research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-phenyl­imido-1-{6-[1-(phenyl­imino)­eth­yl]pyridin-2-yl}ethan-1-yl-κ3N,N′,N′′)iron(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The University of Chicago, 5735 South Ellis ave, Chicago, Il 60637, USA
*Correspondence e-mail: rfjordan@uchicago.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 September 2016; accepted 3 October 2016; online 18 October 2016)

The title iron complex, [Fe(C21H19N3)2], consists of an FeII atom chelated by two tridentate bis­(imino)­pyridine radical anions in a slightly distorted octa­hedral coordination environment. In the solid state, there are two independent half-mol­ecules in the asymmetric unit, and the complete mol­ecular structure is formed by applying twofold rotation symmetry with the twofold rotation axis passing through an Fe atom. In the crystal, the Fe-containing complexes are not involved in any particular direct inter­molecular inter­actions, with the shortest C—HAr contacts between neighboring phenyl groups being ca 3.2 Å.

1. Chemical context

Transition metal complexes that contain bis­(imino)­pyridine ligands are highly active catalysts for olefin oligomerization and polymerization (Small et al., 1998[Small, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 120, 4049-4050.]; Britovsek et al., 1998[Britovsek, G. J. P., Gibson, V. C., McTavish, S. J., Solan, G. A., White, A. J. P., Williams, D. J., Britovsek, G. J. P., Kimberley, B. S. & Maddox, P. J. (1998). Chem. Commun. pp. 849-850.], 1999[Britovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., McTavish, S. J., Redshaw, C., Solan, G. A., Strömberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728-8740.]; Small, 2015[Small, B. L. (2015). Acc. Chem. Res. 48, 2599-2611.]), and many other reactions (for example: Bart et al., 2004[Bart, S. C., Lobkovsky, E. & Chirik, P. J. (2004). J. Am. Chem. Soc. 126, 13794-13807.]; Tondreau et al., 2012a[Tondreau, A. M., Atienza, C. C. H., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P. & Chirik, P. J. (2012a). Science, 335, 567-570.],b[Tondreau, A. M., Atienza, C. C. H., Darmon, J. M., Milsmann, C., Hoyt, H. M., Weller, K. J., Nye, S. A., Lewis, K. M., Boyer, J., Delis, J. G. P., Lobkovsky, E. & Chirik, P. J. (2012b). Organometallics, 31, 4886-4893.]; Obligacion & Chirik, 2013[Obligacion, J. V. & Chirik, P. (2013). Org. Lett. 15, 2680-2683.]; Bouwkamp et al., 2006[Bouwkamp, M. W., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. (2006). J. Am. Chem. Soc. 128, 13340-13341.]; Hoyt et al., 2015[Hoyt, J. M., Schmidt, V. A., Tondreau, A. M. & Chirik, P. J. (2015). Science, 349, 960-963.]; Sylvester & Chirik, 2009[Sylvester, K. T. & Chirik, P. J. (2009). J. Am. Chem. Soc. 131, 8772-8774.]). In pursuit of this chemistry, dicationic iron(II) complexes that are chelated by two neutral bis­(imino)­pyridine ligands have been synthesized and characterized by X-ray diffraction (for example: de Bruin et al., 2000[Bruin, B. de, Bill, E., Bothe, E., Weyhermüller, T. & Wieghardt, K. (2000). Inorg. Chem. 39, 2936-2947.]; Ionkin et al., 2006[Ionkin, A. S., Marshall, W. J., Adelman, D. J., Fones, B. B., Fish, B. M. & Schiffhauer, M. F. (2006). Organometallics, 25, 2978-2992.]). However, until recently, neutral {bis­(imino)­pyrid­ine}2Fe complexes were only generated in situ and characterized by cyclic voltammetry and electronic spectroscopy (de Bruin et al., 2000[Bruin, B. de, Bill, E., Bothe, E., Weyhermüller, T. & Wieghardt, K. (2000). Inorg. Chem. 39, 2936-2947.]). Thus far, four neutral {bis­(imino)­pyridine}2Fe complexes that contain alkyl or functionalized-phenyl substituents on the imine nitro­gen atoms have been crystallographically characterized (Wile et al., 2009[Wile, B. M., Trovitch, R. J., Bart, S. C., Tondreau, A. M., Lobkovsky, E., Milsmann, C., Bill, E., Wieghardt, K. & Chirik, P. J. (2009). Inorg. Chem. 48, 4190-4200.]). Here we report the crystal structure of a parent mol­ecule of the class, (PDI)2Fe [PDI = 2,6-(C6H5-N=CMe)2-C5H3N], 1.

[Scheme 1]

2. Structural commentary

Complex 1 was synthesized by reduction of (PDI)FeCl2 with NaHBEt3 (Fig. 1[link]). Crystals of 1 suitable for X-ray diffraction were obtained from Et2O solution. There are two independent mol­ecules in the asymmetric unit (Fig. 2[link]a). The whole mol­ecular structure is formed by applying twofold rotation symmetry with the twofold rotation axis passing through an Fe atom (Fig. 2[link]b). The two independent mol­ecules have very similar bond lengths and angles except for the N(imine)—Fe bond lengths (Table 1[link]). One mol­ecule (Fe2) has two equivalent N(imine)—Fe bond lengths [2.155 (2), 2.157 (2) Å], while the other (Fe1) has two noticeably different N(imine)—Fe bond lengths [2.149 (2), 2.173 (2) Å] (Table 1[link]). The C—C bond lengths in the pyridine and phenyl rings [1.380 (3)–1.401 (3) Å] and the C—N bond lengths in the pyridine rings [1.366 (3), 1.372 (3) Å] in the two mol­ecules are very similar. The N(imine)—Fe—N(pyridine) angles in the two mol­ecules are also similar [73.85 (8)–75.01 (8)°]. The two chelate planes formed by (PDI)Fe units are almost perpendicular to each other, presumably to avoid steric congestion [92.05 (9) and 93.32 (8) for Fe1- and Fe2-containing complexes, respectively, and measured as a dihedral angle between two planes passing through three nitro­gen atoms of the coordinating PDI ligand].

Table 1
Selected bond lengths (Å)

Fe1—N1 2.149 (2) N3—C14 1.300 (3)
Fe1—N2 2.028 (2) C7—C9 1.443 (4)
Fe1—N3 2.173 (2) C13—C14 1.450 (4)
N1—C7 1.327 (3) Fe2—N4 2.155 (2)
N2—C9 1.368 (3) Fe2—N5 2.029 (2)
N2—C13 1.372 (3) Fe2—N6 2.157 (2)
[Figure 1]
Figure 1
Schematic representation of the synthesis of 1.
[Figure 2]
Figure 2
(a) The asymmetric unit of 1, showing the two half-complexes and (b) the mol­ecular structure of one of the completed complexes (Fe1) with H atoms omitted for clarity and displacement ellipsoids shown at the 50% probability level.

An analogue of 1 containing a para-meth­oxy substituent on the imine-phenyl ring, {2,6-(4-MeO-C6H4-N=CMe)2-C5H3N}2Fe (2) was also crystallized with two independent mol­ecules in the asymmetric unit (Wile et al., 2009[Wile, B. M., Trovitch, R. J., Bart, S. C., Tondreau, A. M., Lobkovsky, E., Milsmann, C., Bill, E., Wieghardt, K. & Chirik, P. J. (2009). Inorg. Chem. 48, 4190-4200.]), and it is inter­esting to compare the geometric parameters of 1 and 2. As observed for 1, the N(imine)—Fe bond lengths in one of the two independent mol­ecules in the asymmetric unit of 2 are similar [2.1278 (19), 2.1481 (19) Å], while those in the other exhibit much greater disparity [2.1159 (19), 2.1711 (19) Å]. Although the electron-donating meth­oxy substituents of 2 are expected to render the imino nitro­gens more basic than those in 1, the N(imine)—Fe bond lengths in 1 and 2 are very similar [range for 1: 2.149 (2) – 2.173 (2) Å; range for 2: 2.1159 (19) – 2.1711 (19) Å].

Bis(imino)­pyridine ligands are redox-active owing to the extensive π-conjugation (de Bruin et al., 2000[Bruin, B. de, Bill, E., Bothe, E., Weyhermüller, T. & Wieghardt, K. (2000). Inorg. Chem. 39, 2936-2947.]; Budzelaar et al., 2001[Budzelaar, P. H. M., de Bruin, B., Gal, A. W., Wieghardt, K. & van Lenthe, J. H. (2001). Inorg. Chem. 40, 4649-4655.]; Knijnenburg et al., 2006[Knijnenburg, Q., Gambarotta, S. & Budzelaar, P. H. M. (2006). Dalton Trans. pp. 5442-5448.]). Reduction of the ligand causes characteristic changes in bond lengths, as expected from the resonance structures of the mono-reduced ligand as shown in Fig. 3[link] (Bart et al., 2006[Bart, S. C., Chłopek, K., Bill, E., Bouwkamp, M. W., Lobkovsky, E., Neese, F., Wieghardt, K. & Chirik, P. J. (2006). J. Am. Chem. Soc. 128, 13901-13912.]). In particular, reduction by 1 e lengthens the C(imine)—N(imine) bond length from ca 1.28 to 1.32 Å and shortens the C(imine)—C(ipso) bond length from ca 1.50 to 1.44 Å. In the free ligand, the C(imine)—N(imine) and C(imine)—C(ipso) bond lengths are 1.266 (4) and 1.497 (5) Å (Mentes et al., 2001[Mentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424-o425.]). The electronic structure of 2 was shown to consist of an FeII atom and two mono-reduced bis­(imino)­pyridine radical anions by Mössbauer spectroscopy, magnetic data, crystallographic data and broken-symmetry DFT calculations. The C(imine)—N(imine) [1.294 (3)–1.327 (3) Å] and C(imine)—C(ipso) [1.440 (4)–1.456 (3) Å] bond lengths in 1 are close to those in 2 [C(imine)—N(imine) = 1.306 (3)–1.313 (3) Å and C(imine)—C(ipso) = 1.432 (3)–1.444 (3) Å], consistent with mono-reduced PDI ligands and an FeII atom as observed for 2.

[Figure 3]
Figure 3
Resonance structures of the mono-reduced ligand in 1.

3. Supra­molecular features

The structure crystallizes in the ortho­rhom­bic Ccce space group (No. 68) with rather large unit-cell parameters (b and c axes are both greater than 30 Å). Fig. 4[link] shows the crystal packing with Fe atoms forming a sub-lattice with ≃ 1/4 of the cell volume. The different relative orientation of ligands around the central Fe atoms leads to the obtained large unit cell. In the crystal, the Fe-containing complexes are not involved in any particular direct inter­molecular inter­actions. The shortest C⋯HAr contacts with neighboring phenyl groups start at about 3.2 Å.

[Figure 4]
Figure 4
Orthogonal views of the crystal packing of 1 projected along the a (left) and c (right) axes. Fe atoms are shown as large brown spheres of arbitrary radius.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update November 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reveals several crystallographically characterized neutral iron(II) complexes that are chelated by two bis­(imino)­pyridine radical anions [CSD refcodes: DUFCAJ, DUFBOW, DUFCEN, DUFBUC (Wile et al., 2009[Wile, B. M., Trovitch, R. J., Bart, S. C., Tondreau, A. M., Lobkovsky, E., Milsmann, C., Bill, E., Wieghardt, K. & Chirik, P. J. (2009). Inorg. Chem. 48, 4190-4200.])]. Examples containing chromium [CSD refcode: OGUYOG (Wang et al., 2015[Wang, M., Weyhermüller, T. & Wieghardt, K. (2015). Eur. J. Inorg. Chem. pp. 3246-3254.])] and molybdenum [CSD refcode: OGUYEW (Wang et al., 2015[Wang, M., Weyhermüller, T. & Wieghardt, K. (2015). Eur. J. Inorg. Chem. pp. 3246-3254.])] have also been reported.

5. Synthesis and crystallization

Compound 1 was isolated from the attempted synthesis of (PDI)FeCl by reduction of (PDI)FeCl2 with NaHBEt3 in Et2O. Et2O (10 ml) was added to (PDI)FeCl2 (0.113 g, 0.26 mmol) in a Schlenk flask to form a purple slurry. A solution of NaHBEt3 in Et2O (0.065 M, 4 ml, 0.26 mmol) was added dropwise at 238 K to the slurry. The mixture was warmed to room temperature (ca 293 K) for 1 h and evolved to a red slurry. The mixture was filtered and the filtrate was concentrated under vacuum to afford purple crystals of 1, which were identified by X-ray crystallographic analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All carbon-bound H atoms were included in idealized positions for structure factor calculations [C—H = 0.95–0.98 Å, Uiso(H) set to 1.2–1.5Ueq(C)].

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C21H19N3)2]
Mr 682.63
Crystal system, space group Orthorhombic, Ccce
Temperature (K) 100
a, b, c (Å) 11.9028 (5), 32.2189 (14), 35.5223 (15)
V3) 13622.6 (10)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.48
Crystal size (mm) 0.32 × 0.24 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.662, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 116689, 7006, 5821
Rint 0.062
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.128, 1.19
No. of reflections 7006
No. of parameters 447
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.63
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

1-Phenylimido-1-{6-[1-(phenylimino)ethyl]pyridin-2-yl}ethan-1-yl-κ3N,N',N'')iron(II) top
Crystal data top
[Fe(C21H19N3)2]Dx = 1.331 Mg m3
Mr = 682.63Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CcceCell parameters from 9834 reflections
a = 11.9028 (5) Åθ = 2.2–26.4°
b = 32.2189 (14) ŵ = 0.48 mm1
c = 35.5223 (15) ÅT = 100 K
V = 13622.6 (10) Å3Plate, dark violet
Z = 160.32 × 0.24 × 0.10 mm
F(000) = 5728
Data collection top
Bruker D8 Venture PHOTON 100 CMOS
diffractometer
7006 independent reflections
Radiation source: INCOATEC ImuS micro-focus source5821 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.062
Detector resolution: 10.4167 pixels mm-1θmax = 26.4°, θmin = 1.9°
ω and phi scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 4040
Tmin = 0.662, Tmax = 0.745l = 4444
116689 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0365P)2 + 50.0482P]
where P = (Fo2 + 2Fc2)/3
7006 reflections(Δ/σ)max = 0.002
447 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.75000.60614 (2)0.01348 (13)
N10.37427 (17)0.77288 (6)0.56801 (6)0.0146 (4)
N20.36620 (17)0.71185 (6)0.61341 (6)0.0148 (4)
N30.55060 (18)0.70451 (6)0.64801 (6)0.0166 (5)
C10.3933 (2)0.80895 (8)0.54604 (7)0.0151 (5)
C20.4937 (2)0.81186 (8)0.52588 (7)0.0189 (6)
H20.54570.78950.52640.023*
C30.5181 (2)0.84716 (8)0.50503 (8)0.0195 (6)
H30.58610.84850.49110.023*
C40.4444 (2)0.88047 (8)0.50431 (8)0.0205 (6)
H40.46140.90450.48990.025*
C50.3457 (2)0.87820 (8)0.52478 (8)0.0220 (6)
H50.29520.90100.52470.026*
C60.3199 (2)0.84291 (8)0.54545 (7)0.0183 (5)
H60.25170.84180.55930.022*
C70.2742 (2)0.75478 (8)0.56928 (7)0.0169 (5)
C80.1756 (2)0.76466 (9)0.54468 (8)0.0231 (6)
H8A0.12230.78200.55860.035*
H8B0.13860.73880.53700.035*
H8C0.20140.77960.52230.035*
C90.2667 (2)0.72135 (8)0.59619 (8)0.0174 (5)
C100.1672 (2)0.70106 (8)0.60645 (8)0.0230 (6)
H100.09830.70800.59450.028*
C110.1700 (2)0.67089 (9)0.63407 (9)0.0245 (6)
H110.10290.65720.64140.029*
C120.2715 (2)0.66062 (8)0.65106 (8)0.0210 (6)
H120.27470.63930.66950.025*
C130.3675 (2)0.68179 (8)0.64075 (7)0.0168 (5)
C140.4765 (2)0.67718 (8)0.65847 (7)0.0174 (5)
C150.4957 (2)0.64459 (9)0.68814 (8)0.0243 (6)
H15A0.57650.64180.69290.036*
H15B0.46550.61800.67940.036*
H15C0.45770.65280.71140.036*
C160.6627 (2)0.70349 (8)0.66146 (7)0.0182 (5)
C170.7394 (3)0.67610 (9)0.64561 (8)0.0255 (6)
H170.71430.65600.62790.031*
C180.8519 (3)0.67774 (10)0.65533 (9)0.0319 (7)
H180.90330.65860.64450.038*
C190.8899 (3)0.70702 (10)0.68070 (10)0.0335 (7)
H190.96740.70840.68710.040*
C200.8139 (3)0.73426 (10)0.69674 (9)0.0325 (7)
H200.83930.75430.71440.039*
C210.7009 (3)0.73262 (9)0.68734 (8)0.0264 (6)
H210.64950.75150.69860.032*
Fe20.25000.50000.64429 (2)0.01289 (13)
N40.12861 (18)0.52706 (6)0.68203 (6)0.0157 (4)
N50.10938 (18)0.46510 (6)0.63800 (6)0.0146 (4)
N60.29045 (18)0.45369 (6)0.60258 (6)0.0160 (4)
C220.1573 (2)0.56140 (8)0.70498 (7)0.0165 (5)
C230.2584 (2)0.55886 (8)0.72503 (7)0.0188 (5)
H230.30410.53480.72250.023*
C240.2929 (2)0.59069 (8)0.74837 (8)0.0225 (6)
H240.36050.58790.76230.027*
C250.2294 (2)0.62673 (9)0.75159 (8)0.0236 (6)
H250.25290.64860.76770.028*
C260.1311 (2)0.63013 (8)0.73093 (8)0.0229 (6)
H260.08770.65480.73260.027*
C270.0946 (2)0.59791 (8)0.70769 (8)0.0201 (6)
H270.02710.60080.69370.024*
C280.0248 (2)0.51224 (8)0.68000 (7)0.0163 (5)
C290.0753 (2)0.52709 (9)0.70198 (8)0.0252 (6)
H29A0.04980.54320.72380.038*
H29B0.11900.50310.71060.038*
H29C0.12240.54460.68590.038*
C300.0117 (2)0.47772 (8)0.65463 (7)0.0170 (5)
C310.0902 (2)0.45885 (8)0.64529 (8)0.0211 (6)
H310.15790.46790.65680.025*
C320.0925 (2)0.42691 (9)0.61925 (8)0.0241 (6)
H320.16170.41390.61290.029*
C330.0070 (2)0.41386 (8)0.60236 (8)0.0212 (6)
H330.00710.39160.58480.025*
C340.1056 (2)0.43407 (8)0.61172 (7)0.0159 (5)
C350.2133 (2)0.42730 (8)0.59329 (7)0.0161 (5)
C360.2259 (2)0.39396 (9)0.56407 (8)0.0223 (6)
H36A0.19130.40310.54050.033*
H36B0.18890.36860.57280.033*
H36C0.30590.38840.55990.033*
C370.4006 (2)0.45267 (8)0.58710 (7)0.0178 (5)
C380.4804 (2)0.42575 (9)0.60131 (9)0.0264 (6)
H380.45950.40540.61940.032*
C390.5910 (3)0.42826 (10)0.58929 (10)0.0360 (8)
H390.64510.40940.59900.043*
C400.6235 (3)0.45784 (10)0.56331 (10)0.0362 (8)
H400.69970.45990.55560.043*
C410.5432 (3)0.48453 (10)0.54870 (9)0.0324 (7)
H410.56420.50470.53050.039*
C420.4326 (2)0.48196 (9)0.56043 (8)0.0233 (6)
H420.37820.50030.55020.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0106 (2)0.0120 (2)0.0179 (3)0.00086 (19)0.0000.000
N10.0102 (10)0.0139 (10)0.0197 (11)0.0024 (8)0.0003 (8)0.0004 (9)
N20.0115 (10)0.0120 (10)0.0210 (11)0.0015 (8)0.0005 (8)0.0009 (8)
N30.0149 (11)0.0154 (11)0.0194 (11)0.0006 (9)0.0002 (9)0.0012 (9)
C10.0151 (13)0.0135 (12)0.0166 (12)0.0002 (10)0.0038 (10)0.0016 (10)
C20.0190 (13)0.0157 (12)0.0218 (14)0.0002 (11)0.0017 (11)0.0009 (11)
C30.0148 (13)0.0206 (13)0.0231 (14)0.0023 (11)0.0020 (11)0.0007 (11)
C40.0219 (14)0.0163 (13)0.0234 (14)0.0011 (11)0.0051 (11)0.0033 (11)
C50.0268 (15)0.0160 (13)0.0231 (14)0.0051 (11)0.0076 (12)0.0016 (11)
C60.0173 (13)0.0180 (13)0.0195 (13)0.0021 (11)0.0031 (10)0.0023 (10)
C70.0133 (12)0.0144 (12)0.0229 (13)0.0005 (10)0.0015 (10)0.0027 (10)
C80.0154 (13)0.0231 (14)0.0307 (15)0.0027 (11)0.0060 (11)0.0029 (12)
C90.0140 (13)0.0151 (12)0.0232 (14)0.0007 (10)0.0005 (10)0.0027 (10)
C100.0150 (13)0.0198 (13)0.0342 (16)0.0016 (11)0.0037 (12)0.0000 (12)
C110.0156 (14)0.0202 (14)0.0376 (17)0.0058 (11)0.0060 (12)0.0019 (12)
C120.0176 (14)0.0169 (13)0.0285 (15)0.0014 (10)0.0049 (11)0.0031 (11)
C130.0158 (13)0.0134 (12)0.0211 (13)0.0004 (10)0.0017 (10)0.0001 (10)
C140.0185 (14)0.0136 (12)0.0200 (13)0.0010 (10)0.0019 (10)0.0007 (10)
C150.0204 (14)0.0265 (15)0.0259 (14)0.0016 (12)0.0016 (12)0.0095 (12)
C160.0172 (13)0.0171 (13)0.0202 (13)0.0036 (10)0.0024 (10)0.0070 (10)
C170.0252 (15)0.0243 (14)0.0271 (15)0.0012 (12)0.0004 (12)0.0013 (12)
C180.0180 (15)0.0352 (17)0.0423 (18)0.0016 (13)0.0011 (13)0.0077 (15)
C190.0189 (15)0.0325 (17)0.049 (2)0.0028 (13)0.0091 (14)0.0144 (15)
C200.0326 (17)0.0264 (15)0.0385 (18)0.0112 (13)0.0160 (14)0.0052 (13)
C210.0310 (16)0.0194 (14)0.0286 (15)0.0013 (12)0.0071 (13)0.0032 (12)
Fe20.0107 (2)0.0120 (2)0.0160 (3)0.0018 (2)0.0000.000
N40.0151 (11)0.0149 (10)0.0171 (11)0.0001 (8)0.0001 (9)0.0002 (9)
N50.0135 (11)0.0132 (10)0.0171 (11)0.0028 (8)0.0001 (8)0.0004 (8)
N60.0163 (11)0.0145 (10)0.0173 (11)0.0005 (9)0.0004 (9)0.0000 (9)
C220.0166 (13)0.0171 (12)0.0157 (12)0.0052 (10)0.0056 (10)0.0002 (10)
C230.0177 (13)0.0174 (13)0.0212 (14)0.0019 (11)0.0031 (11)0.0019 (11)
C240.0204 (14)0.0246 (14)0.0226 (14)0.0050 (12)0.0012 (11)0.0014 (12)
C250.0259 (15)0.0192 (13)0.0257 (14)0.0047 (12)0.0055 (12)0.0066 (12)
C260.0255 (15)0.0154 (13)0.0277 (15)0.0020 (11)0.0117 (12)0.0027 (11)
C270.0184 (13)0.0206 (14)0.0211 (13)0.0019 (11)0.0048 (11)0.0012 (11)
C280.0087 (12)0.0189 (13)0.0212 (13)0.0001 (10)0.0018 (10)0.0008 (11)
C290.0168 (14)0.0267 (15)0.0320 (16)0.0031 (11)0.0057 (12)0.0091 (12)
C300.0133 (12)0.0171 (12)0.0206 (13)0.0008 (10)0.0011 (10)0.0021 (11)
C310.0112 (13)0.0215 (14)0.0305 (15)0.0008 (11)0.0021 (11)0.0007 (12)
C320.0169 (14)0.0226 (14)0.0327 (16)0.0058 (11)0.0046 (12)0.0011 (12)
C330.0230 (14)0.0177 (13)0.0228 (14)0.0026 (11)0.0015 (11)0.0026 (11)
C340.0182 (13)0.0135 (12)0.0159 (12)0.0004 (10)0.0016 (10)0.0019 (10)
C350.0172 (13)0.0150 (12)0.0163 (12)0.0001 (10)0.0015 (10)0.0002 (10)
C360.0194 (14)0.0229 (14)0.0246 (14)0.0020 (11)0.0011 (11)0.0071 (12)
C370.0174 (13)0.0155 (12)0.0204 (13)0.0019 (10)0.0012 (11)0.0067 (10)
C380.0186 (15)0.0249 (15)0.0358 (17)0.0002 (11)0.0018 (12)0.0015 (13)
C390.0168 (15)0.0318 (17)0.059 (2)0.0034 (13)0.0021 (15)0.0043 (16)
C400.0194 (15)0.0300 (17)0.059 (2)0.0070 (13)0.0152 (15)0.0159 (16)
C410.0331 (17)0.0243 (15)0.0399 (18)0.0087 (13)0.0187 (14)0.0054 (14)
C420.0226 (15)0.0195 (13)0.0280 (15)0.0003 (11)0.0067 (12)0.0030 (12)
Geometric parameters (Å, º) top
Fe1—N1i2.149 (2)Fe2—N42.155 (2)
Fe1—N12.149 (2)Fe2—N4ii2.155 (2)
Fe1—N22.028 (2)Fe2—N5ii2.029 (2)
Fe1—N2i2.028 (2)Fe2—N52.029 (2)
Fe1—N3i2.173 (2)Fe2—N6ii2.157 (2)
Fe1—N32.173 (2)Fe2—N62.157 (2)
N1—C11.418 (3)N4—C221.416 (3)
N1—C71.327 (3)N4—C281.327 (3)
N2—C91.368 (3)N5—C301.366 (3)
N2—C131.372 (3)N5—C341.368 (3)
N3—C141.300 (3)N6—C351.294 (3)
N3—C161.418 (3)N6—C371.422 (3)
C1—C21.396 (4)C22—C231.400 (4)
C1—C61.401 (4)C22—C271.397 (4)
C2—H20.9500C23—H230.9500
C2—C31.388 (4)C23—C241.381 (4)
C3—H30.9500C24—H240.9500
C3—C41.386 (4)C24—C251.390 (4)
C4—H40.9500C25—H250.9500
C4—C51.383 (4)C25—C261.385 (4)
C5—H50.9500C26—H260.9500
C5—C61.388 (4)C26—C271.395 (4)
C6—H60.9500C27—H270.9500
C7—C81.497 (4)C28—C291.502 (4)
C7—C91.443 (4)C28—C301.440 (4)
C8—H8A0.9800C29—H29A0.9800
C8—H8B0.9800C29—H29B0.9800
C8—H8C0.9800C29—H29C0.9800
C9—C101.401 (4)C30—C311.397 (4)
C10—H100.9500C31—H310.9500
C10—C111.382 (4)C31—C321.384 (4)
C11—H110.9500C32—H320.9500
C11—C121.390 (4)C32—C331.393 (4)
C12—H120.9500C33—H330.9500
C12—C131.381 (4)C33—C341.383 (4)
C13—C141.450 (4)C34—C351.456 (4)
C14—C151.505 (4)C35—C361.501 (4)
C15—H15A0.9800C36—H36A0.9800
C15—H15B0.9800C36—H36B0.9800
C15—H15C0.9800C36—H36C0.9800
C16—C171.389 (4)C37—C381.382 (4)
C16—C211.390 (4)C37—C421.391 (4)
C17—H170.9500C38—H380.9500
C17—C181.384 (4)C38—C391.386 (4)
C18—H180.9500C39—H390.9500
C18—C191.381 (5)C39—C401.382 (5)
C19—H190.9500C40—H400.9500
C19—C201.384 (5)C40—C411.387 (5)
C20—H200.9500C41—H410.9500
C20—C211.386 (4)C41—C421.383 (4)
C21—H210.9500C42—H420.9500
N1—Fe1—N1i101.86 (11)N4—Fe2—N4ii103.07 (11)
N1i—Fe1—N390.40 (8)N4—Fe2—N6ii89.87 (8)
N1—Fe1—N3148.84 (8)N4—Fe2—N6148.95 (8)
N1—Fe1—N3i90.40 (8)N4ii—Fe2—N6ii148.95 (8)
N1i—Fe1—N3i148.84 (8)N4ii—Fe2—N689.87 (8)
N2—Fe1—N1i114.79 (8)N5ii—Fe2—N4ii74.91 (8)
N2i—Fe1—N1114.79 (8)N5ii—Fe2—N4113.41 (8)
N2—Fe1—N175.01 (8)N5—Fe2—N4ii113.41 (8)
N2i—Fe1—N1i75.01 (8)N5—Fe2—N474.91 (8)
N2i—Fe1—N2165.36 (12)N5ii—Fe2—N5167.36 (12)
N2—Fe1—N3i95.96 (8)N5—Fe2—N6ii97.10 (8)
N2—Fe1—N373.84 (8)N5—Fe2—N674.04 (8)
N2i—Fe1—N395.96 (8)N5ii—Fe2—N6ii74.05 (8)
N2i—Fe1—N3i73.84 (8)N5ii—Fe2—N697.10 (8)
N3i—Fe1—N393.62 (11)N6—Fe2—N6ii93.24 (11)
C1—N1—Fe1121.09 (16)C22—N4—Fe2120.83 (16)
C7—N1—Fe1116.93 (17)C28—N4—Fe2116.42 (17)
C7—N1—C1121.5 (2)C28—N4—C22122.5 (2)
C9—N2—Fe1119.18 (17)C30—N5—Fe2119.30 (17)
C9—N2—C13119.0 (2)C30—N5—C34119.0 (2)
C13—N2—Fe1120.60 (17)C34—N5—Fe2120.49 (17)
C14—N3—Fe1117.66 (18)C35—N6—Fe2118.10 (18)
C14—N3—C16121.8 (2)C35—N6—C37122.7 (2)
C16—N3—Fe1120.47 (16)C37—N6—Fe2119.16 (16)
C2—C1—N1118.3 (2)C23—C22—N4117.0 (2)
C2—C1—C6118.3 (2)C27—C22—N4124.7 (2)
C6—C1—N1123.3 (2)C27—C22—C23118.2 (2)
C1—C2—H2119.7C22—C23—H23119.4
C3—C2—C1120.5 (2)C24—C23—C22121.1 (3)
C3—C2—H2119.7C24—C23—H23119.4
C2—C3—H3119.6C23—C24—H24119.7
C4—C3—C2120.8 (3)C23—C24—C25120.5 (3)
C4—C3—H3119.6C25—C24—H24119.7
C3—C4—H4120.4C24—C25—H25120.6
C5—C4—C3119.1 (3)C26—C25—C24118.8 (3)
C5—C4—H4120.4C26—C25—H25120.6
C4—C5—H5119.7C25—C26—H26119.4
C4—C5—C6120.7 (3)C25—C26—C27121.1 (3)
C6—C5—H5119.7C27—C26—H26119.4
C1—C6—H6119.7C22—C27—H27120.0
C5—C6—C1120.6 (3)C26—C27—C22120.1 (3)
C5—C6—H6119.7C26—C27—H27120.0
N1—C7—C8126.2 (2)N4—C28—C29126.6 (2)
N1—C7—C9114.0 (2)N4—C28—C30114.4 (2)
C9—C7—C8119.8 (2)C30—C28—C29119.0 (2)
C7—C8—H8A109.5C28—C29—H29A109.5
C7—C8—H8B109.5C28—C29—H29B109.5
C7—C8—H8C109.5C28—C29—H29C109.5
H8A—C8—H8B109.5H29A—C29—H29B109.5
H8A—C8—H8C109.5H29A—C29—H29C109.5
H8B—C8—H8C109.5H29B—C29—H29C109.5
N2—C9—C7114.2 (2)N5—C30—C28114.1 (2)
N2—C9—C10120.8 (2)N5—C30—C31120.4 (2)
C10—C9—C7125.0 (2)C31—C30—C28125.4 (2)
C9—C10—H10120.3C30—C31—H31120.0
C11—C10—C9119.5 (3)C32—C31—C30120.0 (3)
C11—C10—H10120.3C32—C31—H31120.0
C10—C11—H11120.1C31—C32—H32120.1
C10—C11—C12119.8 (3)C31—C32—C33119.7 (3)
C12—C11—H11120.1C33—C32—H32120.1
C11—C12—H12120.4C32—C33—H33120.8
C13—C12—C11119.1 (2)C34—C33—C32118.4 (2)
C13—C12—H12120.4C34—C33—H33120.8
N2—C13—C12121.8 (2)N5—C34—C33122.4 (2)
N2—C13—C14113.0 (2)N5—C34—C35112.8 (2)
C12—C13—C14125.1 (2)C33—C34—C35124.6 (2)
N3—C14—C13114.4 (2)N6—C35—C34114.3 (2)
N3—C14—C15124.7 (2)N6—C35—C36125.1 (2)
C13—C14—C15120.7 (2)C34—C35—C36120.4 (2)
C14—C15—H15A109.5C35—C36—H36A109.5
C14—C15—H15B109.5C35—C36—H36B109.5
C14—C15—H15C109.5C35—C36—H36C109.5
H15A—C15—H15B109.5H36A—C36—H36B109.5
H15A—C15—H15C109.5H36A—C36—H36C109.5
H15B—C15—H15C109.5H36B—C36—H36C109.5
C17—C16—N3119.8 (2)C38—C37—N6120.5 (2)
C17—C16—C21118.8 (3)C38—C37—C42119.1 (3)
C21—C16—N3121.0 (3)C42—C37—N6120.1 (2)
C16—C17—H17119.7C37—C38—H38119.9
C18—C17—C16120.7 (3)C37—C38—C39120.3 (3)
C18—C17—H17119.7C39—C38—H38119.9
C17—C18—H18119.8C38—C39—H39119.6
C19—C18—C17120.4 (3)C40—C39—C38120.8 (3)
C19—C18—H18119.8C40—C39—H39119.6
C18—C19—H19120.4C39—C40—H40120.5
C18—C19—C20119.2 (3)C39—C40—C41119.0 (3)
C20—C19—H19120.4C41—C40—H40120.5
C19—C20—H20119.6C40—C41—H41119.8
C19—C20—C21120.8 (3)C42—C41—C40120.4 (3)
C21—C20—H20119.6C42—C41—H41119.8
C16—C21—H21119.9C37—C42—H42119.8
C20—C21—C16120.1 (3)C41—C42—C37120.5 (3)
C20—C21—H21119.9C41—C42—H42119.8
Fe1—N1—C1—C249.0 (3)Fe2—N4—C22—C2347.6 (3)
Fe1—N1—C1—C6126.8 (2)Fe2—N4—C22—C27129.6 (2)
Fe1—N1—C7—C8178.0 (2)Fe2—N4—C28—C29177.2 (2)
Fe1—N1—C7—C91.2 (3)Fe2—N4—C28—C304.7 (3)
Fe1—N2—C9—C79.7 (3)Fe2—N5—C30—C288.9 (3)
Fe1—N2—C9—C10166.8 (2)Fe2—N5—C30—C31168.2 (2)
Fe1—N2—C13—C12167.8 (2)Fe2—N5—C34—C33169.7 (2)
Fe1—N2—C13—C148.5 (3)Fe2—N5—C34—C356.0 (3)
Fe1—N3—C14—C131.3 (3)Fe2—N6—C35—C342.6 (3)
Fe1—N3—C14—C15177.5 (2)Fe2—N6—C35—C36178.1 (2)
Fe1—N3—C16—C1796.2 (3)Fe2—N6—C37—C3896.8 (3)
Fe1—N3—C16—C2176.4 (3)Fe2—N6—C37—C4275.9 (3)
N1—C1—C2—C3177.7 (2)N4—C22—C23—C24179.5 (2)
N1—C1—C6—C5176.9 (2)N4—C22—C27—C26179.3 (2)
N1—C7—C9—N25.2 (3)N4—C28—C30—N52.3 (3)
N1—C7—C9—C10171.1 (3)N4—C28—C30—C31174.6 (3)
N2—C9—C10—C110.5 (4)N5—C30—C31—C320.5 (4)
N2—C13—C14—N35.9 (3)N5—C34—C35—N65.4 (3)
N2—C13—C14—C15177.7 (2)N5—C34—C35—C36178.9 (2)
N3—C16—C17—C18172.8 (3)N6—C37—C38—C39172.3 (3)
N3—C16—C21—C20172.3 (3)N6—C37—C42—C41171.9 (3)
C1—N1—C7—C89.8 (4)C22—N4—C28—C293.0 (4)
C1—N1—C7—C9173.4 (2)C22—N4—C28—C30178.9 (2)
C1—C2—C3—C41.1 (4)C22—C23—C24—C252.1 (4)
C2—C1—C6—C51.1 (4)C23—C22—C27—C262.2 (4)
C2—C3—C4—C50.1 (4)C23—C24—C25—C260.1 (4)
C3—C4—C5—C60.8 (4)C24—C25—C26—C271.0 (4)
C4—C5—C6—C10.2 (4)C25—C26—C27—C220.1 (4)
C6—C1—C2—C31.7 (4)C27—C22—C23—C243.2 (4)
C7—N1—C1—C2139.1 (3)C28—N4—C22—C23138.5 (3)
C7—N1—C1—C645.1 (4)C28—N4—C22—C2744.3 (4)
C7—C9—C10—C11176.6 (3)C28—C30—C31—C32177.3 (3)
C8—C7—C9—N2171.9 (2)C29—C28—C30—N5175.9 (2)
C8—C7—C9—C1011.8 (4)C29—C28—C30—C317.2 (4)
C9—N2—C13—C120.7 (4)C30—N5—C34—C332.5 (4)
C9—N2—C13—C14175.6 (2)C30—N5—C34—C35173.2 (2)
C9—C10—C11—C120.8 (4)C30—C31—C32—C330.3 (4)
C10—C11—C12—C132.0 (4)C31—C32—C33—C341.3 (4)
C11—C12—C13—N21.9 (4)C32—C33—C34—N52.8 (4)
C11—C12—C13—C14173.9 (3)C32—C33—C34—C35172.5 (3)
C12—C13—C14—N3170.2 (3)C33—C34—C35—N6170.2 (2)
C12—C13—C14—C156.2 (4)C33—C34—C35—C365.5 (4)
C13—N2—C9—C7177.1 (2)C34—N5—C30—C28176.3 (2)
C13—N2—C9—C100.6 (4)C34—N5—C30—C310.8 (4)
C14—N3—C16—C1779.8 (3)C35—N6—C37—C3881.6 (3)
C14—N3—C16—C21107.5 (3)C35—N6—C37—C42105.6 (3)
C16—N3—C14—C13177.5 (2)C37—N6—C35—C34178.9 (2)
C16—N3—C14—C156.3 (4)C37—N6—C35—C363.4 (4)
C16—C17—C18—C190.7 (5)C37—C38—C39—C400.7 (5)
C17—C16—C21—C200.5 (4)C38—C37—C42—C411.0 (4)
C17—C18—C19—C201.0 (5)C38—C39—C40—C411.4 (5)
C18—C19—C20—C210.6 (5)C39—C40—C41—C421.0 (5)
C19—C20—C21—C160.2 (5)C40—C41—C42—C370.2 (5)
C21—C16—C17—C180.1 (4)C42—C37—C38—C390.5 (4)
Symmetry codes: (i) x+1, y+3/2, z; (ii) x+1/2, y+1, z.
 

Acknowledgements

This work was supported by the University of Chicago Women's Board.

References

First citationBart, S. C., Chłopek, K., Bill, E., Bouwkamp, M. W., Lobkovsky, E., Neese, F., Wieghardt, K. & Chirik, P. J. (2006). J. Am. Chem. Soc. 128, 13901–13912.  CSD CrossRef PubMed CAS Google Scholar
First citationBart, S. C., Lobkovsky, E. & Chirik, P. J. (2004). J. Am. Chem. Soc. 126, 13794–13807.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBouwkamp, M. W., Bowman, A. C., Lobkovsky, E. & Chirik, P. J. (2006). J. Am. Chem. Soc. 128, 13340–13341.  CSD CrossRef PubMed CAS Google Scholar
First citationBritovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., McTavish, S. J., Redshaw, C., Solan, G. A., Strömberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728–8740.  Web of Science CSD CrossRef CAS Google Scholar
First citationBritovsek, G. J. P., Gibson, V. C., McTavish, S. J., Solan, G. A., White, A. J. P., Williams, D. J., Britovsek, G. J. P., Kimberley, B. S. & Maddox, P. J. (1998). Chem. Commun. pp. 849–850.  CSD CrossRef Google Scholar
First citationBruin, B. de, Bill, E., Bothe, E., Weyhermüller, T. & Wieghardt, K. (2000). Inorg. Chem. 39, 2936–2947.  PubMed Google Scholar
First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBudzelaar, P. H. M., de Bruin, B., Gal, A. W., Wieghardt, K. & van Lenthe, J. H. (2001). Inorg. Chem. 40, 4649–4655.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoyt, J. M., Schmidt, V. A., Tondreau, A. M. & Chirik, P. J. (2015). Science, 349, 960–963.  CrossRef CAS PubMed Google Scholar
First citationIonkin, A. S., Marshall, W. J., Adelman, D. J., Fones, B. B., Fish, B. M. & Schiffhauer, M. F. (2006). Organometallics, 25, 2978–2992.  CSD CrossRef CAS Google Scholar
First citationKnijnenburg, Q., Gambarotta, S. & Budzelaar, P. H. M. (2006). Dalton Trans. pp. 5442–5448.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424–o425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationObligacion, J. V. & Chirik, P. (2013). Org. Lett. 15, 2680–2683.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmall, B. L. (2015). Acc. Chem. Res. 48, 2599–2611.  CrossRef CAS PubMed Google Scholar
First citationSmall, B. L., Brookhart, M. & Bennett, A. M. A. (1998). J. Am. Chem. Soc. 120, 4049–4050.  Web of Science CSD CrossRef CAS Google Scholar
First citationSylvester, K. T. & Chirik, P. J. (2009). J. Am. Chem. Soc. 131, 8772–8774.  CrossRef PubMed CAS Google Scholar
First citationTondreau, A. M., Atienza, C. C. H., Darmon, J. M., Milsmann, C., Hoyt, H. M., Weller, K. J., Nye, S. A., Lewis, K. M., Boyer, J., Delis, J. G. P., Lobkovsky, E. & Chirik, P. J. (2012b). Organometallics, 31, 4886–4893.  CSD CrossRef CAS Google Scholar
First citationTondreau, A. M., Atienza, C. C. H., Weller, K. J., Nye, S. A., Lewis, K. M., Delis, J. G. P. & Chirik, P. J. (2012a). Science, 335, 567–570.  CrossRef CAS PubMed Google Scholar
First citationWang, M., Weyhermüller, T. & Wieghardt, K. (2015). Eur. J. Inorg. Chem. pp. 3246–3254.  CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWile, B. M., Trovitch, R. J., Bart, S. C., Tondreau, A. M., Lobkovsky, E., Milsmann, C., Bill, E., Wieghardt, K. & Chirik, P. J. (2009). Inorg. Chem. 48, 4190–4200.  CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds