research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 9-(di­bromo­meth­yl)-1,1-di­fluoro-3,7-di­methyl-1H-[1,3,5,2]oxadi­aza­borinino[3,4-a][1,8]naphthyridin-11-ium-1-uide

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
*Correspondence e-mail: chishaoming@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 September 2016; accepted 18 October 2016; online 25 October 2016)

The mol­ecule of the title 1,8-naphthyridine-BF2 derivative, C12H10BBr2F2N3O, is located on a mirror plane running parallel to the entire ring system and the attached methyl C atoms. Individual mol­ecules are stacked along the b-axis direction. The cohesion in the crystal structure is accomplished by C—H⋯F hydrogen bonds and additional off-set ππ inter­actions [centroid-to-centroid distance = 3.6392 (9) Å, slippage 0.472 Å], leading to the formation of a three-dimensional supra­molecular network.

1. Chemical context

1,8-Naphthyridines are one of the most widely studied naphthyridine derivatives (Quan et al., 2012[Quan, L., Chen, Y., Lv, X. J. & Fu, W. F. (2012). Chem. Eur. J. 18, 14599-14604.]). They can exhibit diverse coordination modes and have excellent optical properties or biological activities. They are also widely employed in the synthesis of metal complexes, e.g. for the identification of small mol­ecules (Liang et al., 2012[Liang, F., Lindsay, S. & Zhang, P. (2012). Org. Biomol. Chem. 10, 8654-8659.]; Tanaka et al., 2012[Tanaka, K., Murakami, M., Jeon, J.-H. & Chujo, Y. (2012). Org. Biomol. Chem. 10, 90-95.]) or metal cations (Liu et al., 2014[Liu, X. J., Chen, M. X., Liu, Z. P., Yu, M. M., Wei, L. H. & Li, Z. X. (2014). Tetrahedron, 70, 658-663.]), as luminescent materials and in biomedical fields (Eweas et al., 2014[Eweas, A. F., Khalifa, N. M., Ismail, N. S., Al-Omar, M. A. & Soliman, A. M. M. (2014). Med. Chem. Res. 23, 76-86.]; Di Braccio et al., 2014[Di Braccio, M., Grossi, G., Alfei, S., Ballabeni, V., Tognolini, M., Flammini, L., Giorgio, C., Bertoni, S. & Barocelli, E. (2014). Eur. J. Med. Chem. 86, 394-405.]). BF2 compounds based on 1,8-naphthyridine ligands are used as fluorescent dyes due to their high fluorescence quantum yields (Zheng et al., 2015[Zheng, J., Huang, F., Li, Y. J., Xu, T. W., Xu, H., Jia, J. H., Ye, Q. & Gao, J. R. (2015). Dyes Pigments, 113, 502-509.]) and high photochemical stabilities. Their characteristic absorption and emission spectra (Wu et al., 2013[Wu, Y. Y., Chen, Y., Mu, W. H., Lv, X. J. & Fu, W. F. (2013). J. Photochem. Photobiol. Chem. 272, 73-79.]; Li et al., 2010[Li, H. J., Fu, W. F., Li, L., Gan, X., Mu, W. H., Chen, W. Q., Duan, X. M. & Song, H. B. (2010). Org. Lett. 12, 2924-2927.]) can be applied in many fields, such as cell imaging, as mol­ecular probes, solar cells and so on (Boens et al., 2012[Boens, N., Leen, V. & Dehaen, W. (2012). Chem. Soc. Rev. 41, 1130-1172.]; Loudet & Burgess, 2007[Loudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891-4932.]). However, only a few BF2 compounds based on the 1,8-naphthyridine moiety have been described in the literature. In view of their importance, the title compound, 9-(di­bromo­meth­yl)-1,1-di­fluoro-3,7–dimethyl-1H-[1,3,5,2]oxadi­aza­borinino[3,4-a][1,8]naphthyridin-11-ium-1-uide, was synthesized and structurally characterized by single crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The 1,8-naphthyridine ring system is fused with a mixed di­fluoro­roxadi­aza­borinino unit. The entire oxadi­aza­borininona­phthyridine ring system is planar due to its location on a mirror plane running parallel to the ring system. In addition, the C atoms of the two methyl groups (C8 and C1) as well as the C atom (C12) of the di­bromo­methyl group are located on the mirror plane, hence only two pairs of the methyl H atoms, the two Br atoms and the two F atoms are above and below this plane. The F1—B1—F1i and Br1i—C12—Br1 angles [symmetry code: (i) x, −y + [{1\over 2}], z] are 113.6 (7) and 110.3 (3)°, and the distances of the Br and F atoms to the plane are 1.5916 (6) and 1.141 (3) Å, respectively. The individual F—B bond length is 1.364 (5) Å and the Br—C bond length 1.940 (4) Å. Compared with the mol­ecular structure of a related compound (Wu et al., 2012[Wu, Y. Y., Chen, Y., Gou, G. Z., Mu, W. H., Lv, X. J., Du, M. L. & Fu, W. F. (2012). Org. Lett. 14, 5226-5229.]), the difference between the F1—B1—F1i angles is 2.16°, while the bond lengths and angles in the oxadi­aza­borine ring moiety of the two structures are almost the same.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (A) x, −y + [{1\over 2}], z.]

3. Supra­molecular features

In the crystal structure of the title compound, the mol­ecules are stacked along the b-axis direction and linked into a three-dimensional network through C—H⋯F hydrogen bonds involving one of the methyl groups as acceptor H atoms (Fig. 2[link], Table 1[link]). The cohesion in this network is reinforced via off-set ππ inter­actions [Cg2⋯Cg2i = 3.6392 (9) Å, inter­planar distance = 3.6085 (1) Å, slippage = 0.472 Å; Cg2 is the centroid of the N2/C3–C6/C11 ring; symmetry code: (i) −x, −[{1\over 2}] + y, 2 − z] (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯F1i 0.96 2.41 3.163 (6) 135
Symmetry code: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

4. Database survey

Owing to the shortage of BF2 compounds based on 1,8-naphthyridine derivatives, there are only a few examples of similar compounds in the literature. A search of the Cambridge Structural Database (CSD version 5.37; August 19, 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structure of another very similar compound, viz. [N-(5,7-dimethyl-1,8-naphthyridin-2-yl)ethanimidato](di­fluoro)­borate (CSD code MONGED; Du et al., 2014[Du, M. L., Hu, C. Y., Wang, L. F., Li, C., Han, Y. Y., Gan, X., Chen, Y., Mu, W. H., Huang, M. L. & Fu, W. F. (2014). Dalton Trans. 43, 13924-13931.]).

5. Synthesis and crystallization

BF3·OEt2 (2 ml, 16 mmol) was added dropwise to an ice-cooled solution of 2,6-lutidine (1 ml) and N-[7-(di­bromo­meth­yl)-5-methyl-1,8-naphthyridin-2-yl]acetamide (0.37 g, 1 mmol) in anhydrous CH2Cl2 (80 ml) under a nitro­gen atmosphere. After the mixture had been stirred for 24 h under ambient temperature, the reaction was quenched with 20 ml distilled water. The aqueous layer was extracted with CH2Cl2 (3 × 50 ml); the organic layer was dried with anhydrous Na2SO4 and the solvent removed under reduced pressure. The residue was purified by silica gel chromatography using CH2Cl2 as eluent to give the pure product as a bright white powder (yield 0.19 g, 45%). Yellow crystals of the title compound were obtained from its CH2Cl2 solution by slow evaporation at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and included in the final cycles of refinement using a riding-model approximation with C—H = 0.96 Å and with Uiso(H) = 1.2Ueq(C) for aromatic and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C12H10BBr2F2N3O
Mr 420.86
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 293
a, b, c (Å) 17.161 (3), 7.2169 (14), 11.678 (2)
V3) 1446.3 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.63
Crystal size (mm) 0.32 × 0.30 × 0.28
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.266, 0.302
No. of measured, independent and observed [I > 2σ(I)] reflections 13517, 1765, 937
Rint 0.139
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.120, 0.95
No. of reflections 1765
No. of parameters 122
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.37
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]), SHELXS97, SHELXL97 and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

9-(Dibromomethyl)-1,1-difluoro-3,7-dimethyl-1H-[1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridin-11-ium-1-uide top
Crystal data top
C12H10BBr2F2N3OF(000) = 816
Mr = 420.86Dx = 1.933 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1765 reflections
a = 17.161 (3) Åθ = 3.1–26.0°
b = 7.2169 (14) ŵ = 5.63 mm1
c = 11.678 (2) ÅT = 293 K
V = 1446.3 (5) Å3Block, yellow
Z = 40.32 × 0.30 × 0.28 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1765 independent reflections
Radiation source: fine-focus sealed tube937 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.139
ω scansθmax = 27.4°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2222
Tmin = 0.266, Tmax = 0.302k = 89
13517 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0519P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
1765 reflectionsΔρmax = 0.50 e Å3
122 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11449 (3)0.02946 (8)0.57510 (5)0.0624 (3)
B10.1752 (5)0.25000.9765 (7)0.041 (2)
F10.19639 (16)0.0919 (4)0.9205 (3)0.0585 (8)
N10.1041 (4)0.25001.2022 (6)0.0524 (16)
N20.0835 (3)0.25001.0005 (5)0.0349 (13)
N30.0640 (3)0.25000.8049 (5)0.0385 (14)
O10.2143 (3)0.25001.0882 (5)0.0558 (14)
C10.2326 (5)0.25001.2869 (8)0.063 (2)
H1A0.20250.25001.35620.095*
H1B0.26490.14141.28470.095*
C20.1794 (5)0.25001.1872 (7)0.0450 (19)
C30.0572 (4)0.25001.1095 (7)0.0408 (18)
C40.0249 (5)0.25001.1303 (8)0.055 (2)
H4A0.04330.25001.20790.065*
C50.0760 (4)0.25001.0421 (8)0.049 (2)
H5A0.13090.25001.05790.059*
C60.0513 (4)0.25000.9274 (8)0.0417 (18)
C70.1003 (4)0.25000.8304 (7)0.0435 (19)
C80.1880 (4)0.25000.8438 (8)0.060 (2)
H8A0.21250.25000.76980.089*
H8B0.20360.14140.88540.089*
C90.0662 (4)0.25000.7256 (7)0.0463 (19)
H9A0.09810.25000.65800.056*
C100.0160 (4)0.25000.7152 (7)0.0424 (18)
C110.0314 (4)0.25000.9079 (6)0.0349 (17)
C120.0518 (4)0.25000.5979 (7)0.050 (2)
H12A0.01040.25000.54250.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0685 (4)0.0646 (4)0.0542 (5)0.0055 (3)0.0040 (3)0.0122 (3)
B10.037 (5)0.055 (5)0.029 (5)0.0000.010 (4)0.000
F10.0538 (17)0.0646 (18)0.057 (2)0.0161 (15)0.0013 (15)0.0145 (17)
N10.062 (4)0.059 (4)0.037 (4)0.0000.004 (4)0.000
N20.042 (3)0.033 (3)0.030 (4)0.0000.002 (3)0.000
N30.040 (3)0.044 (3)0.032 (4)0.0000.000 (3)0.000
O10.055 (3)0.076 (4)0.036 (4)0.0000.006 (3)0.000
C10.079 (6)0.068 (5)0.042 (6)0.0000.016 (5)0.000
C20.073 (6)0.031 (4)0.031 (5)0.0000.003 (4)0.000
C30.056 (5)0.033 (3)0.034 (5)0.0000.004 (4)0.000
C40.065 (5)0.053 (4)0.046 (6)0.0000.023 (5)0.000
C50.044 (4)0.051 (4)0.053 (6)0.0000.011 (4)0.000
C60.037 (4)0.035 (3)0.053 (5)0.0000.008 (4)0.000
C70.040 (4)0.036 (4)0.055 (6)0.0000.002 (4)0.000
C80.036 (4)0.063 (5)0.080 (7)0.0000.004 (4)0.000
C90.047 (4)0.047 (4)0.045 (6)0.0000.009 (4)0.000
C100.043 (4)0.040 (4)0.044 (5)0.0000.004 (4)0.000
C110.046 (4)0.024 (3)0.035 (5)0.0000.004 (3)0.000
C120.046 (4)0.063 (5)0.039 (6)0.0000.006 (4)0.000
Geometric parameters (Å, º) top
Br1—C121.940 (4)C4—C51.353 (11)
B1—F11.364 (5)C4—H4A0.9600
B1—F1i1.364 (5)C5—C61.406 (11)
B1—O11.467 (9)C5—H5A0.9600
B1—N21.599 (10)C6—C71.410 (11)
N1—C21.303 (9)C6—C111.437 (9)
N1—C31.349 (9)C7—C91.357 (10)
N2—C31.351 (9)C7—C81.514 (9)
N2—C111.403 (9)C8—H8A0.9600
N3—C111.327 (8)C8—H8B0.9600
N3—C101.332 (9)C9—C101.416 (9)
O1—C21.302 (9)C9—H9A0.9600
C1—C21.481 (11)C10—C121.501 (10)
C1—H1A0.9600C12—Br1i1.940 (4)
C1—H1B0.9600C12—H12A0.9600
C3—C41.431 (10)
F1—B1—F1i113.6 (7)C6—C5—H5A118.7
F1—B1—O1107.7 (4)C5—C6—C7125.8 (6)
F1i—B1—O1107.7 (4)C5—C6—C11116.7 (7)
F1—B1—N2110.2 (4)C7—C6—C11117.5 (7)
F1i—B1—N2110.2 (4)C9—C7—C6117.8 (7)
O1—B1—N2107.1 (6)C9—C7—C8121.5 (7)
C2—N1—C3118.9 (7)C6—C7—C8120.7 (7)
C3—N2—C11120.9 (6)C7—C8—H8A110.0
C3—N2—B1119.6 (6)C7—C8—H8B109.2
C11—N2—B1119.5 (6)H8A—C8—H8B109.5
C11—N3—C10116.9 (6)C7—C9—C10120.5 (7)
C2—O1—B1125.4 (6)C7—C9—H9A119.7
C2—C1—H1A109.3C10—C9—H9A119.8
C2—C1—H1B109.5N3—C10—C9123.2 (7)
H1A—C1—H1B109.5N3—C10—C12117.7 (6)
N1—C2—O1125.2 (7)C9—C10—C12119.1 (7)
N1—C2—C1120.4 (8)N3—C11—N2115.5 (6)
O1—C2—C1114.4 (7)N3—C11—C6124.0 (7)
N2—C3—N1123.9 (7)N2—C11—C6120.5 (7)
N2—C3—C4119.2 (7)C10—C12—Br1i110.6 (3)
N1—C3—C4116.9 (7)C10—C12—Br1110.6 (3)
C5—C4—C3120.7 (8)Br1i—C12—Br1110.3 (3)
C5—C4—H4A120.4C10—C12—H12A108.2
C3—C4—H4A119.0Br1i—C12—H12A108.5
C4—C5—C6122.0 (7)Br1—C12—H12A108.5
C4—C5—H5A119.3
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···F1ii0.962.413.163 (6)135
Symmetry code: (ii) x+1/2, y, z+1/2.
 

Acknowledgements

Support from `Spring Sunshine' Plan of the Ministry of Education of China (grant No. Z2011125) and the National Natural Science Foundation of China (grant No. 21262049) is gratefully acknowledged.

References

First citationBoens, N., Leen, V. & Dehaen, W. (2012). Chem. Soc. Rev. 41, 1130–1172.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDi Braccio, M., Grossi, G., Alfei, S., Ballabeni, V., Tognolini, M., Flammini, L., Giorgio, C., Bertoni, S. & Barocelli, E. (2014). Eur. J. Med. Chem. 86, 394–405.  CrossRef CAS PubMed Google Scholar
First citationDu, M. L., Hu, C. Y., Wang, L. F., Li, C., Han, Y. Y., Gan, X., Chen, Y., Mu, W. H., Huang, M. L. & Fu, W. F. (2014). Dalton Trans. 43, 13924–13931.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEweas, A. F., Khalifa, N. M., Ismail, N. S., Al-Omar, M. A. & Soliman, A. M. M. (2014). Med. Chem. Res. 23, 76–86.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H. J., Fu, W. F., Li, L., Gan, X., Mu, W. H., Chen, W. Q., Duan, X. M. & Song, H. B. (2010). Org. Lett. 12, 2924–2927.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiang, F., Lindsay, S. & Zhang, P. (2012). Org. Biomol. Chem. 10, 8654–8659.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, X. J., Chen, M. X., Liu, Z. P., Yu, M. M., Wei, L. H. & Li, Z. X. (2014). Tetrahedron, 70, 658–663.  Web of Science CSD CrossRef CAS Google Scholar
First citationLoudet, A. & Burgess, K. (2007). Chem. Rev. 107, 4891–4932.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQuan, L., Chen, Y., Lv, X. J. & Fu, W. F. (2012). Chem. Eur. J. 18, 14599–14604.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Murakami, M., Jeon, J.-H. & Chujo, Y. (2012). Org. Biomol. Chem. 10, 90–95.  CrossRef CAS PubMed Google Scholar
First citationWu, Y. Y., Chen, Y., Gou, G. Z., Mu, W. H., Lv, X. J., Du, M. L. & Fu, W. F. (2012). Org. Lett. 14, 5226–5229.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWu, Y. Y., Chen, Y., Mu, W. H., Lv, X. J. & Fu, W. F. (2013). J. Photochem. Photobiol. Chem. 272, 73–79.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, J., Huang, F., Li, Y. J., Xu, T. W., Xu, H., Jia, J. H., Ye, Q. & Gao, J. R. (2015). Dyes Pigments, 113, 502–509.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds