research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (5RS)-(Z)-4-[5-(furan-2-yl)-3-phenyl-4,5-di­hydro-1H-pyrazol-1-yl]-4-oxobut-2-enoic acid and (5RS)-(Z)-4-[5-(furan-2-yl)-3-(thio­phen-2-yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-oxobut-2-enoic acid

CROSSMARK_Color_square_no_text.svg

aOrganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, bDepartment of Chemistry, Faculty of Sciences, University of Douala, PO Box 24157, Douala, Republic of , Cameroon, cNational Research Centre "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow 123182, Russian Federation, dInorganic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklay St., Moscow 117198, Russian Federation, and eX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B-334, Moscow 119991, Russian Federation
*Correspondence e-mail:

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 17 August 2016; accepted 1 September 2016; online 11 October 2016)

The title compounds, C17H14N2O4 (I) and C15H12N2O4S (II), possess very similar mol­ecular geometries. In both mol­ecules, the central 1,3,5-tris­ubstituted di­hydro­pyrazole ring adopts an envelope conformation. The oxobutenoic acid fragment has an almost planar Z conformation [r.m.s. deviations of 0.049 and 0.022 Å, respectively, for (I) and (II)] which is determined by the both bond conjugation and the strong intra­molecular O—H⋯O hydrogen bond. The substituents in positions 1 and 3 of the di­hydro­pyrazole ring [oxobutenoic acid and phenyl in (I) and oxobutenoic acid and thienyl in (II)] are nearly coplanar with its basal plane [the corresponding dihedral angles are 6.14 (9) and 2.22 (11)° in (I) and 6.27 (12) and 3.91 (11)° in (II)]. The furyl ring plane is twisted relative to the basal plane of the di­hydro­pyrazole ring by 85.51 (8) and 88.30 (7)° in (I) and (II), respectively. In the crystal of (I), mol­ecules form zigzag hydrogen-bonded chains along [001] by C—H⋯O hydrogen bonds, which are further packed in stacks along [100]. Unlike (I), the crystal of (II) contains centrosymmetric hydrogen-bonded dimers formed by pairs of C—H⋯S hydrogen bonds, which are further linked by weak C—H⋯O hydrogen bonds into a three-dimensional framework.

1. Chemical context

3-(2-Fur­yl)pyrazolines and their N-acyl derivatives are well known to possess high and diverse biological activity, for example, topoisomerase I and II inhibitory and anti­proliferative activity (Ahmad et al., 2016[Ahmad, P., Woo, H., Jun, K.-Y., Kadi, A. A., Abdel-Aziz, H. A., Kwon, Y. & Rahman, A. F. M. M. (2016). Bioorg. Med. Chem. 24, 1898-1908.]), 5α-reductase inhibi­tory activity (Banday et al., 2014[Banday, A. H., Shameem, S. A. & Jeelani, S. (2014). Steroids, 92, 13-19.]), anti­bacterial (Joshi et al., 2016[Joshi, S. D., Dixit, S. R., Kirankumar, M. N., Aminabhavi, T. M., Raju, K. V. S. N., Narayan, R., Lherbet, C. & Yang, K. S. (2016). Eur. J. Med. Chem. 107, 133-152.]; Bhoot et al., 2012[Bhoot, D., Khunt, R. C. & Parekh, H. H. (2012). Med. Chem. Res. 21, 3233-3239.]), anti­tuberculous (Manna & Agrawal, 2010[Manna, K. & Agrawal, Y. K. (2010). Eur. J. Med. Chem. 45, 3831-3839.]), anti-inflammatory (Shoman et al., 2009[Shoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068-3076.]), anti­fungal activity (Deng et al. 2012[Deng, H., Yu, Z.-Y., Shi, G.-Y., Chen, M.-J., Tao, K. & Hou, T.-P. (2012). Chem. Biol. Drug Des. 79, 279-289.]), and many others. Pyrazolines, fused with other heterocycles, are much less studied. Thus, the main goal of this work was the synthesis of maleic amides (I)[link] and (II)[link] from (E)-1-(furan-2-yl)-3-aryl­prop-2-en-1-ones (Fig. 1[link]) with subsequent their transformation into 3b,6-ep­oxy­pyrazolo­[5,1-a]iso­indoles by a thermal intra­molecular Diels–Alder reaction of furan (the IMDAF reaction). However, we were unable to realize the final stage of the purposed synthesis – the thermal IMDAF reaction of maleic amides (I)[link] and (II)[link] (Fig. 2[link]). Unexpectedly, these compounds remained unchanged at temperatures up to 413 K. In order to explain this fact by an understanding of their stereochemical features, an X-ray diffraction study of compounds (I)[link] and (II)[link] was undertaken.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of maleic amides (I)[link] and (II)[link] from (E)-1-(furan-2-yl)-3-aryl­prop-2-en-1-ones.
[Figure 2]
Figure 2
The purposed thermal IMDAF reaction of maleic amides (I)[link] and (II)[link].

2. Structural commentary

Compounds (I)[link], C17H14N2O4, and (II)[link], C15H12N2O4S, possess very similar mol­ecular geometries (Figs. 3[link] and 4[link]). In both mol­ecules, the central 1,3,5-tris­ubstituted di­hydro­pyrazole ring adopts an envelope conformation, with the C5 carbon atom deviating from the plane through the other atoms of the ring by 0.251 (3) and 0.178 (3) Å, respectively, in (I)[link] and (II)[link]. The oxobutenoic acid fragment has an almost planar Z conformation [r.m.s. deviations of 0.049 and 0.022 Å, respectively, for (I)[link] and (II)] which is determined by both the bond conjugation and the strong intra­molecular O3—H3⋯O1 hydrogen bond (Tables 1[link] and 2[link], Figs. 3[link] and 4[link]). The substituents in positions 1 and 3 of the di­hydro­pyrazole ring [oxobutenoic acid and phenyl in (I)[link] and oxobutenoic acid and thienyl in (II)] are practically coplanar with its basal plane [the corresponding dihedral angles are 6.14 (9) and 2.22 (11)° in (I)[link] and 6.27 (12) and 3.91 (11)° in (II)]. Importantly, the furyl ring plane is twisted relative to the basal plane of the di­hydro­pyrazole ring by 85.51 (8) and 88.30 (7)° in (I)[link] and (II)[link], respectively. Apparently, it is such a perpendicular arrangement of the furyl and oxobutenoic acid fragments that inhibits the IMDAF reaction between them.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 1.02 (3) 1.50 (3) 2.513 (2) 171 (2)
C19—H19⋯O2i 0.95 2.40 3.266 (3) 152
Symmetry code: (i) x, y, z-1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.88 (3) 1.64 (3) 2.5146 (19) 171 (2)
C4—H4B⋯S1i 0.99 2.85 3.820 (2) 165
C17—H17⋯O1ii 0.95 2.51 3.426 (2) 161
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The mol­ecular structure of (I)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The dashed line indicates the intra­molecular O—H⋯O hydrogen bond.
[Figure 4]
Figure 4
The mol­ecular structure of (II)[link]. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. The dashed line indicates the intra­molecular O—H⋯O hydrogen bond.

The nitro­gen atom N1 has a planar–trigonal geometry, the sum of the bond angles being 359.9° for (I)[link] and 360.0° for (II)[link]. The bond lengths and angles in (I)[link] and (II)[link] are in good agreement with those observed in related structures (Suponitsky et al., 2002[Suponitsky, K. Yu., Gusev, D. V., Kuleshova, L. N. & Antipin, M. Yu. (2002). Crystallogr. Rep. 47, 667-671.]; Guo, 2007[Guo, H.-M. (2007). Acta Cryst. E63, o3165.]; Vinutha et al., 2013[Vinutha, N., Madan Kumar, S., Vidyashree Jois, B. S., Balakrishna, K., Lokanath, N. K. & Revannasiddaiah, D. (2013). Acta Cryst. E69, o1528.]). The mol­ecules possess an asymmetric center at the C5 carbon atom. The crystals of (I)[link] and (II)[link] are racemic and consist of (5RS)-enanti­omeric pairs.

3. Supra­molecular features

Although the similarity of the mol­ecular geometries and intra­molecular inter­actions might lead to similar packing motifs, this is not found in the case for (I)[link] and (II)[link]. The inter­molecular inter­actions, namely C—H⋯O and C—H⋯S hydrogen bonding, combined in a different way, give rise to different packing networks.

In the crystal of (I)[link], mol­ecules form zigzag hydrogen-bonded chains along [001] by the C19—H19⋯O2(x, y, z − 1) hydrogen bonds (Table 1[link] and Fig. 5[link]), which are further packed in stacks along [100] (Fig. 5[link]).

[Figure 5]
Figure 5
The crystal structure of (I)[link] showing the hydrogen-bonded chains along [001]. Dashed lines indicate the intra­molecular O—H⋯O and inter­molecular C—H⋯O hydrogen bonds.

However, unlike in (I)[link], the crystal of (II)[link] contains centrosymmetric hydrogen-bonded dimers formed by the two C4—H4B⋯S1(−x + 1, −y, −z + 2) hydrogen bonds (Table 2[link] and Fig. 6[link]), which are further linked by weak C17—H17⋯O1(x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]) hydrogen bonds into a three-dimensional framework (Table 3[link] and Fig. 6[link]).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C17H14N2O4 C15H12N2O4S
Mr 310.30 316.33
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n
Temperature (K) 100 100
a, b, c (Å) 7.2940 (15), 10.738 (2), 10.845 (2) 9.6702 (19), 13.150 (3), 11.240 (2)
α, β, γ (°) 114.10 (3), 102.46 (3), 97.57 (3) 90, 98.29 (3), 90
V3) 733.8 (3) 1414.4 (5)
Z 2 4
Radiation type Synchrotron, λ = 0.96990 Å Synchrotron, λ = 0.96990 Å
μ (mm−1) 0.22 0.58
Crystal size (mm) 0.20 × 0.07 × 0.07 0.40 × 0.30 × 0.20
 
Data collection
Diffractometer MAR CCD MAR CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]) Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.950, 0.980 0.789, 0.876
No. of measured, independent and observed [I > 2σ(I)] reflections 10451, 2947, 2189 17279, 2961, 2685
Rint 0.103 0.087
(sin θ/λ)max−1) 0.641 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.199, 1.04 0.045, 0.119, 1.05
No. of reflections 2947 2961
No. of parameters 212 203
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.39 0.43, −0.52
Computer programs: Automar (MarXperts, 2015[MarXperts. (2015). Automar. marXperts GmbH, Norderstedt, Germany.]), iMOSFLM (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).
[Figure 6]
Figure 6
The crystal structure of (II)[link] along the a axis. Dashed lines indicate the intra­molecular O—H⋯O and inter­molecular C—H⋯S and C—H⋯O hydrogen bonds.

4. Synthesis and crystallization

The initial 5-(furan-2-yl)-3-aryl-4,5-di­hydro-1H-pyrazoles were synthesized from (E)-1-(furan-2-yl)-3-aryl­prop-2-en-1-ones according to the procedure described previously (Grandberg et al. 1960[Grandberg, I. I., Kost, A. N. & Sibiryakova, D. V. (1960). Rus. J. Gen. Chem. 30, 2920-2925.]; Kriven'ko et al. 2000[Kriven'ko, A. P., Zapara, A. G., Ivannikov, A. V. & Klochkova, I. N. (2000). Chem. Heterocycl. Compd. 36, 399-402.]; Cetin et al. 2003[Cetin, A., Cansiz, A. & Digrak, M. (2003). Heteroat. Chem. 14, 345-347.]; Özdemir et al. 2007[Özdemir, Z., Kandilci, H. B., Gümüşel, B., Çalış, Ü. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373-379.]).

General procedure. A solution of the corresponding (E)-1-(furan-2-yl)-3-aryl­prop-2-en-1-one (0.025 mol) in alcohol (15 mL) was added to a solution of hydrazine hydrate (2.5 mL, 0.05 mol) in alcohol (15 mL). The mixture was heated at reflux for 3–5 h (TLC monitoring), then the solvent and the excess of hydrazine hydrate were removed under reduced pressure. The residue, viscous brown oil, was dissolved in benzene (15 mL) and acyl­ated (stirring at room temperature for 1 day) with a solution of maleic anhydride (2.45 g, 0.025 mol) in benzene (25 mL). The precipitated crystals were filtered off and recrystallized from an EtOH–DMF mixture to give the analytically pure maleic amides (I)[link] and (II)[link].

(5RS)-(Z)-4-[5-(Furan-2-yl)-3-phenyl-4,5-di­hydro-1H-pyra­zol-1-yl]-4-oxobut-2-enoic acid (I). Colourless rhombic prisms. Yield is 4.88 g (63%). M.p. = 453.7–455.6 K with decomp. (EtOH–DMF). 1H NMR (DMSO, 600 MHz, 303 K): δ = 3.40 (dd, 1H, H4A, J4,4 = 17.7, J4A,5 = 5.0), 3.76 (dd, 1H, H4B, J4,4 = 17.7, J4B,5 = 11.8), 5.70 (dd, 1H, H5, J5,4A = 5.0, J4B,5 = 11.8), 6.29 (d, 1H, —CH=CH—CO2H, J = 12.1), 6.39–6.41 [m, 2H, H3 and H4 (fur­yl)], 6.91 (d, 1H, —CH=CH—CO2H, J = 12.1), 7.44–7.49 [m, 3H, H3, H4 and H5 (Ph)], 7.57 [m, 1H, H5 (fur­yl)], 7.77–7.79 [m, 2H, H2 and H6 (Ph)], 12.29 (br s, 1H, CO2H). 13C NMR (DMSO-d6, 150.9 MHz, 303 K): δ = 38.8 (C4), 54.0 (C5), 107.9 and 111.0 [C3 and C4 (fur­yl)], 127.3 [2C, C3 and C5 (Ph)], 129.4 [2C, C2 and C6 (Ph)], 130.1, 131.0, 131.17 [C1 (Ph)], 131.20, 143.0 [C5 (Fur­yl)], 152.6, 156.2, 163.0, 167.4.

(5RS)-(Z)-4-[5-(Furan-2-yl)-3-(thio­phen-2-yl)-4,5-di­hydro-1H-pyrazol-1-yl]-4-oxobut-2-enoic acid (II). Light-yellow rhombic prisms. Yield is 4.03 g (51%). M.p. = 449.8–450.9 K with decomp. (EtOH–DMF). 1H NMR (DMSO, 600 MHz, 301 K): δ = 3.41 (dd, 1H, H4A, J4,4 = 17.5, J4A,5 = 4.4), 3.76 (dd, 1H, H4B, J4,4 = 17.5, J4B,5 = 11.8), 5.69 (dd, 1H, H5, J5,4A = 4.4, J4B,5 = 11.8), 6.30 (d, 1H, —CH=CH—CO2H, J = 12.1), 6.39–6.41 [m, 2H, H3 and H4 (fur­yl)], 6.81 (d, 1H, —CH=CH—CO2H, J = 12.1), 7.16 [dd, 1H, H4 (thien­yl), J3,4 = 3.5, J4,5 = 4.9], 7.52 [dd, 1H, H3 (thien­yl), J3,4 = 3.5, J3,5 = 1.3], 7.57 [m, 1H, H5 (fur­yl), 7.75 [dd, 1H, H5 (thien­yl), J3,5 = 1.3, J4,5 = 4.9], 12.8 (br s, 1H, CO2H). 13C NMR (DMSO, 150.9 MHz, 301 K): δ = 39.5 (C4), 54.1 (C5), 108.0, 111.1, 128.7, 130.3, 130.6, 130.8, 131.4, 134.2 [C1 (Ph)], 143.1 [C5 (fur­yl)], 152.1, 152.4, 162.7, 167.3.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. X-ray diffraction studies were carried out on the `Belok' beamline (λ = 0.96990 Å) of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation) using a MAR CCD detector. For each compound a total of 360 images were collected using an oscillation range of 1.0° (φ scan mode, two different crystal orientations) and corrected for absorption using the SCALA program (Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.]). The data were indexed, integrated and scaled using the utility iMOSFLM in CCP4 (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]).

The hydrogen atoms of the hydroxyl groups were localized in difference-Fourier maps and refined in an isotropic approximation with fixed displacement parameters [Uiso(H) = 1.5Ueq(O)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

The insufficient data completeness of 96.7% in the case of (I)[link] is determined by the low (triclinic) crystal symmetry. It is very difficult to get good data completeness at this symmetry using the φ scan mode only (`Belok' beamline limitation), even though we have run two different crystal orientations.

Supporting information


Computing details top

For both compounds, data collection: Automar (MarXperts, 2015); cell refinement: iMOSFLM (Battye et al., 2011); data reduction: iMOSFLM (Battye et al., 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) (5RS)-(Z)-4-[5-(Furan-2-yl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]-4-oxobut-2-enoic acid top
Crystal data top
C17H14N2O4Z = 2
Mr = 310.30F(000) = 324
Triclinic, P1Dx = 1.404 Mg m3
a = 7.2940 (15) ÅSynchrotron radiation, λ = 0.96990 Å
b = 10.738 (2) ÅCell parameters from 500 reflections
c = 10.845 (2) Åθ = 4.0–36.0°
α = 114.10 (3)°µ = 0.22 mm1
β = 102.46 (3)°T = 100 K
γ = 97.57 (3)°Needle, colourless
V = 733.8 (3) Å30.20 × 0.07 × 0.07 mm
Data collection top
MAR CCD
diffractometer
2189 reflections with I > 2σ(I)
/f scanRint = 0.103
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.4°, θmin = 4.0°
Tmin = 0.950, Tmax = 0.980h = 99
10451 measured reflectionsk = 1312
2947 independent reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.199 w = 1/[σ2(Fo2) + (0.088P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2947 reflectionsΔρmax = 0.41 e Å3
212 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.112 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53546 (18)0.85698 (13)0.87765 (13)0.0294 (4)
O20.8189 (2)0.71553 (16)1.17671 (15)0.0402 (5)
O30.7068 (2)0.86788 (15)1.11054 (15)0.0351 (5)
H30.644 (3)0.874 (2)1.020 (3)0.053*
O40.55732 (19)0.79397 (15)0.46578 (14)0.0329 (5)
N10.3716 (2)0.69540 (16)0.65583 (16)0.0249 (5)
N20.2966 (2)0.55549 (16)0.54965 (17)0.0256 (5)
C30.1865 (2)0.5590 (2)0.4406 (2)0.0242 (5)
C40.1695 (3)0.7049 (2)0.4619 (2)0.0275 (5)
H4A0.03970.71820.46900.033*
H4B0.19430.72290.38370.033*
C50.3284 (3)0.8010 (2)0.6030 (2)0.0269 (5)
H50.27610.87330.66880.032*
C60.4790 (2)0.7294 (2)0.7886 (2)0.0259 (5)
C70.5227 (3)0.6115 (2)0.8181 (2)0.0266 (5)
H70.47000.51980.74150.032*
C80.6277 (3)0.6188 (2)0.9400 (2)0.0286 (5)
H80.64290.53010.93370.034*
C90.7259 (3)0.7393 (2)1.0843 (2)0.0293 (6)
C100.0858 (2)0.4281 (2)0.30984 (19)0.0254 (5)
C110.0296 (3)0.4332 (2)0.1915 (2)0.0278 (5)
H110.04460.52120.19550.033*
C120.1226 (3)0.3089 (2)0.0676 (2)0.0304 (6)
H120.19820.31280.01330.036*
C130.1049 (3)0.1801 (2)0.0623 (2)0.0319 (6)
H130.17110.09580.02150.038*
C140.0096 (3)0.1735 (2)0.1793 (2)0.0307 (6)
H140.02160.08490.17510.037*
C150.1064 (3)0.2973 (2)0.3027 (2)0.0268 (5)
H150.18640.29310.38190.032*
C160.5068 (3)0.8691 (2)0.5855 (2)0.0268 (5)
C170.6447 (3)0.9908 (2)0.6709 (2)0.0311 (6)
H170.64501.06070.76000.037*
C180.7893 (3)0.9938 (2)0.6013 (2)0.0374 (6)
H180.90411.06610.63490.045*
C190.7316 (3)0.8742 (2)0.4787 (2)0.0374 (6)
H190.80070.84860.41090.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (7)0.0236 (8)0.0258 (8)0.0015 (6)0.0020 (6)0.0084 (6)
O20.0480 (9)0.0376 (9)0.0283 (9)0.0095 (7)0.0028 (7)0.0158 (7)
O30.0433 (9)0.0276 (9)0.0251 (8)0.0041 (6)0.0018 (7)0.0105 (7)
O40.0305 (8)0.0355 (9)0.0305 (9)0.0058 (6)0.0069 (6)0.0146 (7)
N10.0260 (8)0.0210 (9)0.0214 (9)0.0011 (7)0.0002 (7)0.0085 (7)
N20.0249 (8)0.0232 (9)0.0228 (9)0.0021 (7)0.0034 (7)0.0078 (7)
C30.0211 (9)0.0262 (11)0.0237 (11)0.0041 (8)0.0065 (8)0.0105 (9)
C40.0229 (9)0.0286 (11)0.0248 (11)0.0021 (8)0.0008 (8)0.0106 (9)
C50.0260 (9)0.0263 (11)0.0246 (10)0.0043 (8)0.0004 (8)0.0122 (9)
C60.0216 (9)0.0295 (11)0.0244 (11)0.0027 (8)0.0030 (8)0.0132 (9)
C70.0274 (9)0.0248 (11)0.0240 (10)0.0020 (8)0.0053 (8)0.0099 (9)
C80.0280 (10)0.0287 (11)0.0276 (11)0.0035 (8)0.0039 (8)0.0145 (9)
C90.0302 (10)0.0293 (12)0.0266 (11)0.0043 (8)0.0039 (8)0.0140 (9)
C100.0218 (9)0.0295 (12)0.0234 (11)0.0032 (8)0.0051 (8)0.0122 (9)
C110.0255 (9)0.0293 (11)0.0259 (11)0.0041 (8)0.0037 (8)0.0128 (9)
C120.0283 (10)0.0326 (12)0.0237 (11)0.0043 (9)0.0019 (8)0.0105 (9)
C130.0288 (10)0.0315 (12)0.0254 (11)0.0025 (8)0.0022 (8)0.0079 (9)
C140.0293 (10)0.0275 (11)0.0325 (12)0.0052 (8)0.0064 (9)0.0127 (9)
C150.0243 (9)0.0275 (11)0.0260 (11)0.0040 (8)0.0043 (8)0.0119 (9)
C160.0279 (10)0.0242 (11)0.0246 (10)0.0040 (8)0.0005 (8)0.0118 (9)
C170.0300 (10)0.0250 (11)0.0283 (11)0.0009 (8)0.0015 (8)0.0100 (9)
C180.0252 (10)0.0400 (13)0.0512 (14)0.0009 (9)0.0019 (9)0.0314 (12)
C190.0283 (10)0.0525 (15)0.0437 (14)0.0105 (10)0.0103 (9)0.0334 (12)
Geometric parameters (Å, º) top
O1—C61.256 (2)C8—C91.501 (3)
O2—C91.222 (2)C8—H80.9500
O3—C91.324 (3)C10—C111.400 (3)
O3—H31.02 (3)C10—C151.405 (3)
O4—C161.379 (3)C11—C121.396 (3)
O4—C191.384 (2)C11—H110.9500
N1—C61.352 (2)C12—C131.386 (3)
N1—N21.408 (2)C12—H120.9500
N1—C51.504 (2)C13—C141.395 (3)
N2—C31.295 (2)C13—H130.9500
C3—C101.475 (3)C14—C151.396 (3)
C3—C41.515 (3)C14—H140.9500
C4—C51.542 (3)C15—H150.9500
C4—H4A0.9900C16—C171.357 (3)
C4—H4B0.9900C17—C181.428 (3)
C5—C161.494 (3)C17—H170.9500
C5—H51.0000C18—C191.348 (3)
C6—C71.483 (3)C18—H180.9500
C7—C81.343 (3)C19—H190.9500
C7—H70.9500
C9—O3—H3111.6 (14)O3—C9—C8120.10 (18)
C16—O4—C19106.22 (16)C11—C10—C15119.44 (17)
C6—N1—N2122.90 (16)C11—C10—C3120.42 (19)
C6—N1—C5124.32 (15)C15—C10—C3120.14 (17)
N2—N1—C5112.71 (14)C12—C11—C10120.0 (2)
C3—N2—N1107.28 (16)C12—C11—H11120.0
N2—C3—C10120.85 (18)C10—C11—H11120.0
N2—C3—C4114.48 (16)C13—C12—C11120.21 (19)
C10—C3—C4124.66 (16)C13—C12—H12119.9
C3—C4—C5102.65 (15)C11—C12—H12119.9
C3—C4—H4A111.2C12—C13—C14120.36 (18)
C5—C4—H4A111.2C12—C13—H13119.8
C3—C4—H4B111.2C14—C13—H13119.8
C5—C4—H4B111.2C13—C14—C15119.85 (19)
H4A—C4—H4B109.1C13—C14—H14120.1
C16—C5—N1110.07 (15)C15—C14—H14120.1
C16—C5—C4113.66 (17)C14—C15—C10120.09 (18)
N1—C5—C4100.45 (14)C14—C15—H15120.0
C16—C5—H5110.8C10—C15—H15120.0
N1—C5—H5110.8C17—C16—O4109.89 (18)
C4—C5—H5110.8C17—C16—C5132.7 (2)
O1—C6—N1118.52 (17)O4—C16—C5117.25 (16)
O1—C6—C7124.58 (16)C16—C17—C18106.85 (19)
N1—C6—C7116.90 (17)C16—C17—H17126.6
C8—C7—C6127.84 (18)C18—C17—H17126.6
C8—C7—H7116.1C19—C18—C17106.76 (18)
C6—C7—H7116.1C19—C18—H18126.6
C7—C8—C9132.8 (2)C17—C18—H18126.6
C7—C8—H8113.6C18—C19—O4110.3 (2)
C9—C8—H8113.6C18—C19—H19124.9
O2—C9—O3121.15 (18)O4—C19—H19124.9
O2—C9—C8118.72 (19)
C6—N1—N2—C3173.99 (17)C4—C3—C10—C112.7 (3)
C5—N1—N2—C39.2 (2)N2—C3—C10—C150.8 (3)
N1—N2—C3—C10179.71 (16)C4—C3—C10—C15177.85 (17)
N1—N2—C3—C41.5 (2)C15—C10—C11—C120.2 (3)
N2—C3—C4—C510.8 (2)C3—C10—C11—C12179.26 (18)
C10—C3—C4—C5170.49 (19)C10—C11—C12—C131.5 (3)
C6—N1—C5—C1671.7 (2)C11—C12—C13—C141.5 (3)
N2—N1—C5—C16105.08 (17)C12—C13—C14—C150.2 (3)
C6—N1—C5—C4168.17 (19)C13—C14—C15—C101.2 (3)
N2—N1—C5—C415.0 (2)C11—C10—C15—C141.2 (3)
C3—C4—C5—C16103.36 (18)C3—C10—C15—C14179.38 (18)
C3—C4—C5—N114.14 (18)C19—O4—C16—C170.7 (2)
N2—N1—C6—O1178.08 (16)C19—O4—C16—C5176.11 (16)
C5—N1—C6—O15.4 (3)N1—C5—C16—C1795.2 (3)
N2—N1—C6—C72.3 (3)C4—C5—C16—C17153.0 (2)
C5—N1—C6—C7174.19 (17)N1—C5—C16—O478.9 (2)
O1—C6—C7—C80.6 (3)C4—C5—C16—O432.8 (2)
N1—C6—C7—C8179.0 (2)O4—C16—C17—C180.6 (2)
C6—C7—C8—C93.2 (4)C5—C16—C17—C18175.1 (2)
C7—C8—C9—O2177.6 (2)C16—C17—C18—C190.3 (2)
C7—C8—C9—O34.1 (4)C17—C18—C19—O40.2 (2)
N2—C3—C10—C11178.62 (16)C16—O4—C19—C180.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O11.02 (3)1.50 (3)2.513 (2)171 (2)
C19—H19···O2i0.952.403.266 (3)152
Symmetry code: (i) x, y, z1.
(II) (5RS)-(Z)-4-[5-(Furan-2-yl)-3-(thiophen-2-yl)-4,5-dihydro-1H-pyrazol-1-yl]-4-oxobut-2-enoic acid top
Crystal data top
C15H12N2O4SF(000) = 656
Mr = 316.33Dx = 1.485 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.96990 Å
a = 9.6702 (19) ÅCell parameters from 600 reflections
b = 13.150 (3) Åθ = 3.6–36.0°
c = 11.240 (2) ŵ = 0.58 mm1
β = 98.29 (3)°T = 100 K
V = 1414.4 (5) Å3Prism, colourless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
MAR CCD
diffractometer
2685 reflections with I > 2σ(I)
/f scanRint = 0.087
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.5°, θmin = 3.6°
Tmin = 0.789, Tmax = 0.876h = 1212
17279 measured reflectionsk = 1614
2961 independent reflectionsl = 1314
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0506P)2 + 1.1417P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2961 reflectionsΔρmax = 0.43 e Å3
203 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.029 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18979 (4)0.02971 (3)0.94264 (4)0.01637 (17)
O10.62416 (12)0.37278 (9)0.76273 (11)0.0158 (3)
O20.46922 (14)0.66885 (9)0.86341 (12)0.0226 (3)
O30.60922 (13)0.56265 (10)0.78427 (12)0.0206 (3)
H30.621 (3)0.497 (2)0.772 (2)0.031*
O40.44618 (12)0.14434 (10)0.54975 (11)0.0165 (3)
N10.50566 (14)0.23234 (10)0.79925 (12)0.0118 (3)
N20.40101 (14)0.17978 (11)0.84886 (12)0.0120 (3)
C30.42845 (16)0.08325 (12)0.84155 (14)0.0114 (3)
C40.55685 (17)0.05821 (13)0.78427 (15)0.0133 (3)
H4A0.53420.01040.71620.016*
H4B0.63160.02850.84360.016*
C50.59983 (16)0.16366 (12)0.74062 (15)0.0124 (3)
H50.69990.17810.77230.015*
C60.52109 (17)0.33450 (12)0.80326 (15)0.0117 (3)
C70.41319 (17)0.39413 (13)0.85407 (15)0.0134 (3)
H70.34090.35580.88190.016*
C80.40489 (18)0.49611 (13)0.86571 (15)0.0147 (4)
H80.32460.51810.89840.018*
C90.49805 (18)0.58175 (13)0.83701 (15)0.0158 (4)
C100.34310 (17)0.00445 (13)0.88510 (14)0.0123 (3)
C110.37250 (16)0.10024 (12)0.88526 (14)0.0107 (3)
H110.45220.12920.85790.013*
C120.26597 (18)0.15765 (13)0.93240 (16)0.0154 (4)
H120.26720.22960.93970.019*
C130.16253 (18)0.09732 (14)0.96569 (16)0.0178 (4)
H130.08410.12310.99810.021*
C140.57458 (17)0.17614 (12)0.60747 (15)0.0125 (3)
C150.65215 (18)0.21555 (13)0.52703 (16)0.0162 (4)
H150.74430.24190.54400.019*
C160.56731 (19)0.20951 (14)0.41102 (16)0.0189 (4)
H160.59220.23130.33640.023*
C170.44516 (19)0.16660 (14)0.42938 (16)0.0188 (4)
H170.36900.15350.36800.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0148 (3)0.0149 (3)0.0206 (3)0.00060 (15)0.00654 (18)0.00097 (15)
O10.0136 (6)0.0140 (6)0.0213 (7)0.0020 (4)0.0077 (5)0.0004 (5)
O20.0310 (8)0.0120 (6)0.0251 (7)0.0012 (5)0.0054 (6)0.0003 (5)
O30.0192 (6)0.0131 (6)0.0311 (8)0.0036 (5)0.0087 (5)0.0009 (5)
O40.0129 (6)0.0211 (6)0.0155 (6)0.0007 (5)0.0024 (5)0.0019 (5)
N10.0115 (7)0.0111 (7)0.0144 (7)0.0004 (5)0.0072 (5)0.0005 (5)
N20.0119 (7)0.0123 (7)0.0128 (7)0.0027 (5)0.0052 (5)0.0007 (5)
C30.0124 (7)0.0129 (8)0.0091 (8)0.0004 (6)0.0023 (6)0.0005 (6)
C40.0136 (8)0.0132 (8)0.0143 (8)0.0014 (6)0.0062 (6)0.0007 (6)
C50.0105 (7)0.0118 (8)0.0160 (8)0.0022 (6)0.0061 (6)0.0007 (6)
C60.0115 (8)0.0120 (8)0.0115 (8)0.0002 (6)0.0014 (6)0.0004 (6)
C70.0131 (8)0.0145 (8)0.0136 (8)0.0008 (6)0.0049 (6)0.0008 (6)
C80.0154 (8)0.0157 (8)0.0137 (8)0.0009 (7)0.0042 (6)0.0009 (7)
C90.0194 (8)0.0141 (8)0.0134 (8)0.0002 (7)0.0007 (6)0.0009 (6)
C100.0131 (8)0.0123 (8)0.0118 (8)0.0009 (6)0.0025 (6)0.0004 (6)
C110.0118 (7)0.0109 (7)0.0093 (7)0.0043 (6)0.0006 (6)0.0017 (6)
C120.0180 (8)0.0130 (8)0.0158 (8)0.0030 (6)0.0041 (6)0.0012 (6)
C130.0159 (8)0.0183 (9)0.0203 (9)0.0028 (7)0.0062 (7)0.0011 (7)
C140.0110 (7)0.0119 (8)0.0152 (8)0.0016 (6)0.0035 (6)0.0011 (6)
C150.0178 (8)0.0140 (8)0.0181 (9)0.0003 (6)0.0073 (7)0.0004 (6)
C160.0278 (9)0.0163 (8)0.0138 (9)0.0059 (7)0.0072 (7)0.0007 (7)
C170.0228 (9)0.0204 (9)0.0125 (9)0.0072 (7)0.0004 (7)0.0033 (7)
Geometric parameters (Å, º) top
S1—C131.7166 (19)C5—H51.0000
S1—C101.7330 (17)C6—C71.484 (2)
O1—C61.2592 (19)C7—C81.351 (2)
O2—C91.225 (2)C7—H70.9500
O3—C91.324 (2)C8—C91.506 (2)
O3—H30.88 (3)C8—H80.9500
O4—C141.380 (2)C10—C111.406 (2)
O4—C171.383 (2)C11—C121.439 (2)
N1—C61.352 (2)C11—H110.9500
N1—N21.4056 (17)C12—C131.370 (2)
N1—C51.5007 (19)C12—H120.9500
N2—C31.302 (2)C13—H130.9500
C3—C101.453 (2)C14—C151.358 (2)
C3—C41.515 (2)C15—C161.439 (3)
C4—C51.548 (2)C15—H150.9500
C4—H4A0.9900C16—C171.351 (3)
C4—H4B0.9900C16—H160.9500
C5—C141.490 (2)C17—H170.9500
C13—S1—C1091.61 (8)C7—C8—H8113.7
C9—O3—H3113.0 (16)C9—C8—H8113.7
C14—O4—C17105.94 (13)O2—C9—O3120.88 (16)
C6—N1—N2123.90 (13)O2—C9—C8118.89 (16)
C6—N1—C5122.81 (13)O3—C9—C8120.23 (15)
N2—N1—C5113.29 (12)C11—C10—C3125.05 (15)
C3—N2—N1106.83 (12)C11—C10—S1111.78 (12)
N2—C3—C10122.91 (14)C3—C10—S1123.17 (13)
N2—C3—C4115.19 (14)C10—C11—C12111.03 (14)
C10—C3—C4121.90 (14)C10—C11—H11124.5
C3—C4—C5102.36 (13)C12—C11—H11124.5
C3—C4—H4A111.3C13—C12—C11112.74 (15)
C5—C4—H4A111.3C13—C12—H12123.6
C3—C4—H4B111.3C11—C12—H12123.6
C5—C4—H4B111.3C12—C13—S1112.84 (13)
H4A—C4—H4B109.2C12—C13—H13123.6
C14—C5—N1110.66 (13)S1—C13—H13123.6
C14—C5—C4113.85 (14)C15—C14—O4110.40 (15)
N1—C5—C4101.09 (12)C15—C14—C5133.19 (16)
C14—C5—H5110.3O4—C14—C5116.40 (14)
N1—C5—H5110.3C14—C15—C16106.54 (15)
C4—C5—H5110.3C14—C15—H15126.7
O1—C6—N1118.33 (14)C16—C15—H15126.7
O1—C6—C7124.42 (15)C17—C16—C15106.33 (16)
N1—C6—C7117.24 (14)C17—C16—H16126.8
C8—C7—C6128.08 (15)C15—C16—H16126.8
C8—C7—H7116.0C16—C17—O4110.78 (16)
C6—C7—H7116.0C16—C17—H17124.6
C7—C8—C9132.52 (16)O4—C17—H17124.6
C6—N1—N2—C3172.26 (15)C4—C3—C10—C113.5 (2)
C5—N1—N2—C37.76 (17)N2—C3—C10—S14.2 (2)
N1—N2—C3—C10179.46 (14)C4—C3—C10—S1175.93 (12)
N1—N2—C3—C40.40 (18)C13—S1—C10—C110.62 (13)
N2—C3—C4—C56.46 (19)C13—S1—C10—C3178.89 (14)
C10—C3—C4—C5173.68 (14)C3—C10—C11—C12178.98 (15)
C6—N1—C5—C1470.26 (19)S1—C10—C11—C120.51 (17)
N2—N1—C5—C14109.72 (15)C10—C11—C12—C130.1 (2)
C6—N1—C5—C4168.79 (14)C11—C12—C13—S10.4 (2)
N2—N1—C5—C411.23 (17)C10—S1—C13—C120.57 (15)
C3—C4—C5—C14108.98 (15)C17—O4—C14—C150.77 (18)
C3—C4—C5—N19.68 (16)C17—O4—C14—C5177.90 (13)
N2—N1—C6—O1175.44 (14)N1—C5—C14—C15111.5 (2)
C5—N1—C6—O14.6 (2)C4—C5—C14—C15135.49 (19)
N2—N1—C6—C75.4 (2)N1—C5—C14—O466.83 (17)
C5—N1—C6—C7174.58 (14)C4—C5—C14—O446.22 (19)
O1—C6—C7—C80.2 (3)O4—C14—C15—C160.66 (18)
N1—C6—C7—C8178.88 (17)C5—C14—C15—C16177.71 (17)
C6—C7—C8—C92.1 (3)C14—C15—C16—C170.28 (19)
C7—C8—C9—O2175.82 (18)C15—C16—C17—O40.2 (2)
C7—C8—C9—O34.1 (3)C14—O4—C17—C160.59 (19)
N2—C3—C10—C11176.34 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.88 (3)1.64 (3)2.5146 (19)171 (2)
C4—H4B···S1i0.992.853.820 (2)165
C17—H17···O1ii0.952.513.426 (2)161
Symmetry codes: (i) x+1, y, z+2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported financially by the Ministry of Education and Science of the Russian Federation (Agreement No. 02.a03.21.0008) and the Russian Foundation for Basic Research (grant No. 15–33-50016).

References

First citationAhmad, P., Woo, H., Jun, K.-Y., Kadi, A. A., Abdel-Aziz, H. A., Kwon, Y. & Rahman, A. F. M. M. (2016). Bioorg. Med. Chem. 24, 1898–1908.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBanday, A. H., Shameem, S. A. & Jeelani, S. (2014). Steroids, 92, 13–19.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBhoot, D., Khunt, R. C. & Parekh, H. H. (2012). Med. Chem. Res. 21, 3233–3239.  Web of Science CrossRef CAS Google Scholar
First citationCetin, A., Cansiz, A. & Digrak, M. (2003). Heteroat. Chem. 14, 345–347.  Web of Science CrossRef CAS Google Scholar
First citationDeng, H., Yu, Z.-Y., Shi, G.-Y., Chen, M.-J., Tao, K. & Hou, T.-P. (2012). Chem. Biol. Drug Des. 79, 279–289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrandberg, I. I., Kost, A. N. & Sibiryakova, D. V. (1960). Rus. J. Gen. Chem. 30, 2920–2925.  CAS Google Scholar
First citationGuo, H.-M. (2007). Acta Cryst. E63, o3165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJoshi, S. D., Dixit, S. R., Kirankumar, M. N., Aminabhavi, T. M., Raju, K. V. S. N., Narayan, R., Lherbet, C. & Yang, K. S. (2016). Eur. J. Med. Chem. 107, 133–152.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKriven'ko, A. P., Zapara, A. G., Ivannikov, A. V. & Klochkova, I. N. (2000). Chem. Heterocycl. Compd. 36, 399–402.  CAS Google Scholar
First citationSuponitsky, K. Yu., Gusev, D. V., Kuleshova, L. N. & Antipin, M. Yu. (2002). Crystallogr. Rep. 47, 667–671.  Google Scholar
First citationManna, K. & Agrawal, Y. K. (2010). Eur. J. Med. Chem. 45, 3831–3839.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMarXperts. (2015). Automar. marXperts GmbH, Norderstedt, Germany.  Google Scholar
First citationÖzdemir, Z., Kandilci, H. B., Gümüşel, B., Çalış, Ü. & Bilgin, A. A. (2007). Eur. J. Med. Chem. 42, 373–379.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShoman, M. E., Abdel-Aziz, M., Aly, O. M., Farag, H. H. & Morsy, M. A. (2009). Eur. J. Med. Chem. 44, 3068–3076.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVinutha, N., Madan Kumar, S., Vidyashree Jois, B. S., Balakrishna, K., Lokanath, N. K. & Revannasiddaiah, D. (2013). Acta Cryst. E69, o1528.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds