research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of poly[di­chlorido­(μ-2,5-di­carb­­oxy­benzene-1,4-di­carboxyl­ato-κ2O1:O4)bis­­[μ-4′-(pyridin-3-yl)-4,2′:6′,4′′-terpyridine-κ2N1:N4′]dizinc]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
*Correspondence e-mail: yptian@ahu.edu.cn

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 23 August 2016; accepted 13 October 2016; online 28 October 2016)

In the title polymeric ZnII complex, [Zn2(C10H4O8)Cl2(C20H14N4)2]n, the ZnII cations are bridged by both 2,5-di­carb­oxy­benzene-1,4-di­carboxyl­ate dianions and 4′-(pyridin-3-yl)-4,2′:6′,4′′-terpyridine ligands, forming ladder-like polymeric chains propagating along [1-10]. The Cl anion further coordinates the ZnII cation to complete a distorted tetra­hedral environment. In the 4′-(pyridin-3-yl)-4,2′:6′,4′′-terpyridine ligand, the three sideward pyridine rings are twisted with respect to the central pyridine ring by 39.27 (12), 14.89 (13) and 3.36 (13)°, respectively. In the crystal, classical O—H⋯N hydrogen bonds and weak C—H⋯O and C—H⋯Cl hydrogen bonds link the chains into a three-dimensional supra­molecular architecture. ππ stacking is observed between the pyridine and benzene rings of neighbouring polymeric chains, with a centroid-to-centroid distance of 3.7280 (14) Å.

1. Chemical context

Coordination polymers (CPs) represent a class of crystalline materials which consist of different ligands inter­connected by metallic nodes (Yaghi & Li; 1995[Yaghi, O. M. & Li, H. (1995). J. Am. Chem. Soc. 117, 10401-10402.]; Hinter­holzinger et al., 2012[Hinterholzinger, F. M., Ranft, A., Feckl, J. M., Rühle, B., Bein, T. & Lotsch, B. V. (2012). J. Mater. Chem. 22, 10356-10362.]). Compared to traditional inorganic materials, CPs have fascinating structures with regular pore shape and size obtained by rational design (Kepert, 2006[Kepert, C. J. (2006). Chem. Commun. pp. 695-700.]; Brammer, 2004[Brammer, L. (2004). Chem. Soc. Rev. 33, 476-489.]). In addition, studies over several decades have revealed that CPs have multi-functional applications such as gas storage and separation (Rosi et al., 2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]; Jiang et al., 2013[Jiang, H.-L., Makal, T. A. & Zhou, H.-C. (2013). Coord. Chem. Rev. 257, 2232-2249.]), chemical purification (Li et al., 2012[Li, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869-932.]), catalysis (Seo et al., 2000[Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature, 404, 982-986.]), and sensors (Kreno et al., 2012[Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105-1125.]), etc.

[Scheme 1]

Pyridine-containing compounds, such as 4,2′:6′,4′′-terpyridine derivatives, are of great importance in the design of organic ligands, because conjugated polypyridyl ligands can form a better rigid plane and improve the stability of the network (Hancock, 2013[Hancock, R. D. (2013). Chem. Soc. Rev. 42, 1500-1524.]; Li et al., 2011[Li, X.-Z., Zhou, X.-P., Li, D. & Yin, Y.-G. (2011). CrystEngComm, 13, 6759-6765.]; Bhaumik et al., 2011[Bhaumik, C., Saha, D., Das, S. & Baitalik, S. (2011). Inorg. Chem. 50, 12586-12600.]). As a rigid planar and triangular ligand, 4′-(3-pyrid­yl)-4,2′:6′,4′′-terpyridine (344-pytpy; Housecroft, 2014[Housecroft, C. E. (2014). Dalton Trans. 43, 6594-6604.]) is different from commonly employed polypyridyl ligands such as 1,3,5-tri(4-pyrid­yl)-2,4,6-triazine (Ma & Coppens, 2003[Ma, B.-Q. & Coppens, P. (2003). Chem. Commun. pp. 2290-2291.]; Kumazawa et al., 2003[Kumazawa, K., Biradha, K., Kusukawa, T., Okano, T. & Fujita, M. (2003). Angew. Chem. Int. Ed. 42, 3909-3913.]), which have been widely studied in the field of coordination chemistry. Its rigidity and trigonal geometry may lead to the formation of nanosized cages and porous frameworks enclosing cavities and channels (Li et al., 2008[Li, M.-X., Miao, Z.-X., Shao, M., Liang, S.-W. & Zhu, S.-R. (2008). Inorg. Chem. 47, 4481-4489.]; Yoshizawa et al., 2004[Yoshizawa, M., Miyagi, S., Kawano, M., Ishiguro, K. & Fujita, M. (2004). J. Am. Chem. Soc. 126, 9172-9173.]; Dai et al., 2008[Dai, F., He, H. & Sun, D. (2008). J. Am. Chem. Soc. 130, 14064-14065.]). 1,2,4,5-Benzene­tetracarbonic acid (H4bta) is frequently employed due to the rich coordination binding sites of the carboxyl­ate groups (Hou et al., 2011[Hou, K.-L., Bai, F.-Y., Xing, Y.-H., Wang, J.-L. & Shi, Z. (2011). CrystEngComm, 13, 3884-3894.]). We selected 344-pytpy and 1,2,4,5-benzene­tetra­carbonic acid as the organic linkers which, when assembled with Zn cations, resulted in the title coordination polymer [Zn2(344-pytpy)2(H2bta)Cl2]n.

2. Structural commentary

As shown in Fig. 1[link], the asymmetric unit of the title compound contains one ZnII cation, one 344-pytpy ligand, a half of an H2bta2− anion and one coordinating Cl anion. The ZnII atom is four-coordinated by two nitro­gen atoms (N1, N3) from two different 344-pytpy ligands [Zn1—N1 = 2.070 (2) and Zn1—N3 = 2.0217 (18) Å], one oxygen atom (O2) from an H2bta2− anion [Zn1—O2 = 1.9171 (16) Å] and one Cl atom [Zn1—Cl1 = 2.2278 (7) Å] in a distorted tetra­hedral coordination geometry. The bond lengths around Zn1 are similar to those reported by Wang et al. (2009[Wang, B.-C., Chen, X.-L., Hu, H.-M., Yao, H.-L. & Xue, G.-L. (2009). Inorg. Chem. Commun. 12, 856-859.]). The X—Zn—X (X = N, O or Cl atom) angles range from 97.21 (8) to 115.73 (8)° and the tetra­hedron edge lengths range from 2.992 (3) to 3.591 (2) Å. Each 344-pytpy ligand act as 2-connecting node, linking two Zn atoms by the outer N-terminal atoms (N1, N3), the central and another outer pyridine N atom (N2, N4) are free. The H2bta2− anion is located on an inversion center, and bridges two ZnII atoms through the two carboxyl­ate groups. In this way, chains propagating along [1[\overline1]0] are formed (Fig. 2[link]).

[Figure 1]
Figure 1
Part of the polymeric structure of the title complex [symmetry codes: (i) −x, −y + 1, −z + 2; (ii) x + 1, y − 1, z]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the polymeric chain.

3. Supra­molecular features

In the crystal, classical O—H⋯N hydrogen bonds, weak C—H⋯O and C—H⋯Cl hydrogen bonds (Table 1[link]) link the chains into a three-dimensional supra­molecular architecture. ππ stacking is observed between the N3-pyridine ring and benzene ring of the neighboring chain, with a centroid-to-centroid distance of 3.7280 (14) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N4ii 0.82 1.83 2.633 (3) 167
C15—H15⋯O1iii 0.93 2.46 3.383 (3) 172
C17—H17⋯Cl1iv 0.93 2.75 3.678 (3) 173
C22—H22⋯O4v 0.93 2.59 3.305 (4) 134
C25—H25⋯O1iii 0.93 2.34 3.267 (3) 175
Symmetry codes: (ii) -x, -y+1, -z+3; (iii) -x+1, -y+1, -z+2; (iv) -x+1, -y+2, -z+1; (v) x, y+1, z.

3.1. Synthesis and crystallization

4′-(3-Pyrid­yl)-4,2′:6′,4′′-terpyridine was synthesized accord­ing to a literature method (Yang et al., 2014[Yang, X.-L., Shangguan, Y.-Q., Hu, H.-M., Xu, B., Wang, B.-C., Xie, J., Yuan, F., Yang, M.-L., Dong, F.-X. & Xue, G.-L. (2014). J. Solid State Chem. 216, 13-22.]). 344-pytpy (0.0310 g, 0.1 mmol), ZnCl2 (0.0136 g, 0.1 mmol) and 1,2,4,5-benzene­tetra­carbonic acid (0.0254 g, 0.1 mmol) were adequately dispersed in 10 mL of distilled water, and then the mixture was sealed and heated to 453 K for three days under hydro­thermal conditions. The vial was then allowed to cool to room temperature. Colorless block-shaped crystals were collected (0.010 g, yield 38.9%, based on Zn).

3.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and treated as riding, with C—H = 0.93 and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Zn2(C10H4O8)Cl2(C20H14N4)2]
Mr 537.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.6557 (6), 12.1432 (8), 12.5842 (9)
α, β, γ (°) 61.396 (1), 74.216 (1), 75.411 (1)
V3) 1105.83 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.27
Crystal size (mm) 0.23 × 0.22 × 0.17
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.758, 0.813
No. of measured, independent and observed [I > 2σ(I)] reflections 7896, 3840, 3435
Rint 0.018
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.07
No. of reflections 3840
No. of parameters 317
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.27
Computer programs: SMART and SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[dichlorido(µ-2,5-dicarboxybenzene-1,4-dicarboxylato-κ2O1:O4)bis[µ-4'-(pyridin-3-yl)-4,2':6',4''-terpyridine-κ2N1:N4']dizinc] top
Crystal data top
[Zn2(C10H4O8)Cl2(C20H14N4)2]Z = 2
Mr = 537.24F(000) = 546
Triclinic, P1Dx = 1.613 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6557 (6) ÅCell parameters from 4113 reflections
b = 12.1432 (8) Åθ = 2.5–26.8°
c = 12.5842 (9) ŵ = 1.27 mm1
α = 61.396 (1)°T = 296 K
β = 74.216 (1)°Block, colorless
γ = 75.411 (1)°0.23 × 0.22 × 0.17 mm
V = 1105.83 (13) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3840 independent reflections
Radiation source: fine-focus sealed tube3435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.758, Tmax = 0.813k = 1412
7896 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.043P)2 + 0.4805P]
where P = (Fo2 + 2Fc2)/3
3840 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3397 (3)0.4695 (2)0.8900 (2)0.0279 (5)
C20.1613 (3)0.4839 (2)0.9422 (2)0.0218 (5)
C30.1062 (3)0.3951 (2)1.0600 (2)0.0239 (5)
H30.17740.32401.10020.029*
C40.0533 (3)0.4105 (2)1.11919 (19)0.0219 (5)
C50.0971 (3)0.3173 (2)1.2513 (2)0.0306 (6)
C60.6841 (3)0.8624 (2)0.5920 (2)0.0297 (5)
H60.75350.83190.53800.036*
C70.6660 (3)0.9894 (2)0.5599 (2)0.0317 (6)
H70.72201.04380.48600.038*
C80.5628 (3)1.0346 (2)0.6398 (2)0.0280 (5)
H80.54571.12080.61860.034*
C90.4845 (3)0.9514 (2)0.7519 (2)0.0228 (5)
C100.5101 (3)0.8245 (2)0.7761 (2)0.0269 (5)
H100.45800.76760.85050.032*
C110.3721 (3)0.9962 (2)0.8406 (2)0.0234 (5)
C120.2691 (3)1.1105 (2)0.7983 (2)0.0259 (5)
H120.27251.16080.71430.031*
C130.1608 (3)1.1490 (2)0.8828 (2)0.0236 (5)
C140.2517 (3)0.9694 (2)1.0459 (2)0.0230 (5)
C150.3640 (3)0.9256 (2)0.9672 (2)0.0254 (5)
H150.43310.84970.99870.030*
C160.0390 (3)1.2655 (2)0.8443 (2)0.0237 (5)
C170.0453 (3)1.3573 (2)0.7232 (2)0.0303 (6)
H170.13311.35130.66320.036*
C180.0777 (3)1.4565 (2)0.6922 (2)0.0299 (6)
H180.07151.51650.61040.036*
C190.2098 (3)1.3857 (2)0.8926 (2)0.0251 (5)
H190.29651.39580.95140.030*
C200.0910 (3)1.2841 (2)0.9303 (2)0.0254 (5)
H200.09711.22761.01330.030*
C210.2301 (3)0.8971 (2)1.1827 (2)0.0239 (5)
C220.1156 (3)0.9462 (3)1.2565 (2)0.0334 (6)
H220.05331.02481.22130.040*
C230.0956 (3)0.8769 (3)1.3826 (2)0.0374 (6)
H230.01990.91151.43090.045*
C240.2886 (3)0.7152 (2)1.3680 (2)0.0331 (6)
H240.34730.63551.40600.040*
C250.3188 (3)0.7786 (2)1.2413 (2)0.0283 (5)
H250.39750.74261.19550.034*
Cl10.60963 (8)0.63418 (6)0.52615 (5)0.03639 (17)
N10.6063 (2)0.78037 (18)0.69741 (18)0.0272 (4)
N20.1514 (2)1.07932 (18)1.00421 (17)0.0252 (4)
N30.2072 (2)1.47156 (17)0.77436 (17)0.0234 (4)
N40.1792 (3)0.7629 (2)1.43877 (18)0.0352 (5)
O10.4167 (2)0.36497 (18)0.9094 (2)0.0572 (6)
O20.3980 (2)0.57395 (16)0.83257 (16)0.0351 (4)
O30.1565 (3)0.37407 (17)1.32170 (15)0.0459 (5)
H3A0.16050.32161.39390.069*
O40.0721 (4)0.20509 (19)1.2873 (2)0.0792 (9)
Zn10.59827 (3)0.60234 (2)0.71763 (2)0.02356 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0224 (12)0.0315 (14)0.0246 (12)0.0014 (11)0.0023 (10)0.0128 (11)
C20.0208 (11)0.0233 (12)0.0210 (11)0.0041 (9)0.0016 (9)0.0117 (10)
C30.0225 (12)0.0239 (12)0.0212 (11)0.0017 (9)0.0032 (9)0.0078 (10)
C40.0236 (12)0.0216 (12)0.0177 (11)0.0052 (9)0.0018 (9)0.0085 (9)
C50.0269 (13)0.0289 (14)0.0248 (12)0.0014 (10)0.0015 (10)0.0074 (11)
C60.0296 (13)0.0293 (13)0.0285 (12)0.0070 (10)0.0075 (10)0.0167 (11)
C70.0355 (14)0.0297 (14)0.0254 (12)0.0126 (11)0.0064 (10)0.0110 (11)
C80.0319 (13)0.0198 (12)0.0285 (12)0.0032 (10)0.0028 (10)0.0094 (10)
C90.0232 (12)0.0207 (12)0.0222 (11)0.0001 (9)0.0041 (9)0.0092 (10)
C100.0277 (13)0.0223 (12)0.0221 (11)0.0024 (10)0.0034 (10)0.0077 (10)
C110.0247 (12)0.0220 (12)0.0228 (11)0.0017 (9)0.0027 (9)0.0109 (10)
C120.0284 (13)0.0235 (12)0.0185 (11)0.0001 (10)0.0017 (9)0.0065 (10)
C130.0244 (12)0.0206 (12)0.0217 (11)0.0007 (9)0.0044 (9)0.0078 (9)
C140.0242 (12)0.0199 (12)0.0228 (11)0.0002 (9)0.0046 (9)0.0093 (10)
C150.0259 (12)0.0197 (12)0.0243 (12)0.0030 (9)0.0051 (10)0.0075 (10)
C160.0240 (12)0.0212 (12)0.0244 (11)0.0009 (9)0.0039 (9)0.0102 (10)
C170.0240 (12)0.0294 (13)0.0234 (12)0.0045 (10)0.0034 (10)0.0085 (10)
C180.0290 (13)0.0254 (13)0.0229 (12)0.0027 (10)0.0004 (10)0.0063 (10)
C190.0228 (12)0.0279 (13)0.0235 (11)0.0026 (10)0.0026 (9)0.0145 (10)
C200.0301 (13)0.0227 (12)0.0207 (11)0.0015 (10)0.0042 (10)0.0088 (10)
C210.0255 (12)0.0231 (12)0.0216 (11)0.0030 (9)0.0043 (9)0.0089 (10)
C220.0314 (14)0.0353 (15)0.0274 (13)0.0053 (11)0.0047 (11)0.0142 (11)
C230.0309 (14)0.0513 (17)0.0277 (13)0.0027 (12)0.0020 (11)0.0207 (13)
C240.0459 (16)0.0254 (13)0.0254 (12)0.0056 (11)0.0115 (11)0.0062 (11)
C250.0338 (13)0.0264 (13)0.0236 (12)0.0003 (10)0.0055 (10)0.0122 (10)
Cl10.0431 (4)0.0347 (4)0.0254 (3)0.0005 (3)0.0060 (3)0.0116 (3)
N10.0283 (11)0.0197 (10)0.0263 (10)0.0008 (8)0.0023 (8)0.0094 (8)
N20.0246 (10)0.0228 (10)0.0229 (10)0.0026 (8)0.0027 (8)0.0096 (8)
N30.0216 (10)0.0211 (10)0.0236 (10)0.0011 (8)0.0020 (8)0.0098 (8)
N40.0430 (13)0.0395 (13)0.0204 (10)0.0138 (11)0.0020 (9)0.0092 (10)
O10.0329 (11)0.0332 (11)0.0777 (15)0.0026 (9)0.0135 (10)0.0184 (11)
O20.0243 (9)0.0326 (10)0.0384 (10)0.0087 (8)0.0103 (8)0.0140 (8)
O30.0776 (15)0.0351 (11)0.0173 (8)0.0151 (10)0.0021 (9)0.0076 (8)
O40.125 (2)0.0231 (12)0.0391 (12)0.0033 (12)0.0276 (13)0.0023 (9)
Zn10.02041 (16)0.01912 (16)0.02327 (15)0.00026 (10)0.00197 (11)0.00766 (11)
Geometric parameters (Å, º) top
C1—O11.217 (3)C14—C151.389 (3)
C1—O21.277 (3)C14—C211.493 (3)
C1—C21.507 (3)C15—H150.9300
C2—C31.389 (3)C16—C201.390 (3)
C2—C4i1.399 (3)C16—C171.389 (3)
C3—C41.393 (3)C17—C181.366 (3)
C3—H30.9300C17—H170.9300
C4—C2i1.399 (3)C18—N31.344 (3)
C4—C51.503 (3)C18—H180.9300
C5—O41.192 (3)C19—N31.345 (3)
C5—O31.298 (3)C19—C201.368 (3)
C6—N11.339 (3)C19—H190.9300
C6—C71.372 (3)C20—H200.9300
C6—H60.9300C21—C221.390 (3)
C7—C81.379 (3)C21—C251.392 (3)
C7—H70.9300C22—C231.379 (3)
C8—C91.390 (3)C22—H220.9300
C8—H80.9300C23—N41.333 (3)
C9—C101.389 (3)C23—H230.9300
C9—C111.488 (3)C24—N41.336 (3)
C10—N11.341 (3)C24—C251.379 (3)
C10—H100.9300C24—H240.9300
C11—C121.390 (3)C25—H250.9300
C11—C151.392 (3)Zn1—Cl12.2278 (7)
C12—C131.393 (3)Zn1—N12.070 (2)
C12—H120.9300Zn1—O21.9171 (16)
C13—N21.336 (3)Zn1—N3ii2.0217 (18)
C13—C161.490 (3)O3—H3A0.8200
C14—N21.343 (3)
O1—C1—O2125.8 (2)C20—C16—C13120.1 (2)
O1—C1—C2120.4 (2)C17—C16—C13122.8 (2)
O2—C1—C2113.6 (2)C18—C17—C16119.9 (2)
C3—C2—C4i119.3 (2)C18—C17—H17120.1
C3—C2—C1118.5 (2)C16—C17—H17120.1
C4i—C2—C1122.0 (2)N3—C18—C17123.1 (2)
C2—C3—C4121.4 (2)N3—C18—H18118.4
C2—C3—H3119.3C17—C18—H18118.4
C4—C3—H3119.3N3—C19—C20123.1 (2)
C3—C4—C2i119.3 (2)N3—C19—H19118.5
C3—C4—C5117.6 (2)C20—C19—H19118.5
C2i—C4—C5122.9 (2)C19—C20—C16119.8 (2)
O4—C5—O3124.4 (2)C19—C20—H20120.1
O4—C5—C4124.0 (2)C16—C20—H20120.1
O3—C5—C4111.4 (2)C22—C21—C25117.5 (2)
N1—C6—C7122.9 (2)C22—C21—C14120.1 (2)
N1—C6—H6118.5C25—C21—C14122.4 (2)
C7—C6—H6118.5C23—C22—C21119.2 (2)
C6—C7—C8118.5 (2)C23—C22—H22120.4
C6—C7—H7120.7C21—C22—H22120.4
C8—C7—H7120.7N4—C23—C22123.4 (2)
C7—C8—C9120.0 (2)N4—C23—H23118.3
C7—C8—H8120.0C22—C23—H23118.3
C9—C8—H8120.0N4—C24—C25123.1 (2)
C8—C9—C10117.3 (2)N4—C24—H24118.4
C8—C9—C11121.7 (2)C25—C24—H24118.4
C10—C9—C11121.0 (2)C24—C25—C21119.3 (2)
N1—C10—C9123.1 (2)C24—C25—H25120.4
N1—C10—H10118.5C21—C25—H25120.4
C9—C10—H10118.5C6—N1—C10118.1 (2)
C12—C11—C15118.0 (2)C6—N1—Zn1119.29 (16)
C12—C11—C9120.2 (2)C10—N1—Zn1121.30 (16)
C15—C11—C9121.8 (2)C13—N2—C14118.72 (19)
C11—C12—C13119.4 (2)C18—N3—C19116.97 (19)
C11—C12—H12120.3C18—N3—Zn1iii120.55 (15)
C13—C12—H12120.3C19—N3—Zn1iii121.90 (15)
N2—C13—C12122.3 (2)C23—N4—C24117.5 (2)
N2—C13—C16115.34 (19)C1—O2—Zn1125.37 (16)
C12—C13—C16122.25 (19)C5—O3—H3A109.5
N2—C14—C15122.2 (2)O2—Zn1—N3ii115.73 (8)
N2—C14—C21114.85 (19)O2—Zn1—N197.21 (8)
C15—C14—C21122.9 (2)N3ii—Zn1—N1115.16 (8)
C11—C15—C14119.4 (2)O2—Zn1—Cl1119.86 (6)
C11—C15—H15120.3N3ii—Zn1—Cl1104.98 (6)
C14—C15—H15120.3N1—Zn1—Cl1103.51 (6)
C20—C16—C17117.0 (2)
O1—C1—C2—C338.5 (3)C17—C16—C20—C193.6 (3)
O2—C1—C2—C3137.7 (2)C13—C16—C20—C19174.3 (2)
O1—C1—C2—C4i147.7 (3)N2—C14—C21—C221.5 (3)
O2—C1—C2—C4i36.1 (3)C15—C14—C21—C22180.0 (2)
C4i—C2—C3—C41.3 (4)N2—C14—C21—C25177.0 (2)
C1—C2—C3—C4172.7 (2)C15—C14—C21—C251.6 (4)
C2—C3—C4—C2i1.3 (4)C25—C21—C22—C230.3 (4)
C2—C3—C4—C5173.6 (2)C14—C21—C22—C23178.9 (2)
C3—C4—C5—O453.0 (4)C21—C22—C23—N41.1 (4)
C2i—C4—C5—O4132.3 (3)N4—C24—C25—C211.2 (4)
C3—C4—C5—O3123.2 (2)C22—C21—C25—C240.7 (4)
C2i—C4—C5—O351.5 (3)C14—C21—C25—C24177.8 (2)
N1—C6—C7—C80.1 (4)C7—C6—N1—C101.8 (4)
C6—C7—C8—C92.3 (4)C7—C6—N1—Zn1165.3 (2)
C7—C8—C9—C102.5 (3)C9—C10—N1—C61.6 (4)
C7—C8—C9—C11179.9 (2)C9—C10—N1—Zn1165.17 (18)
C8—C9—C10—N10.5 (4)C12—C13—N2—C141.0 (4)
C11—C9—C10—N1177.9 (2)C16—C13—N2—C14176.5 (2)
C8—C9—C11—C1238.0 (3)C15—C14—N2—C130.4 (3)
C10—C9—C11—C12139.3 (2)C21—C14—N2—C13178.9 (2)
C8—C9—C11—C15143.1 (2)C17—C18—N3—C192.2 (4)
C10—C9—C11—C1539.5 (3)C17—C18—N3—Zn1iii169.2 (2)
C15—C11—C12—C131.1 (3)C20—C19—N3—C182.1 (3)
C9—C11—C12—C13177.8 (2)C20—C19—N3—Zn1iii169.18 (18)
C11—C12—C13—N20.3 (4)C22—C23—N4—C240.7 (4)
C11—C12—C13—C16175.5 (2)C25—C24—N4—C230.4 (4)
C12—C11—C15—C141.7 (3)O1—C1—O2—Zn122.1 (4)
C9—C11—C15—C14177.2 (2)C2—C1—O2—Zn1161.85 (15)
N2—C14—C15—C111.0 (4)C1—O2—Zn1—N3ii49.0 (2)
C21—C14—C15—C11177.4 (2)C1—O2—Zn1—N1171.5 (2)
N2—C13—C16—C2011.3 (3)C1—O2—Zn1—Cl178.4 (2)
C12—C13—C16—C20164.2 (2)C6—N1—Zn1—O2152.28 (19)
N2—C13—C16—C17170.8 (2)C10—N1—Zn1—O214.38 (19)
C12—C13—C16—C1713.7 (4)C6—N1—Zn1—N3ii84.84 (19)
C20—C16—C17—C183.6 (4)C10—N1—Zn1—N3ii108.50 (18)
C13—C16—C17—C18174.4 (2)C6—N1—Zn1—Cl129.16 (19)
C16—C17—C18—N30.7 (4)C10—N1—Zn1—Cl1137.50 (17)
N3—C19—C20—C160.8 (4)
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y1, z; (iii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N4iv0.821.832.633 (3)167
C15—H15···O1v0.932.463.383 (3)172
C17—H17···Cl1vi0.932.753.678 (3)173
C22—H22···O4vii0.932.593.305 (4)134
C25—H25···O1v0.932.343.267 (3)175
Symmetry codes: (iv) x, y+1, z+3; (v) x+1, y+1, z+2; (vi) x+1, y+2, z+1; (vii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21271004, 21271003, 51372003, 51432001, 51472002), Focus on returned overseas scholars of the Ministry of Education of China, the Program for New Century Excellent Talents in Universities (China) and the Higher Education Revitalization Plan Talent Project (2013).

References

First citationBhaumik, C., Saha, D., Das, S. & Baitalik, S. (2011). Inorg. Chem. 50, 12586–12600.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrammer, L. (2004). Chem. Soc. Rev. 33, 476–489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, F., He, H. & Sun, D. (2008). J. Am. Chem. Soc. 130, 14064–14065.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHancock, R. D. (2013). Chem. Soc. Rev. 42, 1500–1524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHinterholzinger, F. M., Ranft, A., Feckl, J. M., Rühle, B., Bein, T. & Lotsch, B. V. (2012). J. Mater. Chem. 22, 10356–10362.  CrossRef CAS Google Scholar
First citationHou, K.-L., Bai, F.-Y., Xing, Y.-H., Wang, J.-L. & Shi, Z. (2011). CrystEngComm, 13, 3884–3894.  CrossRef CAS Google Scholar
First citationHousecroft, C. E. (2014). Dalton Trans. 43, 6594–6604.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJiang, H.-L., Makal, T. A. & Zhou, H.-C. (2013). Coord. Chem. Rev. 257, 2232–2249.  Web of Science CrossRef CAS Google Scholar
First citationKepert, C. J. (2006). Chem. Commun. pp. 695–700.  Web of Science CrossRef Google Scholar
First citationKreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKumazawa, K., Biradha, K., Kusukawa, T., Okano, T. & Fujita, M. (2003). Angew. Chem. Int. Ed. 42, 3909–3913.  CrossRef CAS Google Scholar
First citationLi, M.-X., Miao, Z.-X., Shao, M., Liang, S.-W. & Zhu, S.-R. (2008). Inorg. Chem. 47, 4481–4489.  CrossRef PubMed CAS Google Scholar
First citationLi, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869–932.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, X.-Z., Zhou, X.-P., Li, D. & Yin, Y.-G. (2011). CrystEngComm, 13, 6759–6765.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, B.-Q. & Coppens, P. (2003). Chem. Commun. pp. 2290–2291.  Web of Science CSD CrossRef Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSeo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature, 404, 982–986.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, B.-C., Chen, X.-L., Hu, H.-M., Yao, H.-L. & Xue, G.-L. (2009). Inorg. Chem. Commun. 12, 856–859.  CrossRef CAS Google Scholar
First citationYaghi, O. M. & Li, H. (1995). J. Am. Chem. Soc. 117, 10401–10402.  CSD CrossRef CAS Web of Science Google Scholar
First citationYang, X.-L., Shangguan, Y.-Q., Hu, H.-M., Xu, B., Wang, B.-C., Xie, J., Yuan, F., Yang, M.-L., Dong, F.-X. & Xue, G.-L. (2014). J. Solid State Chem. 216, 13–22.  CrossRef CAS Google Scholar
First citationYoshizawa, M., Miyagi, S., Kawano, M., Ishiguro, K. & Fujita, M. (2004). J. Am. Chem. Soc. 126, 9172–9173.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds