research communications
μ-2,5-dicarboxybenzene-1,4-dicarboxylato-κ2O1:O4)bis[μ-4′-(pyridin-3-yl)-4,2′:6′,4′′-terpyridine-κ2N1:N4′]dizinc]
of poly[dichlorido(aDepartment of Chemistry, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui University, Hefei 230601, People's Republic of China
*Correspondence e-mail: yptian@ahu.edu.cn
In the title polymeric ZnII complex, [Zn2(C10H4O8)Cl2(C20H14N4)2]n, the ZnII cations are bridged by both 2,5-dicarboxybenzene-1,4-dicarboxylate dianions and 4′-(pyridin-3-yl)-4,2′:6′,4′′-terpyridine ligands, forming ladder-like polymeric chains propagating along [1-10]. The Cl− anion further coordinates the ZnII cation to complete a distorted tetrahedral environment. In the 4′-(pyridin-3-yl)-4,2′:6′,4′′-terpyridine ligand, the three sideward pyridine rings are twisted with respect to the central pyridine ring by 39.27 (12), 14.89 (13) and 3.36 (13)°, respectively. In the crystal, classical O—H⋯N hydrogen bonds and weak C—H⋯O and C—H⋯Cl hydrogen bonds link the chains into a three-dimensional supramolecular architecture. π–π stacking is observed between the pyridine and benzene rings of neighbouring polymeric chains, with a centroid-to-centroid distance of 3.7280 (14) Å.
Keywords: crystal structure; 4′-(pyridin-3-yl)-4,2′:6′,4′′-terpyridine; zinc(II) complex; coordination polymer.
CCDC reference: 1509671
1. Chemical context
Coordination polymers (CPs) represent a class of crystalline materials which consist of different ligands interconnected by metallic nodes (Yaghi & Li; 1995; Hinterholzinger et al., 2012). Compared to traditional inorganic materials, CPs have fascinating structures with regular pore shape and size obtained by rational design (Kepert, 2006; Brammer, 2004). In addition, studies over several decades have revealed that CPs have multi-functional applications such as gas storage and separation (Rosi et al., 2003; Jiang et al., 2013), chemical purification (Li et al., 2012), catalysis (Seo et al., 2000), and sensors (Kreno et al., 2012), etc.
Pyridine-containing compounds, such as 4,2′:6′,4′′-terpyridine derivatives, are of great importance in the design of organic ligands, because conjugated polypyridyl ligands can form a better rigid plane and improve the stability of the network (Hancock, 2013; Li et al., 2011; Bhaumik et al., 2011). As a rigid planar and triangular ligand, 4′-(3-pyridyl)-4,2′:6′,4′′-terpyridine (344-pytpy; Housecroft, 2014) is different from commonly employed polypyridyl ligands such as 1,3,5-tri(4-pyridyl)-2,4,6-triazine (Ma & Coppens, 2003; Kumazawa et al., 2003), which have been widely studied in the field of coordination chemistry. Its rigidity and trigonal geometry may lead to the formation of nanosized cages and porous frameworks enclosing cavities and channels (Li et al., 2008; Yoshizawa et al., 2004; Dai et al., 2008). 1,2,4,5-Benzenetetracarbonic acid (H4bta) is frequently employed due to the rich coordination binding sites of the carboxylate groups (Hou et al., 2011). We selected 344-pytpy and 1,2,4,5-benzenetetracarbonic acid as the organic linkers which, when assembled with Zn cations, resulted in the title coordination polymer [Zn2(344-pytpy)2(H2bta)Cl2]n.
2. Structural commentary
As shown in Fig. 1, the of the title compound contains one ZnII cation, one 344-pytpy ligand, a half of an H2bta2− anion and one coordinating Cl− anion. The ZnII atom is four-coordinated by two nitrogen atoms (N1, N3) from two different 344-pytpy ligands [Zn1—N1 = 2.070 (2) and Zn1—N3 = 2.0217 (18) Å], one oxygen atom (O2) from an H2bta2− anion [Zn1—O2 = 1.9171 (16) Å] and one Cl atom [Zn1—Cl1 = 2.2278 (7) Å] in a distorted tetrahedral coordination geometry. The bond lengths around Zn1 are similar to those reported by Wang et al. (2009). The X—Zn—X (X = N, O or Cl atom) angles range from 97.21 (8) to 115.73 (8)° and the tetrahedron edge lengths range from 2.992 (3) to 3.591 (2) Å. Each 344-pytpy ligand act as 2-connecting node, linking two Zn atoms by the outer N-terminal atoms (N1, N3), the central and another outer pyridine N atom (N2, N4) are free. The H2bta2− anion is located on an inversion center, and bridges two ZnII atoms through the two carboxylate groups. In this way, chains propagating along [10] are formed (Fig. 2).
3. Supramolecular features
In the crystal, classical O—H⋯N hydrogen bonds, weak C—H⋯O and C—H⋯Cl hydrogen bonds (Table 1) link the chains into a three-dimensional supramolecular architecture. π–π stacking is observed between the N3-pyridine ring and benzene ring of the neighboring chain, with a centroid-to-centroid distance of 3.7280 (14) Å.
3.1. Synthesis and crystallization
4′-(3-Pyridyl)-4,2′:6′,4′′-terpyridine was synthesized according to a literature method (Yang et al., 2014). 344-pytpy (0.0310 g, 0.1 mmol), ZnCl2 (0.0136 g, 0.1 mmol) and 1,2,4,5-benzenetetracarbonic acid (0.0254 g, 0.1 mmol) were adequately dispersed in 10 mL of distilled water, and then the mixture was sealed and heated to 453 K for three days under hydrothermal conditions. The vial was then allowed to cool to room temperature. Colorless block-shaped crystals were collected (0.010 g, yield 38.9%, based on Zn).
3.2. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and treated as riding, with C—H = 0.93 and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1509671
https://doi.org/10.1107/S2056989016016285/xu5893sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016016285/xu5893Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016016285/xu5893Isup3.cdx
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn2(C10H4O8)Cl2(C20H14N4)2] | Z = 2 |
Mr = 537.24 | F(000) = 546 |
Triclinic, P1 | Dx = 1.613 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.6557 (6) Å | Cell parameters from 4113 reflections |
b = 12.1432 (8) Å | θ = 2.5–26.8° |
c = 12.5842 (9) Å | µ = 1.27 mm−1 |
α = 61.396 (1)° | T = 296 K |
β = 74.216 (1)° | Block, colorless |
γ = 75.411 (1)° | 0.23 × 0.22 × 0.17 mm |
V = 1105.83 (13) Å3 |
Bruker SMART APEX CCD diffractometer | 3840 independent reflections |
Radiation source: fine-focus sealed tube | 3435 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
phi and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −10→10 |
Tmin = 0.758, Tmax = 0.813 | k = −14→12 |
7896 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.043P)2 + 0.4805P] where P = (Fo2 + 2Fc2)/3 |
3840 reflections | (Δ/σ)max = 0.001 |
317 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.3397 (3) | 0.4695 (2) | 0.8900 (2) | 0.0279 (5) | |
C2 | 0.1613 (3) | 0.4839 (2) | 0.9422 (2) | 0.0218 (5) | |
C3 | 0.1062 (3) | 0.3951 (2) | 1.0600 (2) | 0.0239 (5) | |
H3 | 0.1774 | 0.3240 | 1.1002 | 0.029* | |
C4 | −0.0533 (3) | 0.4105 (2) | 1.11919 (19) | 0.0219 (5) | |
C5 | −0.0971 (3) | 0.3173 (2) | 1.2513 (2) | 0.0306 (6) | |
C6 | 0.6841 (3) | 0.8624 (2) | 0.5920 (2) | 0.0297 (5) | |
H6 | 0.7535 | 0.8319 | 0.5380 | 0.036* | |
C7 | 0.6660 (3) | 0.9894 (2) | 0.5599 (2) | 0.0317 (6) | |
H7 | 0.7220 | 1.0438 | 0.4860 | 0.038* | |
C8 | 0.5628 (3) | 1.0346 (2) | 0.6398 (2) | 0.0280 (5) | |
H8 | 0.5457 | 1.1208 | 0.6186 | 0.034* | |
C9 | 0.4845 (3) | 0.9514 (2) | 0.7519 (2) | 0.0228 (5) | |
C10 | 0.5101 (3) | 0.8245 (2) | 0.7761 (2) | 0.0269 (5) | |
H10 | 0.4580 | 0.7676 | 0.8505 | 0.032* | |
C11 | 0.3721 (3) | 0.9962 (2) | 0.8406 (2) | 0.0234 (5) | |
C12 | 0.2691 (3) | 1.1105 (2) | 0.7983 (2) | 0.0259 (5) | |
H12 | 0.2725 | 1.1608 | 0.7143 | 0.031* | |
C13 | 0.1608 (3) | 1.1490 (2) | 0.8828 (2) | 0.0236 (5) | |
C14 | 0.2517 (3) | 0.9694 (2) | 1.0459 (2) | 0.0230 (5) | |
C15 | 0.3640 (3) | 0.9256 (2) | 0.9672 (2) | 0.0254 (5) | |
H15 | 0.4331 | 0.8497 | 0.9987 | 0.030* | |
C16 | 0.0390 (3) | 1.2655 (2) | 0.8443 (2) | 0.0237 (5) | |
C17 | 0.0453 (3) | 1.3573 (2) | 0.7232 (2) | 0.0303 (6) | |
H17 | 0.1331 | 1.3513 | 0.6632 | 0.036* | |
C18 | −0.0777 (3) | 1.4565 (2) | 0.6922 (2) | 0.0299 (6) | |
H18 | −0.0715 | 1.5165 | 0.6104 | 0.036* | |
C19 | −0.2098 (3) | 1.3857 (2) | 0.8926 (2) | 0.0251 (5) | |
H19 | −0.2965 | 1.3958 | 0.9514 | 0.030* | |
C20 | −0.0910 (3) | 1.2841 (2) | 0.9303 (2) | 0.0254 (5) | |
H20 | −0.0971 | 1.2276 | 1.0133 | 0.030* | |
C21 | 0.2301 (3) | 0.8971 (2) | 1.1827 (2) | 0.0239 (5) | |
C22 | 0.1156 (3) | 0.9462 (3) | 1.2565 (2) | 0.0334 (6) | |
H22 | 0.0533 | 1.0248 | 1.2213 | 0.040* | |
C23 | 0.0956 (3) | 0.8769 (3) | 1.3826 (2) | 0.0374 (6) | |
H23 | 0.0199 | 0.9115 | 1.4309 | 0.045* | |
C24 | 0.2886 (3) | 0.7152 (2) | 1.3680 (2) | 0.0331 (6) | |
H24 | 0.3473 | 0.6355 | 1.4060 | 0.040* | |
C25 | 0.3188 (3) | 0.7786 (2) | 1.2413 (2) | 0.0283 (5) | |
H25 | 0.3975 | 0.7426 | 1.1955 | 0.034* | |
Cl1 | 0.60963 (8) | 0.63418 (6) | 0.52615 (5) | 0.03639 (17) | |
N1 | 0.6063 (2) | 0.78037 (18) | 0.69741 (18) | 0.0272 (4) | |
N2 | 0.1514 (2) | 1.07932 (18) | 1.00421 (17) | 0.0252 (4) | |
N3 | −0.2072 (2) | 1.47156 (17) | 0.77436 (17) | 0.0234 (4) | |
N4 | 0.1792 (3) | 0.7629 (2) | 1.43877 (18) | 0.0352 (5) | |
O1 | 0.4167 (2) | 0.36497 (18) | 0.9094 (2) | 0.0572 (6) | |
O2 | 0.3980 (2) | 0.57395 (16) | 0.83257 (16) | 0.0351 (4) | |
O3 | −0.1565 (3) | 0.37407 (17) | 1.32170 (15) | 0.0459 (5) | |
H3A | −0.1605 | 0.3216 | 1.3939 | 0.069* | |
O4 | −0.0721 (4) | 0.20509 (19) | 1.2873 (2) | 0.0792 (9) | |
Zn1 | 0.59827 (3) | 0.60234 (2) | 0.71763 (2) | 0.02356 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0224 (12) | 0.0315 (14) | 0.0246 (12) | −0.0014 (11) | 0.0023 (10) | −0.0128 (11) |
C2 | 0.0208 (11) | 0.0233 (12) | 0.0210 (11) | −0.0041 (9) | 0.0016 (9) | −0.0117 (10) |
C3 | 0.0225 (12) | 0.0239 (12) | 0.0212 (11) | −0.0017 (9) | −0.0032 (9) | −0.0078 (10) |
C4 | 0.0236 (12) | 0.0216 (12) | 0.0177 (11) | −0.0052 (9) | 0.0018 (9) | −0.0085 (9) |
C5 | 0.0269 (13) | 0.0289 (14) | 0.0248 (12) | −0.0014 (10) | 0.0015 (10) | −0.0074 (11) |
C6 | 0.0296 (13) | 0.0293 (13) | 0.0285 (12) | −0.0070 (10) | 0.0075 (10) | −0.0167 (11) |
C7 | 0.0355 (14) | 0.0297 (14) | 0.0254 (12) | −0.0126 (11) | 0.0064 (10) | −0.0110 (11) |
C8 | 0.0319 (13) | 0.0198 (12) | 0.0285 (12) | −0.0032 (10) | −0.0028 (10) | −0.0094 (10) |
C9 | 0.0232 (12) | 0.0207 (12) | 0.0222 (11) | 0.0001 (9) | −0.0041 (9) | −0.0092 (10) |
C10 | 0.0277 (13) | 0.0223 (12) | 0.0221 (11) | −0.0024 (10) | 0.0034 (10) | −0.0077 (10) |
C11 | 0.0247 (12) | 0.0220 (12) | 0.0228 (11) | −0.0017 (9) | −0.0027 (9) | −0.0109 (10) |
C12 | 0.0284 (13) | 0.0235 (12) | 0.0185 (11) | 0.0001 (10) | −0.0017 (9) | −0.0065 (10) |
C13 | 0.0244 (12) | 0.0206 (12) | 0.0217 (11) | 0.0007 (9) | −0.0044 (9) | −0.0078 (9) |
C14 | 0.0242 (12) | 0.0199 (12) | 0.0228 (11) | 0.0002 (9) | −0.0046 (9) | −0.0093 (10) |
C15 | 0.0259 (12) | 0.0197 (12) | 0.0243 (12) | 0.0030 (9) | −0.0051 (10) | −0.0075 (10) |
C16 | 0.0240 (12) | 0.0212 (12) | 0.0244 (11) | −0.0009 (9) | −0.0039 (9) | −0.0102 (10) |
C17 | 0.0240 (12) | 0.0294 (13) | 0.0234 (12) | 0.0045 (10) | 0.0034 (10) | −0.0085 (10) |
C18 | 0.0290 (13) | 0.0254 (13) | 0.0229 (12) | 0.0027 (10) | −0.0004 (10) | −0.0063 (10) |
C19 | 0.0228 (12) | 0.0279 (13) | 0.0235 (11) | −0.0026 (10) | 0.0026 (9) | −0.0145 (10) |
C20 | 0.0301 (13) | 0.0227 (12) | 0.0207 (11) | −0.0015 (10) | −0.0042 (10) | −0.0088 (10) |
C21 | 0.0255 (12) | 0.0231 (12) | 0.0216 (11) | −0.0030 (9) | −0.0043 (9) | −0.0089 (10) |
C22 | 0.0314 (14) | 0.0353 (15) | 0.0274 (13) | 0.0053 (11) | −0.0047 (11) | −0.0142 (11) |
C23 | 0.0309 (14) | 0.0513 (17) | 0.0277 (13) | −0.0027 (12) | 0.0020 (11) | −0.0207 (13) |
C24 | 0.0459 (16) | 0.0254 (13) | 0.0254 (12) | −0.0056 (11) | −0.0115 (11) | −0.0062 (11) |
C25 | 0.0338 (13) | 0.0264 (13) | 0.0236 (12) | 0.0003 (10) | −0.0055 (10) | −0.0122 (10) |
Cl1 | 0.0431 (4) | 0.0347 (4) | 0.0254 (3) | 0.0005 (3) | −0.0060 (3) | −0.0116 (3) |
N1 | 0.0283 (11) | 0.0197 (10) | 0.0263 (10) | −0.0008 (8) | 0.0023 (8) | −0.0094 (8) |
N2 | 0.0246 (10) | 0.0228 (10) | 0.0229 (10) | 0.0026 (8) | −0.0027 (8) | −0.0096 (8) |
N3 | 0.0216 (10) | 0.0211 (10) | 0.0236 (10) | 0.0011 (8) | −0.0020 (8) | −0.0098 (8) |
N4 | 0.0430 (13) | 0.0395 (13) | 0.0204 (10) | −0.0138 (11) | −0.0020 (9) | −0.0092 (10) |
O1 | 0.0329 (11) | 0.0332 (11) | 0.0777 (15) | 0.0026 (9) | 0.0135 (10) | −0.0184 (11) |
O2 | 0.0243 (9) | 0.0326 (10) | 0.0384 (10) | −0.0087 (8) | 0.0103 (8) | −0.0140 (8) |
O3 | 0.0776 (15) | 0.0351 (11) | 0.0173 (8) | −0.0151 (10) | 0.0021 (9) | −0.0076 (8) |
O4 | 0.125 (2) | 0.0231 (12) | 0.0391 (12) | 0.0033 (12) | 0.0276 (13) | −0.0023 (9) |
Zn1 | 0.02041 (16) | 0.01912 (16) | 0.02327 (15) | 0.00026 (10) | 0.00197 (11) | −0.00766 (11) |
C1—O1 | 1.217 (3) | C14—C15 | 1.389 (3) |
C1—O2 | 1.277 (3) | C14—C21 | 1.493 (3) |
C1—C2 | 1.507 (3) | C15—H15 | 0.9300 |
C2—C3 | 1.389 (3) | C16—C20 | 1.390 (3) |
C2—C4i | 1.399 (3) | C16—C17 | 1.389 (3) |
C3—C4 | 1.393 (3) | C17—C18 | 1.366 (3) |
C3—H3 | 0.9300 | C17—H17 | 0.9300 |
C4—C2i | 1.399 (3) | C18—N3 | 1.344 (3) |
C4—C5 | 1.503 (3) | C18—H18 | 0.9300 |
C5—O4 | 1.192 (3) | C19—N3 | 1.345 (3) |
C5—O3 | 1.298 (3) | C19—C20 | 1.368 (3) |
C6—N1 | 1.339 (3) | C19—H19 | 0.9300 |
C6—C7 | 1.372 (3) | C20—H20 | 0.9300 |
C6—H6 | 0.9300 | C21—C22 | 1.390 (3) |
C7—C8 | 1.379 (3) | C21—C25 | 1.392 (3) |
C7—H7 | 0.9300 | C22—C23 | 1.379 (3) |
C8—C9 | 1.390 (3) | C22—H22 | 0.9300 |
C8—H8 | 0.9300 | C23—N4 | 1.333 (3) |
C9—C10 | 1.389 (3) | C23—H23 | 0.9300 |
C9—C11 | 1.488 (3) | C24—N4 | 1.336 (3) |
C10—N1 | 1.341 (3) | C24—C25 | 1.379 (3) |
C10—H10 | 0.9300 | C24—H24 | 0.9300 |
C11—C12 | 1.390 (3) | C25—H25 | 0.9300 |
C11—C15 | 1.392 (3) | Zn1—Cl1 | 2.2278 (7) |
C12—C13 | 1.393 (3) | Zn1—N1 | 2.070 (2) |
C12—H12 | 0.9300 | Zn1—O2 | 1.9171 (16) |
C13—N2 | 1.336 (3) | Zn1—N3ii | 2.0217 (18) |
C13—C16 | 1.490 (3) | O3—H3A | 0.8200 |
C14—N2 | 1.343 (3) | ||
O1—C1—O2 | 125.8 (2) | C20—C16—C13 | 120.1 (2) |
O1—C1—C2 | 120.4 (2) | C17—C16—C13 | 122.8 (2) |
O2—C1—C2 | 113.6 (2) | C18—C17—C16 | 119.9 (2) |
C3—C2—C4i | 119.3 (2) | C18—C17—H17 | 120.1 |
C3—C2—C1 | 118.5 (2) | C16—C17—H17 | 120.1 |
C4i—C2—C1 | 122.0 (2) | N3—C18—C17 | 123.1 (2) |
C2—C3—C4 | 121.4 (2) | N3—C18—H18 | 118.4 |
C2—C3—H3 | 119.3 | C17—C18—H18 | 118.4 |
C4—C3—H3 | 119.3 | N3—C19—C20 | 123.1 (2) |
C3—C4—C2i | 119.3 (2) | N3—C19—H19 | 118.5 |
C3—C4—C5 | 117.6 (2) | C20—C19—H19 | 118.5 |
C2i—C4—C5 | 122.9 (2) | C19—C20—C16 | 119.8 (2) |
O4—C5—O3 | 124.4 (2) | C19—C20—H20 | 120.1 |
O4—C5—C4 | 124.0 (2) | C16—C20—H20 | 120.1 |
O3—C5—C4 | 111.4 (2) | C22—C21—C25 | 117.5 (2) |
N1—C6—C7 | 122.9 (2) | C22—C21—C14 | 120.1 (2) |
N1—C6—H6 | 118.5 | C25—C21—C14 | 122.4 (2) |
C7—C6—H6 | 118.5 | C23—C22—C21 | 119.2 (2) |
C6—C7—C8 | 118.5 (2) | C23—C22—H22 | 120.4 |
C6—C7—H7 | 120.7 | C21—C22—H22 | 120.4 |
C8—C7—H7 | 120.7 | N4—C23—C22 | 123.4 (2) |
C7—C8—C9 | 120.0 (2) | N4—C23—H23 | 118.3 |
C7—C8—H8 | 120.0 | C22—C23—H23 | 118.3 |
C9—C8—H8 | 120.0 | N4—C24—C25 | 123.1 (2) |
C8—C9—C10 | 117.3 (2) | N4—C24—H24 | 118.4 |
C8—C9—C11 | 121.7 (2) | C25—C24—H24 | 118.4 |
C10—C9—C11 | 121.0 (2) | C24—C25—C21 | 119.3 (2) |
N1—C10—C9 | 123.1 (2) | C24—C25—H25 | 120.4 |
N1—C10—H10 | 118.5 | C21—C25—H25 | 120.4 |
C9—C10—H10 | 118.5 | C6—N1—C10 | 118.1 (2) |
C12—C11—C15 | 118.0 (2) | C6—N1—Zn1 | 119.29 (16) |
C12—C11—C9 | 120.2 (2) | C10—N1—Zn1 | 121.30 (16) |
C15—C11—C9 | 121.8 (2) | C13—N2—C14 | 118.72 (19) |
C11—C12—C13 | 119.4 (2) | C18—N3—C19 | 116.97 (19) |
C11—C12—H12 | 120.3 | C18—N3—Zn1iii | 120.55 (15) |
C13—C12—H12 | 120.3 | C19—N3—Zn1iii | 121.90 (15) |
N2—C13—C12 | 122.3 (2) | C23—N4—C24 | 117.5 (2) |
N2—C13—C16 | 115.34 (19) | C1—O2—Zn1 | 125.37 (16) |
C12—C13—C16 | 122.25 (19) | C5—O3—H3A | 109.5 |
N2—C14—C15 | 122.2 (2) | O2—Zn1—N3ii | 115.73 (8) |
N2—C14—C21 | 114.85 (19) | O2—Zn1—N1 | 97.21 (8) |
C15—C14—C21 | 122.9 (2) | N3ii—Zn1—N1 | 115.16 (8) |
C11—C15—C14 | 119.4 (2) | O2—Zn1—Cl1 | 119.86 (6) |
C11—C15—H15 | 120.3 | N3ii—Zn1—Cl1 | 104.98 (6) |
C14—C15—H15 | 120.3 | N1—Zn1—Cl1 | 103.51 (6) |
C20—C16—C17 | 117.0 (2) | ||
O1—C1—C2—C3 | 38.5 (3) | C17—C16—C20—C19 | 3.6 (3) |
O2—C1—C2—C3 | −137.7 (2) | C13—C16—C20—C19 | −174.3 (2) |
O1—C1—C2—C4i | −147.7 (3) | N2—C14—C21—C22 | −1.5 (3) |
O2—C1—C2—C4i | 36.1 (3) | C15—C14—C21—C22 | 180.0 (2) |
C4i—C2—C3—C4 | −1.3 (4) | N2—C14—C21—C25 | 177.0 (2) |
C1—C2—C3—C4 | 172.7 (2) | C15—C14—C21—C25 | −1.6 (4) |
C2—C3—C4—C2i | 1.3 (4) | C25—C21—C22—C23 | 0.3 (4) |
C2—C3—C4—C5 | −173.6 (2) | C14—C21—C22—C23 | 178.9 (2) |
C3—C4—C5—O4 | −53.0 (4) | C21—C22—C23—N4 | −1.1 (4) |
C2i—C4—C5—O4 | 132.3 (3) | N4—C24—C25—C21 | −1.2 (4) |
C3—C4—C5—O3 | 123.2 (2) | C22—C21—C25—C24 | 0.7 (4) |
C2i—C4—C5—O3 | −51.5 (3) | C14—C21—C25—C24 | −177.8 (2) |
N1—C6—C7—C8 | −0.1 (4) | C7—C6—N1—C10 | −1.8 (4) |
C6—C7—C8—C9 | 2.3 (4) | C7—C6—N1—Zn1 | 165.3 (2) |
C7—C8—C9—C10 | −2.5 (3) | C9—C10—N1—C6 | 1.6 (4) |
C7—C8—C9—C11 | −179.9 (2) | C9—C10—N1—Zn1 | −165.17 (18) |
C8—C9—C10—N1 | 0.5 (4) | C12—C13—N2—C14 | 1.0 (4) |
C11—C9—C10—N1 | 177.9 (2) | C16—C13—N2—C14 | 176.5 (2) |
C8—C9—C11—C12 | 38.0 (3) | C15—C14—N2—C13 | −0.4 (3) |
C10—C9—C11—C12 | −139.3 (2) | C21—C14—N2—C13 | −178.9 (2) |
C8—C9—C11—C15 | −143.1 (2) | C17—C18—N3—C19 | 2.2 (4) |
C10—C9—C11—C15 | 39.5 (3) | C17—C18—N3—Zn1iii | −169.2 (2) |
C15—C11—C12—C13 | −1.1 (3) | C20—C19—N3—C18 | −2.1 (3) |
C9—C11—C12—C13 | 177.8 (2) | C20—C19—N3—Zn1iii | 169.18 (18) |
C11—C12—C13—N2 | −0.3 (4) | C22—C23—N4—C24 | 0.7 (4) |
C11—C12—C13—C16 | −175.5 (2) | C25—C24—N4—C23 | 0.4 (4) |
C12—C11—C15—C14 | 1.7 (3) | O1—C1—O2—Zn1 | 22.1 (4) |
C9—C11—C15—C14 | −177.2 (2) | C2—C1—O2—Zn1 | −161.85 (15) |
N2—C14—C15—C11 | −1.0 (4) | C1—O2—Zn1—N3ii | −49.0 (2) |
C21—C14—C15—C11 | 177.4 (2) | C1—O2—Zn1—N1 | −171.5 (2) |
N2—C13—C16—C20 | −11.3 (3) | C1—O2—Zn1—Cl1 | 78.4 (2) |
C12—C13—C16—C20 | 164.2 (2) | C6—N1—Zn1—O2 | −152.28 (19) |
N2—C13—C16—C17 | 170.8 (2) | C10—N1—Zn1—O2 | 14.38 (19) |
C12—C13—C16—C17 | −13.7 (4) | C6—N1—Zn1—N3ii | 84.84 (19) |
C20—C16—C17—C18 | −3.6 (4) | C10—N1—Zn1—N3ii | −108.50 (18) |
C13—C16—C17—C18 | 174.4 (2) | C6—N1—Zn1—Cl1 | −29.16 (19) |
C16—C17—C18—N3 | 0.7 (4) | C10—N1—Zn1—Cl1 | 137.50 (17) |
N3—C19—C20—C16 | −0.8 (4) |
Symmetry codes: (i) −x, −y+1, −z+2; (ii) x+1, y−1, z; (iii) x−1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···N4iv | 0.82 | 1.83 | 2.633 (3) | 167 |
C15—H15···O1v | 0.93 | 2.46 | 3.383 (3) | 172 |
C17—H17···Cl1vi | 0.93 | 2.75 | 3.678 (3) | 173 |
C22—H22···O4vii | 0.93 | 2.59 | 3.305 (4) | 134 |
C25—H25···O1v | 0.93 | 2.34 | 3.267 (3) | 175 |
Symmetry codes: (iv) −x, −y+1, −z+3; (v) −x+1, −y+1, −z+2; (vi) −x+1, −y+2, −z+1; (vii) x, y+1, z. |
Acknowledgements
This work was supported by the National Natural Science Foundation of China (21271004, 21271003, 51372003, 51432001, 51472002), Focus on returned overseas scholars of the Ministry of Education of China, the Program for New Century Excellent Talents in Universities (China) and the Higher Education Revitalization Plan Talent Project (2013).
References
Bhaumik, C., Saha, D., Das, S. & Baitalik, S. (2011). Inorg. Chem. 50, 12586–12600. Web of Science CSD CrossRef CAS PubMed Google Scholar
Brammer, L. (2004). Chem. Soc. Rev. 33, 476–489. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dai, F., He, H. & Sun, D. (2008). J. Am. Chem. Soc. 130, 14064–14065. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hancock, R. D. (2013). Chem. Soc. Rev. 42, 1500–1524. Web of Science CrossRef CAS PubMed Google Scholar
Hinterholzinger, F. M., Ranft, A., Feckl, J. M., Rühle, B., Bein, T. & Lotsch, B. V. (2012). J. Mater. Chem. 22, 10356–10362. CrossRef CAS Google Scholar
Hou, K.-L., Bai, F.-Y., Xing, Y.-H., Wang, J.-L. & Shi, Z. (2011). CrystEngComm, 13, 3884–3894. CrossRef CAS Google Scholar
Housecroft, C. E. (2014). Dalton Trans. 43, 6594–6604. Web of Science CrossRef CAS PubMed Google Scholar
Jiang, H.-L., Makal, T. A. & Zhou, H.-C. (2013). Coord. Chem. Rev. 257, 2232–2249. Web of Science CrossRef CAS Google Scholar
Kepert, C. J. (2006). Chem. Commun. pp. 695–700. Web of Science CrossRef Google Scholar
Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P. & Hupp, J. T. (2012). Chem. Rev. 112, 1105–1125. Web of Science CrossRef CAS PubMed Google Scholar
Kumazawa, K., Biradha, K., Kusukawa, T., Okano, T. & Fujita, M. (2003). Angew. Chem. Int. Ed. 42, 3909–3913. CrossRef CAS Google Scholar
Li, M.-X., Miao, Z.-X., Shao, M., Liang, S.-W. & Zhu, S.-R. (2008). Inorg. Chem. 47, 4481–4489. CrossRef PubMed CAS Google Scholar
Li, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869–932. Web of Science CrossRef CAS PubMed Google Scholar
Li, X.-Z., Zhou, X.-P., Li, D. & Yin, Y.-G. (2011). CrystEngComm, 13, 6759–6765. Web of Science CSD CrossRef CAS Google Scholar
Ma, B.-Q. & Coppens, P. (2003). Chem. Commun. pp. 2290–2291. Web of Science CSD CrossRef Google Scholar
Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129. Web of Science CSD CrossRef PubMed CAS Google Scholar
Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature, 404, 982–986. PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, B.-C., Chen, X.-L., Hu, H.-M., Yao, H.-L. & Xue, G.-L. (2009). Inorg. Chem. Commun. 12, 856–859. CrossRef CAS Google Scholar
Yaghi, O. M. & Li, H. (1995). J. Am. Chem. Soc. 117, 10401–10402. CSD CrossRef CAS Web of Science Google Scholar
Yang, X.-L., Shangguan, Y.-Q., Hu, H.-M., Xu, B., Wang, B.-C., Xie, J., Yuan, F., Yang, M.-L., Dong, F.-X. & Xue, G.-L. (2014). J. Solid State Chem. 216, 13–22. CrossRef CAS Google Scholar
Yoshizawa, M., Miyagi, S., Kawano, M., Ishiguro, K. & Fujita, M. (2004). J. Am. Chem. Soc. 126, 9172–9173. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.