research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (nitrato-κO)bis­­(1,10′-phenanthroline-κ2N,N′)copper(II) nitrate gallic acid monosolvate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Biotechnology, Yuanpei University, No.306, Yuanpei St., HsinChu, 30015, Taiwan, and bDepartment of Medical Laboratory Science and Biotechnology, Yuanpei University, HsinChu, 30015, Taiwan
*Correspondence e-mail: lush@mail.ypu.edu.tw

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 September 2016; accepted 11 October 2016; online 14 October 2016)

The title compound, [Cu(NO3)(C12H8N2)2]NO3·C7H6O5·H2O, consists of a mononuclear complex cation with the central CuII atom in a distorted trigonal–bipyramidal coordination sphere. Two N atoms of two 1,10-phenanthroline ligands occupy the axial sites, and the remaining N atoms of the two ligands, as well as one nitrate O atom the equatorial positions. One mol­ecule each of gallic acid and water are present in the crystal as solvent mol­ecules that do not coordinate to the CuII cation, just as the nitrate counter-anion. In the crystal, inter­molecular O—H⋯O hydrogen bonds, as well as C—H⋯O inter­actions and ππ ring stacking between benzene and pyridine rings [centroid-to-centroid distances = 3.471 (2), 3.559 (2) and 3.790 (2) Å], link the mol­ecules into a three-dimensional network structure.

1. Chemical context

Numerous metal complexes with polypyridine-containing ligands have been reported. One such ligand is 1,10′-phenanthroline (phen). For transition metal complexes of phen, excellent photoelectrical capabilities have been reported (Dumur et al., 2009[Dumur, F., Mayer, C. R., Hoang-Thi, K., Ledoux-Rak, I., Miomandre, F., Clavier, G., Dumas, E., Méallet-Renault, R., Frigoli, M., Zyss, J. & Sécheresse, F. (2009). Inorg. Chem. 48, 8120-8133.]). Moreover, [Cu(phen)] complexes are applied in breaking the DNA chain (Selvakumar et al., 2006[Selvakumar, B., Rajendiran, V., Maheswari, P. U., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316-330.]).

[Scheme 1]

The nitrate ligand shows a great variation in its coordination behaviour. A number of coordination modes have been observed upon inter­action with a metal ion (Wyllie et al., 2007[Wyllie, G. R. A., Munro, O. Q., Schulz, C. E. & Scheidt, W. R. (2007). Polyhedron, 26, 4664-4672.]). For compounds with [Cu(phen)NO3] moieties, non-bridging coordination modes of nitrate ligands range from monodentate (κ1) (Seidel et al., 2011[Seidel, R. W., Goddard, R., Hoch, C. & Oppel, I. M. (2011). Z. Anorg. Allg. Chem. 637, 1545-1554.]), asymmetric bidentate (κ2) (Chen et al., 2005[Chen, Z. M., Li, W., Yang, Y. Q., Kuang, D. Z., Feng, Y. I., Wang, J. Q. & Zhang, F. X. (2005). J. Nat. Sci. Hunan Normal Univ. 28, 54-58.]) to symmetric bidentate (κ2) (Ovens et al., 2010[Ovens, J. S., Geisheimer, A. R., Bokov, A. A., Ye, Z. G. & Leznoff, D. B. (2010). Inorg. Chem. 49, 9609-9616.]).

In a project to combine phen and nitrate ligands with gallic acid as an additional co-ligand for coordination to a CuII atom, we obtained the title compound, [Cu(NO3)(C12H8N2)2]NO3·C7H6O5·H2O. However, as revealed by single crystal X-ray diffraction analysis, gallic acid does not coordinate to the metal but is incorporated as a solvent mol­ecule.

2. Structural commentary

The coordination sphere around copper in the complex cation, [Cu(NO3)(C12H8N2)2]+, comprises one oxygen atom (O1) of one nitrate anion and four nitro­gen atoms (N1, N2, N3, N4) of two N,N'-chelating phen ligands (Fig. 1[link], Table 1[link]). The conformation of the resulting N4O coordination set is distorted trigonal–bipyramidal, as revealed by the structural parameter τ5 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), which is defined as τ = (β − α) /60 where β and α are the two greatest angles of the coordinated atom. For a perfect square–pyramidal coordination, τ is 0, and for perfect trigonal–bipyramidal coordination, τ becomes 1.0. In the title compound, the largest angles are β = 178.59 (10)° for N1—Cu—N3, and α = 132.61 (9) ° for O1—Cu—N2. Thus, τ is 0.76, indicating a considerable distortion. Each phen ligand provides an equatorial (N2, N4) and an axial (N1, N3) nitro­gen donor atom, forming five-membered chelate rings. The fifth coordination site is occupied by an equatorial oxygen atom (O1) from one of the nitrate anions. The axial distances are shorter than the equatorial distances; relevant bond lengths and angles are collated in Table 1[link]. The dihedral angle between two phen planes around the metal cation is 64.45 (7)°.

Table 1
Selected geometric parameters (Å, °)

Cu—O1 2.114 (2) Cu—N2 2.082 (3)
Cu—O2 2.782 (2) Cu—N3 1.980 (3)
Cu—N1 1.974 (3) Cu—N4 2.086 (2)
       
O1—Cu—O2 50.52 (8) N2—Cu—N4 121.57 (10)
O1—Cu—N1 86.42 (10) N3—Cu—N4 81.84 (10)
O1—Cu—N2 132.61 (9) Cu—O1—N5 109.30 (19)
O1—Cu—N3 93.74 (10) Cu—O2—N5 78.26 (15)
O1—Cu—N4 105.34 (9) Cu—N1—C1 127.4 (2)
O2—Cu—N1 93.06 (8) Cu—N1—C12 114.0 (2)
O2—Cu—N2 84.29 (8) Cu—N2—C11 110.5 (2)
O2—Cu—N3 88.12 (8) Cu—N2—C10 132.0 (2)
O2—Cu—N4 153.32 (9) Cu—N3—C24 113.6 (2)
N1—Cu—N2 82.09 (11) Cu—N3—C13 127.7 (2)
N1—Cu—N3 178.59 (10) Cu—N4—C22 131.2 (2)
N1—Cu—N4 96.77 (10) Cu—N4—C23 110.3 (2)
N2—Cu—N3 98.81 (11)    
[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.

There is an additional inter­action of the copper cation with atom O2 of the nitrate ligand. This inter­action is rather weak [2.782 (2) Å], and the result of a bond-valence-sum calculation (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) reveals a valence unit of 0.047 for O2, which is lower than the limit of 0.06 for a cation–donor contact to be considered as a weak bonding inter­action (Liebau, 2000[Liebau, F. (2000). Z. Kristallogr. 215, 381-383.]).

3. Supra­molecular features

As already noted in Section 1, gallic acid does not coordinate to the metal but is involved in numerous hydrogen-bonding inter­actions, including one intra­molecular hydrogen bond between one of the hy­droxy groups (O5) and neighbouring O6. In the crystal, inter­molecular O—H⋯O bonds between the other OH functions of gallic acid as well as of the water solvent mol­ecule are present. The latter also is hydrogen-bonded to O2 of the coordinating nitrate group and to O10 of the non-coordinating nitrate counter-anion (Table 2[link]), establishing a three-dimensional network that is consolidated by further C—H⋯O hydrogen-bonding inter­actions (Table 2[link], Figs. 2[link] and 3[link]). In addition to these classical and non-classical hydrogen-bonding inter­actions, ππ ring stacking between benzene and pyridine rings with centroid-to-centroid distances in the range 3.471 (2)–3.992 (2)Å is observed, the shortest distance being between Cg8(C4–C7/C11–C12) and its symmetry-related counterpart [symmetry code: 1 − x, 1 − y, −z]. Finally, C—H⋯π inter­actions (Table 2[link], Fig. 3[link]) are also present.

Table 2
Hydrogen-bond geometry (Å, °)

Cg9 is the centroid of the C16–C19/C23/C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O12i 0.82 1.92 2.730 (3) 167
O5—H5B⋯O6 0.82 2.13 2.624 (3) 119
O5—H5B⋯O3ii 0.82 2.16 2.859 (3) 143
O6—H6B⋯O12 0.82 1.94 2.682 (3) 150
O7—H7A⋯O8iii 0.82 1.84 2.648 (3) 170
O12—H12A⋯O2iv 0.82 2.55 2.960 (3) 112
O12—H12B⋯O10 0.82 2.13 2.708 (4) 128
C1—H1A⋯O9 0.95 2.56 3.338 (4) 139
C3—H3A⋯O10i 0.95 2.48 3.395 (4) 161
C8—H8A⋯O5v 0.95 2.56 3.482 (4) 165
C9—H9A⋯O9vi 0.95 2.52 3.166 (4) 125
C13—H13A⋯O2 0.95 2.59 3.254 (4) 128
C15—H15A⋯O10vii 0.95 2.56 3.457 (4) 158
C17—H17A⋯O9vii 0.95 2.49 3.340 (5) 150
C18—H18A⋯O3viii 0.95 2.55 3.363 (4) 144
C20—H20A⋯O3viii 0.95 2.44 3.282 (4) 148
C20—H20A⋯O5ix 0.95 2.55 3.346 (4) 141
C25—H25ACg9iii 0.95 2.95 3.680 (3) 135
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x, -y+1, -z+1; (viii) x-1, y, z; (ix) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Parts of the crystal structure of the title compound sustained by O—H⋯O hydrogen bonds (dotted lines).
[Figure 3]
Figure 3
Inter­molecular O—H⋯O and C—H⋯O hydrogen bonds (dotted lines), as well as C—H⋯π inter­actions in the crystal structure of the title compound.

4. Synthesis and crystallization

The reagents Cu(NO3)2·6H2O, gallic acid and phen were used as commercially received. A warm solution of phen (0.180 g, 1 mmol) and gallic acid (0.170 g, 1mmol) in a ethanol/water mixture (20 ml) was added to a solution of Cu(NO3)2·6H2O (0.296 g, 1 mmol) in the same solvent (20 ml). The mixture was refluxed for 1 h and the green solution filtered. Upon slow evaporation of the solvent at room temperature, a green crystalline solid appeared several weeks later and was separ­ated by filtration. Elemental analysis: calculated (%) C31H24CuN6O12: C 50.58, H 3.29, N 11.42; found C 50.62, H 3.39, N 11.50.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. C-bound H atoms were positioned geometrically with C—H = 0.95 Å and were refined using a riding model with Uiso(H) = 1.2Ueq(C) All O-bound H atoms were located in a difference Fourier map and were refined with distances constraints of O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Cu(NO3)(C12H8N4)2]NO3·C7H6O5·H2O
Mr 736.11
Crystal system, space group Monoclinic, P21/n
Temperature (K) 110
a, b, c (Å) 11.0235 (4), 20.5399 (9), 12.9222 (5)
β (°) 93.250 (3)
V3) 2921.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.83
Crystal size (mm) 0.48 × 0.42 × 0.17
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.513, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11305, 5136, 4223
Rint 0.060
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.137, 1.10
No. of reflections 5136
No. of parameters 451
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.03, −0.70
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

(Nitrato-κO)bis(1,10'-phenanthroline-κ2N,N')copper(II) nitrate gallic acid monosolvate monohydrate top
Crystal data top
[Cu(NO3)(C12H8N4)2]NO3·C7H6O5·H2OF(000) = 1508
Mr = 736.11Dx = 1.674 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3946 reflections
a = 11.0235 (4) Åθ = 3.0–29.2°
b = 20.5399 (9) ŵ = 0.83 mm1
c = 12.9222 (5) ÅT = 110 K
β = 93.250 (3)°Parallelepiped, green
V = 2921.2 (2) Å30.48 × 0.42 × 0.17 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD detector
diffractometer
4223 reflections with I > 2σ(I)
ω scansRint = 0.060
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
θmax = 25.0°, θmin = 3.1°
Tmin = 0.513, Tmax = 1.000h = 1213
11305 measured reflectionsk = 2422
5136 independent reflectionsl = 1015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.070P)2 + 0.842P]
where P = (Fo2 + 2Fc2)/3
5136 reflections(Δ/σ)max = 0.001
451 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.70 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.24268 (3)0.49115 (2)0.26191 (3)0.0175 (1)
O10.36408 (19)0.53000 (12)0.37852 (18)0.0248 (8)
O20.4785 (2)0.45309 (12)0.32175 (19)0.0294 (8)
O30.55944 (19)0.53508 (12)0.40721 (19)0.0259 (8)
N10.2982 (2)0.56158 (13)0.1721 (2)0.0178 (8)
N20.2690 (2)0.43530 (13)0.1306 (2)0.0181 (8)
N30.1835 (2)0.42183 (13)0.3528 (2)0.0179 (8)
N40.0738 (2)0.53148 (13)0.2892 (2)0.0163 (8)
N50.4694 (2)0.50542 (14)0.3699 (2)0.0202 (9)
C10.3180 (3)0.62347 (16)0.1976 (3)0.0197 (10)
C20.3603 (3)0.66881 (17)0.1278 (3)0.0242 (11)
C30.3816 (3)0.64980 (16)0.0288 (3)0.0228 (11)
C40.3626 (3)0.58449 (17)0.0009 (3)0.0213 (10)
C50.3880 (3)0.55843 (18)0.1007 (3)0.0227 (10)
C60.3723 (3)0.49417 (17)0.1218 (3)0.0236 (10)
C70.3316 (3)0.44980 (17)0.0461 (3)0.0203 (10)
C80.3203 (3)0.38203 (16)0.0619 (3)0.0223 (10)
C90.2854 (3)0.34349 (17)0.0174 (3)0.0230 (11)
C100.2595 (3)0.37185 (16)0.1129 (3)0.0204 (10)
C110.3053 (3)0.47373 (16)0.0517 (2)0.0179 (10)
C120.3211 (3)0.54177 (16)0.0736 (2)0.0172 (9)
C130.2448 (3)0.37017 (16)0.3906 (3)0.0211 (10)
C140.1916 (3)0.32439 (16)0.4533 (3)0.0213 (10)
C150.0723 (3)0.33119 (16)0.4773 (2)0.0207 (10)
C160.0063 (3)0.38625 (16)0.4397 (2)0.0189 (10)
C170.1173 (3)0.39922 (17)0.4628 (3)0.0207 (10)
C180.1745 (3)0.45470 (16)0.4287 (3)0.0214 (10)
C190.1132 (3)0.50163 (16)0.3676 (3)0.0199 (10)
C200.1650 (3)0.56087 (16)0.3325 (3)0.0214 (10)
C210.0978 (3)0.60333 (16)0.2783 (3)0.0208 (10)
C220.0222 (3)0.58736 (16)0.2575 (2)0.0183 (9)
C230.0076 (3)0.48935 (16)0.3434 (2)0.0170 (9)
C240.0661 (3)0.43054 (16)0.3790 (2)0.0171 (9)
O40.1791 (2)0.74367 (11)0.30357 (18)0.0274 (8)
O50.0913 (2)0.84202 (11)0.19158 (18)0.0219 (7)
O60.0195 (2)0.82192 (11)0.02000 (19)0.0292 (8)
O70.07418 (19)0.53917 (11)0.10861 (17)0.0210 (7)
O80.0154 (2)0.57532 (11)0.03158 (18)0.0237 (7)
C250.1118 (3)0.66503 (16)0.1797 (2)0.0185 (10)
C260.1243 (3)0.72826 (16)0.2142 (2)0.0178 (10)
C270.0777 (3)0.77938 (16)0.1584 (2)0.0189 (10)
C280.0202 (3)0.76750 (16)0.0667 (3)0.0196 (10)
C290.0087 (3)0.70440 (16)0.0309 (3)0.0185 (10)
C300.0536 (3)0.65305 (16)0.0874 (2)0.0180 (10)
C310.0348 (3)0.58604 (16)0.0499 (2)0.0174 (9)
O90.1588 (2)0.71367 (13)0.3566 (2)0.0379 (9)
O100.0026 (2)0.77280 (13)0.3243 (2)0.0345 (8)
O110.1125 (2)0.74807 (13)0.2005 (2)0.0373 (9)
N60.0913 (3)0.74467 (14)0.2930 (3)0.0298 (10)
O120.1235 (2)0.83188 (13)0.16200 (19)0.0307 (8)
H1A0.302900.637300.265800.0240*
H2A0.374300.712600.148700.0290*
H3A0.409100.680600.019500.0270*
H5A0.416000.586600.152600.0270*
H6A0.388900.478300.188600.0280*
H8A0.336800.363400.126900.0270*
H9A0.278700.297700.008100.0280*
H10A0.234300.344400.166900.0250*
H13A0.327100.364500.374200.0250*
H14A0.237800.288400.479600.0260*
H15A0.034900.299500.518500.0250*
H17A0.159800.368700.502500.0250*
H18A0.256000.462500.445600.0260*
H20A0.246400.571200.346600.0260*
H21A0.132000.643500.254800.0250*
H22A0.068200.617300.219600.0220*
H4A0.231200.716200.313200.0410*
H5B0.062200.865600.148300.0330*
H6B0.045600.810600.035400.0440*
H7A0.047800.504500.087800.0320*
H25A0.142400.629800.218200.0220*
H29A0.029600.696300.031800.0220*
H12A0.145800.868600.144900.0460*
H12B0.082300.840000.215300.0460*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0172 (2)0.0165 (3)0.0193 (2)0.0003 (2)0.0049 (2)0.0015 (2)
O10.0177 (12)0.0316 (14)0.0253 (13)0.0014 (10)0.0025 (10)0.0024 (11)
O20.0326 (13)0.0278 (15)0.0287 (14)0.0032 (11)0.0110 (11)0.0052 (12)
O30.0158 (11)0.0293 (14)0.0327 (14)0.0052 (10)0.0011 (10)0.0024 (11)
N10.0161 (13)0.0159 (15)0.0218 (14)0.0007 (10)0.0050 (11)0.0011 (12)
N20.0127 (12)0.0189 (15)0.0228 (14)0.0011 (10)0.0008 (11)0.0003 (12)
N30.0164 (13)0.0162 (15)0.0216 (14)0.0008 (11)0.0043 (11)0.0025 (12)
N40.0173 (13)0.0160 (15)0.0158 (13)0.0020 (11)0.0028 (11)0.0006 (11)
N50.0192 (15)0.0237 (17)0.0184 (14)0.0013 (12)0.0071 (12)0.0038 (13)
C10.0190 (16)0.0207 (19)0.0197 (17)0.0029 (13)0.0029 (13)0.0019 (14)
C20.0231 (17)0.0176 (19)0.032 (2)0.0002 (14)0.0013 (15)0.0006 (16)
C30.0222 (17)0.0176 (19)0.0292 (19)0.0009 (13)0.0073 (14)0.0064 (15)
C40.0140 (15)0.027 (2)0.0230 (18)0.0010 (13)0.0015 (13)0.0049 (15)
C50.0174 (16)0.031 (2)0.0202 (17)0.0012 (14)0.0056 (13)0.0045 (16)
C60.0181 (17)0.034 (2)0.0189 (17)0.0018 (14)0.0032 (14)0.0011 (15)
C70.0132 (15)0.027 (2)0.0208 (17)0.0019 (13)0.0024 (13)0.0027 (15)
C80.0193 (16)0.024 (2)0.0239 (18)0.0012 (13)0.0033 (14)0.0054 (15)
C90.0197 (16)0.0184 (19)0.031 (2)0.0009 (13)0.0024 (14)0.0064 (15)
C100.0179 (16)0.0173 (18)0.0263 (19)0.0005 (13)0.0030 (14)0.0004 (14)
C110.0124 (15)0.0226 (19)0.0188 (16)0.0002 (13)0.0023 (12)0.0010 (14)
C120.0106 (14)0.0193 (18)0.0220 (17)0.0026 (12)0.0027 (13)0.0004 (14)
C130.0200 (16)0.0176 (18)0.0256 (18)0.0008 (13)0.0012 (14)0.0006 (14)
C140.0264 (18)0.0151 (18)0.0223 (17)0.0008 (14)0.0002 (14)0.0039 (14)
C150.0257 (17)0.0188 (18)0.0179 (17)0.0056 (13)0.0034 (13)0.0005 (14)
C160.0200 (16)0.0200 (18)0.0168 (16)0.0042 (13)0.0020 (13)0.0029 (14)
C170.0212 (17)0.0212 (19)0.0206 (17)0.0029 (13)0.0087 (14)0.0009 (15)
C180.0183 (16)0.025 (2)0.0217 (18)0.0031 (13)0.0077 (13)0.0046 (15)
C190.0172 (16)0.0228 (19)0.0197 (17)0.0000 (13)0.0021 (13)0.0081 (14)
C200.0146 (15)0.0243 (19)0.0257 (18)0.0052 (13)0.0035 (13)0.0055 (15)
C210.0202 (16)0.0187 (18)0.0231 (17)0.0024 (13)0.0023 (14)0.0014 (15)
C220.0214 (16)0.0158 (17)0.0176 (16)0.0023 (13)0.0004 (13)0.0013 (14)
C230.0173 (16)0.0182 (17)0.0156 (16)0.0026 (13)0.0019 (13)0.0023 (13)
C240.0164 (15)0.0213 (18)0.0137 (16)0.0026 (13)0.0028 (12)0.0029 (13)
O40.0331 (14)0.0233 (14)0.0275 (13)0.0057 (10)0.0175 (11)0.0065 (11)
O50.0275 (12)0.0140 (13)0.0250 (13)0.0003 (9)0.0090 (10)0.0021 (10)
O60.0421 (15)0.0190 (14)0.0285 (14)0.0000 (11)0.0208 (11)0.0010 (11)
O70.0268 (12)0.0139 (12)0.0234 (12)0.0010 (9)0.0104 (10)0.0009 (10)
O80.0330 (13)0.0185 (13)0.0206 (12)0.0011 (10)0.0095 (10)0.0014 (10)
C250.0177 (16)0.0173 (18)0.0208 (17)0.0025 (13)0.0034 (13)0.0038 (14)
C260.0178 (16)0.0185 (18)0.0175 (16)0.0006 (13)0.0058 (13)0.0031 (14)
C270.0169 (15)0.0177 (18)0.0219 (17)0.0010 (13)0.0003 (13)0.0034 (14)
C280.0187 (16)0.0200 (19)0.0205 (17)0.0007 (13)0.0037 (13)0.0018 (14)
C290.0165 (16)0.0218 (19)0.0176 (16)0.0022 (13)0.0050 (13)0.0001 (14)
C300.0174 (16)0.0180 (18)0.0187 (17)0.0022 (13)0.0010 (13)0.0010 (14)
C310.0150 (15)0.0194 (18)0.0177 (16)0.0018 (13)0.0006 (13)0.0007 (14)
O90.0461 (16)0.0310 (16)0.0361 (16)0.0069 (12)0.0028 (13)0.0026 (13)
O100.0349 (14)0.0389 (16)0.0306 (14)0.0126 (12)0.0102 (11)0.0004 (12)
O110.0422 (16)0.0483 (18)0.0229 (14)0.0073 (12)0.0142 (12)0.0090 (12)
N60.0336 (17)0.0225 (17)0.0338 (18)0.0058 (13)0.0053 (15)0.0007 (14)
O120.0327 (14)0.0323 (15)0.0280 (14)0.0030 (11)0.0095 (11)0.0004 (12)
Geometric parameters (Å, º) top
Cu—O12.114 (2)C8—C91.367 (5)
Cu—O22.782 (2)C9—C101.408 (5)
Cu—N11.974 (3)C11—C121.435 (5)
Cu—N22.082 (3)C13—C141.392 (5)
Cu—N31.980 (3)C14—C151.375 (5)
Cu—N42.086 (2)C15—C161.416 (5)
O1—N51.277 (3)C16—C171.436 (5)
O2—N51.249 (4)C16—C241.391 (4)
O3—N51.239 (3)C17—C181.363 (5)
O4—C261.370 (4)C18—C191.439 (5)
O5—C271.367 (4)C19—C201.408 (5)
O6—C281.355 (4)C19—C231.408 (5)
O7—C311.315 (4)C20—C211.363 (5)
O8—C311.237 (4)C21—C221.404 (5)
O4—H4A0.8200C23—C241.433 (5)
O5—H5B0.8200C1—H1A0.9500
O6—H6B0.8200C2—H2A0.9500
O7—H7A0.8200C3—H3A0.9500
O9—N61.251 (4)C5—H5A0.9500
O10—N61.271 (4)C6—H6A0.9500
O11—N61.233 (5)C8—H8A0.9500
O12—H12A0.8200C9—H9A0.9500
O12—H12B0.8200C10—H10A0.9500
N1—C11.328 (4)C13—H13A0.9500
N1—C121.373 (4)C14—H14A0.9500
N2—C111.367 (4)C15—H15A0.9500
N2—C101.326 (4)C17—H17A0.9500
N3—C131.336 (4)C18—H18A0.9500
N3—C241.368 (4)C20—H20A0.9500
N4—C231.353 (4)C21—H21A0.9500
N4—C221.335 (4)C22—H22A0.9500
C1—C21.395 (5)C25—C301.408 (4)
C2—C31.371 (5)C25—C261.383 (5)
C3—C41.408 (5)C26—C271.389 (4)
C4—C121.399 (5)C27—C281.397 (5)
C4—C51.438 (5)C28—C291.384 (5)
C5—C61.357 (5)C29—C301.390 (5)
C6—C71.428 (5)C30—C311.478 (5)
C7—C81.411 (5)C25—H25A0.9500
C7—C111.402 (5)C29—H29A0.9500
Cu···O22.782 (2)C9···O10iii3.387 (4)
O1···O22.175 (3)C10···C29x3.459 (5)
O1···N12.801 (3)C10···C30x3.486 (5)
O1···N32.989 (3)C10···C31x3.411 (5)
O1···C13.046 (4)C10···O8x3.367 (4)
O1···O3i3.146 (3)C10···O9iii3.389 (4)
O1···C18ii3.356 (4)C10···N6iii3.283 (5)
O2···O12iii2.960 (3)C11···C5iv3.468 (5)
O2···C5iv3.295 (4)C12···C6iv3.481 (5)
O2···O12.175 (3)C12···C313.573 (4)
O2···C133.254 (4)C13···O11iii3.219 (4)
O2···C6iv3.322 (4)C14···C2iii3.401 (5)
O3···O5v2.859 (3)C14···O11iii3.400 (4)
O3···C20vi3.282 (4)C15···C21ii3.430 (5)
O3···O3i3.147 (3)C15···C20ii3.423 (5)
O3···O1i3.146 (3)C16···C20ii3.510 (5)
O3···O6v3.219 (3)C16···C19ii3.544 (5)
O3···N5i3.032 (4)C17···C23ii3.554 (5)
O3···C18vi3.363 (4)C17···O9ii3.340 (5)
O4···O52.696 (3)C18···O1ii3.356 (4)
O4···C8vii3.332 (4)C18···C24ii3.581 (5)
O4···O12viii2.730 (3)C18···O3xiv3.363 (4)
O5···C20viii3.346 (4)C18···C23ii3.573 (5)
O5···C1ix3.338 (4)C19···C16ii3.544 (5)
O5···C2ix3.363 (4)C19···C24ii3.569 (5)
O5···O42.696 (3)C20···O3xiv3.282 (4)
O5···O3ix2.859 (3)C20···O5xii3.346 (4)
O5···O62.624 (3)C20···C15ii3.423 (5)
O6···O122.682 (3)C20···C16ii3.510 (5)
O6···O52.624 (3)C21···O83.413 (4)
O6···O3ix3.219 (3)C21···C15ii3.430 (5)
O7···C22x3.369 (4)C22···N63.345 (4)
O7···O8x2.648 (3)C22···O7x3.369 (4)
O7···C23x3.170 (3)C22···C13.474 (5)
O7···N4x3.128 (3)C22···O93.228 (4)
O8···O8x3.223 (3)C22···O82.936 (3)
O8···C222.936 (3)C23···C17ii3.554 (5)
O8···C213.413 (4)C23···O7x3.170 (3)
O8···C31x3.331 (4)C23···C18ii3.573 (5)
O8···C10x3.367 (4)C24···C18ii3.581 (5)
O8···O7x2.648 (3)C24···C19ii3.569 (5)
O9···C10xi3.389 (4)C29···O113.266 (5)
O9···C13.338 (4)C29···C10x3.459 (5)
O9···C17ii3.340 (5)C29···C9x3.402 (5)
O9···C223.228 (4)C30···C10x3.486 (5)
O9···C9xi3.166 (4)C31···C10x3.411 (5)
O10···C3xii3.395 (4)C31···C123.573 (4)
O10···O122.708 (4)C31···O8x3.331 (4)
O10···C9xi3.387 (4)C1···H22A2.7900
O11···C13xi3.219 (4)C2···H14Axi2.9900
O11···C13.419 (4)C9···H29Ax2.9700
O11···C23.359 (4)C13···H10A2.9300
O11···O123.136 (3)C14···H2Aiii2.7300
O11···C14xi3.400 (4)C15···H2Aiii3.0100
O11···C293.266 (5)C17···H12Axv2.9600
O12···O102.708 (4)C18···H12Axv2.7800
O12···O113.136 (3)C22···H7Ax2.9600
O12···O2xi2.960 (3)C27···H14Axi3.0000
O12···O4xii2.730 (3)C28···H14Axi2.8700
O12···O62.682 (3)C31···H7Ax2.7600
O1···H18Aii2.6300H1A···O12.7100
O1···H1A2.7100H1A···O92.5600
O2···H6Aiv2.7100H2A···C15xi3.0100
O2···H5Aiv2.6600H2A···C14xi2.7300
O2···H12Biii2.6500H2A···H14Axi2.5400
O2···H12Aiii2.5500H3A···H15Axi2.5200
O2···H13A2.5900H3A···H5A2.5900
O3···H20Avi2.4400H3A···O10viii2.4800
O3···H5Bv2.1600H4A···H25A2.4000
O3···H18Avi2.5500H4A···O12viii1.9200
O4···H8Avii2.6200H4A···H12Aviii2.2900
O5···H8Avii2.5600H4A···H12Bviii2.3700
O5···H20Aviii2.5500H5A···H3A2.5900
O6···H5B2.1300H5A···H12Bviii2.2800
O6···H12A2.7800H5A···O2iv2.6600
O6···H13Axi2.8900H5B···H20Aviii2.4800
O7···H25A2.4800H5B···O62.1300
O8···H29A2.4900H5B···N5ix2.8500
O8···H7Ax1.8400H5B···O3ix2.1600
O8···H22A2.6900H6A···O2iv2.7100
O9···H17Aii2.4900H6A···H8A2.5700
O9···H9Axi2.5200H6A···N5iv2.9100
O9···H22A2.8000H6B···H12B2.4600
O9···H1A2.5600H6B···O121.9400
O9···H15Aii2.7600H6B···H12A2.2000
O10···H3Axii2.4800H6B···H29A2.3500
O10···H12B2.1300H7A···H7Ax2.5600
O10···H15Aii2.5600H7A···O8x1.8400
O11···H12B2.8700H7A···C31x2.7600
O11···H29A2.8200H7A···C22x2.9600
O11···H13Axi2.6800H8A···O5xiii2.5600
O11···H22A2.7400H8A···H6A2.5700
O12···H6B1.9400H8A···O4xiii2.6200
O12···H4Axii1.9200H9A···O9iii2.5200
N1···N43.036 (3)H10A···N6iii2.8400
N1···N53.298 (4)H10A···C132.9300
N1···N22.665 (4)H12A···C17xvi2.9600
N1···C223.337 (4)H12A···H6B2.2000
N1···O12.801 (3)H12A···H4Axii2.2900
N1···C112.387 (4)H12A···O2xi2.5500
N2···N33.085 (4)H12A···H18Axvi2.4700
N2···C122.388 (4)H12A···C18xvi2.7800
N2···N12.665 (4)H12A···O62.7800
N3···N42.664 (4)H12B···N62.8800
N3···C103.415 (5)H12B···O112.8700
N3···N23.085 (4)H12B···O2xi2.6500
N3···O12.989 (3)H12B···H4Axii2.3700
N3···C232.381 (4)H12B···H6B2.4600
N4···C242.380 (4)H12B···H5Axii2.2800
N4···N32.664 (4)H12B···O102.1300
N4···N13.036 (3)H13A···O6iii2.8900
N4···O7x3.128 (3)H13A···O11iii2.6800
N5···O3i3.032 (4)H13A···O22.5900
N6···C9xi3.405 (5)H14A···C2iii2.9900
N6···C10xi3.283 (5)H14A···H2Aiii2.5400
N6···C223.345 (4)H14A···C28iii2.8700
N1···H22A2.8800H14A···C27iii3.0000
N5···H5Bv2.8500H15A···O9ii2.7600
N5···H6Aiv2.9100H15A···H17A2.5700
N6···H12B2.8800H15A···H3Aiii2.5200
N6···H10Axi2.8400H15A···O10ii2.5600
N6···H22A2.7900H17A···H15A2.5700
C1···O93.338 (4)H17A···O9ii2.4900
C1···O113.419 (4)H18A···H12Axv2.4700
C1···C223.474 (5)H18A···H20A2.5800
C1···O5v3.338 (4)H18A···O1ii2.6300
C2···C14xi3.401 (5)H18A···O3xiv2.5500
C2···O5v3.363 (4)H20A···O3xiv2.4400
C2···O113.359 (4)H20A···H18A2.5800
C3···C8iv3.354 (5)H20A···H5Bxii2.4800
C3···O10viii3.395 (4)H20A···O5xii2.5500
C4···C7iv3.464 (5)H22A···O112.7400
C5···C7iv3.538 (5)H22A···N12.8800
C5···O2iv3.295 (4)H22A···N62.7900
C5···C11iv3.468 (5)H22A···C12.7900
C6···O2iv3.322 (4)H22A···O92.8000
C6···C12iv3.481 (5)H22A···O82.6900
C7···C4iv3.464 (5)H25A···O72.4800
C7···C5iv3.538 (5)H25A···H4A2.4000
C8···C3iv3.354 (5)H29A···O82.4900
C8···O4xiii3.332 (4)H29A···O112.8200
C9···N6iii3.405 (5)H29A···H6B2.3500
C9···O9iii3.166 (4)H29A···C9x2.9700
C9···C29x3.402 (5)
O1—Cu—O250.52 (8)C17—C18—C19121.0 (3)
O1—Cu—N186.42 (10)C18—C19—C20124.1 (3)
O1—Cu—N2132.61 (9)C20—C19—C23117.0 (3)
O1—Cu—N393.74 (10)C18—C19—C23118.8 (3)
O1—Cu—N4105.34 (9)C19—C20—C21119.7 (3)
O2—Cu—N193.06 (8)C20—C21—C22119.6 (3)
O2—Cu—N284.29 (8)N4—C22—C21122.1 (3)
O2—Cu—N388.12 (8)C19—C23—C24119.6 (3)
O2—Cu—N4153.32 (9)N4—C23—C24117.4 (3)
N1—Cu—N282.09 (11)N4—C23—C19123.0 (3)
N1—Cu—N3178.59 (10)N3—C24—C23116.5 (3)
N1—Cu—N496.77 (10)N3—C24—C16122.6 (3)
N2—Cu—N398.81 (11)C16—C24—C23120.9 (3)
N2—Cu—N4121.57 (10)C2—C1—H1A119.00
N3—Cu—N481.84 (10)N1—C1—H1A119.00
Cu—O1—N5109.30 (19)C1—C2—H2A120.00
Cu—O2—N578.26 (15)C3—C2—H2A120.00
C26—O4—H4A108.00C4—C3—H3A120.00
C27—O5—H5B107.00C2—C3—H3A120.00
C28—O6—H6B107.00C6—C5—H5A120.00
C31—O7—H7A108.00C4—C5—H5A120.00
H12A—O12—H12B101.00C5—C6—H6A119.00
C1—N1—C12118.5 (3)C7—C6—H6A119.00
Cu—N1—C1127.4 (2)C7—C8—H8A120.00
Cu—N1—C12114.0 (2)C9—C8—H8A120.00
Cu—N2—C11110.5 (2)C10—C9—H9A120.00
C10—N2—C11117.5 (3)C8—C9—H9A120.00
Cu—N2—C10132.0 (2)N2—C10—H10A119.00
C13—N3—C24118.7 (3)C9—C10—H10A119.00
Cu—N3—C24113.6 (2)C14—C13—H13A119.00
Cu—N3—C13127.7 (2)N3—C13—H13A119.00
Cu—N4—C22131.2 (2)C15—C14—H14A120.00
Cu—N4—C23110.3 (2)C13—C14—H14A120.00
C22—N4—C23118.4 (3)C14—C15—H15A121.00
O1—N5—O3119.0 (3)C16—C15—H15A121.00
O2—N5—O3122.1 (2)C16—C17—H17A120.00
O1—N5—O2118.9 (2)C18—C17—H17A120.00
O9—N6—O11121.8 (3)C19—C18—H18A120.00
O9—N6—O10119.1 (3)C17—C18—H18A120.00
O10—N6—O11119.0 (3)C21—C20—H20A120.00
N1—C1—C2122.3 (3)C19—C20—H20A120.00
C1—C2—C3119.6 (3)C20—C21—H21A120.00
C2—C3—C4119.7 (3)C22—C21—H21A120.00
C5—C4—C12118.1 (3)N4—C22—H22A119.00
C3—C4—C5124.4 (3)C21—C22—H22A119.00
C3—C4—C12117.4 (3)C26—C25—C30119.7 (3)
C4—C5—C6120.9 (3)O4—C26—C25123.1 (3)
C5—C6—C7121.7 (3)O4—C26—C27117.2 (3)
C6—C7—C11118.9 (3)C25—C26—C27119.8 (3)
C8—C7—C11117.1 (3)C26—C27—C28120.5 (3)
C6—C7—C8124.0 (3)O5—C27—C26119.9 (3)
C7—C8—C9119.3 (3)O5—C27—C28119.6 (3)
C8—C9—C10119.8 (3)C27—C28—C29120.1 (3)
N2—C10—C9122.7 (3)O6—C28—C27114.0 (3)
C7—C11—C12119.4 (3)O6—C28—C29125.9 (3)
N2—C11—C7123.7 (3)C28—C29—C30119.5 (3)
N2—C11—C12116.9 (2)C25—C30—C31121.3 (3)
N1—C12—C11116.4 (3)C29—C30—C31118.3 (3)
N1—C12—C4122.5 (3)C25—C30—C29120.4 (3)
C4—C12—C11121.1 (3)O7—C31—C30115.8 (2)
N3—C13—C14121.9 (3)O8—C31—C30121.5 (3)
C13—C14—C15120.2 (3)O7—C31—O8122.6 (3)
C14—C15—C16118.9 (3)C30—C25—H25A120.00
C15—C16—C24117.7 (3)C26—C25—H25A120.00
C17—C16—C24118.8 (3)C28—C29—H29A120.00
C15—C16—C17123.5 (3)C30—C29—H29A120.00
C16—C17—C18121.0 (3)
O2—Cu—O1—N510.27 (17)C22—N4—C23—C190.2 (4)
N1—Cu—O1—N586.7 (2)C22—N4—C23—C24178.3 (3)
N2—Cu—O1—N510.8 (3)N1—C1—C2—C30.6 (5)
N3—Cu—O1—N594.7 (2)C1—C2—C3—C41.1 (5)
N4—Cu—O1—N5177.29 (19)C2—C3—C4—C5176.6 (3)
O1—Cu—O2—N510.12 (16)C2—C3—C4—C120.6 (5)
N1—Cu—O2—N572.70 (18)C3—C4—C5—C6177.0 (3)
N2—Cu—O2—N5154.43 (18)C12—C4—C5—C60.1 (5)
N3—Cu—O2—N5106.52 (18)C3—C4—C12—N10.5 (5)
N4—Cu—O2—N539.0 (3)C3—C4—C12—C11176.8 (3)
O1—Cu—N1—C142.0 (3)C5—C4—C12—N1177.8 (3)
O1—Cu—N1—C12136.0 (2)C5—C4—C12—C110.6 (5)
O2—Cu—N1—C192.2 (3)C4—C5—C6—C70.8 (5)
O2—Cu—N1—C1285.9 (2)C5—C6—C7—C8176.3 (3)
N2—Cu—N1—C1176.0 (3)C5—C6—C7—C111.2 (5)
N2—Cu—N1—C122.1 (2)C6—C7—C8—C9177.2 (3)
N4—Cu—N1—C163.0 (3)C11—C7—C8—C90.3 (5)
N4—Cu—N1—C12119.0 (2)C6—C7—C11—N2178.1 (3)
O1—Cu—N2—C1098.6 (3)C6—C7—C11—C120.7 (5)
O1—Cu—N2—C1179.7 (2)C8—C7—C11—N20.5 (5)
O2—Cu—N2—C1082.4 (3)C8—C7—C11—C12176.9 (3)
O2—Cu—N2—C1195.9 (2)C7—C8—C9—C101.0 (5)
N1—Cu—N2—C10176.3 (3)C8—C9—C10—N20.9 (5)
N1—Cu—N2—C112.0 (2)N2—C11—C12—N10.1 (4)
N3—Cu—N2—C104.8 (3)N2—C11—C12—C4177.5 (3)
N3—Cu—N2—C11176.9 (2)C7—C11—C12—N1177.6 (3)
N4—Cu—N2—C1090.6 (3)C7—C11—C12—C40.2 (5)
N4—Cu—N2—C1191.1 (2)N3—C13—C14—C150.6 (5)
O1—Cu—N3—C1368.7 (3)C13—C14—C15—C161.8 (5)
O1—Cu—N3—C24110.3 (2)C14—C15—C16—C17177.9 (3)
O2—Cu—N3—C1318.4 (3)C14—C15—C16—C240.7 (4)
O2—Cu—N3—C24160.6 (2)C15—C16—C17—C18176.7 (3)
N2—Cu—N3—C1365.5 (3)C24—C16—C17—C181.9 (5)
N2—Cu—N3—C24115.5 (2)C15—C16—C24—N31.7 (4)
N4—Cu—N3—C13173.6 (3)C15—C16—C24—C23176.2 (3)
N4—Cu—N3—C245.4 (2)C17—C16—C24—N3179.6 (3)
O1—Cu—N4—C2287.0 (3)C17—C16—C24—C232.5 (4)
O1—Cu—N4—C2397.6 (2)C16—C17—C18—C190.7 (6)
O2—Cu—N4—C22109.7 (3)C17—C18—C19—C20177.9 (4)
O2—Cu—N4—C2374.9 (3)C17—C18—C19—C230.0 (5)
N1—Cu—N4—C221.2 (3)C18—C19—C20—C21177.5 (4)
N1—Cu—N4—C23174.3 (2)C23—C19—C20—C210.4 (5)
N2—Cu—N4—C2286.0 (3)C18—C19—C23—N4177.9 (3)
N2—Cu—N4—C2389.5 (2)C18—C19—C23—C240.6 (5)
N3—Cu—N4—C22178.6 (3)C20—C19—C23—N40.1 (5)
N3—Cu—N4—C235.9 (2)C20—C19—C23—C24178.6 (3)
Cu—O1—N5—O220.5 (3)C19—C20—C21—C220.4 (5)
Cu—O1—N5—O3157.7 (2)C20—C21—C22—N40.0 (5)
Cu—O2—N5—O114.9 (2)N4—C23—C24—N31.3 (4)
Cu—O2—N5—O3163.2 (3)N4—C23—C24—C16176.7 (3)
Cu—N1—C1—C2178.4 (2)C19—C23—C24—N3179.9 (3)
C12—N1—C1—C20.4 (5)C19—C23—C24—C161.9 (4)
Cu—N1—C12—C4179.2 (3)C30—C25—C26—O4179.6 (3)
Cu—N1—C12—C111.8 (3)C30—C25—C26—C271.0 (5)
C1—N1—C12—C41.0 (5)C26—C25—C30—C290.0 (5)
C1—N1—C12—C11176.4 (3)C26—C25—C30—C31177.9 (3)
Cu—N2—C10—C9178.0 (2)O4—C26—C27—O52.2 (4)
C11—N2—C10—C90.2 (5)O4—C26—C27—C28179.8 (3)
Cu—N2—C11—C7179.2 (3)C25—C26—C27—O5179.2 (3)
Cu—N2—C11—C121.6 (3)C25—C26—C27—C281.1 (5)
C10—N2—C11—C70.6 (5)O5—C27—C28—O61.3 (4)
C10—N2—C11—C12176.9 (3)O5—C27—C28—C29178.3 (3)
Cu—N3—C13—C14179.3 (3)C26—C27—C28—O6179.3 (3)
C24—N3—C13—C141.7 (5)C26—C27—C28—C290.3 (5)
Cu—N3—C24—C16178.0 (2)O6—C28—C29—C30179.8 (3)
Cu—N3—C24—C234.0 (3)C27—C28—C29—C300.7 (5)
C13—N3—C24—C162.9 (4)C28—C29—C30—C250.8 (5)
C13—N3—C24—C23175.1 (3)C28—C29—C30—C31177.1 (3)
Cu—N4—C22—C21174.9 (2)C25—C30—C31—O70.9 (4)
C23—N4—C22—C210.3 (4)C25—C30—C31—O8179.4 (3)
Cu—N4—C23—C19175.9 (3)C29—C30—C31—O7177.1 (3)
Cu—N4—C23—C245.5 (3)C29—C30—C31—O82.7 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1, y+1, z; (v) x+1/2, y+3/2, z+1/2; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z1/2; (viii) x+1/2, y+3/2, z1/2; (ix) x1/2, y+3/2, z1/2; (x) x, y+1, z; (xi) x+1/2, y+1/2, z+1/2; (xii) x1/2, y+3/2, z+1/2; (xiii) x+1/2, y1/2, z1/2; (xiv) x1, y, z; (xv) x1/2, y1/2, z+1/2; (xvi) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg9 is the centroid of the C16-C19/C23/C24 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O12viii0.821.922.730 (3)167
O5—H5B···O60.822.132.624 (3)119
O5—H5B···O3ix0.822.162.859 (3)143
O6—H6B···O120.821.942.682 (3)150
O7—H7A···O8x0.821.842.648 (3)170
O12—H12A···O2xi0.822.552.960 (3)112
O12—H12B···O100.822.132.708 (4)128
C1—H1A···O90.952.563.338 (4)139
C3—H3A···O10viii0.952.483.395 (4)161
C8—H8A···O5xiii0.952.563.482 (4)165
C9—H9A···O9iii0.952.523.166 (4)125
C13—H13A···O20.952.593.254 (4)128
C15—H15A···O10ii0.952.563.457 (4)158
C17—H17A···O9ii0.952.493.340 (5)150
C18—H18A···O3xiv0.952.553.363 (4)144
C20—H20A···O3xiv0.952.443.282 (4)148
C20—H20A···O5xii0.952.553.346 (4)141
C25—H25A···Cg9x0.952.953.680 (3)135
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1/2, y1/2, z+1/2; (viii) x+1/2, y+3/2, z1/2; (ix) x1/2, y+3/2, z1/2; (x) x, y+1, z; (xi) x+1/2, y+1/2, z+1/2; (xii) x1/2, y+3/2, z+1/2; (xiii) x+1/2, y1/2, z1/2; (xiv) x1, y, z.
 

Acknowledgements

This work was supported financially by Yuanpei University, Taiwan.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChen, Z. M., Li, W., Yang, Y. Q., Kuang, D. Z., Feng, Y. I., Wang, J. Q. & Zhang, F. X. (2005). J. Nat. Sci. Hunan Normal Univ. 28, 54–58.  CAS Google Scholar
First citationDumur, F., Mayer, C. R., Hoang-Thi, K., Ledoux-Rak, I., Miomandre, F., Clavier, G., Dumas, E., Méallet-Renault, R., Frigoli, M., Zyss, J. & Sécheresse, F. (2009). Inorg. Chem. 48, 8120–8133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiebau, F. (2000). Z. Kristallogr. 215, 381–383.  Web of Science CrossRef CAS Google Scholar
First citationOvens, J. S., Geisheimer, A. R., Bokov, A. A., Ye, Z. G. & Leznoff, D. B. (2010). Inorg. Chem. 49, 9609–9616.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSeidel, R. W., Goddard, R., Hoch, C. & Oppel, I. M. (2011). Z. Anorg. Allg. Chem. 637, 1545–1554.  Web of Science CSD CrossRef CAS Google Scholar
First citationSelvakumar, B., Rajendiran, V., Maheswari, P. U., Stoeckli-Evans, H. & Palaniandavar, M. (2006). J. Inorg. Biochem. 100, 316–330.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWyllie, G. R. A., Munro, O. Q., Schulz, C. E. & Scheidt, W. R. (2007). Polyhedron, 26, 4664–4672.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds