research communications
Crystal structures of (5RS)-(Z)-4-[5-(furan-2-yl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-4-oxobut-2-enoic acid and (5RS)-(Z)-4-[5-(furan-2-yl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl]-4-oxobut-2-enoic acid
aOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, bDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon, cNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, dInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and eX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-334, Moscow 119991, Russian Federation
*Correspondence e-mail:
The title compounds, C17H14N2O4 (I) and C15H12N2O4S (II), possess very similar molecular geometries. In both molecules, the central 1,3,5-trisubstituted dihydropyrazole ring adopts an The oxobutenoic acid fragment has an almost planar Z conformation [r.m.s. deviations of 0.049 and 0.022 Å, respectively, for (I) and (II)] which is determined by the both bond conjugation and the strong intramolecular O—H⋯O hydrogen bond. The substituents in positions 1 and 3 of the dihydropyrazole ring [oxobutenoic acid and phenyl in (I) and oxobutenoic acid and thienyl in (II)] are nearly coplanar with its basal plane [the corresponding dihedral angles are 6.14 (9) and 2.22 (11)° in (I) and 6.27 (12) and 3.91 (11)° in (II)]. The furyl ring plane is twisted relative to the basal plane of the dihydropyrazole ring by 85.51 (8) and 88.30 (7)° in (I) and (II), respectively. In the crystal of (I), molecules form zigzag hydrogen-bonded chains along [001] by C—H⋯O hydrogen bonds, which are further packed in stacks along [100]. Unlike (I), the crystal of (II) contains centrosymmetric hydrogen-bonded dimers formed by pairs of C—H⋯S hydrogen bonds, which are further linked by weak C—H⋯O hydrogen bonds into a three-dimensional framework.
Keywords: crystal structure; intramolecular Diels–Alder reaction; furan; thiophene.
1. Chemical context
3-(2-Furyl)pyrazolines and their N-acyl derivatives are well known to possess high and diverse biological activity, for example, topoisomerase I and II inhibitory and antiproliferative activity (Ahmad et al., 2016), 5α-reductase inhibitory activity (Banday et al., 2014), antibacterial (Joshi et al., 2016; Bhoot et al., 2012), antituberculous (Manna & Agrawal, 2010), anti-inflammatory (Shoman et al., 2009), antifungal activity (Deng et al. 2012), and many others. Pyrazolines, fused with other heterocycles, are much less studied. Thus, the main goal of this work was the synthesis of maleic (I) and (II) from (E)-1-(furan-2-yl)-3-arylprop-2-en-1-ones (Fig. 1) with subsequent their transformation into 3b,6-epoxypyrazolo[5,1-a]isoindoles by a thermal intramolecular Diels–Alder reaction of furan (the IMDAF reaction). However, we were unable to realize the final stage of the purposed synthesis – the thermal IMDAF reaction of maleic (I) and (II) (Fig. 2). Unexpectedly, these compounds remained unchanged at temperatures up to 413 K. In order to explain this fact by an understanding of their stereochemical features, an X-ray diffraction study of compounds (I) and (II) was undertaken.
2. Structural commentary
Compounds (I), C17H14N2O4, and (II), C15H12N2O4S, possess very similar molecular geometries (Figs. 3 and 4). In both molecules, the central 1,3,5-trisubstituted dihydropyrazole ring adopts an with the C5 carbon atom deviating from the plane through the other atoms of the ring by 0.251 (3) and 0.178 (3) Å, respectively, in (I) and (II). The oxobutenoic acid fragment has an almost planar Z conformation [r.m.s. deviations of 0.049 and 0.022 Å, respectively, for (I) and (II)] which is determined by both the bond conjugation and the strong intramolecular O3—H3⋯O1 hydrogen bond (Tables 1 and 2, Figs. 3 and 4). The substituents in positions 1 and 3 of the dihydropyrazole ring [oxobutenoic acid and phenyl in (I) and oxobutenoic acid and thienyl in (II)] are practically coplanar with its basal plane [the corresponding dihedral angles are 6.14 (9) and 2.22 (11)° in (I) and 6.27 (12) and 3.91 (11)° in (II)]. Importantly, the furyl ring plane is twisted relative to the basal plane of the dihydropyrazole ring by 85.51 (8) and 88.30 (7)° in (I) and (II), respectively. Apparently, it is such a perpendicular arrangement of the furyl and oxobutenoic acid fragments that inhibits the IMDAF reaction between them.
|
|
The nitrogen atom N1 has a planar–trigonal geometry, the sum of the bond angles being 359.9° for (I) and 360.0° for (II). The bond lengths and angles in (I) and (II) are in good agreement with those observed in related structures (Suponitsky et al., 2002; Guo, 2007; Vinutha et al., 2013). The molecules possess an asymmetric center at the C5 carbon atom. The crystals of (I) and (II) are racemic and consist of (5RS)-enantiomeric pairs.
3. Supramolecular features
Although the similarity of the molecular geometries and intramolecular interactions might lead to similar packing motifs, this is not found in the case for (I) and (II). The intermolecular interactions, namely C—H⋯O and C—H⋯S hydrogen bonding, combined in a different way, give rise to different packing networks.
In the crystal of (I), molecules form zigzag hydrogen-bonded chains along [001] by the C19—H19⋯O2(x, y, z − 1) hydrogen bonds (Table 1 and Fig. 5), which are further packed in stacks along [100] (Fig. 5).
However, unlike in (I), the crystal of (II) contains centrosymmetric hydrogen-bonded dimers formed by the two C4—H4B⋯S1(−x + 1, −y, −z + 2) hydrogen bonds (Table 2 and Fig. 6), which are further linked by weak C17—H17⋯O1(x − , −y + , z − ) hydrogen bonds into a three-dimensional framework (Table 3 and Fig. 6).
4. Synthesis and crystallization
The initial 5-(furan-2-yl)-3-aryl-4,5-dihydro-1H-pyrazoles were synthesized from (E)-1-(furan-2-yl)-3-arylprop-2-en-1-ones according to the procedure described previously (Grandberg et al. 1960; Kriven'ko et al. 2000; Cetin et al. 2003; Özdemir et al. 2007).
General procedure. A solution of the corresponding (E)-1-(furan-2-yl)-3-arylprop-2-en-1-one (0.025 mol) in alcohol (15 mL) was added to a solution of hydrazine hydrate (2.5 mL, 0.05 mol) in alcohol (15 mL). The mixture was heated at reflux for 3–5 h (TLC monitoring), then the solvent and the excess of hydrazine hydrate were removed under reduced pressure. The residue, viscous brown oil, was dissolved in benzene (15 mL) and acylated (stirring at room temperature for 1 day) with a solution of maleic anhydride (2.45 g, 0.025 mol) in benzene (25 mL). The precipitated crystals were filtered off and recrystallized from an EtOH–DMF mixture to give the analytically pure maleic (I) and (II).
(5RS)-(Z)-4-[5-(Furan-2-yl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-4-oxobut-2-enoic acid (I). Colourless rhombic prisms. Yield is 4.88 g (63%). M.p. = 453.7–455.6 K with decomp. (EtOH–DMF). 1H NMR (DMSO, 600 MHz, 303 K): δ = 3.40 (dd, 1H, H4A, J4,4 = 17.7, J4A,5 = 5.0), 3.76 (dd, 1H, H4B, J4,4 = 17.7, J4B,5 = 11.8), 5.70 (dd, 1H, H5, J5,4A = 5.0, J4B,5 = 11.8), 6.29 (d, 1H, —CH=CH—CO2H, J = 12.1), 6.39–6.41 [m, 2H, H3 and H4 (furyl)], 6.91 (d, 1H, —CH=CH—CO2H, J = 12.1), 7.44–7.49 [m, 3H, H3, H4 and H5 (Ph)], 7.57 [m, 1H, H5 (furyl)], 7.77–7.79 [m, 2H, H2 and H6 (Ph)], 12.29 (br s, 1H, CO2H). 13C NMR (DMSO-d6, 150.9 MHz, 303 K): δ = 38.8 (C4), 54.0 (C5), 107.9 and 111.0 [C3 and C4 (furyl)], 127.3 [2C, C3 and C5 (Ph)], 129.4 [2C, C2 and C6 (Ph)], 130.1, 131.0, 131.17 [C1 (Ph)], 131.20, 143.0 [C5 (Furyl)], 152.6, 156.2, 163.0, 167.4.
(5RS)-(Z)-4-[5-(Furan-2-yl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl]-4-oxobut-2-enoic acid (II). Light-yellow rhombic prisms. Yield is 4.03 g (51%). M.p. = 449.8–450.9 K with decomp. (EtOH–DMF). 1H NMR (DMSO, 600 MHz, 301 K): δ = 3.41 (dd, 1H, H4A, J4,4 = 17.5, J4A,5 = 4.4), 3.76 (dd, 1H, H4B, J4,4 = 17.5, J4B,5 = 11.8), 5.69 (dd, 1H, H5, J5,4A = 4.4, J4B,5 = 11.8), 6.30 (d, 1H, —CH=CH—CO2H, J = 12.1), 6.39–6.41 [m, 2H, H3 and H4 (furyl)], 6.81 (d, 1H, —CH=CH—CO2H, J = 12.1), 7.16 [dd, 1H, H4 (thienyl), J3,4 = 3.5, J4,5 = 4.9], 7.52 [dd, 1H, H3 (thienyl), J3,4 = 3.5, J3,5 = 1.3], 7.57 [m, 1H, H5 (furyl), 7.75 [dd, 1H, H5 (thienyl), J3,5 = 1.3, J4,5 = 4.9], 12.8 (br s, 1H, CO2H). 13C NMR (DMSO, 150.9 MHz, 301 K): δ = 39.5 (C4), 54.1 (C5), 108.0, 111.1, 128.7, 130.3, 130.6, 130.8, 131.4, 134.2 [C1 (Ph)], 143.1 [C5 (furyl)], 152.1, 152.4, 162.7, 167.3.
5. Refinement
Crystal data, data collection and structure . X-ray diffraction studies were carried out on the `Belok' beamline (λ = 0.96990 Å) of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation) using a MAR CCD detector. For each compound a total of 360 images were collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the SCALA program (Evans, 2006). The data were indexed, integrated and scaled using the utility iMOSFLM in CCP4 (Battye et al., 2011).
details are summarized in Table 3The hydrogen atoms of the hydroxyl groups were localized in difference-Fourier maps and refined in an isotropic approximation with fixed displacement parameters [Uiso(H) = 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].
The insufficient data completeness of 96.7% in the case of (I) is determined by the low (triclinic) crystal symmetry. It is very difficult to get good data completeness at this symmetry using the φ scan mode only (`Belok' beamline limitation), even though we have run two different crystal orientations.
Supporting information
https://doi.org/10.1107/S2056989016013992/xu5892sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016013992/xu5892Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989016013992/xu5892IIsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016013992/xu5892Isup4.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989016013992/xu5892IIsup5.cml
For both compounds, data collection: Automar (MarXperts, 2015); cell
iMOSFLM (Battye et al., 2011); data reduction: iMOSFLM (Battye et al., 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H14N2O4 | Z = 2 |
Mr = 310.30 | F(000) = 324 |
Triclinic, P1 | Dx = 1.404 Mg m−3 |
a = 7.2940 (15) Å | Synchrotron radiation, λ = 0.96990 Å |
b = 10.738 (2) Å | Cell parameters from 500 reflections |
c = 10.845 (2) Å | θ = 4.0–36.0° |
α = 114.10 (3)° | µ = 0.22 mm−1 |
β = 102.46 (3)° | T = 100 K |
γ = 97.57 (3)° | Needle, colourless |
V = 733.8 (3) Å3 | 0.20 × 0.07 × 0.07 mm |
MAR CCD diffractometer | 2189 reflections with I > 2σ(I) |
/f scan | Rint = 0.103 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 38.4°, θmin = 4.0° |
Tmin = 0.950, Tmax = 0.980 | h = −9→9 |
10451 measured reflections | k = −13→12 |
2947 independent reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.199 | w = 1/[σ2(Fo2) + (0.088P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2947 reflections | Δρmax = 0.41 e Å−3 |
212 parameters | Δρmin = −0.39 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.112 (13) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.53546 (18) | 0.85698 (13) | 0.87765 (13) | 0.0294 (4) | |
O2 | 0.8189 (2) | 0.71553 (16) | 1.17671 (15) | 0.0402 (5) | |
O3 | 0.7068 (2) | 0.86788 (15) | 1.11054 (15) | 0.0351 (5) | |
H3 | 0.644 (3) | 0.874 (2) | 1.020 (3) | 0.053* | |
O4 | 0.55732 (19) | 0.79397 (15) | 0.46578 (14) | 0.0329 (5) | |
N1 | 0.3716 (2) | 0.69540 (16) | 0.65583 (16) | 0.0249 (5) | |
N2 | 0.2966 (2) | 0.55549 (16) | 0.54965 (17) | 0.0256 (5) | |
C3 | 0.1865 (2) | 0.5590 (2) | 0.4406 (2) | 0.0242 (5) | |
C4 | 0.1695 (3) | 0.7049 (2) | 0.4619 (2) | 0.0275 (5) | |
H4A | 0.0397 | 0.7182 | 0.4690 | 0.033* | |
H4B | 0.1943 | 0.7229 | 0.3837 | 0.033* | |
C5 | 0.3284 (3) | 0.8010 (2) | 0.6030 (2) | 0.0269 (5) | |
H5 | 0.2761 | 0.8733 | 0.6688 | 0.032* | |
C6 | 0.4790 (2) | 0.7294 (2) | 0.7886 (2) | 0.0259 (5) | |
C7 | 0.5227 (3) | 0.6115 (2) | 0.8181 (2) | 0.0266 (5) | |
H7 | 0.4700 | 0.5198 | 0.7415 | 0.032* | |
C8 | 0.6277 (3) | 0.6188 (2) | 0.9400 (2) | 0.0286 (5) | |
H8 | 0.6429 | 0.5301 | 0.9337 | 0.034* | |
C9 | 0.7259 (3) | 0.7393 (2) | 1.0843 (2) | 0.0293 (6) | |
C10 | 0.0858 (2) | 0.4281 (2) | 0.30984 (19) | 0.0254 (5) | |
C11 | −0.0296 (3) | 0.4332 (2) | 0.1915 (2) | 0.0278 (5) | |
H11 | −0.0446 | 0.5212 | 0.1955 | 0.033* | |
C12 | −0.1226 (3) | 0.3089 (2) | 0.0676 (2) | 0.0304 (6) | |
H12 | −0.1982 | 0.3128 | −0.0133 | 0.036* | |
C13 | −0.1049 (3) | 0.1801 (2) | 0.0623 (2) | 0.0319 (6) | |
H13 | −0.1711 | 0.0958 | −0.0215 | 0.038* | |
C14 | 0.0096 (3) | 0.1735 (2) | 0.1793 (2) | 0.0307 (6) | |
H14 | 0.0216 | 0.0849 | 0.1751 | 0.037* | |
C15 | 0.1064 (3) | 0.2973 (2) | 0.3027 (2) | 0.0268 (5) | |
H15 | 0.1864 | 0.2931 | 0.3819 | 0.032* | |
C16 | 0.5068 (3) | 0.8691 (2) | 0.5855 (2) | 0.0268 (5) | |
C17 | 0.6447 (3) | 0.9908 (2) | 0.6709 (2) | 0.0311 (6) | |
H17 | 0.6450 | 1.0607 | 0.7600 | 0.037* | |
C18 | 0.7893 (3) | 0.9938 (2) | 0.6013 (2) | 0.0374 (6) | |
H18 | 0.9041 | 1.0661 | 0.6349 | 0.045* | |
C19 | 0.7316 (3) | 0.8742 (2) | 0.4787 (2) | 0.0374 (6) | |
H19 | 0.8007 | 0.8486 | 0.4109 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0309 (7) | 0.0236 (8) | 0.0258 (8) | 0.0015 (6) | 0.0020 (6) | 0.0084 (6) |
O2 | 0.0480 (9) | 0.0376 (9) | 0.0283 (9) | 0.0095 (7) | −0.0028 (7) | 0.0158 (7) |
O3 | 0.0433 (9) | 0.0276 (9) | 0.0251 (8) | 0.0041 (6) | −0.0018 (7) | 0.0105 (7) |
O4 | 0.0305 (8) | 0.0355 (9) | 0.0305 (9) | 0.0058 (6) | 0.0069 (6) | 0.0146 (7) |
N1 | 0.0260 (8) | 0.0210 (9) | 0.0214 (9) | 0.0011 (7) | 0.0002 (7) | 0.0085 (7) |
N2 | 0.0249 (8) | 0.0232 (9) | 0.0228 (9) | 0.0021 (7) | 0.0034 (7) | 0.0078 (7) |
C3 | 0.0211 (9) | 0.0262 (11) | 0.0237 (11) | 0.0041 (8) | 0.0065 (8) | 0.0105 (9) |
C4 | 0.0229 (9) | 0.0286 (11) | 0.0248 (11) | 0.0021 (8) | 0.0008 (8) | 0.0106 (9) |
C5 | 0.0260 (9) | 0.0263 (11) | 0.0246 (10) | 0.0043 (8) | 0.0004 (8) | 0.0122 (9) |
C6 | 0.0216 (9) | 0.0295 (11) | 0.0244 (11) | 0.0027 (8) | 0.0030 (8) | 0.0132 (9) |
C7 | 0.0274 (9) | 0.0248 (11) | 0.0240 (10) | 0.0020 (8) | 0.0053 (8) | 0.0099 (9) |
C8 | 0.0280 (10) | 0.0287 (11) | 0.0276 (11) | 0.0035 (8) | 0.0039 (8) | 0.0145 (9) |
C9 | 0.0302 (10) | 0.0293 (12) | 0.0266 (11) | 0.0043 (8) | 0.0039 (8) | 0.0140 (9) |
C10 | 0.0218 (9) | 0.0295 (12) | 0.0234 (11) | 0.0032 (8) | 0.0051 (8) | 0.0122 (9) |
C11 | 0.0255 (9) | 0.0293 (11) | 0.0259 (11) | 0.0041 (8) | 0.0037 (8) | 0.0128 (9) |
C12 | 0.0283 (10) | 0.0326 (12) | 0.0237 (11) | 0.0043 (9) | 0.0019 (8) | 0.0105 (9) |
C13 | 0.0288 (10) | 0.0315 (12) | 0.0254 (11) | 0.0025 (8) | 0.0022 (8) | 0.0079 (9) |
C14 | 0.0293 (10) | 0.0275 (11) | 0.0325 (12) | 0.0052 (8) | 0.0064 (9) | 0.0127 (9) |
C15 | 0.0243 (9) | 0.0275 (11) | 0.0260 (11) | 0.0040 (8) | 0.0043 (8) | 0.0119 (9) |
C16 | 0.0279 (10) | 0.0242 (11) | 0.0246 (10) | 0.0040 (8) | 0.0005 (8) | 0.0118 (9) |
C17 | 0.0300 (10) | 0.0250 (11) | 0.0283 (11) | −0.0009 (8) | −0.0015 (8) | 0.0100 (9) |
C18 | 0.0252 (10) | 0.0400 (13) | 0.0512 (14) | 0.0009 (9) | 0.0019 (9) | 0.0314 (12) |
C19 | 0.0283 (10) | 0.0525 (15) | 0.0437 (14) | 0.0105 (10) | 0.0103 (9) | 0.0334 (12) |
O1—C6 | 1.256 (2) | C8—C9 | 1.501 (3) |
O2—C9 | 1.222 (2) | C8—H8 | 0.9500 |
O3—C9 | 1.324 (3) | C10—C11 | 1.400 (3) |
O3—H3 | 1.02 (3) | C10—C15 | 1.405 (3) |
O4—C16 | 1.379 (3) | C11—C12 | 1.396 (3) |
O4—C19 | 1.384 (2) | C11—H11 | 0.9500 |
N1—C6 | 1.352 (2) | C12—C13 | 1.386 (3) |
N1—N2 | 1.408 (2) | C12—H12 | 0.9500 |
N1—C5 | 1.504 (2) | C13—C14 | 1.395 (3) |
N2—C3 | 1.295 (2) | C13—H13 | 0.9500 |
C3—C10 | 1.475 (3) | C14—C15 | 1.396 (3) |
C3—C4 | 1.515 (3) | C14—H14 | 0.9500 |
C4—C5 | 1.542 (3) | C15—H15 | 0.9500 |
C4—H4A | 0.9900 | C16—C17 | 1.357 (3) |
C4—H4B | 0.9900 | C17—C18 | 1.428 (3) |
C5—C16 | 1.494 (3) | C17—H17 | 0.9500 |
C5—H5 | 1.0000 | C18—C19 | 1.348 (3) |
C6—C7 | 1.483 (3) | C18—H18 | 0.9500 |
C7—C8 | 1.343 (3) | C19—H19 | 0.9500 |
C7—H7 | 0.9500 | ||
C9—O3—H3 | 111.6 (14) | O3—C9—C8 | 120.10 (18) |
C16—O4—C19 | 106.22 (16) | C11—C10—C15 | 119.44 (17) |
C6—N1—N2 | 122.90 (16) | C11—C10—C3 | 120.42 (19) |
C6—N1—C5 | 124.32 (15) | C15—C10—C3 | 120.14 (17) |
N2—N1—C5 | 112.71 (14) | C12—C11—C10 | 120.0 (2) |
C3—N2—N1 | 107.28 (16) | C12—C11—H11 | 120.0 |
N2—C3—C10 | 120.85 (18) | C10—C11—H11 | 120.0 |
N2—C3—C4 | 114.48 (16) | C13—C12—C11 | 120.21 (19) |
C10—C3—C4 | 124.66 (16) | C13—C12—H12 | 119.9 |
C3—C4—C5 | 102.65 (15) | C11—C12—H12 | 119.9 |
C3—C4—H4A | 111.2 | C12—C13—C14 | 120.36 (18) |
C5—C4—H4A | 111.2 | C12—C13—H13 | 119.8 |
C3—C4—H4B | 111.2 | C14—C13—H13 | 119.8 |
C5—C4—H4B | 111.2 | C13—C14—C15 | 119.85 (19) |
H4A—C4—H4B | 109.1 | C13—C14—H14 | 120.1 |
C16—C5—N1 | 110.07 (15) | C15—C14—H14 | 120.1 |
C16—C5—C4 | 113.66 (17) | C14—C15—C10 | 120.09 (18) |
N1—C5—C4 | 100.45 (14) | C14—C15—H15 | 120.0 |
C16—C5—H5 | 110.8 | C10—C15—H15 | 120.0 |
N1—C5—H5 | 110.8 | C17—C16—O4 | 109.89 (18) |
C4—C5—H5 | 110.8 | C17—C16—C5 | 132.7 (2) |
O1—C6—N1 | 118.52 (17) | O4—C16—C5 | 117.25 (16) |
O1—C6—C7 | 124.58 (16) | C16—C17—C18 | 106.85 (19) |
N1—C6—C7 | 116.90 (17) | C16—C17—H17 | 126.6 |
C8—C7—C6 | 127.84 (18) | C18—C17—H17 | 126.6 |
C8—C7—H7 | 116.1 | C19—C18—C17 | 106.76 (18) |
C6—C7—H7 | 116.1 | C19—C18—H18 | 126.6 |
C7—C8—C9 | 132.8 (2) | C17—C18—H18 | 126.6 |
C7—C8—H8 | 113.6 | C18—C19—O4 | 110.3 (2) |
C9—C8—H8 | 113.6 | C18—C19—H19 | 124.9 |
O2—C9—O3 | 121.15 (18) | O4—C19—H19 | 124.9 |
O2—C9—C8 | 118.72 (19) | ||
C6—N1—N2—C3 | 173.99 (17) | C4—C3—C10—C11 | 2.7 (3) |
C5—N1—N2—C3 | −9.2 (2) | N2—C3—C10—C15 | 0.8 (3) |
N1—N2—C3—C10 | 179.71 (16) | C4—C3—C10—C15 | −177.85 (17) |
N1—N2—C3—C4 | −1.5 (2) | C15—C10—C11—C12 | −0.2 (3) |
N2—C3—C4—C5 | 10.8 (2) | C3—C10—C11—C12 | 179.26 (18) |
C10—C3—C4—C5 | −170.49 (19) | C10—C11—C12—C13 | 1.5 (3) |
C6—N1—C5—C16 | 71.7 (2) | C11—C12—C13—C14 | −1.5 (3) |
N2—N1—C5—C16 | −105.08 (17) | C12—C13—C14—C15 | 0.2 (3) |
C6—N1—C5—C4 | −168.17 (19) | C13—C14—C15—C10 | 1.2 (3) |
N2—N1—C5—C4 | 15.0 (2) | C11—C10—C15—C14 | −1.2 (3) |
C3—C4—C5—C16 | 103.36 (18) | C3—C10—C15—C14 | 179.38 (18) |
C3—C4—C5—N1 | −14.14 (18) | C19—O4—C16—C17 | −0.7 (2) |
N2—N1—C6—O1 | −178.08 (16) | C19—O4—C16—C5 | −176.11 (16) |
C5—N1—C6—O1 | 5.4 (3) | N1—C5—C16—C17 | −95.2 (3) |
N2—N1—C6—C7 | 2.3 (3) | C4—C5—C16—C17 | 153.0 (2) |
C5—N1—C6—C7 | −174.19 (17) | N1—C5—C16—O4 | 78.9 (2) |
O1—C6—C7—C8 | −0.6 (3) | C4—C5—C16—O4 | −32.8 (2) |
N1—C6—C7—C8 | 179.0 (2) | O4—C16—C17—C18 | 0.6 (2) |
C6—C7—C8—C9 | 3.2 (4) | C5—C16—C17—C18 | 175.1 (2) |
C7—C8—C9—O2 | −177.6 (2) | C16—C17—C18—C19 | −0.3 (2) |
C7—C8—C9—O3 | 4.1 (4) | C17—C18—C19—O4 | −0.2 (2) |
N2—C3—C10—C11 | −178.62 (16) | C16—O4—C19—C18 | 0.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1 | 1.02 (3) | 1.50 (3) | 2.513 (2) | 171 (2) |
C19—H19···O2i | 0.95 | 2.40 | 3.266 (3) | 152 |
Symmetry code: (i) x, y, z−1. |
C15H12N2O4S | F(000) = 656 |
Mr = 316.33 | Dx = 1.485 Mg m−3 |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.96990 Å |
a = 9.6702 (19) Å | Cell parameters from 600 reflections |
b = 13.150 (3) Å | θ = 3.6–36.0° |
c = 11.240 (2) Å | µ = 0.58 mm−1 |
β = 98.29 (3)° | T = 100 K |
V = 1414.4 (5) Å3 | Prism, colourless |
Z = 4 | 0.40 × 0.30 × 0.20 mm |
MAR CCD diffractometer | 2685 reflections with I > 2σ(I) |
/f scan | Rint = 0.087 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 38.5°, θmin = 3.6° |
Tmin = 0.789, Tmax = 0.876 | h = −12→12 |
17279 measured reflections | k = −16→14 |
2961 independent reflections | l = −13→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0506P)2 + 1.1417P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2961 reflections | Δρmax = 0.43 e Å−3 |
203 parameters | Δρmin = −0.52 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.029 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.18979 (4) | 0.02971 (3) | 0.94264 (4) | 0.01637 (17) | |
O1 | 0.62416 (12) | 0.37278 (9) | 0.76273 (11) | 0.0158 (3) | |
O2 | 0.46922 (14) | 0.66885 (9) | 0.86341 (12) | 0.0226 (3) | |
O3 | 0.60922 (13) | 0.56265 (10) | 0.78427 (12) | 0.0206 (3) | |
H3 | 0.621 (3) | 0.497 (2) | 0.772 (2) | 0.031* | |
O4 | 0.44618 (12) | 0.14434 (10) | 0.54975 (11) | 0.0165 (3) | |
N1 | 0.50566 (14) | 0.23234 (10) | 0.79925 (12) | 0.0118 (3) | |
N2 | 0.40101 (14) | 0.17978 (11) | 0.84886 (12) | 0.0120 (3) | |
C3 | 0.42845 (16) | 0.08325 (12) | 0.84155 (14) | 0.0114 (3) | |
C4 | 0.55685 (17) | 0.05821 (13) | 0.78427 (15) | 0.0133 (3) | |
H4A | 0.5342 | 0.0104 | 0.7162 | 0.016* | |
H4B | 0.6316 | 0.0285 | 0.8436 | 0.016* | |
C5 | 0.59983 (16) | 0.16366 (12) | 0.74062 (15) | 0.0124 (3) | |
H5 | 0.6999 | 0.1781 | 0.7723 | 0.015* | |
C6 | 0.52109 (17) | 0.33450 (12) | 0.80326 (15) | 0.0117 (3) | |
C7 | 0.41319 (17) | 0.39413 (13) | 0.85407 (15) | 0.0134 (3) | |
H7 | 0.3409 | 0.3558 | 0.8819 | 0.016* | |
C8 | 0.40489 (18) | 0.49611 (13) | 0.86571 (15) | 0.0147 (4) | |
H8 | 0.3246 | 0.5181 | 0.8984 | 0.018* | |
C9 | 0.49805 (18) | 0.58175 (13) | 0.83701 (15) | 0.0158 (4) | |
C10 | 0.34310 (17) | 0.00445 (13) | 0.88510 (14) | 0.0123 (3) | |
C11 | 0.37250 (16) | −0.10024 (12) | 0.88526 (14) | 0.0107 (3) | |
H11 | 0.4522 | −0.1292 | 0.8579 | 0.013* | |
C12 | 0.26597 (18) | −0.15765 (13) | 0.93240 (16) | 0.0154 (4) | |
H12 | 0.2672 | −0.2296 | 0.9397 | 0.019* | |
C13 | 0.16253 (18) | −0.09732 (14) | 0.96569 (16) | 0.0178 (4) | |
H13 | 0.0841 | −0.1231 | 0.9981 | 0.021* | |
C14 | 0.57458 (17) | 0.17614 (12) | 0.60747 (15) | 0.0125 (3) | |
C15 | 0.65215 (18) | 0.21555 (13) | 0.52703 (16) | 0.0162 (4) | |
H15 | 0.7443 | 0.2419 | 0.5440 | 0.019* | |
C16 | 0.56731 (19) | 0.20951 (14) | 0.41102 (16) | 0.0189 (4) | |
H16 | 0.5922 | 0.2313 | 0.3364 | 0.023* | |
C17 | 0.44516 (19) | 0.16660 (14) | 0.42938 (16) | 0.0188 (4) | |
H17 | 0.3690 | 0.1535 | 0.3680 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0148 (3) | 0.0149 (3) | 0.0206 (3) | 0.00060 (15) | 0.00654 (18) | 0.00097 (15) |
O1 | 0.0136 (6) | 0.0140 (6) | 0.0213 (7) | −0.0020 (4) | 0.0077 (5) | 0.0004 (5) |
O2 | 0.0310 (8) | 0.0120 (6) | 0.0251 (7) | 0.0012 (5) | 0.0054 (6) | −0.0003 (5) |
O3 | 0.0192 (6) | 0.0131 (6) | 0.0311 (8) | −0.0036 (5) | 0.0087 (5) | −0.0009 (5) |
O4 | 0.0129 (6) | 0.0211 (6) | 0.0155 (6) | 0.0007 (5) | 0.0024 (5) | −0.0019 (5) |
N1 | 0.0115 (7) | 0.0111 (7) | 0.0144 (7) | −0.0004 (5) | 0.0072 (5) | 0.0005 (5) |
N2 | 0.0119 (7) | 0.0123 (7) | 0.0128 (7) | −0.0027 (5) | 0.0052 (5) | 0.0007 (5) |
C3 | 0.0124 (7) | 0.0129 (8) | 0.0091 (8) | 0.0004 (6) | 0.0023 (6) | −0.0005 (6) |
C4 | 0.0136 (8) | 0.0132 (8) | 0.0143 (8) | 0.0014 (6) | 0.0062 (6) | 0.0007 (6) |
C5 | 0.0105 (7) | 0.0118 (8) | 0.0160 (8) | 0.0022 (6) | 0.0061 (6) | −0.0007 (6) |
C6 | 0.0115 (8) | 0.0120 (8) | 0.0115 (8) | −0.0002 (6) | 0.0014 (6) | 0.0004 (6) |
C7 | 0.0131 (8) | 0.0145 (8) | 0.0136 (8) | −0.0008 (6) | 0.0049 (6) | −0.0008 (6) |
C8 | 0.0154 (8) | 0.0157 (8) | 0.0137 (8) | 0.0009 (7) | 0.0042 (6) | −0.0009 (7) |
C9 | 0.0194 (8) | 0.0141 (8) | 0.0134 (8) | 0.0002 (7) | 0.0007 (6) | 0.0009 (6) |
C10 | 0.0131 (8) | 0.0123 (8) | 0.0118 (8) | −0.0009 (6) | 0.0025 (6) | −0.0004 (6) |
C11 | 0.0118 (7) | 0.0109 (7) | 0.0093 (7) | −0.0043 (6) | 0.0006 (6) | 0.0017 (6) |
C12 | 0.0180 (8) | 0.0130 (8) | 0.0158 (8) | −0.0030 (6) | 0.0041 (6) | 0.0012 (6) |
C13 | 0.0159 (8) | 0.0183 (9) | 0.0203 (9) | −0.0028 (7) | 0.0062 (7) | 0.0011 (7) |
C14 | 0.0110 (7) | 0.0119 (8) | 0.0152 (8) | 0.0016 (6) | 0.0035 (6) | −0.0011 (6) |
C15 | 0.0178 (8) | 0.0140 (8) | 0.0181 (9) | 0.0003 (6) | 0.0073 (7) | 0.0004 (6) |
C16 | 0.0278 (9) | 0.0163 (8) | 0.0138 (9) | 0.0059 (7) | 0.0072 (7) | 0.0007 (7) |
C17 | 0.0228 (9) | 0.0204 (9) | 0.0125 (9) | 0.0072 (7) | 0.0004 (7) | −0.0033 (7) |
S1—C13 | 1.7166 (19) | C5—H5 | 1.0000 |
S1—C10 | 1.7330 (17) | C6—C7 | 1.484 (2) |
O1—C6 | 1.2592 (19) | C7—C8 | 1.351 (2) |
O2—C9 | 1.225 (2) | C7—H7 | 0.9500 |
O3—C9 | 1.324 (2) | C8—C9 | 1.506 (2) |
O3—H3 | 0.88 (3) | C8—H8 | 0.9500 |
O4—C14 | 1.380 (2) | C10—C11 | 1.406 (2) |
O4—C17 | 1.383 (2) | C11—C12 | 1.439 (2) |
N1—C6 | 1.352 (2) | C11—H11 | 0.9500 |
N1—N2 | 1.4056 (17) | C12—C13 | 1.370 (2) |
N1—C5 | 1.5007 (19) | C12—H12 | 0.9500 |
N2—C3 | 1.302 (2) | C13—H13 | 0.9500 |
C3—C10 | 1.453 (2) | C14—C15 | 1.358 (2) |
C3—C4 | 1.515 (2) | C15—C16 | 1.439 (3) |
C4—C5 | 1.548 (2) | C15—H15 | 0.9500 |
C4—H4A | 0.9900 | C16—C17 | 1.351 (3) |
C4—H4B | 0.9900 | C16—H16 | 0.9500 |
C5—C14 | 1.490 (2) | C17—H17 | 0.9500 |
C13—S1—C10 | 91.61 (8) | C7—C8—H8 | 113.7 |
C9—O3—H3 | 113.0 (16) | C9—C8—H8 | 113.7 |
C14—O4—C17 | 105.94 (13) | O2—C9—O3 | 120.88 (16) |
C6—N1—N2 | 123.90 (13) | O2—C9—C8 | 118.89 (16) |
C6—N1—C5 | 122.81 (13) | O3—C9—C8 | 120.23 (15) |
N2—N1—C5 | 113.29 (12) | C11—C10—C3 | 125.05 (15) |
C3—N2—N1 | 106.83 (12) | C11—C10—S1 | 111.78 (12) |
N2—C3—C10 | 122.91 (14) | C3—C10—S1 | 123.17 (13) |
N2—C3—C4 | 115.19 (14) | C10—C11—C12 | 111.03 (14) |
C10—C3—C4 | 121.90 (14) | C10—C11—H11 | 124.5 |
C3—C4—C5 | 102.36 (13) | C12—C11—H11 | 124.5 |
C3—C4—H4A | 111.3 | C13—C12—C11 | 112.74 (15) |
C5—C4—H4A | 111.3 | C13—C12—H12 | 123.6 |
C3—C4—H4B | 111.3 | C11—C12—H12 | 123.6 |
C5—C4—H4B | 111.3 | C12—C13—S1 | 112.84 (13) |
H4A—C4—H4B | 109.2 | C12—C13—H13 | 123.6 |
C14—C5—N1 | 110.66 (13) | S1—C13—H13 | 123.6 |
C14—C5—C4 | 113.85 (14) | C15—C14—O4 | 110.40 (15) |
N1—C5—C4 | 101.09 (12) | C15—C14—C5 | 133.19 (16) |
C14—C5—H5 | 110.3 | O4—C14—C5 | 116.40 (14) |
N1—C5—H5 | 110.3 | C14—C15—C16 | 106.54 (15) |
C4—C5—H5 | 110.3 | C14—C15—H15 | 126.7 |
O1—C6—N1 | 118.33 (14) | C16—C15—H15 | 126.7 |
O1—C6—C7 | 124.42 (15) | C17—C16—C15 | 106.33 (16) |
N1—C6—C7 | 117.24 (14) | C17—C16—H16 | 126.8 |
C8—C7—C6 | 128.08 (15) | C15—C16—H16 | 126.8 |
C8—C7—H7 | 116.0 | C16—C17—O4 | 110.78 (16) |
C6—C7—H7 | 116.0 | C16—C17—H17 | 124.6 |
C7—C8—C9 | 132.52 (16) | O4—C17—H17 | 124.6 |
C6—N1—N2—C3 | −172.26 (15) | C4—C3—C10—C11 | 3.5 (2) |
C5—N1—N2—C3 | 7.76 (17) | N2—C3—C10—S1 | 4.2 (2) |
N1—N2—C3—C10 | 179.46 (14) | C4—C3—C10—S1 | −175.93 (12) |
N1—N2—C3—C4 | −0.40 (18) | C13—S1—C10—C11 | −0.62 (13) |
N2—C3—C4—C5 | −6.46 (19) | C13—S1—C10—C3 | 178.89 (14) |
C10—C3—C4—C5 | 173.68 (14) | C3—C10—C11—C12 | −178.98 (15) |
C6—N1—C5—C14 | −70.26 (19) | S1—C10—C11—C12 | 0.51 (17) |
N2—N1—C5—C14 | 109.72 (15) | C10—C11—C12—C13 | −0.1 (2) |
C6—N1—C5—C4 | 168.79 (14) | C11—C12—C13—S1 | −0.4 (2) |
N2—N1—C5—C4 | −11.23 (17) | C10—S1—C13—C12 | 0.57 (15) |
C3—C4—C5—C14 | −108.98 (15) | C17—O4—C14—C15 | −0.77 (18) |
C3—C4—C5—N1 | 9.68 (16) | C17—O4—C14—C5 | 177.90 (13) |
N2—N1—C6—O1 | 175.44 (14) | N1—C5—C14—C15 | 111.5 (2) |
C5—N1—C6—O1 | −4.6 (2) | C4—C5—C14—C15 | −135.49 (19) |
N2—N1—C6—C7 | −5.4 (2) | N1—C5—C14—O4 | −66.83 (17) |
C5—N1—C6—C7 | 174.58 (14) | C4—C5—C14—O4 | 46.22 (19) |
O1—C6—C7—C8 | 0.2 (3) | O4—C14—C15—C16 | 0.66 (18) |
N1—C6—C7—C8 | −178.88 (17) | C5—C14—C15—C16 | −177.71 (17) |
C6—C7—C8—C9 | −2.1 (3) | C14—C15—C16—C17 | −0.28 (19) |
C7—C8—C9—O2 | −175.82 (18) | C15—C16—C17—O4 | −0.2 (2) |
C7—C8—C9—O3 | 4.1 (3) | C14—O4—C17—C16 | 0.59 (19) |
N2—C3—C10—C11 | −176.34 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O1 | 0.88 (3) | 1.64 (3) | 2.5146 (19) | 171 (2) |
C4—H4B···S1i | 0.99 | 2.85 | 3.820 (2) | 165 |
C17—H17···O1ii | 0.95 | 2.51 | 3.426 (2) | 161 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
This work was supported financially by the Ministry of Education and Science of the Russian Federation (Agreement No. 02.a03.21.0008) and the Russian Foundation for Basic Research (grant No. 15–33-50016).
References
Ahmad, P., Woo, H., Jun, K.-Y., Kadi, A. A., Abdel-Aziz, H. A., Kwon, Y. & Rahman, A. F. M. M. (2016). Bioorg. Med. Chem. 24, 1898–1908. Web of Science CrossRef CAS PubMed Google Scholar
Banday, A. H., Shameem, S. A. & Jeelani, S. (2014). Steroids, 92, 13–19. Web of Science CrossRef CAS PubMed Google Scholar
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bhoot, D., Khunt, R. C. & Parekh, H. H. (2012). Med. Chem. Res. 21, 3233–3239. Web of Science CrossRef CAS Google Scholar
Cetin, A., Cansiz, A. & Digrak, M. (2003). Heteroat. Chem. 14, 345–347. Web of Science CrossRef CAS Google Scholar
Deng, H., Yu, Z.-Y., Shi, G.-Y., Chen, M.-J., Tao, K. & Hou, T.-P. (2012). Chem. Biol. Drug Des. 79, 279–289. Web of Science CrossRef CAS PubMed Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grandberg, I. I., Kost, A. N. & Sibiryakova, D. V. (1960). Rus. J. Gen. Chem. 30, 2920–2925. CAS Google Scholar
Guo, H.-M. (2007). Acta Cryst. E63, o3165. Web of Science CSD CrossRef IUCr Journals Google Scholar
Joshi, S. D., Dixit, S. R., Kirankumar, M. N., Aminabhavi, T. M., Raju, K. V. S. N., Narayan, R., Lherbet, C. & Yang, K. S. (2016). Eur. J. Med. Chem. 107, 133–152. Web of Science CrossRef CAS PubMed Google Scholar
Kriven'ko, A. P., Zapara, A. G., Ivannikov, A. V. & Klochkova, I. N. (2000). Chem. Heterocycl. Compd. 36, 399–402. CAS Google Scholar
Suponitsky, K. Yu., Gusev, D. V., Kuleshova, L. N. & Antipin, M. Yu. (2002). Crystallogr. Rep. 47, 667–671. Google Scholar
Manna, K. & Agrawal, Y. K. (2010). Eur. J. Med. Chem. 45, 3831–3839. Web of Science CrossRef CAS PubMed Google Scholar
MarXperts. (2015). Automar. marXperts GmbH, Norderstedt, Germany. Google Scholar
Özdemir, Z., Kandilci, H. B., Gümüşel, B., Çalış, Ü. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373–379. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068–3076. Web of Science CrossRef PubMed CAS Google Scholar
Vinutha, N., Madan Kumar, S., Vidyashree Jois, B. S., Balakrishna, K., Lokanath, N. K. & Revannasiddaiah, D. (2013). Acta Cryst. E69, o1528. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.