research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[bis­­(tetra­ethyl­ammonium) [tetra­aqua­tris­(μ-dicyanamido-κ2N1:N5)bis­(dicyanamido-κN1)di­cobaltate(II)] dicyanamide]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Environmental Science, Grenfell Campus, Memorial University of Newfoundland, Corner Brook, NL, A2H 5G4, Canada, and bDepartment of Chemistry, University of Florida, Gainesville, FL, 32611-7200, USA
*Correspondence e-mail: cliu@grenfell.mun.ca

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 September 2016; accepted 17 October 2016; online 21 October 2016)

The structure of the title compound, [N(C2H5)4]2[Co2(C2N3)5(H2O)4](C2N3), is a new example of a metal–dicyanamide coordination polymer which exhibits a unique three-dimensional framework of covalently linked CoII chains. All bridging dicyanamide ligands in the title structure are in the μ1,5-bridging mode. The anionic CoII-dicyanamide network is templated by tetra­ethyl­ammonium cations residing in a series of channels extending along the b axis where additional non-coordinating dicyanamidate anions are also located. The framework structure is further stabilized by O—H⋯N hydrogen bonding between aqua ligands and dicyanamido ligands or the dicyanamide anion. In addition, C—H⋯N inter­actions are present between the tetra­ethyl­ammonium cations and dicyanamide amide nitro­gen atoms.

1. Chemical context

Dicyanamide is a versatile ligand in the design and synthesis of coordination polymers due to its ability to coordinate to transition metal ions in a number of different modes involving some or all of its three nitro­gen atoms (Batten & Murray, 2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]). Reactions between transition metal ions and dicyanamide have mainly produced three types of coordination polymers, including the neutral binary systems of MII(dca)2 (dca = dicyanamide), complexes derived from MII(dca)2 by including a co-ligand, and cation-templated anionic [MII(dca)n](2–n) (n = 3,4) networks (Batten & Murray, 2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]). These metal–dicyanamide coordination polymers exhibit a wide range of structures, from three-dimensional rutile-like structures for MII(dca)2 to networks of reduced dimensions when a co-ligand or a counter-cation is included. Much of the inter­est in metal–dicyanamide coordination polymers has been focused on their structural diversities and their magnetic properties, particularly the long-range ferromagnetic ordering observed in some of the MII(dca)2 networks (Kurmoo & Kepert, 1998[Kurmoo, M. & Kepert, C. J. (1998). New J. Chem. 22, 1515-1524.]). Compared to co-ligand-modified derivatives of MII(dca)2 complexes, there are fewer examples of cation-templated anionic [MII(dca)n](2–n) (n = 3,4) networks. We recently prepared the title compound, (N(C2H5)4)2[Co2(H2O)4(C2N3)5](C2N3), as a new example of a cation-templated metal–dicyanamide coordination polymer. The title structure presents a unique single three-dimensional network of covalently linked chains rather than a two-dimensional structure as commonly observed in many other metal–dicyanamide coordination polymers.

[Scheme 1]

2. Structural commentary

In the asymmetric unit of the title coordination polymer, there are two CoII ions, Co1 and Co2, linked by a μ1,5-bridging dicyanamide ligand (Fig. 1[link]). Co2 is coordinated by three dicyanamide ligands via their terminal nitro­gen atoms and two trans-positioned aqua ligands, forming an N4O2 octa­hedral coordination sphere that is slightly elongated along the two Co—O bonds. Co1 is coordinated by one dicyanamide ligand via its terminal nitro­gen atom and two trans-positioned aqua ligands. The likewise distorted octa­hedral N4O2 coordination sphere around Co1 is completed by additional bonds to N20ii and N15xi [symmetry codes: (ii) x, 2 − y, −[{1\over 2}] + z; (xi) −[{1\over 2}] + x, [{2\over 3}] − y, −[{1\over 2}] + z] of two symmetry-generated dicyanamide ligands. The asymmetric unit also contains two tetra­ethyl­ammonium counter-ions and a non-coordinating dicyanamide anion. Two nitro­gen atoms, N3/N3′ of one terminal ligand and N55/N56 of the anion, are disordered and were refined over two sets of sites.

[Figure 1]
Figure 1
A view of the asymmetric unit of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at 50% probability level. All disordered components are shown.

In the crystal, a μ1,5-dca-bridged corrugated CoII chain can be seen parallel to the [101] direction and is composed of CoII ions generated by a c glide plane parallel to the ac plane. Among the four dca ligands on each CoII cation, three are in μ1,5-bridging mode with two bridging within the same chain and one bridging to another chain. The remaining fourth dca ligand [N1,C2,N3(N3′),C4,N5 for Co1 and N21,C22,N23,C24,N25 for Co2] is mono-dentate non-bridging. In the chain, the distances between two neighboring CoII atoms linked by μ1,5-dca ligands alternate between 8.1484 (8) Å (Co1⋯Co2) and 8.5620 (8) Å [Co2⋯Co1ix, symmetry code: (ix) [{1\over 2}] + x, [{2\over 3}] − y, [{1\over 2}] + z]. All of the inter-chain Co⋯Co distances across μ1,5-dca bridges are of the same length, viz. 8.5517 (8) Å. These distances are similar to other single μ1,5-dca bridges reported in the literature (van der Werff et al., 2001[Werff, P. M. van der, Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Tan, E. H. K. (2001). Polyhedron, 20, 1129-1138.]; Schlueter et al., 2005[Schlueter, J. A., Manson, J. L. & Geiser, U. (2005). Inorg. Chem. 44, 3194-3202.]; Biswas et al., 2006[Biswas, M., Batten, S. R., Jensen, P. & Mitra, S. (2006). Aust. J. Chem. 59, 115-117.]). In the title structure, each chain is linked to four other chains generated by a c glide plane via the inter-chain μ1,5-dca ligands at each CoII site [Co1⋯Co2ii, Co2⋯Co1xii; symmetry code: (xii) x, 2 − y, [{1\over 2}] + z; Co1ix⋯Co2v; symmetry code: (ix) [{1\over 2}] + x, [{2\over 3}] − y, [{1\over 2}] + z, and Co2ix⋯Co1x; symmetry code: (x) [{1\over 2}] + x, −[{1\over 2}] + y, 1 + z], resulting in a single three-dimensional network of covalently linked parallel chains. This is in contrast to the layered structures observed in a number of [MII(dca)n](2−n) (n = 3, 4) networks that exhibit parallel sheets linked in the third dimension via μ1,5-dca ligands (Batten & Murray, 2003[Batten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103-130.]; Schlueter et al., 2005[Schlueter, J. A., Manson, J. L. & Geiser, U. (2005). Inorg. Chem. 44, 3194-3202.]; Biswas et al., 2006[Biswas, M., Batten, S. R., Jensen, P. & Mitra, S. (2006). Aust. J. Chem. 59, 115-117.]). As a result of the mono-dentate non-bridging dca ligands in the title compound, the commonly observed (4,4) nets in other metal–dca networks are absent in its structure. However, channels extending along the b axis can still be seen in the title structure and these are occupied by columns of tetra­ethyl­ammonium cations (Fig. 2[link]) and dca anions. Similar to other cation-templated anionic [MII(dca)n](2−n) (n = 3, 4) networks, inter­penetration is not observed in the title structure due to the presence of tetra­ethyl­ammonium cations in the void space, making these structures potential candidates for investigating their ability of storing guest mol­ecules.

[Figure 2]
Figure 2
Crystal packing of the title compound, showing hydrogen bonds as dashed lines.

3. Supra­molecular features

Hydrogen bonding is generally not observed amongst the neutral MII(dca)2 networks. Upon introducing co-ligands or counter-ions, the derived MII(dca)2Ln (L: co-ligand) and cation-templated [MII(dca)n](2–n) (n = 3,4) complexes display hydrogen bonding. In most of the MII(dca)2 derivatives, the hydrogen bonds are of non-classical C—H⋯X (X = N, O) types (Tong et al., 2003[Tong, M. L., Ru, J., Wu, Y. M., Chen, X. M., Chang, H. C., Mochizuki, K. & Kitagawa, S. (2003). New J. Chem. 27, 779-782.]; Biswas et al., 2006[Biswas, M., Batten, S. R., Jensen, P. & Mitra, S. (2006). Aust. J. Chem. 59, 115-117.]; Rajan et al., 2013[Rajan, D., Quintero, P. A., Abboud, K. A., Meisel, M. W. & Talham, D. R. (2013). Polyhedron, 66, 142-146.]). In the title structure, hydrogen bonds are mainly of the classical O—H⋯N type between OH groups of coordinating water mol­ecules and nitro­gen atoms of the non-coordinating dca anion or the mono-dentate non-bridging dca ligands. Some hydrogen bonds in the title structure are bifurcated between two donor water mol­ecules located on two neighboring chains stacked along the b axis and thus hold these chains in place along the b axis. Chains related by c glide-plane symmetry are primarily linked via single μ1,5-dca ligands as described in the previous section, but are further stabilized by hydrogen bonds across the non-coordinating dca anions (N51 and N55/56) and by hydrogen bonds involving N1 and N25 of the mono-dentate non-bridging dca ligand. In addition to the O—H⋯N hydrogen bonds, C—H⋯N hydrogen bonds are also present in the title structure between C—H groups of the tetra­ethyl­ammonium cations and dicyanamide amide nitro­gen atoms (Fig. 2[link]). The hydrogen-bond lengths and angles are summarized in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N25i 0.79 (5) 2.08 (5) 2.862 (4) 168 (4)
O1—H1B⋯N55ii 0.71 (4) 2.09 (4) 2.792 (7) 168 (4)
O1—H1B⋯N56ii 0.71 (4) 2.22 (4) 2.922 (9) 170 (4)
O2—H2A⋯N25iii 0.84 (4) 2.03 (4) 2.862 (4) 172 (3)
O2—H2B⋯N55iv 0.71 (4) 2.27 (4) 2.963 (8) 169 (4)
O2—H2B⋯N56iv 0.71 (4) 2.12 (4) 2.819 (8) 171 (4)
O3—H3A⋯N51 0.77 (4) 2.07 (4) 2.822 (4) 165 (4)
O3—H3B⋯N1v 0.84 (6) 2.09 (6) 2.904 (4) 162 (5)
O4—H4A⋯N51vi 0.74 (4) 2.23 (4) 2.958 (4) 172 (4)
O4—H4B⋯N1vii 0.77 (5) 2.07 (5) 2.833 (4) 169 (5)
C105—H10L⋯N18i 0.99 2.57 3.439 (5) 146
C202—H20E⋯N8viii 0.98 2.60 3.579 (5) 173
C204—H20H⋯N53vi 0.98 2.49 3.316 (4) 142
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y+2, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vi) x, y+1, z; (vii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (viii) x, y-1, z.

4. Synthesis and crystallization

The title compound was prepared in a reaction where Co(NO3)2·6H2O (1 mmol, 291 mg), NaN(CN)2 (1.5 mmol, 133.55 mg), and (C2H5)4NCl (1.5 mmol, 249 mg) were dissolved in 40 ml of deionized water to produce a dark-red solution. Upon standing for one month, irregularly shaped red crystals (95 mg, yield 22.4%) suitable for X-ray diffraction were collected by vacuum filtration and washed with deionized water. Selected IR bands (KBr, cm−1): 3370 (O—H), 2977 (C—H), 2300, 2273, 2255, 2236, 2182, 2141 (C≡N), 1365 (C—N amide), 1172 (C—N amine). Elemental analysis calculated for C28H48Co2N20O4: C 39.72, H 5.71, N 33.08%. Found: C 39.81, H 5.37, N 32.74%.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. C-bound H atoms were positioned geometrically (C—H = 0.98/0.99 Å) and allowed to ride with Uiso(H) = 1.2/1.5Ueq(C) whereby methyl H atoms were allowed to rotate around the corresponding C—C bond. Two nitro­gen atoms, N3/N3′ and N55/N56, were disordered and refined in two parts each with their respective site-occupation factors refined dependently [occupation ratios of 0.33 (4):0.67 (4) and 0.48 (3):0.52 (3), respectively] and with independent Ueq parameters for each of the N atoms. All of the water H atoms were obtained from a difference Fourier map and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula (C8H20N)2[Co2(C2N3)5(H2O)4](C2N3)
Mr 846.72
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 23.9836 (19), 7.3271 (6), 22.6809 (17)
β (°) 94.4257 (14)
V3) 3973.8 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.90
Crystal size (mm) 0.16 × 0.16 × 0.10
 
Data collection
Diffractometer Bruker APEXII DUO CCD
Absorption correction Analytical based on measured indexed crystal faces (SHELXTL2014; Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.])
Tmin, Tmax 0.898, 0.947
No. of measured, independent and observed [I > 2σ(I)] reflections 26031, 9018, 8397
Rint 0.026
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.02
No. of reflections 9018
No. of parameters 519
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.10, −0.22
Absolute structure Flack x determined using 3859 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.016 (4)
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[bis(tetraethylammonium) [tetraaquatris(µ-dicyanamido-κ2N1:N5)bis(dicyanamido-κN1)dicobaltate(II)] dicyanamide] top
Crystal data top
(C8H20N)2[Co2(C2N3)5(H2O)4](C2N3)F(000) = 1768
Mr = 846.72Dx = 1.415 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 23.9836 (19) ÅCell parameters from 9967 reflections
b = 7.3271 (6) Åθ = 2.0–28.0°
c = 22.6809 (17) ŵ = 0.90 mm1
β = 94.4257 (14)°T = 100 K
V = 3973.8 (5) Å3Irregular, red
Z = 40.16 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII DUO CCD
diffractometer
8397 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
phi and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: analytical
based on measured indexed crystal faces (SHELXTL2014; Sheldrick, 2015a)
h = 3030
Tmin = 0.898, Tmax = 0.947k = 99
26031 measured reflectionsl = 2729
9018 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0456P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
9018 reflectionsΔρmax = 1.10 e Å3
519 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Flack x determined using 3859 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned geometrically ( C—H = 0.93/1.00 Å) and allowed to ride with Uiso(H)= 1.2/1.5Ueq(C). Methyl ones were allowed to rotate around the corresponding C—C.

The asymmetric unit consists of a 2 Co units with each coordinated to four diamine ligand forming a square plane and two water ligands trans to each other.. The asymmetric unit also contains two tetraethylammonium counterions. Two nitrogen atoms, N3/N3' and N55/N56, were disordered and refined in two parts each with their site occupation factors dependently refined. All of the water protons were obtained from a Difference Fourier map and refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.45296 (2)1.02347 (5)0.23954 (2)0.01173 (10)
Co20.70898 (2)0.98381 (6)0.49718 (2)0.01198 (10)
O10.42840 (11)1.2865 (3)0.21237 (11)0.0182 (5)
H1A0.4119 (19)1.345 (6)0.235 (2)0.038 (12)*
H1B0.4509 (17)1.337 (6)0.2020 (16)0.020 (11)*
O20.47620 (10)0.7567 (3)0.26745 (11)0.0184 (5)
H2A0.4479 (15)0.700 (5)0.2772 (14)0.014 (8)*
H2B0.4867 (16)0.707 (6)0.2440 (18)0.020 (11)*
O30.68557 (10)0.7243 (3)0.46262 (10)0.0172 (4)
H3A0.6660 (17)0.671 (5)0.4820 (18)0.022 (10)*
H3B0.717 (2)0.673 (8)0.462 (2)0.066 (16)*
O40.73049 (10)1.2503 (3)0.52824 (10)0.0165 (4)
H4A0.7045 (17)1.301 (6)0.5321 (17)0.024 (11)*
H4B0.748 (2)1.305 (7)0.507 (2)0.041 (13)*
N10.27918 (17)0.9826 (4)0.44658 (17)0.0263 (8)
N30.3496 (7)1.110 (2)0.3882 (6)0.014 (3)*0.33 (4)
N3'0.3369 (4)1.1453 (11)0.3777 (3)0.0170 (17)*0.67 (4)
N50.38584 (12)1.0199 (4)0.29474 (13)0.0172 (6)
N60.50206 (11)1.1338 (3)0.31233 (11)0.0186 (5)
N80.55339 (11)1.2440 (4)0.40377 (11)0.0198 (6)
N100.63870 (10)1.1001 (3)0.45012 (11)0.0176 (5)
N110.77978 (10)0.8675 (3)0.54269 (11)0.0185 (5)
N130.87084 (11)0.7274 (4)0.57243 (12)0.0275 (7)
N150.90600 (10)0.5935 (3)0.66723 (11)0.0179 (5)
N160.66067 (11)0.9433 (4)0.56980 (12)0.0165 (5)
N180.61244 (11)0.8416 (4)0.65572 (12)0.0208 (6)
N200.52420 (11)0.9548 (4)0.69062 (12)0.0171 (5)
N210.75691 (12)1.0268 (4)0.42431 (13)0.0172 (6)
N230.79811 (11)1.1485 (4)0.33595 (11)0.0219 (6)
N250.88281 (14)1.0353 (4)0.29320 (16)0.0243 (8)
C20.30902 (13)1.0444 (4)0.41469 (13)0.0167 (6)
C40.36385 (12)1.0633 (4)0.33577 (13)0.0158 (6)
C70.52810 (12)1.1808 (4)0.35482 (13)0.0144 (6)
C90.59893 (12)1.1634 (4)0.42615 (12)0.0143 (6)
C120.82135 (13)0.7985 (4)0.55973 (13)0.0171 (6)
C140.88662 (12)0.6596 (4)0.62471 (13)0.0175 (6)
C170.63568 (12)0.9025 (4)0.60908 (13)0.0138 (6)
C190.56523 (12)0.9077 (4)0.67179 (13)0.0151 (6)
C220.77826 (12)1.0776 (4)0.38380 (13)0.0151 (6)
C240.84342 (13)1.0826 (4)0.31572 (13)0.0175 (6)
N510.63136 (15)0.4857 (4)0.53742 (16)0.0268 (8)
C520.60294 (12)0.4231 (4)0.57142 (14)0.0159 (6)
N530.57322 (12)0.3337 (4)0.60740 (13)0.0256 (7)
C540.54159 (14)0.4164 (4)0.64236 (16)0.0223 (7)
N550.5044 (5)0.4734 (8)0.6665 (5)0.019 (2)*0.48 (3)
N560.5199 (5)0.4749 (9)0.6832 (5)0.021 (2)*0.52 (3)
N1000.20492 (11)0.8554 (3)0.74448 (12)0.0167 (5)
C1010.21237 (15)0.9688 (5)0.80049 (17)0.0272 (7)
H10A0.24571.04730.79820.033*
H10B0.21980.88540.83450.033*
C1020.16270 (18)1.0892 (6)0.8122 (2)0.0451 (10)
H10C0.17101.15720.84910.068*
H10D0.15551.17510.77940.068*
H10E0.12961.01280.81580.068*
C1030.15273 (13)0.7392 (5)0.74406 (14)0.0231 (7)
H10F0.14940.66730.70700.028*
H10G0.11990.82100.74360.028*
C1040.15073 (16)0.6084 (5)0.79603 (16)0.0321 (8)
H10H0.11570.53920.79210.048*
H10I0.18240.52390.79640.048*
H10J0.15280.67790.83300.048*
C1050.19842 (15)0.9746 (5)0.68951 (17)0.0283 (8)
H10K0.19270.89450.65440.034*
H10L0.16441.05000.69140.034*
C1060.24752 (17)1.0999 (6)0.6811 (2)0.0452 (11)
H10M0.23991.17140.64490.068*
H10N0.25301.18250.71510.068*
H10O0.28141.02670.67800.068*
C1070.25726 (14)0.7379 (4)0.74309 (15)0.0228 (7)
H10P0.29030.81930.74520.027*
H10Q0.26030.66020.77890.027*
C1080.25941 (16)0.6164 (6)0.68945 (17)0.0352 (9)
H10R0.29440.54650.69250.053*
H10S0.22760.53210.68750.053*
H10T0.25770.69170.65360.053*
N2000.46116 (10)0.7171 (3)0.48654 (11)0.0159 (5)
C2010.47345 (14)0.7741 (5)0.42451 (14)0.0251 (7)
H20A0.46790.90760.42060.030*
H20B0.44610.71400.39580.030*
C2020.53259 (15)0.7274 (5)0.40827 (15)0.0274 (7)
H20C0.53730.76820.36780.041*
H20D0.56000.78900.43570.041*
H20E0.53830.59510.41090.041*
C2030.50310 (13)0.7976 (4)0.53272 (15)0.0226 (7)
H20F0.54100.75360.52530.027*
H20G0.49450.75310.57220.027*
C2040.50327 (14)1.0055 (4)0.53314 (15)0.0235 (7)
H20H0.53111.04930.56380.035*
H20I0.51261.05070.49450.035*
H20J0.46621.05020.54140.035*
C2050.40225 (13)0.7789 (5)0.49619 (16)0.0274 (7)
H20K0.37620.72170.46560.033*
H20L0.40000.91270.49040.033*
C2060.38269 (14)0.7340 (5)0.55649 (15)0.0269 (7)
H20M0.34440.77870.55880.040*
H20N0.38360.60150.56240.040*
H20O0.40750.79290.58720.040*
C2070.46624 (15)0.5084 (4)0.49254 (15)0.0232 (7)
H20P0.50510.47240.48610.028*
H20Q0.45910.47360.53350.028*
C2080.42651 (15)0.4023 (5)0.44990 (16)0.0281 (7)
H20R0.43220.27120.45640.042*
H20S0.38780.43430.45660.042*
H20T0.43380.43310.40920.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0100 (2)0.0133 (2)0.0120 (2)0.00160 (18)0.00139 (15)0.00165 (18)
Co20.0105 (2)0.0140 (2)0.0115 (2)0.00317 (17)0.00170 (15)0.00155 (17)
O10.0210 (12)0.0161 (11)0.0181 (12)0.0003 (9)0.0053 (10)0.0000 (9)
O20.0159 (11)0.0179 (11)0.0220 (13)0.0016 (9)0.0047 (9)0.0020 (10)
O30.0160 (11)0.0181 (11)0.0179 (11)0.0010 (9)0.0040 (9)0.0015 (9)
O40.0160 (11)0.0166 (11)0.0172 (11)0.0028 (9)0.0040 (9)0.0019 (9)
N10.036 (2)0.0171 (15)0.0280 (18)0.0040 (12)0.0163 (15)0.0004 (12)
N50.0148 (13)0.0189 (13)0.0182 (15)0.0002 (10)0.0040 (11)0.0019 (10)
N60.0166 (12)0.0209 (13)0.0181 (13)0.0018 (10)0.0000 (10)0.0024 (10)
N80.0200 (13)0.0219 (13)0.0165 (13)0.0101 (10)0.0055 (10)0.0058 (10)
N100.0167 (12)0.0200 (13)0.0156 (13)0.0033 (10)0.0011 (10)0.0006 (10)
N110.0150 (12)0.0217 (13)0.0187 (13)0.0045 (10)0.0002 (10)0.0035 (10)
N130.0185 (13)0.0472 (18)0.0166 (13)0.0160 (12)0.0014 (10)0.0109 (13)
N150.0158 (12)0.0201 (12)0.0176 (13)0.0034 (10)0.0003 (10)0.0025 (10)
N160.0149 (12)0.0180 (13)0.0168 (13)0.0032 (10)0.0026 (10)0.0012 (10)
N180.0173 (13)0.0262 (14)0.0199 (13)0.0081 (10)0.0088 (10)0.0083 (11)
N200.0164 (13)0.0173 (13)0.0182 (14)0.0015 (10)0.0047 (10)0.0020 (10)
N210.0166 (14)0.0193 (13)0.0161 (14)0.0031 (11)0.0041 (11)0.0010 (11)
N230.0245 (14)0.0232 (13)0.0196 (13)0.0058 (11)0.0118 (11)0.0056 (11)
N250.0240 (18)0.0209 (15)0.0301 (19)0.0002 (12)0.0163 (14)0.0009 (13)
C20.0163 (14)0.0173 (15)0.0164 (15)0.0016 (11)0.0006 (12)0.0048 (12)
C40.0113 (13)0.0183 (15)0.0177 (16)0.0053 (11)0.0009 (12)0.0007 (11)
C70.0128 (13)0.0138 (13)0.0170 (15)0.0038 (10)0.0044 (11)0.0009 (11)
C90.0170 (14)0.0146 (13)0.0116 (13)0.0007 (11)0.0026 (11)0.0033 (10)
C120.0188 (14)0.0199 (14)0.0129 (14)0.0018 (12)0.0029 (11)0.0019 (11)
C140.0118 (13)0.0198 (14)0.0209 (16)0.0037 (11)0.0020 (11)0.0002 (12)
C170.0122 (13)0.0129 (13)0.0161 (14)0.0035 (11)0.0012 (11)0.0015 (11)
C190.0181 (14)0.0135 (13)0.0136 (14)0.0020 (11)0.0009 (11)0.0019 (11)
C220.0129 (13)0.0147 (14)0.0175 (15)0.0010 (11)0.0006 (11)0.0043 (11)
C240.0238 (16)0.0141 (14)0.0148 (14)0.0062 (12)0.0030 (12)0.0008 (11)
N510.0297 (18)0.0194 (15)0.033 (2)0.0054 (12)0.0170 (15)0.0012 (12)
C520.0133 (14)0.0149 (14)0.0193 (16)0.0033 (11)0.0000 (12)0.0024 (12)
N530.0308 (16)0.0194 (12)0.0284 (17)0.0060 (12)0.0141 (13)0.0038 (11)
C540.0228 (17)0.0163 (15)0.0286 (18)0.0019 (13)0.0079 (14)0.0054 (14)
N1000.0173 (12)0.0121 (11)0.0197 (12)0.0023 (10)0.0051 (9)0.0019 (10)
C1010.0271 (18)0.0238 (17)0.0300 (19)0.0022 (14)0.0017 (14)0.0083 (14)
C1020.040 (2)0.037 (2)0.058 (3)0.0070 (18)0.0062 (19)0.019 (2)
C1030.0198 (15)0.0241 (16)0.0243 (17)0.0068 (13)0.0047 (12)0.0014 (13)
C1040.036 (2)0.0275 (18)0.032 (2)0.0112 (15)0.0030 (15)0.0106 (15)
C1050.0258 (17)0.0258 (17)0.032 (2)0.0015 (14)0.0039 (14)0.0150 (14)
C1060.032 (2)0.043 (2)0.061 (3)0.0080 (18)0.0004 (19)0.032 (2)
C1070.0222 (16)0.0209 (16)0.0240 (17)0.0016 (13)0.0073 (13)0.0006 (13)
C1080.0326 (19)0.039 (2)0.033 (2)0.0088 (16)0.0046 (16)0.0140 (17)
N2000.0141 (12)0.0192 (13)0.0138 (12)0.0007 (10)0.0027 (9)0.0002 (10)
C2010.0300 (17)0.0254 (16)0.0189 (16)0.0012 (14)0.0043 (13)0.0007 (13)
C2020.0338 (19)0.0223 (16)0.0275 (18)0.0004 (14)0.0110 (14)0.0011 (14)
C2030.0188 (15)0.0259 (16)0.0217 (16)0.0006 (12)0.0073 (12)0.0003 (13)
C2040.0212 (16)0.0268 (17)0.0224 (17)0.0044 (13)0.0004 (13)0.0068 (13)
C2050.0183 (16)0.0301 (17)0.033 (2)0.0053 (13)0.0045 (14)0.0056 (15)
C2060.0223 (16)0.0280 (17)0.0312 (18)0.0002 (13)0.0074 (13)0.0048 (15)
C2070.0259 (17)0.0192 (16)0.0239 (17)0.0022 (13)0.0015 (14)0.0019 (12)
C2080.0305 (18)0.0243 (17)0.0290 (18)0.0061 (14)0.0002 (14)0.0082 (15)
Geometric parameters (Å, º) top
Co1—O12.094 (2)C101—C1021.522 (5)
Co1—N15i2.099 (2)C101—H10A0.9900
Co1—N62.113 (2)C101—H10B0.9900
Co1—N20ii2.114 (3)C102—H10C0.9800
Co1—N52.114 (3)C102—H10D0.9800
Co1—O22.116 (2)C102—H10E0.9800
Co2—N112.099 (2)C103—C1041.523 (5)
Co2—N102.105 (2)C103—H10F0.9900
Co2—N162.107 (3)C103—H10G0.9900
Co2—N212.109 (3)C104—H10H0.9800
Co2—O32.116 (2)C104—H10I0.9800
Co2—O42.126 (2)C104—H10J0.9800
O1—H1A0.79 (5)C105—C1061.517 (5)
O1—H1B0.71 (4)C105—H10K0.9900
O2—H2A0.84 (4)C105—H10L0.9900
O2—H2B0.71 (4)C106—H10M0.9800
O3—H3A0.77 (4)C106—H10N0.9800
O3—H3B0.84 (6)C106—H10O0.9800
O4—H4A0.74 (4)C107—C1081.512 (5)
O4—H4B0.77 (5)C107—H10P0.9900
N1—C21.149 (5)C107—H10Q0.9900
N3—C21.278 (9)C108—H10R0.9800
N3—C41.307 (9)C108—H10S0.9800
N3'—C41.334 (6)C108—H10T0.9800
N3'—C21.335 (6)N200—C2031.515 (4)
N5—C41.149 (4)N200—C2051.516 (4)
N6—C71.160 (4)N200—C2011.518 (4)
N8—C71.308 (4)N200—C2071.539 (4)
N8—C91.309 (4)C201—C2021.532 (5)
N10—C91.158 (4)C201—H20A0.9900
N11—C121.157 (4)C201—H20B0.9900
N13—C121.308 (4)C202—H20C0.9800
N13—C141.314 (4)C202—H20D0.9800
N15—C141.145 (4)C202—H20E0.9800
N15—Co1iii2.099 (2)C203—C2041.524 (4)
N16—C171.151 (4)C203—H20F0.9900
N18—C191.309 (4)C203—H20G0.9900
N18—C171.312 (4)C204—H20H0.9800
N20—C191.155 (4)C204—H20I0.9800
N20—Co1iv2.114 (3)C204—H20J0.9800
N21—C221.148 (4)C205—C2061.516 (5)
N23—C241.304 (4)C205—H20K0.9900
N23—C221.324 (4)C205—H20L0.9900
N25—C241.161 (5)C206—H20M0.9800
N51—C521.162 (5)C206—H20N0.9800
C52—N531.301 (4)C206—H20O0.9800
N53—C541.290 (4)C207—C2081.518 (5)
C54—N551.159 (8)C207—H20P0.9900
C54—N561.176 (9)C207—H20Q0.9900
N100—C1031.513 (4)C208—H20R0.9800
N100—C1011.517 (4)C208—H20S0.9800
N100—C1051.520 (4)C208—H20T0.9800
N100—C1071.524 (4)
O1—Co1—N15i91.39 (10)N100—C103—C104115.1 (3)
O1—Co1—N690.28 (10)N100—C103—H10F108.5
N15i—Co1—N6178.10 (10)C104—C103—H10F108.5
O1—Co1—N20ii89.81 (11)N100—C103—H10G108.5
N15i—Co1—N20ii91.57 (10)C104—C103—H10G108.5
N6—Co1—N20ii87.54 (10)H10F—C103—H10G107.5
O1—Co1—N588.62 (11)C103—C104—H10H109.5
N15i—Co1—N594.04 (10)C103—C104—H10I109.5
N6—Co1—N586.90 (11)H10H—C104—H10I109.5
N20ii—Co1—N5174.22 (11)C103—C104—H10J109.5
O1—Co1—O2178.90 (11)H10H—C104—H10J109.5
N15i—Co1—O288.25 (10)H10I—C104—H10J109.5
N6—Co1—O290.09 (10)C106—C105—N100114.8 (3)
N20ii—Co1—O291.25 (10)C106—C105—H10K108.6
N5—Co1—O290.36 (10)N100—C105—H10K108.6
N11—Co2—N10178.97 (11)C106—C105—H10L108.6
N11—Co2—N1691.79 (10)N100—C105—H10L108.6
N10—Co2—N1689.21 (10)H10K—C105—H10L107.6
N11—Co2—N2188.68 (11)C105—C106—H10M109.5
N10—Co2—N2190.32 (11)C105—C106—H10N109.5
N16—Co2—N21179.42 (12)H10M—C106—H10N109.5
N11—Co2—O389.94 (9)C105—C106—H10O109.5
N10—Co2—O389.81 (10)H10M—C106—H10O109.5
N16—Co2—O390.95 (10)H10N—C106—H10O109.5
N21—Co2—O389.38 (10)C108—C107—N100115.4 (3)
N11—Co2—O492.49 (10)C108—C107—H10P108.4
N10—Co2—O487.74 (9)N100—C107—H10P108.4
N16—Co2—O490.26 (10)C108—C107—H10Q108.4
N21—Co2—O489.39 (10)N100—C107—H10Q108.4
O3—Co2—O4177.25 (10)H10P—C107—H10Q107.5
Co1—O1—H1A117 (3)C107—C108—H10R109.5
Co1—O1—H1B112 (3)C107—C108—H10S109.5
H1A—O1—H1B111 (5)H10R—C108—H10S109.5
Co1—O2—H2A110 (2)C107—C108—H10T109.5
Co1—O2—H2B110 (3)H10R—C108—H10T109.5
H2A—O2—H2B107 (4)H10S—C108—H10T109.5
Co2—O3—H3A113 (3)C203—N200—C205111.1 (2)
Co2—O3—H3B101 (4)C203—N200—C201111.6 (2)
H3A—O3—H3B112 (5)C205—N200—C201107.5 (2)
Co2—O4—H4A108 (3)C203—N200—C207106.4 (2)
Co2—O4—H4B113 (3)C205—N200—C207110.6 (3)
H4A—O4—H4B108 (5)C201—N200—C207109.6 (2)
C2—N3—C4126.2 (7)N200—C201—C202114.3 (3)
C4—N3'—C2119.5 (6)N200—C201—H20A108.7
C4—N5—Co1153.4 (2)C202—C201—H20A108.7
C7—N6—Co1174.2 (2)N200—C201—H20B108.7
C7—N8—C9119.2 (2)C202—C201—H20B108.7
C9—N10—Co2177.4 (2)H20A—C201—H20B107.6
C12—N11—Co2170.1 (2)C201—C202—H20C109.5
C12—N13—C14122.9 (3)C201—C202—H20D109.5
C14—N15—Co1iii171.5 (2)H20C—C202—H20D109.5
C17—N16—Co2173.0 (2)C201—C202—H20E109.5
C19—N18—C17122.0 (3)H20C—C202—H20E109.5
C19—N20—Co1iv164.3 (2)H20D—C202—H20E109.5
C22—N21—Co2168.5 (3)N200—C203—C204113.3 (3)
C24—N23—C22120.3 (3)N200—C203—H20F108.9
N1—C2—N3168.3 (10)C204—C203—H20F108.9
N1—C2—N3'168.5 (5)N200—C203—H20G108.9
N5—C4—N3167.7 (9)C204—C203—H20G108.9
N5—C4—N3'168.6 (5)H20F—C203—H20G107.7
N6—C7—N8174.4 (3)C203—C204—H20H109.5
N10—C9—N8174.4 (3)C203—C204—H20I109.5
N11—C12—N13172.4 (3)H20H—C204—H20I109.5
N15—C14—N13171.8 (3)C203—C204—H20J109.5
N16—C17—N18172.7 (3)H20H—C204—H20J109.5
N20—C19—N18173.3 (3)H20I—C204—H20J109.5
N21—C22—N23173.7 (3)N200—C205—C206115.0 (3)
N25—C24—N23173.5 (4)N200—C205—H20K108.5
N51—C52—N53173.0 (3)C206—C205—H20K108.5
C54—N53—C52121.7 (3)N200—C205—H20L108.5
N55—C54—N53165.8 (7)C206—C205—H20L108.5
N56—C54—N53166.1 (8)H20K—C205—H20L107.5
C103—N100—C101110.9 (3)C205—C206—H20M109.5
C103—N100—C105106.6 (2)C205—C206—H20N109.5
C101—N100—C105111.7 (2)H20M—C206—H20N109.5
C103—N100—C107111.4 (2)C205—C206—H20O109.5
C101—N100—C107106.4 (2)H20M—C206—H20O109.5
C105—N100—C107109.9 (3)H20N—C206—H20O109.5
N100—C101—C102114.9 (3)C208—C207—N200114.2 (3)
N100—C101—H10A108.5C208—C207—H20P108.7
C102—C101—H10A108.5N200—C207—H20P108.7
N100—C101—H10B108.5C208—C207—H20Q108.7
C102—C101—H10B108.5N200—C207—H20Q108.7
H10A—C101—H10B107.5H20P—C207—H20Q107.6
C101—C102—H10C109.5C207—C208—H20R109.5
C101—C102—H10D109.5C207—C208—H20S109.5
H10C—C102—H10D109.5H20R—C208—H20S109.5
C101—C102—H10E109.5C207—C208—H20T109.5
H10C—C102—H10E109.5H20R—C208—H20T109.5
H10D—C102—H10E109.5H20S—C208—H20T109.5
C4—N3—C2—N1132 (2)C107—N100—C105—C10658.1 (4)
C4—N3'—C2—N1148.8 (18)C103—N100—C107—C10860.6 (4)
Co1—N5—C4—N339 (3)C101—N100—C107—C108178.4 (3)
Co1—N5—C4—N3'73 (2)C105—N100—C107—C10857.3 (4)
C2—N3—C4—N5131.3 (19)C203—N200—C201—C20255.9 (3)
C2—N3'—C4—N5154.7 (17)C205—N200—C201—C202178.0 (3)
C52—N53—C54—N55114 (2)C207—N200—C201—C20261.7 (3)
C52—N53—C54—N56118 (2)C205—N200—C203—C20459.1 (4)
C103—N100—C101—C10255.4 (4)C201—N200—C203—C20460.9 (3)
C105—N100—C101—C10263.4 (4)C207—N200—C203—C204179.6 (3)
C107—N100—C101—C102176.7 (3)C203—N200—C205—C20657.3 (4)
C101—N100—C103—C10458.1 (4)C201—N200—C205—C206179.7 (3)
C105—N100—C103—C104180.0 (3)C207—N200—C205—C20660.6 (4)
C107—N100—C103—C10460.2 (4)C203—N200—C207—C208179.3 (3)
C103—N100—C105—C106178.8 (3)C205—N200—C207—C20858.5 (4)
C101—N100—C105—C10659.8 (4)C201—N200—C207—C20859.9 (4)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y+2, z1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N25v0.79 (5)2.08 (5)2.862 (4)168 (4)
O1—H1B···N55ii0.71 (4)2.09 (4)2.792 (7)168 (4)
O1—H1B···N56ii0.71 (4)2.22 (4)2.922 (9)170 (4)
O2—H2A···N25vi0.84 (4)2.03 (4)2.862 (4)172 (3)
O2—H2B···N55vii0.71 (4)2.27 (4)2.963 (8)169 (4)
O2—H2B···N56vii0.71 (4)2.12 (4)2.819 (8)171 (4)
O3—H3A···N510.77 (4)2.07 (4)2.822 (4)165 (4)
O3—H3B···N1viii0.84 (6)2.09 (6)2.904 (4)162 (5)
O4—H4A···N51ix0.74 (4)2.23 (4)2.958 (4)172 (4)
O4—H4B···N1x0.77 (5)2.07 (5)2.833 (4)169 (5)
C105—H10L···N18v0.992.573.439 (5)146
C202—H20E···N8xi0.982.603.579 (5)173
C204—H20H···N53ix0.982.493.316 (4)142
Symmetry codes: (ii) x, y+2, z1/2; (v) x1/2, y+1/2, z; (vi) x1/2, y1/2, z; (vii) x, y+1, z1/2; (viii) x+1/2, y1/2, z; (ix) x, y+1, z; (x) x+1/2, y+1/2, z; (xi) x, y1, z.
 

Acknowledgements

CL wishes to acknowledge the financial support for this work from the Research & Development Corporation of Newfoundland and Labrador. KAA wishes to acknowledge the National Science Foundation and the University of Florida for funding the purchase of the X-ray equipment.

References

First citationBatten, S. R. & Murray, K. S. (2003). Coord. Chem. Rev. 246, 103–130.  Web of Science CrossRef CAS Google Scholar
First citationBiswas, M., Batten, S. R., Jensen, P. & Mitra, S. (2006). Aust. J. Chem. 59, 115–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKurmoo, M. & Kepert, C. J. (1998). New J. Chem. 22, 1515–1524.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRajan, D., Quintero, P. A., Abboud, K. A., Meisel, M. W. & Talham, D. R. (2013). Polyhedron, 66, 142–146.  CSD CrossRef CAS Google Scholar
First citationSchlueter, J. A., Manson, J. L. & Geiser, U. (2005). Inorg. Chem. 44, 3194–3202.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTong, M. L., Ru, J., Wu, Y. M., Chen, X. M., Chang, H. C., Mochizuki, K. & Kitagawa, S. (2003). New J. Chem. 27, 779–782.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerff, P. M. van der, Batten, S. R., Jensen, P., Moubaraki, B., Murray, K. S. & Tan, E. H. K. (2001). Polyhedron, 20, 1129–1138.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds