research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Channels with ordered water and bi­pyridine mol­ecules in the porous coordination polymer {[Cu(SiF6)(C10H8N2)2]·2C10N2H8·5H2O}n

CROSSMARK_Color_square_no_text.svg

aCristallographie, Résonance Magnétique et Modélisations (CRM2), UMR CNRS, 7036, Université de Lorraine, BP 70239, Bd des Aiguillettes, 54506, Vandoeuvre-les-Nancy, France, bIstituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, I-07100 Li Punti - Sassari, Italy, and cInstitut de Chimie de Strasbourg, UMR 7177, Equipe LASYROC, 1 rue Blaise Pascal, BP 296 R8, 67008 Strasbourg Cedex, France
*Correspondence e-mail: emmanuel.aubert@univ-lorraine.fr

Edited by A. Van der Lee, Université de Montpellier II, France (Received 6 October 2016; accepted 18 October 2016; online 25 October 2016)

The coordination polymer {[Cu(SiF6)(C10H8N2)2]·2C10H8N2·5H2O}n, systematic name: poly[[bis­(μ2-4,4′-bi­pyridine)(μ2-hexa­fluorido­silicato)copper(II)] 4,4′-bi­pyridine disolvate penta­hydrate], contains pores which are filled with water and 4,4′-bi­pyridine mol­ecules. As a result of the presence of these ordered species, the framework changes its symmetry from P4/mmm to P21/c. The 4,4′-bi­pyridine guest mol­ecules form chains inside the 6.5 × 6.9 Å pores parallel to [100] in which the mol­ecules inter­act through ππ stacking. Ordered water mol­ecules form infinite hydrogen-bonded chains inside a second pore system (1.6 × 5.3 Å free aperture) perpendicular to the 4,4′-bi­pyridine channels.

1. Chemical context

The title compound was obtained in an attempt to reproduce the synthesis of [Cu(μ-4,4′-bipy)(H2O)2(BF4)2]·4,4′-bipy (Blake et al., 1997[Blake, A. J., Hill, S. J., Hubberstey, P. & Li, W.-S. (1997). J. Chem. Soc. Dalton Trans. pp. 913-914.]). A contamination with SiF62− is, however, at the origin of the formation of {[Cu(SiF6)(C10H8N2)2]·2C10N2H8·5H2O}n, whose framework was previously described by Noro et al. (2000[Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081-2084.], 2002[Noro, S., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. & Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568-2583.]). This framework has shown inter­esting gas adsorption properties in recent years (Burd et al., 2012[Burd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663-3666.]; Yu et al., 2012[Yu, Q., Yang, J., Zhao, Q., Dong, J. & Li, J. (2012). J. Coord. Chem. 65, 1645-1654.]; Fan et al., 2013[Fan, S., Sun, F., Xie, J., Guo, J., Zhang, L., Wang, C., Pan, Q. & Zhu, G. (2013). J. Mater. Chem. A, 1, 11438-11442.]). Several structures based on this porous framework have been published since its discovery [CSD refcodes: GORWUF (Noro et al., 2000[Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081-2084.]), AFEKAX (Noro et al., 2002[Noro, S., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. & Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568-2583.]), HAPKOA (Burd et al., 2012[Burd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663-3666.])]. However, these structures which are reported in the tetra­g­onal space group type P4/mmm are disordered: the framework bi­pyridines are disordered by symmetry whereas solvent mol­ecules are not clearly identified within the pores. In this article, we show that this porous coordination polymer is capable of firmly stabilizing guest entities such as 4,4′-bi­pyridine and water mol­ecules within its channels. The synthesis conditions thus seem a key factor in producing the ordering of guest mol­ecules within this porous material.

2. Structural commentary

The asymmetric unit of the title compound (Fig. 1[link]) contains two copper(II) atoms, both lying on inversion centers; each of these two atoms is coordinated by N atoms of four symmetrically related 4,4′-bi­pyridine mol­ecules (with one independent bi­pyridine for each copper atom), forming slightly distorted two-dimensional square grids parallel to (100). The copper(II) atoms are both at the center of elongated octa­hedra (Table 1[link]).

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

Cu1—N1i 2.0156 (11) Cu2—N19vi 2.0494 (11)
Cu1—N1 2.0156 (11) Cu2—F2 2.4109 (9)
Cu1—N7ii 2.0467 (11) Cu2—F2iv 2.4109 (9)
Cu1—N7iii 2.0467 (11) Si1—F6 1.6534 (11)
Cu1—F1i 2.3585 (9) Si1—F5 1.6806 (10)
Cu1—F1 2.3585 (9) Si1—F3 1.6823 (10)
Cu2—N13iv 2.0170 (11) Si1—F4 1.6855 (11)
Cu2—N13 2.0170 (11) Si1—F2 1.7120 (10)
Cu2—N19v 2.0494 (11) Si1—F1 1.7145 (10)
       
N1i—Cu1—N1 180.00 (6) N19v—Cu2—F2 90.67 (4)
N1i—Cu1—N7ii 91.58 (5) N19vi—Cu2—F2 89.33 (4)
N1—Cu1—N7ii 88.42 (5) N13iv—Cu2—F2iv 89.41 (4)
N1i—Cu1—N7iii 88.42 (5) N13—Cu2—F2iv 90.59 (4)
N1—Cu1—N7iii 91.58 (5) N19v—Cu2—F2iv 89.33 (4)
N7ii—Cu1—N7iii 180.0 N19vi—Cu2—F2iv 90.67 (4)
N1i—Cu1—F1i 90.65 (4) F2—Cu2—F2iv 180.0
N1—Cu1—F1i 89.35 (4) F6—Si1—F5 90.80 (6)
N7ii—Cu1—F1i 89.60 (4) F6—Si1—F3 89.64 (6)
N7iii—Cu1—F1i 90.40 (4) F5—Si1—F3 179.55 (6)
N1i—Cu1—F1 89.35 (4) F6—Si1—F4 178.87 (6)
N1—Cu1—F1 90.65 (4) F5—Si1—F4 90.12 (6)
N7ii—Cu1—F1 90.40 (4) F3—Si1—F4 89.44 (6)
N7iii—Cu1—F1 89.60 (4) F6—Si1—F2 91.01 (4)
F1i—Cu1—F1 180.0 F5—Si1—F2 89.67 (5)
N13iv—Cu2—N13 180.0 F3—Si1—F2 90.41 (5)
N13iv—Cu2—N19v 90.73 (5) F4—Si1—F2 89.64 (4)
N13—Cu2—N19v 89.27 (5) F6—Si1—F1 90.89 (4)
N13iv—Cu2—N19vi 89.27 (5) F5—Si1—F1 90.35 (5)
N13—Cu2—N19vi 90.73 (5) F3—Si1—F1 89.56 (5)
N19v—Cu2—N19vi 180.0 F4—Si1—F1 88.45 (4)
N13iv—Cu2—F2 90.59 (4) F2—Si1—F1 178.09 (4)
N13—Cu2—F2 89.41 (4) Si1—F1—Cu1 178.36 (5)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

The basal plane is composed of four nitro­gen atoms coming from the 4,4′-bi­pyridine mol­ecules, whereas the apical positions are occupied by fluorine atoms belonging to the SiF62− anions pillaring the structure (Fig. 2[link]).

[Figure 2]
Figure 2
View along [011]; the atoms belonging to the framework are shown as space-filling, whereas the mol­ecules adsorbed inside the pores are shown as capped sticks.

The 2D coordination grids are stacked along the [100] direction through the SiF62− anions, leading to a three-dimensional coordination polymer, which displays channels having a free aperture of 6.5 × 6.9 Å parallel to [100] and smaller pores of 1.6 × 5.3 Å along the [011] direction (as measured in projection in the plane perpendicular to the channels and using van der Waals radii). These inter­connected pores are filled with two other 4,4′-bi­pyridine mol­ecules and five water mol­ecules (Figs. 3[link] and 4[link]). In comparison, the previously reported structures with this framework are described in the P4/mmm space group type, implying a squared Cu grid and channels; here, the Cu–Cu–Cu grid angle significantly deviates from 90° (96.62°) and this may be related to the fact that, in the present compound, guest mol­ecules fill the pores and inter­act significantly with the framework atoms (see below).

[Figure 3]
Figure 3
View along [100]; the atoms belonging to the framework are shown as space-filling, whereas the mol­ecules inside the pores are shown as capped sticks.
[Figure 4]
Figure 4
ORTEP-style plot of the title compound showing the coordination about the two inequivalent copper atoms. Hydrogen atoms, adsorbed 4,4′-bi­pyridine and water mol­ecules are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

The Si—F bond lengths in SiF62− show some variations (Table 1[link]), ranging from 1.6534 (11) to 1.7145 (10) Å. The two longest bond lengths are associated with opposite fluorine atoms bounded to a CuII metal atom. Among the four remaining fluorine atoms, three of them form short hydrogen bonds with water mol­ecules and display longer bond lengths than the last one, which only forms a weaker hydrogen-bonding inter­action with a 4,4′-bi­pyridine mol­ecule (Table 2[link]). A search for SiF62− anions within the Cambridge Structural Database (CSD Version 5.36; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) leads to 241 hits (using options `not disordered'" and `no errors'); the reported Si—F bond lengths range from 1.577 to 1.748 Å with a mean of 1.684 Å and a standard deviation of 0.022 Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯N31vii 0.95 2.34 3.2849 (19) 170
C20—H20⋯F2ii 0.95 2.32 3.0341 (16) 131
C20—H20⋯F5ii 0.95 2.53 3.4305 (17) 159
C18—H18⋯F2iv 0.95 2.52 3.1085 (16) 120
C9—H9⋯O52 0.95 2.50 3.4223 (18) 163
C3—H3⋯N37viii 0.95 2.54 3.4803 (19) 173
C21—H21⋯O52ii 0.95 2.56 3.4294 (18) 152
C14—H14⋯F2 0.95 2.43 3.0497 (16) 123
C14—H14⋯F4 0.95 2.55 3.4519 (17) 158
C8—H8⋯F1v 0.95 2.33 3.0205 (16) 129
C8—H8⋯F4v 0.95 2.51 3.3524 (18) 148
C5—H5⋯O52 0.95 2.43 3.2916 (18) 151
C24—H24⋯F2vii 0.95 2.29 2.9997 (16) 131
C24—H24⋯F3vii 0.95 2.55 3.4609 (17) 161
C11—H11⋯N37viii 0.95 2.61 3.4358 (19) 145
C12—H12⋯F1viii 0.95 2.26 2.9662 (16) 131
C12—H12⋯F6viii 0.95 2.49 3.4040 (16) 161
C2—H2⋯F1i 0.95 2.52 3.0708 (16) 117
C2—H2⋯F3i 0.95 2.45 3.3364 (17) 156
C45—H45⋯O50ix 0.95 2.44 3.376 (2) 167
C6—H6⋯F1 0.95 2.46 3.0691 (16) 122
C6—H6⋯F4 0.95 2.60 3.5313 (17) 166
C38—H38⋯F6 0.95 2.41 3.1240 (19) 132
C48—H48⋯O51iv 0.95 2.50 3.330 (2) 146
O53—H53B⋯F3v 0.78 (2) 1.96 (3) 2.7228 (17) 166 (2)
O52—H52B⋯O53 0.90 (3) 1.83 (3) 2.7227 (18) 170 (2)
O53—H53A⋯N43iv 0.85 (3) 2.05 (3) 2.8666 (19) 161 (3)
O52—H52A⋯O51 0.90 (3) 1.84 (3) 2.726 (2) 172 (2)
O50—H50A⋯O49 1.05 (3) 1.72 (3) 2.741 (2) 163 (2)
O49—H49B⋯F5ii 0.96 (3) 1.82 (3) 2.7716 (18) 173 (3)
O50—H50B⋯N25i 0.96 (3) 1.86 (3) 2.816 (2) 173 (3)
O49—H49A⋯O52ii 1.00 (4) 1.81 (4) 2.798 (2) 169 (3)
O51—H51B⋯F4 0.91 (3) 1.88 (3) 2.7029 (18) 149 (2)
O51—H51A⋯O50 1.00 (4) 1.76 (4) 2.719 (2) 158 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ix) x, y+1, z.

3. Supra­molecular features

Four of the five water mol­ecules (O49 to O52) form infinite C44(2) chains running in the [001] direction throughout the pores (Fig. 5[link]). The fifth water mol­ecule (O53) inter­acts with these chains and several hydrogen bonds anchor these water mol­ecules to the coordination polymer framework (Table 2[link]). The 4,4′-bi­pyridine mol­ecules filling the [100] channels form chains through ππ stacking (Fig. 6[link]; Table 3[link]), and are connected to three of the water mol­ecules (O50, O51 and O53) and framework fluorine and aromatic hydrogen atoms by hydrogen bonds (Table 2[link]); these inter­molecular inter­actions induce different dihedral angles within the two symmetry-independent 4,4′-bi­pyridine mol­ecules [bipy(N25–N31): 45.29 (7)°; bipy(N37–N43): 30.31 (7)°]. Whereas the 4,4′-bi­pyridine mol­ecules belonging to the coordination network are rather rigid between the metal atoms [average Ueq = 0.014 (2) Å2 as calculated on C,N atoms], the adsorbed 4,4′-bi­pyridine mol­ecules display significantly larger atomic displacement parameters [Ueq = 0.025 (5) Å2].

Table 3
Geometrical parameters (Å, °) for the π–π stacking of the 4,4′-bi­pyridine mol­ecules within the pores

Cg(I) is the centroid of the atoms defining plane I: Cg(N25) = N25/C26–C30; Cg(N31) = N31/C32–C36; Cg(N43) = N43/C44–7-C48 and Cg(N37) = N37/C38–C42. dCgCg is the distance between Cg(I) and Cg(J). α is the dihedral angle between planes I and J. β is the angle between the Cg(I)→Cg(J) vector and the normal to plane I. γ is the angle between the Cg(I)→Cg(J) vector and the normal to plane J.

Cg(I) Cg(J) dCgCg α β γ
N25 N25i 3.7374 (10) 0.02 (9) 9.2 9.2
N31 N37ii 3.7358 (9) 20.79 (8) 21.4 13.1
N43 N43iii 3.8576 (9) 0.00 (7) 23.8 23.8
Symmetry codes: (i) −x, 2 − y, 1 − z; (ii) x, y, z; (iii) 1 − x, 2 − y, 1 − z.
[Figure 5]
Figure 5
Hydrogen-bonding pattern of solvate water mol­ecules, forming infinite chains along the [001] direction. All other atoms apart from those of the water mol­ecules are omitted for clarity.
[Figure 6]
Figure 6
ππ stacking pattern of the solvent 4,4′-bi­pyridine mol­ecules in the [100] pores. All other atoms (except water mol­ecules hydrogen-bonded to N atoms of these bi­pyridines) are omitted for clarity. Pyridyl centroids are displayed as green spheres.

4. Database survey

A survey was performed in the Cambridge Structural Database (CSD Version 5.36; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Beside the structures corresponding to the bare or hydrated [Cu(SiF6)(C10H8N2)2]n coordination polymer framework [CSD refcodes: GORWUF (Noro et al., 2000[Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081-2084.]), AFEKAX (Noro et al., 2002[Noro, S., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. & Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568-2583.]), HAPKOA (Burd et al., 2012[Burd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663-3666.])], several structures related to the title compound have been described. In particular, Noro et al. showed that the hydrated form of the title compound {[Cu(SiF6)(4,4′-bpy)2]·8H2O}n undergoes a structural conversion when immersed in water, leading to an inter­penetrated network where SiF62− anions are shifted out of the coordination sphere of copper ions and are replaced by water mol­ecules [CSD refcodes: AFEHOI (Noro et al., 2002[Noro, S., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. & Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568-2583.]); JEZRUB (Gable et al., 1990[Gable, R. W., Hoskins, B. F. & Robson, R. (1990). J. Chem. Soc. Chem. Commun. pp. 1677-1678.])]. When copper is replaced by zinc, an isostructural compound is obtained [CSD refcodes: WONZIJ (Lin et al., 2009[Lin, M.-J., Jouaiti, A., Kyritsakas, N. & Hosseini, M. W. (2009). CrystEngComm, 11, 189-191.]); ZESFUY (Subramanian & Zaworotko, 1995[Subramanian, S. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2127-2129.])].

5. Synthesis and crystallization

An aqueous solution (5 cm3) of hydrated copper(II) tetra­fluorido­borate (47.43 mg, 0.2 mmol) was added to a refluxing aceto­nitrile solution (5 cm3) of 4,4′-bi­pyridine (62.48 mg, 0.4 mmol). After filtration, Et2O vapor was diffused into the mother liquor for seven days, and then the solvent was allowed to evaporate very slowly. A mixture of blue and violet crystals was obtained; whereas the diffraction spots of the blue crystals could not be properly indexed, the violet crystals were of very good quality and led to the structure reported on herein.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All hydrogen atoms of water mol­ecules were freely refined in an isotropic approximation. Aromatic hydrogen atoms were refined with riding coordin­ates and Uiso(H) = 1.2Uiso(C).

Table 4
Experimental details

Crystal data
Chemical formula [Cu(SiF6)(C10H8N2)2]·2C10H8N2·5H2O
Mr 920.44
Crystal system, space group Monoclinic, P21/c
Temperature (K) 110
a, b, c (Å) 16.3875 (2), 16.6136 (2), 14.7959 (2)
β (°) 90.654 (1)
V3) 4028.00 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.78
Crystal size (mm) 0.25 × 0.16 × 0.14
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova (Cu) X-ray Source
Absorption correction Analytical [CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.708, 0.824
No. of measured, independent and observed [I > 2σ(I)] reflections 68271, 8435, 7846
Rint 0.029
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.06
No. of reflections 8435
No. of parameters 593
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.50
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[bis(µ2-4,4'-bipyridine)(µ2-hexafluoridosilicato)copper(II)] 4,4'-bipyridine disolvate pentahydrate] top
Crystal data top
[Cu(SiF6)(C10H8N2)2]·2C10H8N2·5H2OF(000) = 1900
Mr = 920.44Dx = 1.518 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 16.3875 (2) ÅCell parameters from 32121 reflections
b = 16.6136 (2) Åθ = 3.7–76.5°
c = 14.7959 (2) ŵ = 1.78 mm1
β = 90.654 (1)°T = 110 K
V = 4028.00 (9) Å3Prism, violet
Z = 40.25 × 0.16 × 0.14 mm
Data collection top
Rigaku Oxford Diffraction SuperNova (Cu) X-ray Source
diffractometer
7846 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.029
ω scansθmax = 76.2°, θmin = 3.8°
Absorption correction: analytical
[CrysAlis PRO (Rigaku Oxford Diffraction, 2015)]; analytical numeric absorption correction using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)
h = 2020
Tmin = 0.708, Tmax = 0.824k = 020
68271 measured reflectionsl = 018
8435 independent reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0562P)2 + 2.6502P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
8435 reflectionsΔρmax = 0.47 e Å3
593 parametersΔρmin = 0.50 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.50000.00740 (9)
Cu20.50000.50000.50000.00808 (9)
Si10.24851 (2)0.50181 (2)0.49951 (2)0.01085 (11)
F10.14392 (6)0.50149 (4)0.50157 (6)0.01423 (19)
F20.35288 (6)0.49872 (4)0.49705 (6)0.01514 (19)
F50.25214 (6)0.49217 (7)0.61255 (7)0.0327 (3)
F60.25001 (5)0.60099 (6)0.50857 (8)0.0313 (3)
F30.24470 (6)0.51068 (7)0.38628 (7)0.0305 (2)
F40.24575 (5)0.40086 (6)0.48849 (9)0.0356 (3)
N10.00035 (7)0.41543 (7)0.59766 (8)0.0104 (2)
O520.24669 (7)0.22533 (8)0.69796 (10)0.0304 (3)
N70.00003 (7)0.09067 (7)0.90635 (7)0.0104 (2)
N190.50157 (7)0.08206 (7)0.10342 (7)0.0103 (2)
N130.50009 (7)0.40834 (7)0.41061 (7)0.0102 (2)
O530.29213 (8)0.07136 (8)0.73649 (9)0.0319 (3)
O500.27901 (8)0.11159 (8)0.42810 (9)0.0326 (3)
O510.29696 (9)0.24956 (9)0.52512 (10)0.0374 (3)
N430.55301 (8)0.94138 (8)0.35053 (9)0.0224 (3)
O490.22422 (9)0.11500 (9)0.25239 (9)0.0375 (3)
N370.23466 (8)0.82015 (8)0.64527 (10)0.0244 (3)
N310.26526 (8)0.82439 (10)0.32164 (10)0.0281 (3)
C160.50172 (8)0.27683 (8)0.29304 (9)0.0117 (3)
C170.56598 (8)0.33166 (8)0.29579 (9)0.0136 (3)
H170.61140.32500.25720.016*
C220.50242 (8)0.20746 (8)0.23027 (9)0.0113 (3)
C40.00106 (8)0.28967 (8)0.72282 (9)0.0131 (3)
C200.43162 (8)0.11255 (8)0.13529 (9)0.0141 (3)
H200.38140.09070.11390.017*
C100.00090 (8)0.22170 (8)0.78738 (9)0.0132 (3)
C150.43615 (8)0.29027 (8)0.35038 (9)0.0146 (3)
H150.39110.25430.35040.018*
C180.56320 (8)0.39594 (8)0.35523 (9)0.0125 (3)
H180.60760.43270.35690.015*
C90.07202 (8)0.18464 (9)0.81404 (10)0.0164 (3)
H90.12270.20380.79200.020*
C30.06460 (8)0.34570 (8)0.71891 (9)0.0144 (3)
H30.10890.34180.75950.017*
C210.42956 (8)0.17432 (9)0.19781 (9)0.0145 (3)
H210.37870.19410.21860.017*
C140.43721 (8)0.35642 (8)0.40738 (9)0.0147 (3)
H140.39190.36540.44550.018*
C80.06999 (8)0.11997 (9)0.87270 (10)0.0155 (3)
H80.12000.09520.89000.019*
C50.06262 (8)0.29879 (9)0.66202 (10)0.0162 (3)
H50.10660.26160.66200.019*
C240.57206 (8)0.11186 (9)0.13636 (10)0.0156 (3)
H240.62200.08970.11580.019*
C230.57484 (8)0.17385 (9)0.19922 (10)0.0160 (3)
H230.62590.19330.22100.019*
C110.07321 (8)0.19167 (9)0.82304 (9)0.0147 (3)
H110.12400.21560.80720.018*
C120.07035 (8)0.12663 (9)0.88184 (9)0.0142 (3)
H120.12000.10680.90570.017*
C20.06252 (8)0.40681 (8)0.65549 (9)0.0130 (3)
H20.10650.44400.65270.016*
C450.42153 (9)0.96535 (9)0.41679 (11)0.0208 (3)
H450.37520.99940.42150.025*
C60.06131 (8)0.36237 (9)0.60178 (10)0.0152 (3)
H60.10580.36870.56180.018*
C460.42614 (9)0.89392 (9)0.46622 (10)0.0173 (3)
C440.48547 (10)0.98589 (10)0.36069 (11)0.0226 (3)
H440.48111.03460.32730.027*
C470.49637 (9)0.84765 (9)0.45646 (10)0.0201 (3)
H470.50250.79860.48890.024*
C380.28158 (9)0.76657 (9)0.60272 (10)0.0208 (3)
H380.27140.71100.61250.025*
N250.12407 (9)0.91210 (10)0.49597 (11)0.0340 (4)
C390.34424 (9)0.78762 (9)0.54526 (10)0.0195 (3)
H390.37640.74700.51790.023*
C400.36000 (9)0.86869 (9)0.52772 (10)0.0180 (3)
C360.22422 (10)0.77389 (11)0.37480 (11)0.0253 (3)
H360.24590.72150.38460.030*
C480.55719 (9)0.87357 (10)0.39917 (11)0.0222 (3)
H480.60470.84130.39410.027*
C340.11765 (9)0.86961 (10)0.40037 (10)0.0224 (3)
C350.15162 (9)0.79402 (10)0.41632 (11)0.0231 (3)
H350.12540.75680.45510.028*
C330.16047 (10)0.92295 (10)0.34582 (11)0.0266 (3)
H330.13990.97540.33380.032*
C280.03559 (10)0.88875 (10)0.43575 (11)0.0232 (3)
C410.31092 (10)0.92455 (10)0.57120 (12)0.0254 (3)
H410.31840.98050.56130.030*
C270.01285 (10)0.86650 (11)0.52287 (12)0.0286 (4)
H270.05130.84230.56300.034*
C320.23375 (10)0.89772 (11)0.30952 (12)0.0286 (4)
H320.26340.93490.27380.034*
C420.25108 (10)0.89764 (10)0.62910 (13)0.0299 (4)
H420.21950.93700.65950.036*
C260.06647 (11)0.88027 (12)0.54980 (13)0.0335 (4)
H260.08080.86630.60980.040*
C290.02335 (11)0.92411 (11)0.38086 (12)0.0302 (4)
H290.01000.94220.32190.036*
C300.10216 (12)0.93284 (12)0.41284 (14)0.0367 (4)
H300.14250.95470.37340.044*
H53B0.2849 (14)0.0514 (14)0.7835 (17)0.034 (6)*
H52B0.2595 (15)0.1754 (16)0.7175 (17)0.046 (7)*
H53A0.3396 (18)0.0590 (18)0.720 (2)0.066 (9)*
H52A0.2588 (15)0.2311 (15)0.6395 (18)0.046 (7)*
H50A0.2641 (16)0.1230 (17)0.360 (2)0.060 (8)*
H49B0.2334 (18)0.0814 (19)0.201 (2)0.069 (9)*
H50B0.2281 (19)0.0997 (19)0.457 (2)0.072 (9)*
H49A0.234 (2)0.174 (2)0.241 (2)0.100 (12)*
H51B0.2650 (13)0.2899 (15)0.5027 (14)0.034 (6)*
H51A0.281 (2)0.207 (2)0.480 (2)0.093 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01176 (16)0.00446 (15)0.00599 (15)0.00002 (9)0.00097 (11)0.00010 (8)
Cu20.01341 (16)0.00456 (15)0.00628 (15)0.00000 (9)0.00100 (11)0.00001 (8)
Si10.0105 (2)0.0103 (2)0.0118 (2)0.00012 (11)0.00098 (16)0.00039 (12)
F10.0130 (4)0.0140 (5)0.0157 (4)0.0002 (3)0.0016 (3)0.0021 (3)
F20.0138 (4)0.0154 (5)0.0162 (5)0.0010 (3)0.0015 (3)0.0020 (3)
F50.0194 (5)0.0653 (8)0.0135 (5)0.0001 (4)0.0007 (4)0.0059 (4)
F60.0196 (5)0.0126 (5)0.0616 (7)0.0008 (3)0.0034 (5)0.0057 (4)
F30.0187 (5)0.0589 (7)0.0139 (5)0.0055 (4)0.0012 (4)0.0002 (4)
F40.0198 (5)0.0123 (5)0.0746 (8)0.0007 (3)0.0011 (5)0.0033 (4)
N10.0130 (5)0.0087 (5)0.0096 (5)0.0006 (4)0.0001 (4)0.0019 (4)
O520.0243 (6)0.0258 (6)0.0412 (8)0.0045 (5)0.0085 (5)0.0034 (5)
N70.0137 (5)0.0086 (5)0.0088 (5)0.0003 (4)0.0007 (4)0.0019 (4)
N190.0145 (5)0.0079 (5)0.0085 (5)0.0004 (4)0.0004 (4)0.0010 (4)
N130.0139 (5)0.0072 (5)0.0094 (5)0.0003 (4)0.0005 (4)0.0011 (4)
O530.0346 (7)0.0311 (7)0.0302 (7)0.0059 (5)0.0124 (5)0.0096 (5)
O500.0271 (6)0.0342 (7)0.0366 (7)0.0047 (5)0.0013 (5)0.0021 (5)
O510.0474 (8)0.0258 (7)0.0389 (7)0.0018 (6)0.0021 (6)0.0054 (6)
N430.0228 (6)0.0233 (7)0.0212 (6)0.0028 (5)0.0009 (5)0.0016 (5)
O490.0472 (8)0.0342 (7)0.0310 (7)0.0016 (6)0.0001 (6)0.0007 (6)
N370.0198 (6)0.0231 (7)0.0305 (7)0.0016 (5)0.0044 (5)0.0003 (6)
N310.0206 (6)0.0401 (8)0.0238 (7)0.0031 (6)0.0021 (5)0.0034 (6)
C160.0136 (6)0.0099 (6)0.0118 (6)0.0007 (5)0.0003 (5)0.0022 (5)
C170.0134 (6)0.0136 (6)0.0138 (6)0.0008 (5)0.0031 (5)0.0031 (5)
C220.0142 (6)0.0089 (6)0.0109 (6)0.0007 (5)0.0007 (5)0.0015 (5)
C40.0139 (6)0.0118 (6)0.0137 (6)0.0001 (5)0.0003 (5)0.0042 (5)
C200.0133 (6)0.0127 (6)0.0162 (7)0.0014 (5)0.0012 (5)0.0040 (5)
C100.0148 (6)0.0116 (6)0.0132 (6)0.0004 (5)0.0016 (5)0.0047 (5)
C150.0143 (6)0.0126 (6)0.0171 (7)0.0030 (5)0.0032 (5)0.0043 (5)
C180.0140 (6)0.0113 (6)0.0122 (6)0.0010 (5)0.0006 (5)0.0018 (5)
C90.0121 (6)0.0179 (7)0.0193 (7)0.0003 (5)0.0022 (5)0.0080 (6)
C30.0141 (6)0.0155 (7)0.0136 (6)0.0015 (5)0.0032 (5)0.0042 (5)
C210.0126 (6)0.0145 (7)0.0164 (7)0.0000 (5)0.0022 (5)0.0045 (5)
C140.0159 (6)0.0126 (6)0.0157 (6)0.0011 (5)0.0037 (5)0.0035 (5)
C80.0139 (6)0.0148 (7)0.0179 (7)0.0016 (5)0.0015 (5)0.0058 (5)
C50.0131 (6)0.0151 (7)0.0205 (7)0.0028 (5)0.0032 (5)0.0071 (5)
C240.0136 (6)0.0154 (7)0.0177 (7)0.0016 (5)0.0009 (5)0.0061 (5)
C230.0125 (6)0.0175 (7)0.0179 (7)0.0002 (5)0.0012 (5)0.0067 (5)
C110.0119 (6)0.0153 (7)0.0168 (6)0.0016 (5)0.0009 (5)0.0057 (5)
C120.0132 (6)0.0148 (7)0.0147 (6)0.0005 (5)0.0008 (5)0.0044 (5)
C20.0145 (6)0.0128 (6)0.0118 (6)0.0018 (5)0.0005 (5)0.0018 (5)
C450.0192 (7)0.0177 (7)0.0255 (8)0.0006 (6)0.0016 (6)0.0001 (6)
C60.0139 (6)0.0145 (7)0.0174 (7)0.0014 (5)0.0032 (5)0.0058 (5)
C460.0176 (7)0.0174 (7)0.0169 (7)0.0015 (5)0.0028 (5)0.0021 (5)
C440.0252 (8)0.0187 (7)0.0237 (8)0.0015 (6)0.0007 (6)0.0022 (6)
C470.0205 (7)0.0192 (7)0.0205 (7)0.0017 (6)0.0016 (6)0.0003 (6)
C380.0222 (7)0.0182 (7)0.0219 (7)0.0019 (6)0.0013 (6)0.0005 (6)
N250.0270 (7)0.0306 (8)0.0446 (9)0.0051 (6)0.0069 (7)0.0021 (7)
C390.0228 (7)0.0171 (7)0.0186 (7)0.0014 (6)0.0001 (6)0.0008 (6)
C400.0158 (6)0.0190 (7)0.0193 (7)0.0011 (5)0.0024 (5)0.0000 (6)
C360.0198 (7)0.0319 (9)0.0241 (8)0.0008 (6)0.0012 (6)0.0023 (7)
C480.0194 (7)0.0242 (8)0.0230 (8)0.0018 (6)0.0002 (6)0.0020 (6)
C340.0214 (7)0.0263 (8)0.0194 (7)0.0025 (6)0.0009 (6)0.0037 (6)
C350.0203 (7)0.0283 (8)0.0205 (7)0.0026 (6)0.0004 (6)0.0006 (6)
C330.0294 (8)0.0249 (8)0.0255 (8)0.0039 (6)0.0021 (6)0.0007 (6)
C280.0239 (8)0.0210 (8)0.0247 (8)0.0023 (6)0.0024 (6)0.0037 (6)
C410.0216 (7)0.0160 (7)0.0387 (9)0.0005 (6)0.0060 (7)0.0003 (6)
C270.0259 (8)0.0352 (9)0.0246 (8)0.0020 (7)0.0019 (6)0.0002 (7)
C320.0260 (8)0.0347 (9)0.0253 (8)0.0092 (7)0.0043 (6)0.0018 (7)
C420.0239 (8)0.0204 (8)0.0455 (10)0.0011 (6)0.0122 (7)0.0028 (7)
C260.0317 (9)0.0346 (10)0.0343 (10)0.0012 (7)0.0113 (7)0.0000 (8)
C290.0334 (9)0.0264 (9)0.0308 (9)0.0047 (7)0.0041 (7)0.0029 (7)
C300.0318 (9)0.0341 (10)0.0442 (11)0.0112 (8)0.0010 (8)0.0038 (8)
Geometric parameters (Å, º) top
Cu1—N1i2.0156 (11)C10—C91.3971 (19)
Cu1—N12.0156 (11)C15—C141.3852 (19)
Cu1—N7ii2.0467 (11)C15—H150.9500
Cu1—N7iii2.0467 (11)C18—H180.9500
Cu1—F1i2.3585 (9)C9—C81.3818 (19)
Cu1—F12.3585 (9)C9—H90.9500
Cu2—N13iv2.0170 (11)C3—C21.3832 (19)
Cu2—N132.0170 (11)C3—H30.9500
Cu2—N19v2.0494 (11)C21—H210.9500
Cu2—N19vi2.0494 (11)C14—H140.9500
Cu2—F22.4109 (9)C8—H80.9500
Cu2—F2iv2.4109 (9)C5—C61.3821 (19)
Si1—F61.6534 (11)C5—H50.9500
Si1—F51.6806 (10)C24—C231.3882 (19)
Si1—F31.6823 (10)C24—H240.9500
Si1—F41.6855 (11)C23—H230.9500
Si1—F21.7120 (10)C11—C121.3877 (19)
Si1—F11.7145 (10)C11—H110.9500
N1—C61.3418 (18)C12—H120.9500
N1—C21.3455 (17)C2—H20.9500
O52—H52B0.90 (3)C45—C441.387 (2)
O52—H52A0.90 (3)C45—C461.396 (2)
N7—C121.3442 (18)C45—H450.9500
N7—C81.3470 (18)C6—H60.9500
N7—Cu1vii2.0467 (11)C46—C471.393 (2)
N19—C241.3432 (18)C46—C401.484 (2)
N19—C201.3436 (18)C44—H440.9500
N19—Cu2viii2.0494 (11)C47—C481.384 (2)
N13—C181.3426 (17)C47—H470.9500
N13—C141.3443 (18)C38—C391.385 (2)
O53—H53B0.78 (2)C38—H380.9500
O53—H53A0.85 (3)N25—C301.331 (3)
O50—H50A1.05 (3)N25—C261.337 (3)
O50—H50B0.96 (3)C39—C401.396 (2)
O51—H51B0.91 (3)C39—H390.9500
O51—H51A1.00 (4)C40—C411.391 (2)
N43—C481.338 (2)C36—C351.386 (2)
N43—C441.341 (2)C36—H360.9500
O49—H49B0.96 (3)C48—H480.9500
O49—H49A1.00 (4)C34—C351.393 (2)
N37—C421.337 (2)C34—C331.394 (2)
N37—C381.338 (2)C34—C281.483 (2)
N31—C321.334 (2)C35—H350.9500
N31—C361.337 (2)C33—C321.386 (2)
C16—C171.3927 (19)C33—H330.9500
C16—C151.3947 (18)C28—C291.386 (2)
C16—C221.4803 (19)C28—C271.396 (2)
C17—C181.3845 (19)C41—C421.384 (2)
C17—H170.9500C41—H410.9500
C22—C231.3942 (19)C27—C261.383 (2)
C22—C211.3950 (19)C27—H270.9500
C4—C51.3938 (19)C32—H320.9500
C4—C31.3974 (19)C42—H420.9500
C4—C101.4791 (19)C26—H260.9500
C20—C211.3823 (19)C29—C301.388 (3)
C20—H200.9500C29—H290.9500
C10—C111.3948 (19)C30—H300.9500
N1i—Cu1—N1180.00 (6)C2—C3—C4119.53 (12)
N1i—Cu1—N7ii91.58 (5)C2—C3—H3120.2
N1—Cu1—N7ii88.42 (5)C4—C3—H3120.2
N1i—Cu1—N7iii88.42 (5)C20—C21—C22119.74 (12)
N1—Cu1—N7iii91.58 (5)C20—C21—H21120.1
N7ii—Cu1—N7iii180.0C22—C21—H21120.1
N1i—Cu1—F1i90.65 (4)N13—C14—C15122.35 (12)
N1—Cu1—F1i89.35 (4)N13—C14—H14118.8
N7ii—Cu1—F1i89.60 (4)C15—C14—H14118.8
N7iii—Cu1—F1i90.40 (4)N7—C8—C9122.68 (13)
N1i—Cu1—F189.35 (4)N7—C8—H8118.7
N1—Cu1—F190.65 (4)C9—C8—H8118.7
N7ii—Cu1—F190.40 (4)C6—C5—C4119.54 (13)
N7iii—Cu1—F189.60 (4)C6—C5—H5120.2
F1i—Cu1—F1180.0C4—C5—H5120.2
N13iv—Cu2—N13180.0N19—C24—C23122.55 (12)
N13iv—Cu2—N19v90.73 (5)N19—C24—H24118.7
N13—Cu2—N19v89.27 (5)C23—C24—H24118.7
N13iv—Cu2—N19vi89.27 (5)C24—C23—C22119.76 (12)
N13—Cu2—N19vi90.73 (5)C24—C23—H23120.1
N19v—Cu2—N19vi180.0C22—C23—H23120.1
N13iv—Cu2—F290.59 (4)C12—C11—C10119.54 (12)
N13—Cu2—F289.41 (4)C12—C11—H11120.2
N19v—Cu2—F290.67 (4)C10—C11—H11120.2
N19vi—Cu2—F289.33 (4)N7—C12—C11122.54 (12)
N13iv—Cu2—F2iv89.41 (4)N7—C12—H12118.7
N13—Cu2—F2iv90.59 (4)C11—C12—H12118.7
N19v—Cu2—F2iv89.33 (4)N1—C2—C3122.29 (12)
N19vi—Cu2—F2iv90.67 (4)N1—C2—H2118.9
F2—Cu2—F2iv180.0C3—C2—H2118.9
F6—Si1—F590.80 (6)C44—C45—C46119.09 (14)
F6—Si1—F389.64 (6)C44—C45—H45120.5
F5—Si1—F3179.55 (6)C46—C45—H45120.5
F6—Si1—F4178.87 (6)N1—C6—C5122.51 (12)
F5—Si1—F490.12 (6)N1—C6—H6118.7
F3—Si1—F489.44 (6)C5—C6—H6118.7
F6—Si1—F291.01 (4)C47—C46—C45117.06 (14)
F5—Si1—F289.67 (5)C47—C46—C40121.19 (14)
F3—Si1—F290.41 (5)C45—C46—C40121.74 (13)
F4—Si1—F289.64 (4)N43—C44—C45124.17 (15)
F6—Si1—F190.89 (4)N43—C44—H44117.9
F5—Si1—F190.35 (5)C45—C44—H44117.9
F3—Si1—F189.56 (5)C48—C47—C46119.55 (14)
F4—Si1—F188.45 (4)C48—C47—H47120.2
F2—Si1—F1178.09 (4)C46—C47—H47120.2
Si1—F1—Cu1178.36 (5)N37—C38—C39123.69 (14)
Si1—F2—Cu2176.83 (5)N37—C38—H38118.2
C6—N1—C2118.46 (12)C39—C38—H38118.2
C6—N1—Cu1118.82 (9)C30—N25—C26117.18 (15)
C2—N1—Cu1122.58 (9)C38—C39—C40119.83 (14)
H52B—O52—H52A111 (2)C38—C39—H39120.1
C12—N7—C8118.09 (12)C40—C39—H39120.1
C12—N7—Cu1vii120.22 (9)C41—C40—C39116.65 (14)
C8—N7—Cu1vii121.50 (9)C41—C40—C46121.72 (14)
C24—N19—C20117.86 (12)C39—C40—C46121.64 (13)
C24—N19—Cu2viii121.30 (9)N31—C36—C35123.33 (16)
C20—N19—Cu2viii120.62 (9)N31—C36—H36118.3
C18—N13—C14118.38 (12)C35—C36—H36118.3
C18—N13—Cu2121.49 (9)N43—C48—C47123.95 (14)
C14—N13—Cu2120.10 (9)N43—C48—H48118.0
H53B—O53—H53A108 (3)C47—C48—H48118.0
H50A—O50—H50B105 (2)C35—C34—C33117.94 (15)
H51B—O51—H51A98 (2)C35—C34—C28119.72 (14)
C48—N43—C44116.18 (14)C33—C34—C28122.19 (15)
H49B—O49—H49A114 (3)C36—C35—C34119.07 (15)
C42—N37—C38115.99 (14)C36—C35—H35120.5
C32—N31—C36117.09 (14)C34—C35—H35120.5
C17—C16—C15117.72 (12)C32—C33—C34118.45 (16)
C17—C16—C22121.09 (12)C32—C33—H33120.8
C15—C16—C22121.19 (12)C34—C33—H33120.8
C18—C17—C16119.51 (12)C29—C28—C27117.51 (15)
C18—C17—H17120.2C29—C28—C34120.85 (15)
C16—C17—H17120.2C27—C28—C34121.46 (15)
C23—C22—C21117.19 (12)C42—C41—C40119.25 (15)
C23—C22—C16122.08 (12)C42—C41—H41120.4
C21—C22—C16120.70 (12)C40—C41—H41120.4
C5—C4—C3117.65 (12)C26—C27—C28118.95 (17)
C5—C4—C10120.26 (13)C26—C27—H27120.5
C3—C4—C10122.08 (12)C28—C27—H27120.5
N19—C20—C21122.84 (13)N31—C32—C33124.04 (16)
N19—C20—H20118.6N31—C32—H32118.0
C21—C20—H20118.6C33—C32—H32118.0
C11—C10—C9117.59 (12)N37—C42—C41124.56 (15)
C11—C10—C4121.48 (13)N37—C42—H42117.7
C9—C10—C4120.93 (12)C41—C42—H42117.7
C14—C15—C16119.54 (13)N25—C26—C27123.59 (17)
C14—C15—H15120.2N25—C26—H26118.2
C16—C15—H15120.2C27—C26—H26118.2
N13—C18—C17122.50 (12)C28—C29—C30119.30 (17)
N13—C18—H18118.8C28—C29—H29120.3
C17—C18—H18118.8C30—C29—H29120.3
C8—C9—C10119.56 (13)N25—C30—C29123.38 (18)
C8—C9—H9120.2N25—C30—H30118.3
C10—C9—H9120.2C29—C30—H30118.3
C15—C16—C17—C180.9 (2)C4—C3—C2—N11.1 (2)
C22—C16—C17—C18179.87 (12)C2—N1—C6—C51.0 (2)
C17—C16—C22—C2326.6 (2)Cu1—N1—C6—C5174.86 (11)
C15—C16—C22—C23154.49 (14)C4—C5—C6—N11.6 (2)
C17—C16—C22—C21151.72 (14)C44—C45—C46—C470.7 (2)
C15—C16—C22—C2127.22 (19)C44—C45—C46—C40179.73 (14)
C24—N19—C20—C212.0 (2)C48—N43—C44—C450.5 (2)
Cu2viii—N19—C20—C21172.69 (11)C46—C45—C44—N430.3 (2)
C5—C4—C10—C11154.60 (14)C45—C46—C47—C480.3 (2)
C3—C4—C10—C1124.2 (2)C40—C46—C47—C48179.31 (14)
C5—C4—C10—C924.7 (2)C42—N37—C38—C390.3 (2)
C3—C4—C10—C9156.55 (14)N37—C38—C39—C401.4 (2)
C17—C16—C15—C140.2 (2)C38—C39—C40—C410.7 (2)
C22—C16—C15—C14179.17 (13)C38—C39—C40—C46179.63 (13)
C14—N13—C18—C170.5 (2)C47—C46—C40—C41149.49 (16)
Cu2—N13—C18—C17177.47 (10)C45—C46—C40—C4129.5 (2)
C16—C17—C18—N130.6 (2)C47—C46—C40—C3930.1 (2)
C11—C10—C9—C80.9 (2)C45—C46—C40—C39150.90 (15)
C4—C10—C9—C8178.38 (14)C32—N31—C36—C350.5 (2)
C5—C4—C3—C20.5 (2)C44—N43—C48—C471.0 (2)
C10—C4—C3—C2178.27 (13)C46—C47—C48—N430.6 (2)
N19—C20—C21—C220.0 (2)N31—C36—C35—C342.0 (2)
C23—C22—C21—C202.0 (2)C33—C34—C35—C362.6 (2)
C16—C22—C21—C20176.33 (13)C28—C34—C35—C36173.10 (15)
C18—N13—C14—C151.2 (2)C35—C34—C33—C320.8 (2)
Cu2—N13—C14—C15176.76 (11)C28—C34—C33—C32174.74 (15)
C16—C15—C14—N130.9 (2)C35—C34—C28—C29132.33 (17)
C12—N7—C8—C90.4 (2)C33—C34—C28—C2943.2 (2)
Cu1vii—N7—C8—C9175.57 (11)C35—C34—C28—C2742.8 (2)
C10—C9—C8—N70.4 (2)C33—C34—C28—C27141.73 (17)
C3—C4—C5—C60.8 (2)C39—C40—C41—C420.8 (2)
C10—C4—C5—C6179.62 (13)C46—C40—C41—C42178.85 (15)
C20—N19—C24—C232.0 (2)C29—C28—C27—C260.3 (3)
Cu2viii—N19—C24—C23172.69 (11)C34—C28—C27—C26174.98 (16)
N19—C24—C23—C220.1 (2)C36—N31—C32—C332.4 (3)
C21—C22—C23—C242.1 (2)C34—C33—C32—N311.8 (3)
C16—C22—C23—C24176.27 (13)C38—N37—C42—C411.3 (3)
C9—C10—C11—C120.8 (2)C40—C41—C42—N371.9 (3)
C4—C10—C11—C12178.56 (13)C30—N25—C26—C271.5 (3)
C8—N7—C12—C110.6 (2)C28—C27—C26—N251.8 (3)
Cu1vii—N7—C12—C11175.83 (11)C27—C28—C29—C302.6 (3)
C10—C11—C12—N70.0 (2)C34—C28—C29—C30172.72 (17)
C6—N1—C2—C30.4 (2)C26—N25—C30—C291.0 (3)
Cu1—N1—C2—C3176.11 (10)C28—C29—C30—N253.1 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x, y+1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x, y1/2, z+3/2; (viii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···N31viii0.952.343.2849 (19)170
C20—H20···F2ii0.952.323.0341 (16)131
C20—H20···F5ii0.952.533.4305 (17)159
C18—H18···F2iv0.952.523.1085 (16)120
C9—H9···O520.952.503.4223 (18)163
C3—H3···N37vii0.952.543.4803 (19)173
C21—H21···O52ii0.952.563.4294 (18)152
C14—H14···F20.952.433.0497 (16)123
C14—H14···F40.952.553.4519 (17)158
C8—H8···F1v0.952.333.0205 (16)129
C8—H8···F4v0.952.513.3524 (18)148
C5—H5···O520.952.433.2916 (18)151
C24—H24···F2viii0.952.292.9997 (16)131
C24—H24···F3viii0.952.553.4609 (17)161
C11—H11···N37vii0.952.613.4358 (19)145
C12—H12···F1vii0.952.262.9662 (16)131
C12—H12···F6vii0.952.493.4040 (16)161
C2—H2···F1i0.952.523.0708 (16)117
C2—H2···F3i0.952.453.3364 (17)156
C45—H45···O50ix0.952.443.376 (2)167
C6—H6···F10.952.463.0691 (16)122
C6—H6···F40.952.603.5313 (17)166
C38—H38···F60.952.413.1240 (19)132
C48—H48···O51iv0.952.503.330 (2)146
O53—H53B···F3v0.78 (2)1.96 (3)2.7228 (17)166 (2)
O52—H52B···O530.90 (3)1.83 (3)2.7227 (18)170 (2)
O53—H53A···N43iv0.85 (3)2.05 (3)2.8666 (19)161 (3)
O52—H52A···O510.90 (3)1.84 (3)2.726 (2)172 (2)
O50—H50A···O491.05 (3)1.72 (3)2.741 (2)163 (2)
O49—H49B···F5ii0.96 (3)1.82 (3)2.7716 (18)173 (3)
O50—H50B···N25i0.96 (3)1.86 (3)2.816 (2)173 (3)
O49—H49A···O52ii1.00 (4)1.81 (4)2.798 (2)169 (3)
O51—H51B···F40.91 (3)1.88 (3)2.7029 (18)149 (2)
O51—H51A···O501.00 (4)1.76 (4)2.719 (2)158 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1/2, z1/2; (iv) x+1, y+1, z+1; (v) x, y+1/2, z+1/2; (vii) x, y1/2, z+3/2; (viii) x+1, y1/2, z+1/2; (ix) x, y+1, z.
Geometrical parameters (Å, °) for the ππ stacking of the 4,4'-bipyridine molecules within the pores top
Cg(I) is the centroid of the atoms defining plane I: Cg(N25) = N25/C26–C30; Cg(N31) = N31/C32–C36; Cg(N43) = N43/C44-7-C48 and Cg(N37) = N37/C38–C42. dCgCg is the distance between Cg(I) and Cg(J). α is the dihedral angle between planes I and J. β is the angle between the Cg(I)Cg(J) vector and the normal to plane I. γ is the angle between the Cg(I)Cg(J) vector and the normal to plane J.
Cg(I)Cg(J)dCgCgαβγ
N25N25i3.7374 (10)0.02 (9)9.29.2
N31N37ii3.7358 (9)20.79 (8)21.413.1
N43N43iii3.8576 (9)0.00 (7)23.823.8
Symmetry codes: (i) -x, 2 - y, 1 - z; (ii) x, y, z; (iii) 1 - x, 2 - y, 1 - z.
 

Acknowledgements

The Service Commun de Diffraction des Rayons X – Lorraine University is thanked for providing access to crystallographic facilities.

References

First citationBlake, A. J., Hill, S. J., Hubberstey, P. & Li, W.-S. (1997). J. Chem. Soc. Dalton Trans. pp. 913–914.  CSD CrossRef Google Scholar
First citationBurd, S. D., Ma, S., Perman, J. A., Sikora, B. J., Snurr, R. Q., Thallapally, P. K., Tian, J., Wojtas, L. & Zaworotko, M. J. (2012). J. Am. Chem. Soc. 134, 3663–3666.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFan, S., Sun, F., Xie, J., Guo, J., Zhang, L., Wang, C., Pan, Q. & Zhu, G. (2013). J. Mater. Chem. A, 1, 11438–11442.  CrossRef CAS Google Scholar
First citationGable, R. W., Hoskins, B. F. & Robson, R. (1990). J. Chem. Soc. Chem. Commun. pp. 1677–1678.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, M.-J., Jouaiti, A., Kyritsakas, N. & Hosseini, M. W. (2009). CrystEngComm, 11, 189–191.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNoro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084.  CrossRef Google Scholar
First citationNoro, S., Kitaura, R., Kondo, M., Kitagawa, S., Ishii, T., Matsuzaka, H. & Yamashita, M. (2002). J. Am. Chem. Soc. 124, 2568–2583.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubramanian, S. & Zaworotko, M. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2127–2129.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Q., Yang, J., Zhao, Q., Dong, J. & Li, J. (2012). J. Coord. Chem. 65, 1645–1654.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds