29 | −0.02335 (11) | 0.92411 (11) | 0.38086 (12) | 0.0302 (4) | |
H29 | −0.0100 | 0.9422 | 0.3219 | 0.036* | |
C30 | −0.10216 (12) | 0.93284 (12) | 0.41284 (14) | 0.0367 (4) | |
H30 | −0.1425 | 0.9547 | 0.3734 | 0.044* | |
H53B | 0.2849 (14) | 0.0514 (14) | 0.7835 (17) | 0.034 (6)* | |
H52B | 0.2595 (15) | 0.1754 (16) | 0.7175 (17) | 0.046 (7)* | |
H53A | 0.3396 (18) | 0.0590 (18) | 0.720 (2) | 0.066 (9)* | |
H52A | 0.2588 (15) | 0.2311 (15) | 0.6395 (18) | 0.046 (7)* | |
H50A | 0.2641 (16) | 0.1230 (17) | 0.360 (2) | 0.060 (8)* | |
H49B | 0.2334 (18) | 0.0814 (19) | 0.201 (2) | 0.069 (9)* | |
H50B | 0.2281 (19) | 0.0997 (19) | 0.457 (2) | 0.072 (9)* | |
H49A | 0.234 (2) | 0.174 (2) | 0.241 (2) | 0.100 (12)* | |
H51B | 0.2650 (13) | 0.2899 (15) | 0.5027 (14) | 0.034 (6)* | |
H51A | 0.281 (2) | 0.207 (2) | 0.480 (2) | 0.093 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01176 (16) | 0.00446 (15) | 0.00599 (15) | −0.00002 (9) | 0.00097 (11) | 0.00010 (8) |
Cu2 | 0.01341 (16) | 0.00456 (15) | 0.00628 (15) | 0.00000 (9) | 0.00100 (11) | −0.00001 (8) |
Si1 | 0.0105 (2) | 0.0103 (2) | 0.0118 (2) | 0.00012 (11) | 0.00098 (16) | −0.00039 (12) |
F1 | 0.0130 (4) | 0.0140 (5) | 0.0157 (4) | −0.0002 (3) | 0.0016 (3) | −0.0021 (3) |
F2 | 0.0138 (4) | 0.0154 (5) | 0.0162 (5) | 0.0010 (3) | 0.0015 (3) | 0.0020 (3) |
F5 | 0.0194 (5) | 0.0653 (8) | 0.0135 (5) | −0.0001 (4) | 0.0007 (4) | 0.0059 (4) |
F6 | 0.0196 (5) | 0.0126 (5) | 0.0616 (7) | −0.0008 (3) | 0.0034 (5) | −0.0057 (4) |
F3 | 0.0187 (5) | 0.0589 (7) | 0.0139 (5) | 0.0055 (4) | 0.0012 (4) | −0.0002 (4) |
F4 | 0.0198 (5) | 0.0123 (5) | 0.0746 (8) | 0.0007 (3) | 0.0011 (5) | −0.0033 (4) |
N1 | 0.0130 (5) | 0.0087 (5) | 0.0096 (5) | −0.0006 (4) | 0.0001 (4) | 0.0019 (4) |
O52 | 0.0243 (6) | 0.0258 (6) | 0.0412 (8) | 0.0045 (5) | 0.0085 (5) | 0.0034 (5) |
N7 | 0.0137 (5) | 0.0086 (5) | 0.0088 (5) | −0.0003 (4) | 0.0007 (4) | 0.0019 (4) |
N19 | 0.0145 (5) | 0.0079 (5) | 0.0085 (5) | 0.0004 (4) | 0.0004 (4) | −0.0010 (4) |
N13 | 0.0139 (5) | 0.0072 (5) | 0.0094 (5) | 0.0003 (4) | 0.0005 (4) | −0.0011 (4) |
O53 | 0.0346 (7) | 0.0311 (7) | 0.0302 (7) | 0.0059 (5) | 0.0124 (5) | 0.0096 (5) |
O50 | 0.0271 (6) | 0.0342 (7) | 0.0366 (7) | 0.0047 (5) | 0.0013 (5) | −0.0021 (5) |
O51 | 0.0474 (8) | 0.0258 (7) | 0.0389 (7) | 0.0018 (6) | −0.0021 (6) | 0.0054 (6) |
N43 | 0.0228 (6) | 0.0233 (7) | 0.0212 (6) | −0.0028 (5) | 0.0009 (5) | −0.0016 (5) |
O49 | 0.0472 (8) | 0.0342 (7) | 0.0310 (7) | 0.0016 (6) | 0.0001 (6) | 0.0007 (6) |
N37 | 0.0198 (6) | 0.0231 (7) | 0.0305 (7) | −0.0016 (5) | 0.0044 (5) | −0.0003 (6) |
N31 | 0.0206 (6) | 0.0401 (8) | 0.0238 (7) | −0.0031 (6) | 0.0021 (5) | −0.0034 (6) |
C16 | 0.0136 (6) | 0.0099 (6) | 0.0118 (6) | 0.0007 (5) | −0.0003 (5) | −0.0022 (5) |
C17 | 0.0134 (6) | 0.0136 (6) | 0.0138 (6) | −0.0008 (5) | 0.0031 (5) | −0.0031 (5) |
C22 | 0.0142 (6) | 0.0089 (6) | 0.0109 (6) | −0.0007 (5) | 0.0007 (5) | −0.0015 (5) |
C4 | 0.0139 (6) | 0.0118 (6) | 0.0137 (6) | −0.0001 (5) | 0.0003 (5) | 0.0042 (5) |
C20 | 0.0133 (6) | 0.0127 (6) | 0.0162 (7) | −0.0014 (5) | 0.0012 (5) | −0.0040 (5) |
C10 | 0.0148 (6) | 0.0116 (6) | 0.0132 (6) | 0.0004 (5) | 0.0016 (5) | 0.0047 (5) |
C15 | 0.0143 (6) | 0.0126 (6) | 0.0171 (7) | −0.0030 (5) | 0.0032 (5) | −0.0043 (5) |
C18 | 0.0140 (6) | 0.0113 (6) | 0.0122 (6) | −0.0010 (5) | 0.0006 (5) | −0.0018 (5) |
C9 | 0.0121 (6) | 0.0179 (7) | 0.0193 (7) | −0.0003 (5) | 0.0022 (5) | 0.0080 (6) |
C3 | 0.0141 (6) | 0.0155 (7) | 0.0136 (6) | 0.0015 (5) | 0.0032 (5) | 0.0042 (5) |
C21 | 0.0126 (6) | 0.0145 (7) | 0.0164 (7) | 0.0000 (5) | 0.0022 (5) | −0.0045 (5) |
C14 | 0.0159 (6) | 0.0126 (6) | 0.0157 (6) | −0.0011 (5) | 0.0037 (5) | −0.0035 (5) |
C8 | 0.0139 (6) | 0.0148 (7) | 0.0179 (7) | 0.0016 (5) | 0.0015 (5) | 0.0058 (5) |
C5 | 0.0131 (6) | 0.0151 (7) | 0.0205 (7) | 0.0028 (5) | 0.0032 (5) | 0.0071 (5) |
C24 | 0.0136 (6) | 0.0154 (7) | 0.0177 (7) | 0.0016 (5) | 0.0009 (5) | −0.0061 (5) |
C23 | 0.0125 (6) | 0.0175 (7) | 0.0179 (7) | −0.0002 (5) | −0.0012 (5) | −0.0067 (5) |
C11 | 0.0119 (6) | 0.0153 (7) | 0.0168 (6) | 0.0016 (5) | 0.0009 (5) | 0.0057 (5) |
C12 | 0.0132 (6) | 0.0148 (7) | 0.0147 (6) | −0.0005 (5) | 0.0008 (5) | 0.0044 (5) |
C2 | 0.0145 (6) | 0.0128 (6) | 0.0118 (6) | 0.0018 (5) | 0.0005 (5) | 0.0018 (5) |
C45 | 0.0192 (7) | 0.0177 (7) | 0.0255 (8) | 0.0006 (6) | −0.0016 (6) | −0.0001 (6) |
C6 | 0.0139 (6) | 0.0145 (7) | 0.0174 (7) | 0.0014 (5) | 0.0032 (5) | 0.0058 (5) |
C46 | 0.0176 (7) | 0.0174 (7) | 0.0169 (7) | −0.0015 (5) | −0.0028 (5) | −0.0021 (5) |
C44 | 0.0252 (8) | 0.0187 (7) | 0.0237 (8) | −0.0015 (6) | −0.0007 (6) | 0.0022 (6) |
C47 | 0.0205 (7) | 0.0192 (7) | 0.0205 (7) | 0.0017 (6) | −0.0016 (6) | 0.0003 (6) |
C38 | 0.0222 (7) | 0.0182 (7) | 0.0219 (7) | −0.0019 (6) | −0.0013 (6) | 0.0005 (6) |
N25 | 0.0270 (7) | 0.0306 (8) | 0.0446 (9) | 0.0051 (6) | 0.0069 (7) | −0.0021 (7) |
C39 | 0.0228 (7) | 0.0171 (7) | 0.0186 (7) | 0.0014 (6) | −0.0001 (6) | −0.0008 (6) |
C40 | 0.0158 (6) | 0.0190 (7) | 0.0193 (7) | −0.0011 (5) | −0.0024 (5) | 0.0000 (6) |
C36 | 0.0198 (7) | 0.0319 (9) | 0.0241 (8) | 0.0008 (6) | −0.0012 (6) | −0.0023 (7) |
C48 | 0.0194 (7) | 0.0242 (8) | 0.0230 (8) | 0.0018 (6) | 0.0002 (6) | −0.0020 (6) |
C34 | 0.0214 (7) | 0.0263 (8) | 0.0194 (7) | −0.0025 (6) | 0.0009 (6) | −0.0037 (6) |
C35 | 0.0203 (7) | 0.0283 (8) | 0.0205 (7) | −0.0026 (6) | −0.0004 (6) | 0.0006 (6) |
C33 | 0.0294 (8) | 0.0249 (8) | 0.0255 (8) | −0.0039 (6) | 0.0021 (6) | −0.0007 (6) |
C28 | 0.0239 (8) | 0.0210 (8) | 0.0247 (8) | −0.0023 (6) | 0.0024 (6) | −0.0037 (6) |
C41 | 0.0216 (7) | 0.0160 (7) | 0.0387 (9) | −0.0005 (6) | 0.0060 (7) | −0.0003 (6) |
C27 | 0.0259 (8) | 0.0352 (9) | 0.0246 (8) | 0.0020 (7) | 0.0019 (6) | 0.0002 (7) |
C32 | 0.0260 (8) | 0.0347 (9) | 0.0253 (8) | −0.0092 (7) | 0.0043 (6) | −0.0018 (7) |
C42 | 0.0239 (8) | 0.0204 (8) | 0.0455 (10) | 0.0011 (6) | 0.0122 (7) | −0.0028 (7) |
C26 | 0.0317 (9) | 0.0346 (10) | 0.0343 (10) | 0.0012 (7) | 0.0113 (7) | 0.0000 (8) |
C29 | 0.0334 (9) | 0.0264 (9) | 0.0308 (9) | 0.0047 (7) | 0.0041 (7) | 0.0029 (7) |
C30 | 0.0318 (9) | 0.0341 (10) | 0.0442 (11) | 0.0112 (8) | 0.0010 (8) | 0.0038 (8) |
Cu1—N1i | 2.0156 (11) | C10—C9 | 1.3971 (19) |
Cu1—N1 | 2.0156 (11) | C15—C14 | 1.3852 (19) |
Cu1—N7ii | 2.0467 (11) | C15—H15 | 0.9500 |
Cu1—N7iii | 2.0467 (11) | C18—H18 | 0.9500 |
Cu1—F1i | 2.3585 (9) | C9—C8 | 1.3818 (19) |
Cu1—F1 | 2.3585 (9) | C9—H9 | 0.9500 |
Cu2—N13iv | 2.0170 (11) | C3—C2 | 1.3832 (19) |
Cu2—N13 | 2.0170 (11) | C3—H3 | 0.9500 |
Cu2—N19v | 2.0494 (11) | C21—H21 | 0.9500 |
Cu2—N19vi | 2.0494 (11) | C14—H14 | 0.9500 |
Cu2—F2 | 2.4109 (9) | C8—H8 | 0.9500 |
Cu2—F2iv | 2.4109 (9) | C5—C6 | 1.3821 (19) |
Si1—F6 | 1.6534 (11) | C5—H5 | 0.9500 |
Si1—F5 | 1.6806 (10) | C24—C23 | 1.3882 (19) |
Si1—F3 | 1.6823 (10) | C24—H24 | 0.9500 |
Si1—F4 | 1.6855 (11) | C23—H23 | 0.9500 |
Si1—F2 | 1.7120 (10) | C11—C12 | 1.3877 (19) |
Si1—F1 | 1.7145 (10) | C11—H11 | 0.9500 |
N1—C6 | 1.3418 (18) | C12—H12 | 0.9500 |
N1—C2 | 1.3455 (17) | C2—H2 | 0.9500 |
O52—H52B | 0.90 (3) | C45—C44 | 1.387 (2) |
O52—H52A | 0.90 (3) | C45—C46 | 1.396 (2) |
N7—C12 | 1.3442 (18) | C45—H45 | 0.9500 |
N7—C8 | 1.3470 (18) | C6—H6 | 0.9500 |
N7—Cu1vii | 2.0467 (11) | C46—C47 | 1.393 (2) |
N19—C24 | 1.3432 (18) | C46—C40 | 1.484 (2) |
N19—C20 | 1.3436 (18) | C44—H44 | 0.9500 |
N19—Cu2viii | 2.0494 (11) | C47—C48 | 1.384 (2) |
N13—C18 | 1.3426 (17) | C47—H47 | 0.9500 |
N13—C14 | 1.3443 (18) | C38—C39 | 1.385 (2) |
O53—H53B | 0.78 (2) | C38—H38 | 0.9500 |
O53—H53A | 0.85 (3) | N25—C30 | 1.331 (3) |
O50—H50A | 1.05 (3) | N25—C26 | 1.337 (3) |
O50—H50B | 0.96 (3) | C39—C40 | 1.396 (2) |
O51—H51B | 0.91 (3) | C39—H39 | 0.9500 |
O51—H51A | 1.00 (4) | C40—C41 | 1.391 (2) |
N43—C48 | 1.338 (2) | C36—C35 | 1.386 (2) |
N43—C44 | 1.341 (2) | C36—H36 | 0.9500 |
O49—H49B | 0.96 (3) | C48—H48 | 0.9500 |
O49—H49A | 1.00 (4) | C34—C35 | 1.393 (2) |
N37—C42 | 1.337 (2) | C34—C33 | 1.394 (2) |
N37—C38 | 1.338 (2) | C34—C28 | 1.483 (2) |
N31—C32 | 1.334 (2) | C35—H35 | 0.9500 |
N31—C36 | 1.337 (2) | C33—C32 | 1.386 (2) |
C16—C17 | 1.3927 (19) | C33—H33 | 0.9500 |
C16—C15 | 1.3947 (18) | C28—C29 | 1.386 (2) |
C16—C22 | 1.4803 (19) | C28—C27 | 1.396 (2) |
C17—C18 | 1.3845 (19) | C41—C42 | 1.384 (2) |
C17—H17 | 0.9500 | C41—H41 | 0.9500 |
C22—C23 | 1.3942 (19) | C27—C26 | 1.383 (2) |
C22—C21 | 1.3950 (19) | C27—H27 | 0.9500 |
C4—C5 | 1.3938 (19) | C32—H32 | 0.9500 |
C4—C3 | 1.3974 (19) | C42—H42 | 0.9500 |
C4—C10 | 1.4791 (19) | C26—H26 | 0.9500 |
C20—C21 | 1.3823 (19) | C29—C30 | 1.388 (3) |
C20—H20 | 0.9500 | C29—H29 | 0.9500 |
C10—C11 | 1.3948 (19) | C30—H30 | 0.9500 |
N1i—Cu1—N1 | 180.00 (6) | C2—C3—C4 | 119.53 (12) |
N1i—Cu1—N7ii | 91.58 (5) | C2—C3—H3 | 120.2 |
N1—Cu1—N7ii | 88.42 (5) | C4—C3—H3 | 120.2 |
N1i—Cu1—N7iii | 88.42 (5) | C20—C21—C22 | 119.74 (12) |
N1—Cu1—N7iii | 91.58 (5) | C20—C21—H21 | 120.1 |
N7ii—Cu1—N7iii | 180.0 | C22—C21—H21 | 120.1 |
N1i—Cu1—F1i | 90.65 (4) | N13—C14—C15 | 122.35 (12) |
N1—Cu1—F1i | 89.35 (4) | N13—C14—H14 | 118.8 |
N7ii—Cu1—F1i | 89.60 (4) | C15—C14—H14 | 118.8 |
N7iii—Cu1—F1i | 90.40 (4) | N7—C8—C9 | 122.68 (13) |
N1i—Cu1—F1 | 89.35 (4) | N7—C8—H8 | 118.7 |
N1—Cu1—F1 | 90.65 (4) | C9—C8—H8 | 118.7 |
N7ii—Cu1—F1 | 90.40 (4) | C6—C5—C4 | 119.54 (13) |
N7iii—Cu1—F1 | 89.60 (4) | C6—C5—H5 | 120.2 |
F1i—Cu1—F1 | 180.0 | C4—C5—H5 | 120.2 |
N13iv—Cu2—N13 | 180.0 | N19—C24—C23 | 122.55 (12) |
N13iv—Cu2—N19v | 90.73 (5) | N19—C24—H24 | 118.7 |
N13—Cu2—N19v | 89.27 (5) | C23—C24—H24 | 118.7 |
N13iv—Cu2—N19vi | 89.27 (5) | C24—C23—C22 | 119.76 (12) |
N13—Cu2—N19vi | 90.73 (5) | C24—C23—H23 | 120.1 |
N19v—Cu2—N19vi | 180.0 | C22—C23—H23 | 120.1 |
N13iv—Cu2—F2 | 90.59 (4) | C12—C11—C10 | 119.54 (12) |
N13—Cu2—F2 | 89.41 (4) | C12—C11—H11 | 120.2 |
N19v—Cu2—F2 | 90.67 (4) | C10—C11—H11 | 120.2 |
N19vi—Cu2—F2 | 89.33 (4) | N7—C12—C11 | 122.54 (12) |
N13iv—Cu2—F2iv | 89.41 (4) | N7—C12—H12 | 118.7 |
N13—Cu2—F2iv | 90.59 (4) | C11—C12—H12 | 118.7 |
N19v—Cu2—F2iv | 89.33 (4) | N1—C2—C3 | 122.29 (12) |
N19vi—Cu2—F2iv | 90.67 (4) | N1—C2—H2 | 118.9 |
F2—Cu2—F2iv | 180.0 | C3—C2—H2 | 118.9 |
F6—Si1—F5 | 90.80 (6) | C44—C45—C46 | 119.09 (14) |
F6—Si1—F3 | 89.64 (6) | C44—C45—H45 | 120.5 |
F5—Si1—F3 | 179.55 (6) | C46—C45—H45 | 120.5 |
F6—Si1—F4 | 178.87 (6) | N1—C6—C5 | 122.51 (12) |
F5—Si1—F4 | 90.12 (6) | N1—C6—H6 | 118.7 |
F3—Si1—F4 | 89.44 (6) | C5—C6—H6 | 118.7 |
F6—Si1—F2 | 91.01 (4) | C47—C46—C45 | 117.06 (14) |
F5—Si1—F2 | 89.67 (5) | C47—C46—C40 | 121.19 (14) |
F3—Si1—F2 | 90.41 (5) | C45—C46—C40 | 121.74 (13) |
F4—Si1—F2 | 89.64 (4) | N43—C44—C45 | 124.17 (15) |
F6—Si1—F1 | 90.89 (4) | N43—C44—H44 | 117.9 |
F5—Si1—F1 | 90.35 (5) | C45—C44—H44 | 117.9 |
F3—Si1—F1 | 89.56 (5) | C48—C47—C46 | 119.55 (14) |
F4—Si1—F1 | 88.45 (4) | C48—C47—H47 | 120.2 |
F2—Si1—F1 | 178.09 (4) | C46—C47—H47 | 120.2 |
Si1—F1—Cu1 | 178.36 (5) | N37—C38—C39 | 123.69 (14) |
Si1—F2—Cu2 | 176.83 (5) | N37—C38—H38 | 118.2 |
C6—N1—C2 | 118.46 (12) | C39—C38—H38 | 118.2 |
C6—N1—Cu1 | 118.82 (9) | C30—N25—C26 | 117.18 (15) |
C2—N1—Cu1 | 122.58 (9) | C38—C39—C40 | 119.83 (14) |
H52B—O52—H52A | 111 (2) | C38—C39—H39 | 120.1 |
C12—N7—C8 | 118.09 (12) | C40—C39—H39 | 120.1 |
C12—N7—Cu1vii | 120.22 (9) | C41—C40—C39 | 116.65 (14) |
C8—N7—Cu1vii | 121.50 (9) | C41—C40—C46 | 121.72 (14) |
C24—N19—C20 | 117.86 (12) | C39—C40—C46 | 121.64 (13) |
C24—N19—Cu2viii | 121.30 (9) | N31—C36—C35 | 123.33 (16) |
C20—N19—Cu2viii | 120.62 (9) | N31—C36—H36 | 118.3 |
C18—N13—C14 | 118.38 (12) | C35—C36—H36 | 118.3 |
C18—N13—Cu2 | 121.49 (9) | N43—C48—C47 | 123.95 (14) |
C14—N13—Cu2 | 120.10 (9) | N43—C48—H48 | 118.0 |
H53B—O53—H53A | 108 (3) | C47—C48—H48 | 118.0 |
H50A—O50—H50B | 105 (2) | C35—C34—C33 | 117.94 (15) |
H51B—O51—H51A | 98 (2) | C35—C34—C28 | 119.72 (14) |
C48—N43—C44 | 116.18 (14) | C33—C34—C28 | 122.19 (15) |
H49B—O49—H49A | 114 (3) | C36—C35—C34 | 119.07 (15) |
C42—N37—C38 | 115.99 (14) | C36—C35—H35 | 120.5 |
C32—N31—C36 | 117.09 (14) | C34—C35—H35 | 120.5 |
C17—C16—C15 | 117.72 (12) | C32—C33—C34 | 118.45 (16) |
C17—C16—C22 | 121.09 (12) | C32—C33—H33 | 120.8 |
C15—C16—C22 | 121.19 (12) | C34—C33—H33 | 120.8 |
C18—C17—C16 | 119.51 (12) | C29—C28—C27 | 117.51 (15) |
C18—C17—H17 | 120.2 | C29—C28—C34 | 120.85 (15) |
C16—C17—H17 | 120.2 | C27—C28—C34 | 121.46 (15) |
C23—C22—C21 | 117.19 (12) | C42—C41—C40 | 119.25 (15) |
C23—C22—C16 | 122.08 (12) | C42—C41—H41 | 120.4 |
C21—C22—C16 | 120.70 (12) | C40—C41—H41 | 120.4 |
C5—C4—C3 | 117.65 (12) | C26—C27—C28 | 118.95 (17) |
C5—C4—C10 | 120.26 (13) | C26—C27—H27 | 120.5 |
C3—C4—C10 | 122.08 (12) | C28—C27—H27 | 120.5 |
N19—C20—C21 | 122.84 (13) | N31—C32—C33 | 124.04 (16) |
N19—C20—H20 | 118.6 | N31—C32—H32 | 118.0 |
C21—C20—H20 | 118.6 | C33—C32—H32 | 118.0 |
C11—C10—C9 | 117.59 (12) | N37—C42—C41 | 124.56 (15) |
C11—C10—C4 | 121.48 (13) | N37—C42—H42 | 117.7 |
C9—C10—C4 | 120.93 (12) | C41—C42—H42 | 117.7 |
C14—C15—C16 | 119.54 (13) | N25—C26—C27 | 123.59 (17) |
C14—C15—H15 | 120.2 | N25—C26—H26 | 118.2 |
C16—C15—H15 | 120.2 | C27—C26—H26 | 118.2 |
N13—C18—C17 | 122.50 (12) | C28—C29—C30 | 119.30 (17) |
N13—C18—H18 | 118.8 | C28—C29—H29 | 120.3 |
C17—C18—H18 | 118.8 | C30—C29—H29 | 120.3 |
C8—C9—C10 | 119.56 (13) | N25—C30—C29 | 123.38 (18) |
C8—C9—H9 | 120.2 | N25—C30—H30 | 118.3 |
C10—C9—H9 | 120.2 | C29—C30—H30 | 118.3 |
C15—C16—C17—C18 | 0.9 (2) | C4—C3—C2—N1 | −1.1 (2) |
C22—C16—C17—C18 | 179.87 (12) | C2—N1—C6—C5 | 1.0 (2) |
C17—C16—C22—C23 | 26.6 (2) | Cu1—N1—C6—C5 | −174.86 (11) |
C15—C16—C22—C23 | −154.49 (14) | C4—C5—C6—N1 | −1.6 (2) |
C17—C16—C22—C21 | −151.72 (14) | C44—C45—C46—C47 | 0.7 (2) |
C15—C16—C22—C21 | 27.22 (19) | C44—C45—C46—C40 | 179.73 (14) |
C24—N19—C20—C21 | 2.0 (2) | C48—N43—C44—C45 | −0.5 (2) |
Cu2viii—N19—C20—C21 | −172.69 (11) | C46—C45—C44—N43 | −0.3 (2) |
C5—C4—C10—C11 | −154.60 (14) | C45—C46—C47—C48 | −0.3 (2) |
C3—C4—C10—C11 | 24.2 (2) | C40—C46—C47—C48 | −179.31 (14) |
C5—C4—C10—C9 | 24.7 (2) | C42—N37—C38—C39 | 0.3 (2) |
C3—C4—C10—C9 | −156.55 (14) | N37—C38—C39—C40 | −1.4 (2) |
C17—C16—C15—C14 | −0.2 (2) | C38—C39—C40—C41 | 0.7 (2) |
C22—C16—C15—C14 | −179.17 (13) | C38—C39—C40—C46 | −179.63 (13) |
C14—N13—C18—C17 | −0.5 (2) | C47—C46—C40—C41 | 149.49 (16) |
Cu2—N13—C18—C17 | 177.47 (10) | C45—C46—C40—C41 | −29.5 (2) |
C16—C17—C18—N13 | −0.6 (2) | C47—C46—C40—C39 | −30.1 (2) |
C11—C10—C9—C8 | 0.9 (2) | C45—C46—C40—C39 | 150.90 (15) |
C4—C10—C9—C8 | −178.38 (14) | C32—N31—C36—C35 | 0.5 (2) |
C5—C4—C3—C2 | 0.5 (2) | C44—N43—C48—C47 | 1.0 (2) |
C10—C4—C3—C2 | −178.27 (13) | C46—C47—C48—N43 | −0.6 (2) |
N19—C20—C21—C22 | 0.0 (2) | N31—C36—C35—C34 | 2.0 (2) |
C23—C22—C21—C20 | −2.0 (2) | C33—C34—C35—C36 | −2.6 (2) |
C16—C22—C21—C20 | 176.33 (13) | C28—C34—C35—C36 | 173.10 (15) |
C18—N13—C14—C15 | 1.2 (2) | C35—C34—C33—C32 | 0.8 (2) |
Cu2—N13—C14—C15 | −176.76 (11) | C28—C34—C33—C32 | −174.74 (15) |
C16—C15—C14—N13 | −0.9 (2) | C35—C34—C28—C29 | −132.33 (17) |
C12—N7—C8—C9 | −0.4 (2) | C33—C34—C28—C29 | 43.2 (2) |
Cu1vii—N7—C8—C9 | −175.57 (11) | C35—C34—C28—C27 | 42.8 (2) |
C10—C9—C8—N7 | −0.4 (2) | C33—C34—C28—C27 | −141.73 (17) |
C3—C4—C5—C6 | 0.8 (2) | C39—C40—C41—C42 | 0.8 (2) |
C10—C4—C5—C6 | 179.62 (13) | C46—C40—C41—C42 | −178.85 (15) |
C20—N19—C24—C23 | −2.0 (2) | C29—C28—C27—C26 | 0.3 (3) |
Cu2viii—N19—C24—C23 | 172.69 (11) | C34—C28—C27—C26 | −174.98 (16) |
N19—C24—C23—C22 | −0.1 (2) | C36—N31—C32—C33 | −2.4 (3) |
C21—C22—C23—C24 | 2.1 (2) | C34—C33—C32—N31 | 1.8 (3) |
C16—C22—C23—C24 | −176.27 (13) | C38—N37—C42—C41 | 1.3 (3) |
C9—C10—C11—C12 | −0.8 (2) | C40—C41—C42—N37 | −1.9 (3) |
C4—C10—C11—C12 | 178.56 (13) | C30—N25—C26—C27 | −1.5 (3) |
C8—N7—C12—C11 | 0.6 (2) | C28—C27—C26—N25 | 1.8 (3) |
Cu1vii—N7—C12—C11 | 175.83 (11) | C27—C28—C29—C30 | −2.6 (3) |
C10—C11—C12—N7 | 0.0 (2) | C34—C28—C29—C30 | 172.72 (17) |
C6—N1—C2—C3 | 0.4 (2) | C26—N25—C30—C29 | −1.0 (3) |
Cu1—N1—C2—C3 | 176.11 (10) | C28—C29—C30—N25 | 3.1 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iii) −x, y+1/2, −z+3/2; (iv) −x+1, −y+1, −z+1; (v) x, −y+1/2, z+1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) −x, y−1/2, −z+3/2; (viii) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C17—H17···N31viii | 0.95 | 2.34 | 3.2849 (19) | 170 |
C20—H20···F2ii | 0.95 | 2.32 | 3.0341 (16) | 131 |
C20—H20···F5ii | 0.95 | 2.53 | 3.4305 (17) | 159 |
C18—H18···F2iv | 0.95 | 2.52 | 3.1085 (16) | 120 |
C9—H9···O52 | 0.95 | 2.50 | 3.4223 (18) | 163 |
C3—H3···N37vii | 0.95 | 2.54 | 3.4803 (19) | 173 |
C21—H21···O52ii | 0.95 | 2.56 | 3.4294 (18) | 152 |
C14—H14···F2 | 0.95 | 2.43 | 3.0497 (16) | 123 |
C14—H14···F4 | 0.95 | 2.55 | 3.4519 (17) | 158 |
C8—H8···F1v | 0.95 | 2.33 | 3.0205 (16) | 129 |
C8—H8···F4v | 0.95 | 2.51 | 3.3524 (18) | 148 |
C5—H5···O52 | 0.95 | 2.43 | 3.2916 (18) | 151 |
C24—H24···F2viii | 0.95 | 2.29 | 2.9997 (16) | 131 |
C24—H24···F3viii | 0.95 | 2.55 | 3.4609 (17) | 161 |
C11—H11···N37vii | 0.95 | 2.61 | 3.4358 (19) | 145 |
C12—H12···F1vii | 0.95 | 2.26 | 2.9662 (16) | 131 |
C12—H12···F6vii | 0.95 | 2.49 | 3.4040 (16) | 161 |
C2—H2···F1i | 0.95 | 2.52 | 3.0708 (16) | 117 |
C2—H2···F3i | 0.95 | 2.45 | 3.3364 (17) | 156 |
C45—H45···O50ix | 0.95 | 2.44 | 3.376 (2) | 167 |
C6—H6···F1 | 0.95 | 2.46 | 3.0691 (16) | 122 |
C6—H6···F4 | 0.95 | 2.60 | 3.5313 (17) | 166 |
C38—H38···F6 | 0.95 | 2.41 | 3.1240 (19) | 132 |
C48—H48···O51iv | 0.95 | 2.50 | 3.330 (2) | 146 |
O53—H53B···F3v | 0.78 (2) | 1.96 (3) | 2.7228 (17) | 166 (2) |
O52—H52B···O53 | 0.90 (3) | 1.83 (3) | 2.7227 (18) | 170 (2) |
O53—H53A···N43iv | 0.85 (3) | 2.05 (3) | 2.8666 (19) | 161 (3) |
O52—H52A···O51 | 0.90 (3) | 1.84 (3) | 2.726 (2) | 172 (2) |
O50—H50A···O49 | 1.05 (3) | 1.72 (3) | 2.741 (2) | 163 (2) |
O49—H49B···F5ii | 0.96 (3) | 1.82 (3) | 2.7716 (18) | 173 (3) |
O50—H50B···N25i | 0.96 (3) | 1.86 (3) | 2.816 (2) | 173 (3) |
O49—H49A···O52ii | 1.00 (4) | 1.81 (4) | 2.798 (2) | 169 (3) |
O51—H51B···F4 | 0.91 (3) | 1.88 (3) | 2.7029 (18) | 149 (2) |
O51—H51A···O50 | 1.00 (4) | 1.76 (4) | 2.719 (2) | 158 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+1/2, z−1/2; (iv) −x+1, −y+1, −z+1; (v) x, −y+1/2, z+1/2; (vii) −x, y−1/2, −z+3/2; (viii) −x+1, y−1/2, −z+1/2; (ix) x, y+1, z. |
Cg(I) is the centroid of the atoms defining plane I: Cg(N25) = N25/C26–C30; Cg(N31) = N31/C32–C36; Cg(N43) = N43/C44-7-C48 and Cg(N37) = N37/C38–C42. dCg–Cg is the distance between Cg(I) and Cg(J). α is the dihedral angle between planes I and J. β is the angle between the Cg(I)→Cg(J) vector and the normal to plane I. γ is the angle between the Cg(I)→Cg(J) vector and the normal to plane J. |
Cg(I) | Cg(J) | dCg–Cg | α | β | γ |
N25 | N25i | 3.7374 (10) | 0.02 (9) | 9.2 | 9.2 |
N31 | N37ii | 3.7358 (9) | 20.79 (8) | 21.4 | 13.1 |
N43 | N43iii | 3.8576 (9) | 0.00 (7) | 23.8 | 23.8 |
Symmetry codes: (i) -x, 2 - y, 1 - z; (ii) x, y, z; (iii) 1 - x, 2 - y, 1 - z. |
Acknowledgements
The Service Commun de Diffraction des Rayons X – Lorraine University is thanked for providing access to crystallographic facilities.
References
Blake, A. J., Hill, S. J., Hubberstey, P. & Li, W.-S. (1997). J. Chem. Soc. Dalton Trans. pp. 913–914. CSD CrossRef Google Scholar
Burd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663–3666. Web of Science CSD CrossRef CAS PubMed Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fan, S., Sun, F., Xie, J., Guo, J., Zhang, L., Wang, C., Pan, Q. & Zhu, G. (2013). J. Mater. Chem. A, 1, 11438–11442. CrossRef CAS Google Scholar
Gable, R. W., Hoskins, B. F. & Robson, R. (1990). J. Chem. Soc. Chem. Commun. pp. 1677–1678. CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lin, M.-J., Jouaiti, A., Kyritsakas, N. & Hosseini, M. W. (2009). CrystEngComm, 11, 189–191. CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084. CrossRef Google Scholar
Noro, S., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. & Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568–2583. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Subramanian, S. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2127–2129. CSD CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, Q., Yang, J., Zhao, Q., Dong, J. & Li, J. (2012). J. Coord. Chem. 65, 1645–1654. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.