research communications
catena-poly[bis(tetraethylammonium) [tetraaquatris(μ-dicyanamido-κ2N1:N5)bis(dicyanamido-κN1)dicobaltate(II)] dicyanamide]
ofaDepartment of Chemistry and Environmental Science, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada, and bDepartment of Chemistry, University of Florida, Gainesville, FL, 32611-7200, USA
*Correspondence e-mail: cliu@grenfell.mun.ca
The structure of the title compound, [N(C2H5)4]2[Co2(C2N3)5(H2O)4](C2N3), is a new example of a metal–dicyanamide coordination polymer which exhibits a unique three-dimensional framework of covalently linked CoII chains. All bridging dicyanamide ligands in the title structure are in the μ1,5-bridging mode. The anionic CoII-dicyanamide network is templated by tetraethylammonium cations residing in a series of channels extending along the b axis where additional non-coordinating dicyanamidate anions are also located. The framework structure is further stabilized by O—H⋯N hydrogen bonding between aqua ligands and dicyanamido ligands or the dicyanamide anion. In addition, C—H⋯N interactions are present between the tetraethylammonium cations and dicyanamide amide nitrogen atoms.
Keywords: crystal structure; metal dicyanamide coordination polymer; cation template; tetraethylammonium; O—H⋯N hydrogen bonding; crystal structure.
CCDC reference: 1510337
1. Chemical context
Dicyanamide is a versatile ligand in the design and synthesis of coordination polymers due to its ability to coordinate to transition metal ions in a number of different modes involving some or all of its three nitrogen atoms (Batten & Murray, 2003). Reactions between transition metal ions and dicyanamide have mainly produced three types of coordination polymers, including the neutral binary systems of MII(dca)2 (dca = dicyanamide), complexes derived from MII(dca)2 by including a co-ligand, and cation-templated anionic [MII(dca)n](2–n) (n = 3,4) networks (Batten & Murray, 2003). These metal–dicyanamide coordination polymers exhibit a wide range of structures, from three-dimensional rutile-like structures for MII(dca)2 to networks of reduced dimensions when a co-ligand or a counter-cation is included. Much of the interest in metal–dicyanamide coordination polymers has been focused on their structural diversities and their magnetic properties, particularly the long-range ferromagnetic ordering observed in some of the MII(dca)2 networks (Kurmoo & Kepert, 1998). Compared to co-ligand-modified derivatives of MII(dca)2 complexes, there are fewer examples of cation-templated anionic [MII(dca)n](2–n) (n = 3,4) networks. We recently prepared the title compound, (N(C2H5)4)2[Co2(H2O)4(C2N3)5](C2N3), as a new example of a cation-templated metal–dicyanamide coordination polymer. The title structure presents a unique single three-dimensional network of covalently linked chains rather than a two-dimensional structure as commonly observed in many other metal–dicyanamide coordination polymers.
2. Structural commentary
In the II ions, Co1 and Co2, linked by a μ1,5-bridging dicyanamide ligand (Fig. 1). Co2 is coordinated by three dicyanamide ligands via their terminal nitrogen atoms and two trans-positioned aqua ligands, forming an N4O2 octahedral coordination sphere that is slightly elongated along the two Co—O bonds. Co1 is coordinated by one dicyanamide ligand via its terminal nitrogen atom and two trans-positioned aqua ligands. The likewise distorted octahedral N4O2 coordination sphere around Co1 is completed by additional bonds to N20ii and N15xi [symmetry codes: (ii) x, 2 − y, − + z; (xi) − + x, − y, − + z] of two symmetry-generated dicyanamide ligands. The also contains two tetraethylammonium counter-ions and a non-coordinating dicyanamide anion. Two nitrogen atoms, N3/N3′ of one terminal ligand and N55/N56 of the anion, are disordered and were refined over two sets of sites.
of the title coordination polymer, there are two CoIn the crystal, a μ1,5-dca-bridged corrugated CoII chain can be seen parallel to the [101] direction and is composed of CoII ions generated by a c glide plane parallel to the ac plane. Among the four dca ligands on each CoII cation, three are in μ1,5-bridging mode with two bridging within the same chain and one bridging to another chain. The remaining fourth dca ligand [N1,C2,N3(N3′),C4,N5 for Co1 and N21,C22,N23,C24,N25 for Co2] is mono-dentate non-bridging. In the chain, the distances between two neighboring CoII atoms linked by μ1,5-dca ligands alternate between 8.1484 (8) Å (Co1⋯Co2) and 8.5620 (8) Å [Co2⋯Co1ix, symmetry code: (ix) + x, − y, + z]. All of the inter-chain Co⋯Co distances across μ1,5-dca bridges are of the same length, viz. 8.5517 (8) Å. These distances are similar to other single μ1,5-dca bridges reported in the literature (van der Werff et al., 2001; Schlueter et al., 2005; Biswas et al., 2006). In the title structure, each chain is linked to four other chains generated by a c glide plane via the inter-chain μ1,5-dca ligands at each CoII site [Co1⋯Co2ii, Co2⋯Co1xii; symmetry code: (xii) x, 2 − y, + z; Co1ix⋯Co2v; symmetry code: (ix) + x, − y, + z, and Co2ix⋯Co1x; symmetry code: (x) + x, − + y, 1 + z], resulting in a single three-dimensional network of covalently linked parallel chains. This is in contrast to the layered structures observed in a number of [MII(dca)n](2−n) (n = 3, 4) networks that exhibit parallel sheets linked in the third dimension via μ1,5-dca ligands (Batten & Murray, 2003; Schlueter et al., 2005; Biswas et al., 2006). As a result of the mono-dentate non-bridging dca ligands in the title compound, the commonly observed (4,4) nets in other metal–dca networks are absent in its structure. However, channels extending along the b axis can still be seen in the title structure and these are occupied by columns of tetraethylammonium cations (Fig. 2) and dca− anions. Similar to other cation-templated anionic [MII(dca)n](2−n) (n = 3, 4) networks, interpenetration is not observed in the title structure due to the presence of tetraethylammonium cations in the void space, making these structures potential candidates for investigating their ability of storing guest molecules.
3. Supramolecular features
Hydrogen bonding is generally not observed amongst the neutral MII(dca)2 networks. Upon introducing co-ligands or counter-ions, the derived MII(dca)2Ln (L: co-ligand) and cation-templated [MII(dca)n](2–n) (n = 3,4) complexes display hydrogen bonding. In most of the MII(dca)2 derivatives, the hydrogen bonds are of non-classical C—H⋯X (X = N, O) types (Tong et al., 2003; Biswas et al., 2006; Rajan et al., 2013). In the title structure, hydrogen bonds are mainly of the classical O—H⋯N type between OH groups of coordinating water molecules and nitrogen atoms of the non-coordinating dca− anion or the mono-dentate non-bridging dca ligands. Some hydrogen bonds in the title structure are bifurcated between two donor water molecules located on two neighboring chains stacked along the b axis and thus hold these chains in place along the b axis. Chains related by c glide-plane symmetry are primarily linked via single μ1,5-dca ligands as described in the previous section, but are further stabilized by hydrogen bonds across the non-coordinating dca− anions (N51 and N55/56) and by hydrogen bonds involving N1 and N25 of the mono-dentate non-bridging dca ligand. In addition to the O—H⋯N hydrogen bonds, C—H⋯N hydrogen bonds are also present in the title structure between C—H groups of the tetraethylammonium cations and dicyanamide amide nitrogen atoms (Fig. 2). The hydrogen-bond lengths and angles are summarized in Table 1.
4. Synthesis and crystallization
The title compound was prepared in a reaction where Co(NO3)2·6H2O (1 mmol, 291 mg), NaN(CN)2 (1.5 mmol, 133.55 mg), and (C2H5)4NCl (1.5 mmol, 249 mg) were dissolved in 40 ml of deionized water to produce a dark-red solution. Upon standing for one month, irregularly shaped red crystals (95 mg, yield 22.4%) suitable for X-ray diffraction were collected by vacuum filtration and washed with deionized water. Selected IR bands (KBr, cm−1): 3370 (O—H), 2977 (C—H), 2300, 2273, 2255, 2236, 2182, 2141 (C≡N), 1365 (C—N amide), 1172 (C—N amine). Elemental analysis calculated for C28H48Co2N20O4: C 39.72, H 5.71, N 33.08%. Found: C 39.81, H 5.37, N 32.74%.
5. details
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically (C—H = 0.98/0.99 Å) and allowed to ride with Uiso(H) = 1.2/1.5Ueq(C) whereby methyl H atoms were allowed to rotate around the corresponding C—C bond. Two nitrogen atoms, N3/N3′ and N55/N56, were disordered and refined in two parts each with their respective site-occupation factors refined dependently [occupation ratios of 0.33 (4):0.67 (4) and 0.48 (3):0.52 (3), respectively] and with independent Ueq parameters for each of the N atoms. All of the water H atoms were obtained from a difference Fourier map and refined freely.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1510337
https://doi.org/10.1107/S2056989016016637/wm5330sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016016637/wm5330Isup2.hkl
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).(C8H20N)2[Co2(C2N3)5(H2O)4](C2N3) | F(000) = 1768 |
Mr = 846.72 | Dx = 1.415 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 23.9836 (19) Å | Cell parameters from 9967 reflections |
b = 7.3271 (6) Å | θ = 2.0–28.0° |
c = 22.6809 (17) Å | µ = 0.90 mm−1 |
β = 94.4257 (14)° | T = 100 K |
V = 3973.8 (5) Å3 | Irregular, red |
Z = 4 | 0.16 × 0.16 × 0.10 mm |
Bruker APEXII DUO CCD diffractometer | 8397 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.026 |
phi and ω scans | θmax = 27.5°, θmin = 1.7° |
Absorption correction: analytical based on measured indexed crystal faces (SHELXTL2014; Sheldrick, 2015a) | h = −30→30 |
Tmin = 0.898, Tmax = 0.947 | k = −9→9 |
26031 measured reflections | l = −27→29 |
9018 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0456P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
9018 reflections | Δρmax = 1.10 e Å−3 |
519 parameters | Δρmin = −0.22 e Å−3 |
2 restraints | Absolute structure: Flack x determined using 3859 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.016 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were positioned geometrically ( C—H = 0.93/1.00 Å) and allowed to ride with Uiso(H)= 1.2/1.5Ueq(C). Methyl ones were allowed to rotate around the corresponding C—C. The asymmetric unit consists of a 2 Co units with each coordinated to four diamine ligand forming a square plane and two water ligands trans to each other.. The asymmetric unit also contains two tetraethylammonium counterions. Two nitrogen atoms, N3/N3' and N55/N56, were disordered and refined in two parts each with their site occupation factors dependently refined. All of the water protons were obtained from a Difference Fourier map and refined freely. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.45296 (2) | 1.02347 (5) | 0.23954 (2) | 0.01173 (10) | |
Co2 | 0.70898 (2) | 0.98381 (6) | 0.49718 (2) | 0.01198 (10) | |
O1 | 0.42840 (11) | 1.2865 (3) | 0.21237 (11) | 0.0182 (5) | |
H1A | 0.4119 (19) | 1.345 (6) | 0.235 (2) | 0.038 (12)* | |
H1B | 0.4509 (17) | 1.337 (6) | 0.2020 (16) | 0.020 (11)* | |
O2 | 0.47620 (10) | 0.7567 (3) | 0.26745 (11) | 0.0184 (5) | |
H2A | 0.4479 (15) | 0.700 (5) | 0.2772 (14) | 0.014 (8)* | |
H2B | 0.4867 (16) | 0.707 (6) | 0.2440 (18) | 0.020 (11)* | |
O3 | 0.68557 (10) | 0.7243 (3) | 0.46262 (10) | 0.0172 (4) | |
H3A | 0.6660 (17) | 0.671 (5) | 0.4820 (18) | 0.022 (10)* | |
H3B | 0.717 (2) | 0.673 (8) | 0.462 (2) | 0.066 (16)* | |
O4 | 0.73049 (10) | 1.2503 (3) | 0.52824 (10) | 0.0165 (4) | |
H4A | 0.7045 (17) | 1.301 (6) | 0.5321 (17) | 0.024 (11)* | |
H4B | 0.748 (2) | 1.305 (7) | 0.507 (2) | 0.041 (13)* | |
N1 | 0.27918 (17) | 0.9826 (4) | 0.44658 (17) | 0.0263 (8) | |
N3 | 0.3496 (7) | 1.110 (2) | 0.3882 (6) | 0.014 (3)* | 0.33 (4) |
N3' | 0.3369 (4) | 1.1453 (11) | 0.3777 (3) | 0.0170 (17)* | 0.67 (4) |
N5 | 0.38584 (12) | 1.0199 (4) | 0.29474 (13) | 0.0172 (6) | |
N6 | 0.50206 (11) | 1.1338 (3) | 0.31233 (11) | 0.0186 (5) | |
N8 | 0.55339 (11) | 1.2440 (4) | 0.40377 (11) | 0.0198 (6) | |
N10 | 0.63870 (10) | 1.1001 (3) | 0.45012 (11) | 0.0176 (5) | |
N11 | 0.77978 (10) | 0.8675 (3) | 0.54269 (11) | 0.0185 (5) | |
N13 | 0.87084 (11) | 0.7274 (4) | 0.57243 (12) | 0.0275 (7) | |
N15 | 0.90600 (10) | 0.5935 (3) | 0.66723 (11) | 0.0179 (5) | |
N16 | 0.66067 (11) | 0.9433 (4) | 0.56980 (12) | 0.0165 (5) | |
N18 | 0.61244 (11) | 0.8416 (4) | 0.65572 (12) | 0.0208 (6) | |
N20 | 0.52420 (11) | 0.9548 (4) | 0.69062 (12) | 0.0171 (5) | |
N21 | 0.75691 (12) | 1.0268 (4) | 0.42431 (13) | 0.0172 (6) | |
N23 | 0.79811 (11) | 1.1485 (4) | 0.33595 (11) | 0.0219 (6) | |
N25 | 0.88281 (14) | 1.0353 (4) | 0.29320 (16) | 0.0243 (8) | |
C2 | 0.30902 (13) | 1.0444 (4) | 0.41469 (13) | 0.0167 (6) | |
C4 | 0.36385 (12) | 1.0633 (4) | 0.33577 (13) | 0.0158 (6) | |
C7 | 0.52810 (12) | 1.1808 (4) | 0.35482 (13) | 0.0144 (6) | |
C9 | 0.59893 (12) | 1.1634 (4) | 0.42615 (12) | 0.0143 (6) | |
C12 | 0.82135 (13) | 0.7985 (4) | 0.55973 (13) | 0.0171 (6) | |
C14 | 0.88662 (12) | 0.6596 (4) | 0.62471 (13) | 0.0175 (6) | |
C17 | 0.63568 (12) | 0.9025 (4) | 0.60908 (13) | 0.0138 (6) | |
C19 | 0.56523 (12) | 0.9077 (4) | 0.67179 (13) | 0.0151 (6) | |
C22 | 0.77826 (12) | 1.0776 (4) | 0.38380 (13) | 0.0151 (6) | |
C24 | 0.84342 (13) | 1.0826 (4) | 0.31572 (13) | 0.0175 (6) | |
N51 | 0.63136 (15) | 0.4857 (4) | 0.53742 (16) | 0.0268 (8) | |
C52 | 0.60294 (12) | 0.4231 (4) | 0.57142 (14) | 0.0159 (6) | |
N53 | 0.57322 (12) | 0.3337 (4) | 0.60740 (13) | 0.0256 (7) | |
C54 | 0.54159 (14) | 0.4164 (4) | 0.64236 (16) | 0.0223 (7) | |
N55 | 0.5044 (5) | 0.4734 (8) | 0.6665 (5) | 0.019 (2)* | 0.48 (3) |
N56 | 0.5199 (5) | 0.4749 (9) | 0.6832 (5) | 0.021 (2)* | 0.52 (3) |
N100 | 0.20492 (11) | 0.8554 (3) | 0.74448 (12) | 0.0167 (5) | |
C101 | 0.21237 (15) | 0.9688 (5) | 0.80049 (17) | 0.0272 (7) | |
H10A | 0.2457 | 1.0473 | 0.7982 | 0.033* | |
H10B | 0.2198 | 0.8854 | 0.8345 | 0.033* | |
C102 | 0.16270 (18) | 1.0892 (6) | 0.8122 (2) | 0.0451 (10) | |
H10C | 0.1710 | 1.1572 | 0.8491 | 0.068* | |
H10D | 0.1555 | 1.1751 | 0.7794 | 0.068* | |
H10E | 0.1296 | 1.0128 | 0.8158 | 0.068* | |
C103 | 0.15273 (13) | 0.7392 (5) | 0.74406 (14) | 0.0231 (7) | |
H10F | 0.1494 | 0.6673 | 0.7070 | 0.028* | |
H10G | 0.1199 | 0.8210 | 0.7436 | 0.028* | |
C104 | 0.15073 (16) | 0.6084 (5) | 0.79603 (16) | 0.0321 (8) | |
H10H | 0.1157 | 0.5392 | 0.7921 | 0.048* | |
H10I | 0.1824 | 0.5239 | 0.7964 | 0.048* | |
H10J | 0.1528 | 0.6779 | 0.8330 | 0.048* | |
C105 | 0.19842 (15) | 0.9746 (5) | 0.68951 (17) | 0.0283 (8) | |
H10K | 0.1927 | 0.8945 | 0.6544 | 0.034* | |
H10L | 0.1644 | 1.0500 | 0.6914 | 0.034* | |
C106 | 0.24752 (17) | 1.0999 (6) | 0.6811 (2) | 0.0452 (11) | |
H10M | 0.2399 | 1.1714 | 0.6449 | 0.068* | |
H10N | 0.2530 | 1.1825 | 0.7151 | 0.068* | |
H10O | 0.2814 | 1.0267 | 0.6780 | 0.068* | |
C107 | 0.25726 (14) | 0.7379 (4) | 0.74309 (15) | 0.0228 (7) | |
H10P | 0.2903 | 0.8193 | 0.7452 | 0.027* | |
H10Q | 0.2603 | 0.6602 | 0.7789 | 0.027* | |
C108 | 0.25941 (16) | 0.6164 (6) | 0.68945 (17) | 0.0352 (9) | |
H10R | 0.2944 | 0.5465 | 0.6925 | 0.053* | |
H10S | 0.2276 | 0.5321 | 0.6875 | 0.053* | |
H10T | 0.2577 | 0.6917 | 0.6536 | 0.053* | |
N200 | 0.46116 (10) | 0.7171 (3) | 0.48654 (11) | 0.0159 (5) | |
C201 | 0.47345 (14) | 0.7741 (5) | 0.42451 (14) | 0.0251 (7) | |
H20A | 0.4679 | 0.9076 | 0.4206 | 0.030* | |
H20B | 0.4461 | 0.7140 | 0.3958 | 0.030* | |
C202 | 0.53259 (15) | 0.7274 (5) | 0.40827 (15) | 0.0274 (7) | |
H20C | 0.5373 | 0.7682 | 0.3678 | 0.041* | |
H20D | 0.5600 | 0.7890 | 0.4357 | 0.041* | |
H20E | 0.5383 | 0.5951 | 0.4109 | 0.041* | |
C203 | 0.50310 (13) | 0.7976 (4) | 0.53272 (15) | 0.0226 (7) | |
H20F | 0.5410 | 0.7536 | 0.5253 | 0.027* | |
H20G | 0.4945 | 0.7531 | 0.5722 | 0.027* | |
C204 | 0.50327 (14) | 1.0055 (4) | 0.53314 (15) | 0.0235 (7) | |
H20H | 0.5311 | 1.0493 | 0.5638 | 0.035* | |
H20I | 0.5126 | 1.0507 | 0.4945 | 0.035* | |
H20J | 0.4662 | 1.0502 | 0.5414 | 0.035* | |
C205 | 0.40225 (13) | 0.7789 (5) | 0.49619 (16) | 0.0274 (7) | |
H20K | 0.3762 | 0.7217 | 0.4656 | 0.033* | |
H20L | 0.4000 | 0.9127 | 0.4904 | 0.033* | |
C206 | 0.38269 (14) | 0.7340 (5) | 0.55649 (15) | 0.0269 (7) | |
H20M | 0.3444 | 0.7787 | 0.5588 | 0.040* | |
H20N | 0.3836 | 0.6015 | 0.5624 | 0.040* | |
H20O | 0.4075 | 0.7929 | 0.5872 | 0.040* | |
C207 | 0.46624 (15) | 0.5084 (4) | 0.49254 (15) | 0.0232 (7) | |
H20P | 0.5051 | 0.4724 | 0.4861 | 0.028* | |
H20Q | 0.4591 | 0.4736 | 0.5335 | 0.028* | |
C208 | 0.42651 (15) | 0.4023 (5) | 0.44990 (16) | 0.0281 (7) | |
H20R | 0.4322 | 0.2712 | 0.4564 | 0.042* | |
H20S | 0.3878 | 0.4343 | 0.4566 | 0.042* | |
H20T | 0.4338 | 0.4331 | 0.4092 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0100 (2) | 0.0133 (2) | 0.0120 (2) | −0.00160 (18) | 0.00139 (15) | −0.00165 (18) |
Co2 | 0.0105 (2) | 0.0140 (2) | 0.0115 (2) | 0.00317 (17) | 0.00170 (15) | 0.00155 (17) |
O1 | 0.0210 (12) | 0.0161 (11) | 0.0181 (12) | 0.0003 (9) | 0.0053 (10) | 0.0000 (9) |
O2 | 0.0159 (11) | 0.0179 (11) | 0.0220 (13) | −0.0016 (9) | 0.0047 (9) | −0.0020 (10) |
O3 | 0.0160 (11) | 0.0181 (11) | 0.0179 (11) | 0.0010 (9) | 0.0040 (9) | 0.0015 (9) |
O4 | 0.0160 (11) | 0.0166 (11) | 0.0172 (11) | 0.0028 (9) | 0.0040 (9) | 0.0019 (9) |
N1 | 0.036 (2) | 0.0171 (15) | 0.0280 (18) | 0.0040 (12) | 0.0163 (15) | −0.0004 (12) |
N5 | 0.0148 (13) | 0.0189 (13) | 0.0182 (15) | 0.0002 (10) | 0.0040 (11) | 0.0019 (10) |
N6 | 0.0166 (12) | 0.0209 (13) | 0.0181 (13) | 0.0018 (10) | 0.0000 (10) | −0.0024 (10) |
N8 | 0.0200 (13) | 0.0219 (13) | 0.0165 (13) | 0.0101 (10) | −0.0055 (10) | −0.0058 (10) |
N10 | 0.0167 (12) | 0.0200 (13) | 0.0156 (13) | 0.0033 (10) | −0.0011 (10) | −0.0006 (10) |
N11 | 0.0150 (12) | 0.0217 (13) | 0.0187 (13) | 0.0045 (10) | 0.0002 (10) | 0.0035 (10) |
N13 | 0.0185 (13) | 0.0472 (18) | 0.0166 (13) | 0.0160 (12) | 0.0014 (10) | 0.0109 (13) |
N15 | 0.0158 (12) | 0.0201 (12) | 0.0176 (13) | 0.0034 (10) | −0.0003 (10) | 0.0025 (10) |
N16 | 0.0149 (12) | 0.0180 (13) | 0.0168 (13) | 0.0032 (10) | 0.0026 (10) | 0.0012 (10) |
N18 | 0.0173 (13) | 0.0262 (14) | 0.0199 (13) | 0.0081 (10) | 0.0088 (10) | 0.0083 (11) |
N20 | 0.0164 (13) | 0.0173 (13) | 0.0182 (14) | 0.0015 (10) | 0.0047 (10) | 0.0020 (10) |
N21 | 0.0166 (14) | 0.0193 (13) | 0.0161 (14) | 0.0031 (11) | 0.0041 (11) | 0.0010 (11) |
N23 | 0.0245 (14) | 0.0232 (13) | 0.0196 (13) | 0.0058 (11) | 0.0118 (11) | 0.0056 (11) |
N25 | 0.0240 (18) | 0.0209 (15) | 0.0301 (19) | −0.0002 (12) | 0.0163 (14) | 0.0009 (13) |
C2 | 0.0163 (14) | 0.0173 (15) | 0.0164 (15) | 0.0016 (11) | 0.0006 (12) | −0.0048 (12) |
C4 | 0.0113 (13) | 0.0183 (15) | 0.0177 (16) | −0.0053 (11) | −0.0009 (12) | 0.0007 (11) |
C7 | 0.0128 (13) | 0.0138 (13) | 0.0170 (15) | 0.0038 (10) | 0.0044 (11) | 0.0009 (11) |
C9 | 0.0170 (14) | 0.0146 (13) | 0.0116 (13) | −0.0007 (11) | 0.0026 (11) | −0.0033 (10) |
C12 | 0.0188 (14) | 0.0199 (14) | 0.0129 (14) | 0.0018 (12) | 0.0029 (11) | 0.0019 (11) |
C14 | 0.0118 (13) | 0.0198 (14) | 0.0209 (16) | 0.0037 (11) | 0.0020 (11) | −0.0002 (12) |
C17 | 0.0122 (13) | 0.0129 (13) | 0.0161 (14) | 0.0035 (11) | −0.0012 (11) | −0.0015 (11) |
C19 | 0.0181 (14) | 0.0135 (13) | 0.0136 (14) | −0.0020 (11) | 0.0009 (11) | 0.0019 (11) |
C22 | 0.0129 (13) | 0.0147 (14) | 0.0175 (15) | 0.0010 (11) | −0.0006 (11) | −0.0043 (11) |
C24 | 0.0238 (16) | 0.0141 (14) | 0.0148 (14) | −0.0062 (12) | 0.0030 (12) | 0.0008 (11) |
N51 | 0.0297 (18) | 0.0194 (15) | 0.033 (2) | 0.0054 (12) | 0.0170 (15) | 0.0012 (12) |
C52 | 0.0133 (14) | 0.0149 (14) | 0.0193 (16) | 0.0033 (11) | 0.0000 (12) | −0.0024 (12) |
N53 | 0.0308 (16) | 0.0194 (12) | 0.0284 (17) | −0.0060 (12) | 0.0141 (13) | −0.0038 (11) |
C54 | 0.0228 (17) | 0.0163 (15) | 0.0286 (18) | −0.0019 (13) | 0.0079 (14) | 0.0054 (14) |
N100 | 0.0173 (12) | 0.0121 (11) | 0.0197 (12) | −0.0023 (10) | −0.0051 (9) | 0.0019 (10) |
C101 | 0.0271 (18) | 0.0238 (17) | 0.0300 (19) | −0.0022 (14) | −0.0017 (14) | −0.0083 (14) |
C102 | 0.040 (2) | 0.037 (2) | 0.058 (3) | 0.0070 (18) | 0.0062 (19) | −0.019 (2) |
C103 | 0.0198 (15) | 0.0241 (16) | 0.0243 (17) | −0.0068 (13) | −0.0047 (12) | 0.0014 (13) |
C104 | 0.036 (2) | 0.0275 (18) | 0.032 (2) | −0.0112 (15) | −0.0030 (15) | 0.0106 (15) |
C105 | 0.0258 (17) | 0.0258 (17) | 0.032 (2) | 0.0015 (14) | −0.0039 (14) | 0.0150 (14) |
C106 | 0.032 (2) | 0.043 (2) | 0.061 (3) | −0.0080 (18) | −0.0004 (19) | 0.032 (2) |
C107 | 0.0222 (16) | 0.0209 (16) | 0.0240 (17) | 0.0016 (13) | −0.0073 (13) | 0.0006 (13) |
C108 | 0.0326 (19) | 0.039 (2) | 0.033 (2) | 0.0088 (16) | −0.0046 (16) | −0.0140 (17) |
N200 | 0.0141 (12) | 0.0192 (13) | 0.0138 (12) | 0.0007 (10) | −0.0027 (9) | 0.0002 (10) |
C201 | 0.0300 (17) | 0.0254 (16) | 0.0189 (16) | −0.0012 (14) | −0.0043 (13) | 0.0007 (13) |
C202 | 0.0338 (19) | 0.0223 (16) | 0.0275 (18) | 0.0004 (14) | 0.0110 (14) | 0.0011 (14) |
C203 | 0.0188 (15) | 0.0259 (16) | 0.0217 (16) | 0.0006 (12) | −0.0073 (12) | 0.0003 (13) |
C204 | 0.0212 (16) | 0.0268 (17) | 0.0224 (17) | −0.0044 (13) | 0.0004 (13) | −0.0068 (13) |
C205 | 0.0183 (16) | 0.0301 (17) | 0.033 (2) | 0.0053 (13) | −0.0045 (14) | −0.0056 (15) |
C206 | 0.0223 (16) | 0.0280 (17) | 0.0312 (18) | −0.0002 (13) | 0.0074 (13) | −0.0048 (15) |
C207 | 0.0259 (17) | 0.0192 (16) | 0.0239 (17) | 0.0022 (13) | −0.0015 (14) | 0.0019 (12) |
C208 | 0.0305 (18) | 0.0243 (17) | 0.0290 (18) | −0.0061 (14) | −0.0002 (14) | −0.0082 (15) |
Co1—O1 | 2.094 (2) | C101—C102 | 1.522 (5) |
Co1—N15i | 2.099 (2) | C101—H10A | 0.9900 |
Co1—N6 | 2.113 (2) | C101—H10B | 0.9900 |
Co1—N20ii | 2.114 (3) | C102—H10C | 0.9800 |
Co1—N5 | 2.114 (3) | C102—H10D | 0.9800 |
Co1—O2 | 2.116 (2) | C102—H10E | 0.9800 |
Co2—N11 | 2.099 (2) | C103—C104 | 1.523 (5) |
Co2—N10 | 2.105 (2) | C103—H10F | 0.9900 |
Co2—N16 | 2.107 (3) | C103—H10G | 0.9900 |
Co2—N21 | 2.109 (3) | C104—H10H | 0.9800 |
Co2—O3 | 2.116 (2) | C104—H10I | 0.9800 |
Co2—O4 | 2.126 (2) | C104—H10J | 0.9800 |
O1—H1A | 0.79 (5) | C105—C106 | 1.517 (5) |
O1—H1B | 0.71 (4) | C105—H10K | 0.9900 |
O2—H2A | 0.84 (4) | C105—H10L | 0.9900 |
O2—H2B | 0.71 (4) | C106—H10M | 0.9800 |
O3—H3A | 0.77 (4) | C106—H10N | 0.9800 |
O3—H3B | 0.84 (6) | C106—H10O | 0.9800 |
O4—H4A | 0.74 (4) | C107—C108 | 1.512 (5) |
O4—H4B | 0.77 (5) | C107—H10P | 0.9900 |
N1—C2 | 1.149 (5) | C107—H10Q | 0.9900 |
N3—C2 | 1.278 (9) | C108—H10R | 0.9800 |
N3—C4 | 1.307 (9) | C108—H10S | 0.9800 |
N3'—C4 | 1.334 (6) | C108—H10T | 0.9800 |
N3'—C2 | 1.335 (6) | N200—C203 | 1.515 (4) |
N5—C4 | 1.149 (4) | N200—C205 | 1.516 (4) |
N6—C7 | 1.160 (4) | N200—C201 | 1.518 (4) |
N8—C7 | 1.308 (4) | N200—C207 | 1.539 (4) |
N8—C9 | 1.309 (4) | C201—C202 | 1.532 (5) |
N10—C9 | 1.158 (4) | C201—H20A | 0.9900 |
N11—C12 | 1.157 (4) | C201—H20B | 0.9900 |
N13—C12 | 1.308 (4) | C202—H20C | 0.9800 |
N13—C14 | 1.314 (4) | C202—H20D | 0.9800 |
N15—C14 | 1.145 (4) | C202—H20E | 0.9800 |
N15—Co1iii | 2.099 (2) | C203—C204 | 1.524 (4) |
N16—C17 | 1.151 (4) | C203—H20F | 0.9900 |
N18—C19 | 1.309 (4) | C203—H20G | 0.9900 |
N18—C17 | 1.312 (4) | C204—H20H | 0.9800 |
N20—C19 | 1.155 (4) | C204—H20I | 0.9800 |
N20—Co1iv | 2.114 (3) | C204—H20J | 0.9800 |
N21—C22 | 1.148 (4) | C205—C206 | 1.516 (5) |
N23—C24 | 1.304 (4) | C205—H20K | 0.9900 |
N23—C22 | 1.324 (4) | C205—H20L | 0.9900 |
N25—C24 | 1.161 (5) | C206—H20M | 0.9800 |
N51—C52 | 1.162 (5) | C206—H20N | 0.9800 |
C52—N53 | 1.301 (4) | C206—H20O | 0.9800 |
N53—C54 | 1.290 (4) | C207—C208 | 1.518 (5) |
C54—N55 | 1.159 (8) | C207—H20P | 0.9900 |
C54—N56 | 1.176 (9) | C207—H20Q | 0.9900 |
N100—C103 | 1.513 (4) | C208—H20R | 0.9800 |
N100—C101 | 1.517 (4) | C208—H20S | 0.9800 |
N100—C105 | 1.520 (4) | C208—H20T | 0.9800 |
N100—C107 | 1.524 (4) | ||
O1—Co1—N15i | 91.39 (10) | N100—C103—C104 | 115.1 (3) |
O1—Co1—N6 | 90.28 (10) | N100—C103—H10F | 108.5 |
N15i—Co1—N6 | 178.10 (10) | C104—C103—H10F | 108.5 |
O1—Co1—N20ii | 89.81 (11) | N100—C103—H10G | 108.5 |
N15i—Co1—N20ii | 91.57 (10) | C104—C103—H10G | 108.5 |
N6—Co1—N20ii | 87.54 (10) | H10F—C103—H10G | 107.5 |
O1—Co1—N5 | 88.62 (11) | C103—C104—H10H | 109.5 |
N15i—Co1—N5 | 94.04 (10) | C103—C104—H10I | 109.5 |
N6—Co1—N5 | 86.90 (11) | H10H—C104—H10I | 109.5 |
N20ii—Co1—N5 | 174.22 (11) | C103—C104—H10J | 109.5 |
O1—Co1—O2 | 178.90 (11) | H10H—C104—H10J | 109.5 |
N15i—Co1—O2 | 88.25 (10) | H10I—C104—H10J | 109.5 |
N6—Co1—O2 | 90.09 (10) | C106—C105—N100 | 114.8 (3) |
N20ii—Co1—O2 | 91.25 (10) | C106—C105—H10K | 108.6 |
N5—Co1—O2 | 90.36 (10) | N100—C105—H10K | 108.6 |
N11—Co2—N10 | 178.97 (11) | C106—C105—H10L | 108.6 |
N11—Co2—N16 | 91.79 (10) | N100—C105—H10L | 108.6 |
N10—Co2—N16 | 89.21 (10) | H10K—C105—H10L | 107.6 |
N11—Co2—N21 | 88.68 (11) | C105—C106—H10M | 109.5 |
N10—Co2—N21 | 90.32 (11) | C105—C106—H10N | 109.5 |
N16—Co2—N21 | 179.42 (12) | H10M—C106—H10N | 109.5 |
N11—Co2—O3 | 89.94 (9) | C105—C106—H10O | 109.5 |
N10—Co2—O3 | 89.81 (10) | H10M—C106—H10O | 109.5 |
N16—Co2—O3 | 90.95 (10) | H10N—C106—H10O | 109.5 |
N21—Co2—O3 | 89.38 (10) | C108—C107—N100 | 115.4 (3) |
N11—Co2—O4 | 92.49 (10) | C108—C107—H10P | 108.4 |
N10—Co2—O4 | 87.74 (9) | N100—C107—H10P | 108.4 |
N16—Co2—O4 | 90.26 (10) | C108—C107—H10Q | 108.4 |
N21—Co2—O4 | 89.39 (10) | N100—C107—H10Q | 108.4 |
O3—Co2—O4 | 177.25 (10) | H10P—C107—H10Q | 107.5 |
Co1—O1—H1A | 117 (3) | C107—C108—H10R | 109.5 |
Co1—O1—H1B | 112 (3) | C107—C108—H10S | 109.5 |
H1A—O1—H1B | 111 (5) | H10R—C108—H10S | 109.5 |
Co1—O2—H2A | 110 (2) | C107—C108—H10T | 109.5 |
Co1—O2—H2B | 110 (3) | H10R—C108—H10T | 109.5 |
H2A—O2—H2B | 107 (4) | H10S—C108—H10T | 109.5 |
Co2—O3—H3A | 113 (3) | C203—N200—C205 | 111.1 (2) |
Co2—O3—H3B | 101 (4) | C203—N200—C201 | 111.6 (2) |
H3A—O3—H3B | 112 (5) | C205—N200—C201 | 107.5 (2) |
Co2—O4—H4A | 108 (3) | C203—N200—C207 | 106.4 (2) |
Co2—O4—H4B | 113 (3) | C205—N200—C207 | 110.6 (3) |
H4A—O4—H4B | 108 (5) | C201—N200—C207 | 109.6 (2) |
C2—N3—C4 | 126.2 (7) | N200—C201—C202 | 114.3 (3) |
C4—N3'—C2 | 119.5 (6) | N200—C201—H20A | 108.7 |
C4—N5—Co1 | 153.4 (2) | C202—C201—H20A | 108.7 |
C7—N6—Co1 | 174.2 (2) | N200—C201—H20B | 108.7 |
C7—N8—C9 | 119.2 (2) | C202—C201—H20B | 108.7 |
C9—N10—Co2 | 177.4 (2) | H20A—C201—H20B | 107.6 |
C12—N11—Co2 | 170.1 (2) | C201—C202—H20C | 109.5 |
C12—N13—C14 | 122.9 (3) | C201—C202—H20D | 109.5 |
C14—N15—Co1iii | 171.5 (2) | H20C—C202—H20D | 109.5 |
C17—N16—Co2 | 173.0 (2) | C201—C202—H20E | 109.5 |
C19—N18—C17 | 122.0 (3) | H20C—C202—H20E | 109.5 |
C19—N20—Co1iv | 164.3 (2) | H20D—C202—H20E | 109.5 |
C22—N21—Co2 | 168.5 (3) | N200—C203—C204 | 113.3 (3) |
C24—N23—C22 | 120.3 (3) | N200—C203—H20F | 108.9 |
N1—C2—N3 | 168.3 (10) | C204—C203—H20F | 108.9 |
N1—C2—N3' | 168.5 (5) | N200—C203—H20G | 108.9 |
N5—C4—N3 | 167.7 (9) | C204—C203—H20G | 108.9 |
N5—C4—N3' | 168.6 (5) | H20F—C203—H20G | 107.7 |
N6—C7—N8 | 174.4 (3) | C203—C204—H20H | 109.5 |
N10—C9—N8 | 174.4 (3) | C203—C204—H20I | 109.5 |
N11—C12—N13 | 172.4 (3) | H20H—C204—H20I | 109.5 |
N15—C14—N13 | 171.8 (3) | C203—C204—H20J | 109.5 |
N16—C17—N18 | 172.7 (3) | H20H—C204—H20J | 109.5 |
N20—C19—N18 | 173.3 (3) | H20I—C204—H20J | 109.5 |
N21—C22—N23 | 173.7 (3) | N200—C205—C206 | 115.0 (3) |
N25—C24—N23 | 173.5 (4) | N200—C205—H20K | 108.5 |
N51—C52—N53 | 173.0 (3) | C206—C205—H20K | 108.5 |
C54—N53—C52 | 121.7 (3) | N200—C205—H20L | 108.5 |
N55—C54—N53 | 165.8 (7) | C206—C205—H20L | 108.5 |
N56—C54—N53 | 166.1 (8) | H20K—C205—H20L | 107.5 |
C103—N100—C101 | 110.9 (3) | C205—C206—H20M | 109.5 |
C103—N100—C105 | 106.6 (2) | C205—C206—H20N | 109.5 |
C101—N100—C105 | 111.7 (2) | H20M—C206—H20N | 109.5 |
C103—N100—C107 | 111.4 (2) | C205—C206—H20O | 109.5 |
C101—N100—C107 | 106.4 (2) | H20M—C206—H20O | 109.5 |
C105—N100—C107 | 109.9 (3) | H20N—C206—H20O | 109.5 |
N100—C101—C102 | 114.9 (3) | C208—C207—N200 | 114.2 (3) |
N100—C101—H10A | 108.5 | C208—C207—H20P | 108.7 |
C102—C101—H10A | 108.5 | N200—C207—H20P | 108.7 |
N100—C101—H10B | 108.5 | C208—C207—H20Q | 108.7 |
C102—C101—H10B | 108.5 | N200—C207—H20Q | 108.7 |
H10A—C101—H10B | 107.5 | H20P—C207—H20Q | 107.6 |
C101—C102—H10C | 109.5 | C207—C208—H20R | 109.5 |
C101—C102—H10D | 109.5 | C207—C208—H20S | 109.5 |
H10C—C102—H10D | 109.5 | H20R—C208—H20S | 109.5 |
C101—C102—H10E | 109.5 | C207—C208—H20T | 109.5 |
H10C—C102—H10E | 109.5 | H20R—C208—H20T | 109.5 |
H10D—C102—H10E | 109.5 | H20S—C208—H20T | 109.5 |
C4—N3—C2—N1 | 132 (2) | C107—N100—C105—C106 | −58.1 (4) |
C4—N3'—C2—N1 | −148.8 (18) | C103—N100—C107—C108 | 60.6 (4) |
Co1—N5—C4—N3 | −39 (3) | C101—N100—C107—C108 | −178.4 (3) |
Co1—N5—C4—N3' | 73 (2) | C105—N100—C107—C108 | −57.3 (4) |
C2—N3—C4—N5 | −131.3 (19) | C203—N200—C201—C202 | 55.9 (3) |
C2—N3'—C4—N5 | 154.7 (17) | C205—N200—C201—C202 | 178.0 (3) |
C52—N53—C54—N55 | 114 (2) | C207—N200—C201—C202 | −61.7 (3) |
C52—N53—C54—N56 | −118 (2) | C205—N200—C203—C204 | −59.1 (4) |
C103—N100—C101—C102 | −55.4 (4) | C201—N200—C203—C204 | 60.9 (3) |
C105—N100—C101—C102 | 63.4 (4) | C207—N200—C203—C204 | −179.6 (3) |
C107—N100—C101—C102 | −176.7 (3) | C203—N200—C205—C206 | −57.3 (4) |
C101—N100—C103—C104 | −58.1 (4) | C201—N200—C205—C206 | −179.7 (3) |
C105—N100—C103—C104 | −180.0 (3) | C207—N200—C205—C206 | 60.6 (4) |
C107—N100—C103—C104 | 60.2 (4) | C203—N200—C207—C208 | 179.3 (3) |
C103—N100—C105—C106 | −178.8 (3) | C205—N200—C207—C208 | 58.5 (4) |
C101—N100—C105—C106 | 59.8 (4) | C201—N200—C207—C208 | −59.9 (4) |
Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x, −y+2, z−1/2; (iii) x+1/2, −y+3/2, z+1/2; (iv) x, −y+2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N25v | 0.79 (5) | 2.08 (5) | 2.862 (4) | 168 (4) |
O1—H1B···N55ii | 0.71 (4) | 2.09 (4) | 2.792 (7) | 168 (4) |
O1—H1B···N56ii | 0.71 (4) | 2.22 (4) | 2.922 (9) | 170 (4) |
O2—H2A···N25vi | 0.84 (4) | 2.03 (4) | 2.862 (4) | 172 (3) |
O2—H2B···N55vii | 0.71 (4) | 2.27 (4) | 2.963 (8) | 169 (4) |
O2—H2B···N56vii | 0.71 (4) | 2.12 (4) | 2.819 (8) | 171 (4) |
O3—H3A···N51 | 0.77 (4) | 2.07 (4) | 2.822 (4) | 165 (4) |
O3—H3B···N1viii | 0.84 (6) | 2.09 (6) | 2.904 (4) | 162 (5) |
O4—H4A···N51ix | 0.74 (4) | 2.23 (4) | 2.958 (4) | 172 (4) |
O4—H4B···N1x | 0.77 (5) | 2.07 (5) | 2.833 (4) | 169 (5) |
C105—H10L···N18v | 0.99 | 2.57 | 3.439 (5) | 146 |
C202—H20E···N8xi | 0.98 | 2.60 | 3.579 (5) | 173 |
C204—H20H···N53ix | 0.98 | 2.49 | 3.316 (4) | 142 |
Symmetry codes: (ii) x, −y+2, z−1/2; (v) x−1/2, y+1/2, z; (vi) x−1/2, y−1/2, z; (vii) x, −y+1, z−1/2; (viii) x+1/2, y−1/2, z; (ix) x, y+1, z; (x) x+1/2, y+1/2, z; (xi) x, y−1, z. |
Acknowledgements
CL wishes to acknowledge the financial support for this work from the Research & Development Corporation of Newfoundland and Labrador. KAA wishes to acknowledge the National Science Foundation and the University of Florida for funding the purchase of the X-ray equipment.
References
Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130. Web of Science CrossRef CAS Google Scholar
Biswas, M., Batten, S. R., Jensen, P. & Mitra, S. (2006). Aust. J. Chem. 59, 115–117. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kurmoo, M. & Kepert, C. J. (1998). New J. Chem. 22, 1515–1524. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Rajan, D., Quintero, P. A., Abboud, K. A., Meisel, M. W. & Talham, D. R. (2013). Polyhedron, 66, 142–146. CSD CrossRef CAS Google Scholar
Schlueter, J. A., Manson, J. L. & Geiser, U. (2005). Inorg. Chem. 44, 3194–3202. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tong, M. L., Ru, J., Wu, Y. M., Chen, X. M., Chang, H. C., Mochizuki, K. & Kitagawa, S. (2003). New J. Chem. 27, 779–782. Web of Science CSD CrossRef CAS Google Scholar
Werff, P. M. van der, Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Tan, E. H. K. (2001). Polyhedron, 20, 1129–1138. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.