research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Formation and structure of the first metal complexes comprising amidino­guanidinate ligands

CROSSMARK_Color_square_no_text.svg

aOrganometallic and Organometalloid Chemistry Department, National Research, Centre, 12622 Dokki, Cairo, Egypt, and bChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

Edited by M. Zeller, Purdue University, USA (Received 16 September 2016; accepted 29 September 2016; online 4 October 2016)

The first metal complexes comprising amidino­guanidinate ligands have been prepared and structurally characterized, namely bis­[μ-N,N′,N′′,N′′′-tetraisopropyl-1-(1-butyl­amidinato)guanidinato-κ3N1,N2:N2]bis­[(tetra­hydro­furan)lithium], [Li2(C18H37N4)2(C4H8O)2], (2), and [bis­(tetra­hydro­furan)­lithium]-di-μ-chlorido-{(N,N′-di­cyclo­hexyl-1-butyl­amidinato-κ2N1,N2)[N,N′,N′′,N′′′-tetra­cyclo­hexyl-1-(1-butyl­amidinato)guanidinato-κ2N1,N2]holmate(III)}, [HoLiCl2(C4H8O)2(C17H31N2)(C30H53N4)], (3). The novel lithium amidino­guanidinate precursors Li[nBuC(=NR)(NR)C(NR)2] [1: R = Cy (cyclo­hex­yl), 2: R = iPr) were obtained by treatment of N,N′-diorganocarbodi­imides, R—N=C=N—R (R = iPr, Cy), with 0.5 equivalents of n-butyl­lithium under well-defined reaction conditions. An X-ray diffraction study of 2 revealed a ladder-type dimeric structure in the solid state. Reaction of anhydrous holmium(III) chloride with in situ-prepared 2 afforded the unexpected holmium `ate' complex [nBuC(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2](μ-Cl)2Li(THF)2 (3) in 71% yield. An X-ray crystal structure determination of 3 showed that this complex contains both an amidinate ligand and the new amidino­guanidinate ligand.

1. Chemical context

Anionic N-chelating donor ligands such as the amidinates [RC(NR)2] and the guanidinates [R2NC(NR)2] have gained tremendous importance in various fields of organometallic and coordination chemistry during the past two decades. Both types of N-chelating ligands are often regarded as `steric cyclo­penta­dienyl equivalents' (Bailey & Pace, 2001[Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91-141.]; Collins, 2011[Collins, S. (2011). Coord. Chem. Rev. 255, 118-138.]; Edelmann, 2013[Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.]). Meanwhile, amidinato and guanidin­ato complexes are known for virtually every metallic element in the Periodic Table ranging from lithium to uranium (Edelmann, 2009[Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253-2268.], 2012[Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657-7672.], 2013[Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.]; Trifonov, 2010[Trifonov, A. A. (2010). Coord. Chem. Rev. 254, 1327-1347.]). Amidinate and guanidinate ligands have been successfully employed in the stabilization of unusual oxidation states such as magnesium(I) and iron(I) as well as the design of various homogeneous catalysts (Collins, 2011[Collins, S. (2011). Coord. Chem. Rev. 255, 118-138.]; Edelmann, 2013[Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.]). Alkyl-substituted amidinate and guanidinate complexes of various metals have also been established as ALD and MOCVD precursors for the deposition of thin layers of metals, metal oxides, metal nitrides etc. (Devi, 2013[Devi, A. (2013). Coord. Chem. Rev. 257, 3332-3384.]). Formally, the amidinate anion is the nitro­gen analogue of the carboxyl­ate anion, while guanidinates are similarly related to the carbamates. However, in contrast to the carboxyl­ates and carbamates, the steric properties of amidinates and guanidinates can be widely tuned through the use of different substituents, both at the outer nitro­gen atoms as well as at the central carbon atom of the NCN unit. Lithium amidinates are normally prepared in a straightforward manner by addition of lithium alkyls to N,N′-diorganocarbodi­imides in a 1:1 molar ratio, while lithium guanidinates are formed when lithium-N,N-di­alkyl­amides are added to N,N′-diorgano­carbo­di­imides (Stalke et al., 1992[Stalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1-C5.]; Aharonovich et al., 2008[Aharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, 27, 1869-1877.]; Chlupatý et al., 2011[Chlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346-2354.]; Nevoralová et al., 2013[Nevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. 745-746, 186-189.]; Hong et al., 2013[Hong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312-7322.]). All these reactions are generally quite straightforward and afford the desired products in high yields. We have now discovered that, under certain conditions, reactions of lithium alkyls with N,N′-diorganocarbodi­imides can afford different products which can be named `amidino­guanidinates' (cf. reaction scheme, Fig. 1[link]). These can even become the major reaction products when the stoichiometry of the reactands is changed from 1:1 to 1:2, i.e. when the N,N′-diorganocarbodi­imide is used in a twofold molar excess. We report here the synthesis and characterization of the first metal complexes comprising `amidino­guanidinate' ligands which can be viewed as dimers of the amidinate anions. The first amidino­guanidinate complexes described here include the lithium precursors Li[nBuC(=NR)(NR)C(NR)2] (1: R = Cy (cyclo­hex­yl), 2: R = iPr) and the holmium(III) `ate' complex [nBu-C(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2](μ-Cl)2Li(THF)2 (3).

[Scheme 1]
[Figure 1]
Figure 1
Reaction scheme: Formation of amidino­guanidinate ligands from the reaction of n-butyl­lithium with excess carbodi­imide.

A reaction between N,N′-di­cyclo­hexyl­carbodi­imide and nBuLi in a 2:1 molar ratio in THF afforded the first lithium amidino­guanidinate, Li[nBuC(=NCy)(NCy)C(NCy)2]·THF (1), in 60% yield. This reaction represents the first case of dimerization of a carbodi­imide under formation of a novel amidino­guanidinate anion. The lithium-amidino­guanidinate salt 1 is partially soluble in THF, Et2O, and DME and slightly soluble even in toluene and n-pentane. The new sterically bulky amidino­guanidinate 1 has been fully characterized by spectroscopic methods and elemental analysis to confirm the product as shown in Fig. 1[link]. DMSO-d6 (DMSO = dimethyl sulfoxide) was found to be the best solvent for measuring the NMR spectra of Li[nBuC(=NCy)(NCy)C(NCy)2]·THF. A mass spectrum of 1 showed only fragments for the monomeric compound. Inter­estingly, the reaction using N,N′-di­cyclo­hexyl­carbodi­imide and n-butyl­lithium in THF according to Fig. 1[link] represents the only case thus far where a pure amidino­guanidinate salt (1) could be isolated. A similar reaction carried out with N,N′-diiso­propyl­carbodi­imide produced the isopropyl-substituted amidino­guanidinate salt 2 in >70% yield, although NMR data indicated the presence of significant amounts of an impurity, presumably the `normal' lithium amidinate Li[nBuC(NiPr)2], which could not be separated by fractional crystallization from solvents like THF, DME or diethyl ether. However, occasionally a small amount of well-formed single-crystals of 2 were obtained directly from the reaction mixture which allowed a structural characterization of the new amidino­guanidinates through X-ray diffraction. Apparently the formation of the new amidinoguanidinate anions is critically influenced not only by the stoichiometric ratio of the starting materials, but also by the substituents at the N-atoms and the solvents employed. The solvent effect became apparent when reactions of N,N′-di­cyclo­hexyl­carbodi­imide with 0.5 or 0.3 equiv. of n-butyl­lithium were carried out in Et2O solution. Using this solvent, the reactions produced a variable mixture of amidino­guanidinate and amidinate salts, Li[nBuC(=NCy)(NCy)C(NCy)2] and Li[nBuC(NCy)2], respectively, as illustrated in the reaction scheme (Fig. 1[link]). This was clearly indicated by the rather `messy' NMR spectra of the reaction products. Attempts to separate the product mixture by fractional crystallization from THF, DME, or diethyl ether were unsuccessful.

The presence of both types of anions in the reaction mixture obtained was also confirmed by the subsequent reaction of the in situ-prepared mixture of Li[nBuC(=NCy)(NCy)C(NCy)2] and Li[nBuC(NCy)2] with anhydrous HoCl3. In detail, treatment of N,N′-di­cyclo­hexyl­carbodi­imide with 0.5 equiv. of nBuLi in Et2O followed by addition of anhydrous HoCl3 (Freeman & Smith, 1958[Freeman, J. H. & Smith, M. L. (1958). J. Inorg. Nucl. Chem. 7, 224-227.]) in THF produced a yellow solution. Separation of the LiCl by-product and recrystallization from n-pentane afforded the unexpected holmium complex [nBuC(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2](μ-Cl)2Li(THF)2 (3) in 71% yield. This compound is a mixed-ligand complex containing both the new amidino­guanidinato ligand and the normal amidinato ligand [nBuC(NCy)2] in the coordination sphere of holmium. Compound 3 was fully characterized by its IR spectrum, elemental analysis and single-crystal X-ray diffraction. As a result of the highly paramagnetic nature of the Ho3+ ion, it was impossible to obtain inter­pretable NMR data for 3. Yellow, air- and moisture-sensitive, needle-like single-crystals of 3 were obtained by slowly cooling a saturated solution in n-pentane to 268 K.

In summarizing the results reported here, we prepared the first metal complexes containing novel amidino­guanidinate ligands obtained by dimerization of N,N′-diorganocarbodi­imides in the presences of sub-stoichiometric amounts of n-butyl­lithium. The cyclo­hexyl-substituted lithium-amidino­guanidinate salt Li[nBuC(=NCy)(NCy)C(NCy)2]·THF (1) is readily available as a pure solid in fairly good yield (60%). This compound could play an inter­esting role as a precursor for the synthesis of new transition metal and lanthanide amidino­guanidinate complexes. The first lanthanide complex comprising the new ligand system is the holmium `ate' complex [nBuC(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2](μ-Cl)2Li(THF)2 (3).

2. Structural commentary

The crystal structure determination of 2 revealed the presence of ladder-type centrosymmetric dimers (space group P21/c, Z = 2), which is the most characteristic structural motif of most previously characterized lithium amidinates and guanidinates (Stalke et al., 1992[Stalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1-C5.]; Snaith & Wright, 1995[Snaith, R. & Wright, D. S. (1995). In Lithium Chemistry, A Theoretical and Experimental Overview, edited by A. Sapse & P. von R. Schleyer. New York: Wiley.]; Downard & Chivers, 2001[Downard, A. & Chivers, T. (2001). Eur. J. Inorg. Chem. pp. 2193-2201.]). Fig. 2[link] shows the mol­ecular structure of compound 2, while crystallographic data are summarized in Table 1[link]. The central building unit of the dimer is a typical planar Li2N2 ring, formed by μ-bridging coordination of one of the guanidinate N atoms (N2). The Li—N distances within this ring are 2.0528 (17) and 2.1559 (17) Å and therefore in the expected range. The second N atom of the guanidinate unit (N1) is attached to only one Li atom with a shorter Li—N bond of 2.0177 (18) Å. Through this μ-κ3N,N′:N-coordination mode of the guanidinato moiety, a `ladder' consisting of three four-membered rings is formed. By coordination of a solvent THF mol­ecule, a typical distorted tetra­hedral coordination of the Li atom is completed. The free N donor of the amidinate unit (N4) does not contribute to coordinative saturation of the Li atom. The bonds C1—N1 [1.3197 (12) Å] and C1—N2 [1.3396 (11) Å] are similar in length, indicating a common delocalization of the negative charge within the Li-coordin­ating N–C–N fragment. By contrast, the third C—N bond of the guanidinate unit C1—N3 is considerably longer at 1.4528 (11) Å and can therefore be inter­preted as a pure single bond. The 1-butyl­amidinate fragment does not show any delocalization of the π-electron density, with one distinct double bond [C8—N4, 1.2808 (12) Å] and one single bond [C8—N3, 1.3940 (11) Å]. The amidinate C3–C8–N3 fragment is twisted out of the guanidinate C1/N1/N2/N3 plane by approx. 75°, similar to that found earlier for this type of ligands (Zhou et al., 1998[Zhou, Y., Yap, G. P. A. & Richeson, D. S. (1998). Organometallics, 17, 4387-4391.]; Wood et al., 1999[Wood, D., Yap, G. P. A. & Richeson, D. S. (1999). Inorg. Chem. 38, 5788-5794.]; Lu et al., 2001[Lu, Z. P., Yap, G. P. A. & Richeson, D. S. (2001). Organometallics, 20, 706-712.]).

Table 1
Experimental details

  2 3
Crystal data
Chemical formula [Li2C18H37N4)2(C4H8O)2] [LiHoCl2(C4H8O)2(C17H31N2)(C30H53N4)]
Mr 777.11 1120.17
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 153
a, b, c (Å) 9.93297 (7), 13.7239 (1), 18.07940 (13) 12.909 (3), 15.095 (3), 16.786 (3)
α, β, γ (°) 90, 92.8380 (6), 90 100.67 (3), 97.20 (3), 109.50 (3)
V3) 2461.54 (3) 2967.5 (12)
Z 2 2
Radiation type Cu Kα Mo Kα
μ (mm−1) 0.49 1.47
Crystal size (mm) 0.18 × 0.12 × 0.04 0.34 × 0.20 × 0.12
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Nova Stoe IPDS 2T
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) For a sphere (X-AREA and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.891, 1.000 0.814, 0.889
No. of measured, independent and observed [I > 2σ(I)] reflections 30246, 5126, 4657 29449, 12948, 9625
Rint 0.027 0.078
(sin θ/λ)max−1) 0.629 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.05 0.048, 0.074, 0.91
No. of reflections 5126 12948
No. of parameters 263 751
No. of restraints 0 552
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.21 0.98, −1.68
Computer programs: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 2]
Figure 2
The mol­ecular structure of compound 2 in the crystal. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. Symmetry operator to generate equivalent atoms: 2 − x, 1 − y, −z.

The holmium complex 3 crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in the asymmetric unit. The mol­ecular structure is shown in Fig. 3[link]. The X-ray diffraction study revealed the presence of an `ate' complex formed through retention of a [LiCl(THF)2] fragment by the five-coordinate unit [nBuC(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2]Cl. The phenomenon of `ate' complex formation via retention of alkali metal halides in the products is quite common in organolanthanide chemistry (Edelmann, 2006[Edelmann, F. T. (2006). In Comprehensive Organometallic Chemistry III, Vol. 3, Complexes of Scandium, Yttrium and the Lanthanide Elements, edited by R. H. Crabtree & D. M. P. Mingos. Oxford: Elsevier.]). It can be traced back to the strong tendency of the large Ln3+ ions to adopt high coordination numbers. In the resulting six-coordinate bimetallic complex 3, the central holmium(III) ion is coordinated by two μ-bridging chloride ions, one chelating amidino­guanidinate ligand and one chelating amidinate ligand. The Ho atom is located in the C1N1N2N3 plane of the amidino­guanidinate ligand and, just like in the case of the lithium derivative 2, the amidinate N atom N4 does not contribute to metal coordination. The Ho—N distances are in a narrow range of 2.327 (3)–2.354 (3) Å that is in good agreement with the values observed in related lanthanide amidinate and guanidinate complexes (Edelmann, 2009[Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253-2268.], 2012[Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657-7672.]). The same applies to the corresponding coordination angles N1—Ho—N2 [57.0 (1)°] and N5—Ho—N6 [57.3 (1)°]. The guanidinate and the amidinate moiety in compound 3 are arranged nearly perpendicular to each other, gaining a minimal contact between the bulky cyclo­hexyl substituents. The [LiCl2(THF)2] fragment is attached to the Ho atom in a formally chelating mode, leading to the formation of a regular kite-shaped Ho/Cl1/Li/Cl2 ring [Ho—Cl 2.6326 (13) and 2.6453 (15) Å, Ho—Cl—Li 87.0 (2) and 88.0 (3)°]. The Li atom exhibits a typical tetra­hedral coordination by the two μ-bridging Cl atoms and two THF ligands. Within the chelating NCN units of the amidinato and the amidino­guanidinato ligands, the C—N distances are nearly equal [1.324 (5)–1.336 (5) Å], indicating a typical π-electron delocal­ization within these units. The conformation of the amidinatoguanidinate ligand is very similar to that in compound 2 (angle between guanidinate and amidinate plane approx. 75°), and the localization of single and double bonds within the 1-butyl­amidinate backbone is identical with that in the lithium derivative [C—N 1.272 (5)–1.429 (5) Å].

[Figure 3]
Figure 3
The mol­ecular structure of compound 3 in the crystal, illustrating the disorder of one cyclo­hexyl group and both THF ligands. Displacement ellipsoids drawn at the 50% probability level and H atoms have been omitted for clarity.

3. Supra­molecular features

Due to an effective `packaging' of the mol­ecules by the sterically demanding alkyl substituents, both title compounds do not feature any specific inter­molecular inter­actions. In the lithium derivative 2, the closest inter­molecular contacts are between two isopropyl-CH3 groups [C3⋯C10, 3.740 (3) Å] and between an isopropyl-CH3 and a butyl-CH3 group [C13⋯C18, 3.744 (4) Å]. The crystal structure of the holmium complex 3 comprises a close package of cyclo­hexyl groups, butyl groups and THF ligands with a minimal H2C⋯CH2 distance of 3.64 (4) Å, and one H2C⋯CH3 contact of at least 3.73 (6) Å (C6 and C21B of disordered cyclo­hexyl group).

4. Database survey

For other structurally characterized lithium amidinates and guanidinates, see: Stalke et al. (1992[Stalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1-C5.]), Aharonovich et al. (2008[Aharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, 27, 1869-1877.]), Chlupatý et al. (2011[Chlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346-2354.]), Nevoralová et al. (2013[Nevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. 745-746, 186-189.]) and Hong et al. (2013[Hong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312-7322.]).

For other lanthanide(III) complexes with amidinate ligands, see: Richter et al. (2004[Richter, J., Feiling, J., Schmidt, H.-G., Noltemeyer, M., Brüser, W. & Edelmann, F. T. (2004). Z. Anorg. Allg. Chem. 630, 1269-1275.]), Edelmann (2009[Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253-2268.], 2012[Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657-7672.]) and Deacon et al. (2014[Deacon, G. B., Junk, P. C., Wang, J. & Werner, D. (2014). Inorg. Chem. 53, 12553-12563.]).

5. Synthesis and crystallization

General Procedures: All reactions were carried out under an inert atmosphere of dry argon employing standard Schlenk and glovebox techniques. THF and n-pentane were distilled from sodium/benzo­phenone under nitro­gen atmosphere prior to use. All glassware was oven-dried at 393 K for at least 24 h, assembled while hot, and cooled under high vacuum prior to use. Anhydrous holmium(III) chloride was prepared according to the literature method (Freeman & Smith, 1958[Freeman, J. H. & Smith, M. L. (1958). J. Inorg. Nucl. Chem. 7, 224-227.]). n-Butyl­lithium solution, N,N′-diiso­propyl­carbodi­imide and N,N′-di­cyclo­hexyl­carbodi­imide were purchased from Aldrich and used as received. 1H NMR (400 MHz) and 13C NMR (100.6 MHz) spectra were recorded in DMSO-d6 solution on a Bruker DPX 400 spectrometer at 298 K. Chemical shifts are referenced to TMS. IR spectra were recorded using KBr pellets on a Perkin Elmer FT–IR spectrometer system 2000 between 4000 cm−1 and 400 cm−1. Microanalyses (C, H and N) of compounds 1 and 3 were performed using a Leco CHNS 932 apparatus.

Synthesis of Li[nBuC(=NCy)(NCy)C(NCy)2]·THF (1): A solution of N,N′-di­cyclo­hexyl­carbodi­imide (10.30 g, 50 mmol) in 100 ml of THF at 253 K was treated slowly with n-butyl­lithium (16 ml, 1.6 M solution in hexa­nes). The reaction mixture was stirred for 10 min at 253 K, then warmed to room temperature and stirred overnight to give a white suspension in THF. The solvent was removed under vacuum affording 1 as white solid. Yield: 16.4 g, 60%. Elemental analysis for C34H61LiN4O (548.83 g mol−1): C, 74.41; H, 11.20; N, 10.21; found C, 74.82; H, 10.85; N, 10.50. 1H NMR (400 MHz, (CD3)2SO, 298 K): δ (p.p.m.) 3.84 (m, 1H, CH, Cy), 3.60 (m, 4H, THF), 3.43 (m, 1H, CH, Cy), 3.04–3.18 (m, 2H, CH, Cy), 2.66 (m, 1H, CH2, nBu), 2.33 (m, 1H, CH2, nBu), 2.09 (m, 2H, CH2, nBu), 1.84 (m, 2H, CH2, nBu), 1.76 (m, 4H, THF), 1.65 (m, 8H, CH2, Cy), 1.52 (m, 6H, CH2, Cy), 1.26 (m, 26H, CH2, Cy), 0.85 (m, 3H, CH3, nBu); 13C NMR (100.6 MHz, C6D6, 298 K): δ (p.p.m.) 155.3 (NCN), 145.1 (NCN), 67.0 (THF), 55.4 (CH, Cy), 54.2 (CH, Cy), 49.3 (CH, Cy), 35.7 (CH2, Cy), 35.1 (CH2, Cy), 34.8 (CH2, Cy), 34.5 (CH2, nBu), 30.7 (CH2, nBu), 29.5 (CH2, nBu), 25.8 (THF), 24.9 (CH2, Cy), 22.6 (CH2, Cy), 22.1 (CH2, Cy), 13.8 (CH3). MS (EI, M = 548.50): m/z (%) 125.2 (27) [Cy + C3H6]+, 153.2 (88) [2Cy − Me]2+, 183.3 (20) [2Cy + Me]2+, 207.3 (12) [C(NCy)2]+, 222.3 (62) [C(NCy)2 + Me]2+, 235.4 (100) [C(NCy)2 + C2H5]+, 264.4 (55) [nBu + C(NCy)2]+. IR (KBr): n (cm−1) 3449 (w), 3327 (w), 3225 (w), 2927 (vs), 2853 (s), 2666 (w), 2533 (w), 2354 (w), 2120 (w), 1959 (w), 1645 (m), 1578 (w), 1516 (m), 14450 (m), 1367 (w), 1339 (m), 1155 (w), 1128 (m), 1105 (w), 1053 (w), 1029 (w), 988 (w), 919 (w), 889 (w), 845 (w), 804 (w), 748 (w), 695 (w), 657 (w), 640 (w), 555 (w), 502 (w), 454 (w).

Synthesis of Li[nBuC(=NiPr)(NiPr)C(NiPr)2]·THF (2): In a similar manner as for compound 1, N,N′-diiso­propyl­carbodi­imide (4.2 g, 50 mmol) was treated with n-butyl­lithium (10 ml, 2.5 M solution in hexa­nes) in THF solution (80 ml). From this reaction 14.3 g of colorless 2 were isolated. X-ray quality single crystals (colorless rods) were occasionally obtained directly upon cooling of the reaction mixture to 278 K. However, NMR data showed that the bulk product was heavily contaminated with the lithium amidinate salt Li[nBuC(NiPr)2] (10–20%) which could not be separated by fractional crystallization.

Synthesis of [nBuC(=NCy)(NCy)C(NCy)2]Ho[nBuC(NCy)2](μ-Cl)2Li(THF)2 (3): A solution of anhydrous HoCl3 (1.0 g, 3.6 mmol) in 50 ml THF was added to a stirred Et2O solution (80 ml) of an in situ-prepared mixture of Li[nBu-C(=NCy)(NCy)C(NCy)2] and Li[nBuC(NCy)2] (N,N′-di­cyclo­hexyl­carbodi­imide (10.30 g, 50 mmol) in 80 ml of Et2O and was treated slowly with n-butyl­lithium (16 mL, 1.6 M solution in hexa­nes) at 253 K. The reaction mixture was stirred for 3 h at room temperature. The solvents were evaporated under vacuum, and the residue was extracted with 20 ml n-pentane. Concentration and cooling of the filtered solution to 278 K afforded 3 as yellow, air- and moisture-sensitive, needle-like crystals. Yield: 2.8 g, 71%. Elemental analysis for C55H100Cl2HoLiN6O2 (1120.22 g mol−1): C, 58.97; H, 9.00; N, 7.50; found C, 58.92; H, 8.98; N, 7.44%. IR (KBr): n (cm−1) 3321 (w), 3223 (w), 2929 (vs), 2857 (s), 2661 (w), 2525 (w), 2356 (w), 2118 (w), 1952 (w), 1577 (w), 1518 (m), 1367 (w), 1156 (w), 1129 (m), 1108 (w), 1085 (w), 1055 (w), 1045 (w), 983 (w), 922 (w), 892 (w), 865 (w), 820 (w), 715 (w), 657 (w), 643 (w), 553 (w), 505 (w), 456 (w). Meaningful NMR spectra could not be obtained due to the strong paramagnetism of the Ho3+ ion.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were fixed geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C). C—H distances in CH3 groups were constrained to 0.98 Å, those in CH2 groups to 0.99 Å and those in CH groups to 1.00 Å. Methyl H atoms were allowed to rotate around the C—C vector but not to tip to best fit the experimental electron density (AFIX 137 in SHELXL). In the crystallographic dataset of compound 3, the intensities of reflections ([\overline{1}]11) and (1[\overline{1}]1) strongly disagreed with the structural model and were therefore omitted from the refinement. One of the cyclo­hexyl groups (C19–C24) and both THF ligands (O1, C48–C51 and O2, C52–C55) in compound 3 are disordered. The aforementioned atoms were each split over two sites (site occupancy factors refined freely). Equivalent disordered THF and cyclo­hexyl moieties were restrained to have similar geometries (SAME restraint in SHELXLL), and Uij components of ADPs were restrained to be similar for atoms closer than 1.7 Å (SIMU restraint in SHELXL; the esd applied was 0.01 Å2). Occupancy ratios refined to 0.760 (6) and 0.240 (6) for the cyclo­hexyl group (C19–C24), and to 0.663 (11) and 0.337 (11) (O1, C48–C51) and to 0.823 (11) and 0.177 (11) (O2, C52–C55) for the THF moieties.

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2011) for compound_2; X-AREA (Stoe & Cie, 2002) for compound_3. Cell refinement: CrysAlis PRO (Agilent, 2011) for compound_2; X-AREA (Stoe & Cie, 2002) for compound_3. Data reduction: CrysAlis PRO (Agilent, 2011) for compound_2; X-AREA and X-RED (Stoe & Cie, 2002) for compound_3. For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015). Molecular graphics: Diamond (Brandenburg, 1999) for compound_2; DIAMOND (Brandenburg, 1999) for compound_3. For both compounds, software used to prepare material for publication: publCIF (Westrip, 2010).

(compound_2) Bis[µ-N,N',N'',N'''-tetraisopropyl-1-(1-butylamidinato)guanidinato-κ3N1,N2:N2]bis[(tetrahydrofuran)lithium] top
Crystal data top
[Li2C18H37N4)2(C4H8O)2]F(000) = 864
Mr = 777.11Dx = 1.048 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.93297 (7) ÅCell parameters from 18888 reflections
b = 13.7239 (1) Åθ = 3.2–75.6°
c = 18.07940 (13) ŵ = 0.49 mm1
β = 92.8380 (6)°T = 100 K
V = 2461.54 (3) Å3Plate, colorless
Z = 20.18 × 0.12 × 0.04 mm
Data collection top
Agilent Xcalibur, Atlas, Nova
diffractometer
5126 independent reflections
Radiation source: Nova (Cu) X-ray Source4657 reflections with I > 2σ(I)
Detector resolution: 10.3543 pixels mm-1Rint = 0.027
ω scansθmax = 75.8°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2011)
h = 1211
Tmin = 0.891, Tmax = 1.000k = 1617
30246 measured reflectionsl = 1722
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.6355P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5126 reflectionsΔρmax = 0.31 e Å3
263 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00067 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.13747 (9)0.49827 (6)0.11713 (5)0.01508 (18)
C20.98312 (9)0.49701 (7)0.21715 (5)0.0199 (2)
H21.0677370.5137010.2467170.024*
C30.92362 (11)0.40357 (8)0.24810 (6)0.0286 (2)
H3A0.8968710.4151840.2988010.034*
H3B0.9913460.3516310.2482630.034*
H3C0.8445330.3840250.2170590.034*
C40.88214 (10)0.58050 (8)0.22330 (6)0.0269 (2)
H4A0.8662220.5924800.2755870.032*
H4B0.7969950.5629140.1969680.032*
H4C0.9185530.6395590.2012910.032*
C51.28751 (9)0.48998 (7)0.01575 (5)0.01694 (19)
H51.3557550.4876720.0582740.020*
C61.28738 (10)0.39198 (7)0.02470 (5)0.0216 (2)
H6A1.3768250.3799570.0433840.026*
H6B1.2202200.3933920.0662590.026*
H6C1.2650250.3398630.0096570.026*
C71.32471 (9)0.57220 (7)0.03661 (5)0.0223 (2)
H7A1.4159370.5613860.0532320.027*
H7B1.3214150.6347110.0105600.027*
H7C1.2606050.5731750.0795930.027*
C81.27924 (9)0.42776 (7)0.21963 (5)0.01661 (18)
C91.32067 (9)0.59902 (7)0.17680 (5)0.01914 (19)
H91.3088130.6315720.1274160.023*
C101.25452 (10)0.66563 (7)0.23194 (6)0.0250 (2)
H10A1.3012630.7285310.2339320.030*
H10B1.2600850.6354710.2811300.030*
H10C1.1597160.6756820.2161880.030*
C111.47245 (9)0.59045 (7)0.19329 (5)0.0230 (2)
H11A1.5153230.6534470.1845600.028*
H11B1.5095690.5411350.1608050.028*
H11C1.4898730.5712670.2450940.028*
C121.37114 (11)0.37049 (7)0.33586 (5)0.0240 (2)
H121.3535540.3057060.3119660.029*
C131.28767 (12)0.38011 (9)0.40405 (6)0.0340 (3)
H13A1.3122060.3279510.4392040.041*
H13B1.1916780.3750850.3892250.041*
H13C1.3054910.4434720.4275350.041*
C141.52124 (11)0.38091 (9)0.35630 (6)0.0310 (2)
H14A1.5498290.3286040.3904790.037*
H14B1.5380820.4441570.3801720.037*
H14C1.5722840.3766800.3113930.037*
C151.25689 (9)0.32623 (7)0.18708 (5)0.01830 (19)
H15A1.1863670.3290590.1464750.022*
H15B1.2253240.2818580.2257610.022*
C161.38830 (9)0.28650 (7)0.15713 (5)0.01958 (19)
H16A1.4240670.3346570.1223700.024*
H16B1.4557920.2787510.1988690.024*
C171.37014 (10)0.18882 (7)0.11733 (5)0.0215 (2)
H17A1.3464900.1383220.1535690.026*
H17B1.2945560.1939460.0797340.026*
C181.49719 (11)0.15769 (8)0.07957 (6)0.0281 (2)
H18A1.4791260.0976530.0514610.034*
H18B1.5699610.1461420.1171460.034*
H18C1.5241140.2092740.0458580.034*
C190.94341 (14)0.23713 (9)0.03529 (6)0.0357 (3)
H19A1.0293220.2327160.0606030.043*
H19B0.8769810.2726170.0678240.043*
C200.89174 (18)0.13655 (11)0.01791 (8)0.0536 (4)
H20A0.9324790.0867230.0494830.064*
H20B0.7924030.1334070.0252750.064*
C210.93514 (17)0.12190 (9)0.06268 (8)0.0476 (3)
H21A0.8746250.0759710.0871140.057*
H21B1.0289310.0975740.0682120.057*
C220.92342 (12)0.22318 (8)0.09337 (6)0.0292 (2)
H22A0.8295730.2369690.1062030.035*
H22B0.9835540.2314760.1382500.035*
LI0.96597 (16)0.42919 (12)0.03809 (9)0.0200 (3)
N11.01480 (8)0.48338 (6)0.13965 (4)0.01756 (17)
N21.15401 (7)0.50792 (5)0.04440 (4)0.01578 (16)
N31.25379 (7)0.50292 (5)0.16898 (4)0.01575 (16)
N41.32979 (8)0.44822 (6)0.28432 (4)0.01977 (17)
O0.96357 (7)0.28667 (5)0.03486 (4)0.02535 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0155 (4)0.0136 (4)0.0160 (4)0.0008 (3)0.0011 (3)0.0001 (3)
C20.0186 (4)0.0254 (5)0.0159 (4)0.0003 (4)0.0025 (3)0.0002 (3)
C30.0315 (5)0.0328 (6)0.0221 (5)0.0046 (4)0.0078 (4)0.0036 (4)
C40.0244 (5)0.0347 (6)0.0219 (5)0.0067 (4)0.0039 (4)0.0025 (4)
C50.0141 (4)0.0205 (4)0.0162 (4)0.0009 (3)0.0009 (3)0.0013 (3)
C60.0232 (5)0.0234 (5)0.0184 (4)0.0025 (4)0.0028 (3)0.0005 (4)
C70.0182 (4)0.0249 (5)0.0241 (5)0.0003 (4)0.0052 (3)0.0041 (4)
C80.0154 (4)0.0174 (4)0.0171 (4)0.0004 (3)0.0013 (3)0.0010 (3)
C90.0202 (4)0.0168 (4)0.0202 (4)0.0028 (3)0.0013 (3)0.0001 (3)
C100.0253 (5)0.0203 (5)0.0293 (5)0.0001 (4)0.0005 (4)0.0046 (4)
C110.0198 (4)0.0256 (5)0.0235 (5)0.0054 (4)0.0005 (4)0.0033 (4)
C120.0322 (5)0.0203 (5)0.0189 (5)0.0034 (4)0.0057 (4)0.0021 (4)
C130.0382 (6)0.0385 (6)0.0252 (5)0.0038 (5)0.0018 (4)0.0124 (5)
C140.0314 (6)0.0336 (6)0.0272 (5)0.0099 (4)0.0063 (4)0.0002 (4)
C150.0193 (4)0.0166 (4)0.0188 (4)0.0008 (3)0.0011 (3)0.0009 (3)
C160.0205 (4)0.0185 (4)0.0195 (4)0.0008 (3)0.0012 (3)0.0001 (3)
C170.0265 (5)0.0183 (4)0.0196 (4)0.0012 (4)0.0000 (4)0.0004 (3)
C180.0325 (5)0.0280 (5)0.0239 (5)0.0055 (4)0.0025 (4)0.0028 (4)
C190.0500 (7)0.0284 (6)0.0290 (6)0.0071 (5)0.0045 (5)0.0049 (4)
C200.0773 (11)0.0365 (7)0.0462 (8)0.0150 (7)0.0042 (7)0.0097 (6)
C210.0688 (9)0.0217 (6)0.0518 (8)0.0069 (6)0.0025 (7)0.0040 (5)
C220.0346 (6)0.0232 (5)0.0294 (5)0.0059 (4)0.0020 (4)0.0076 (4)
LI0.0200 (7)0.0195 (8)0.0203 (8)0.0011 (6)0.0004 (6)0.0019 (6)
N10.0161 (4)0.0217 (4)0.0150 (4)0.0003 (3)0.0017 (3)0.0006 (3)
N20.0134 (3)0.0188 (4)0.0152 (4)0.0003 (3)0.0010 (3)0.0008 (3)
N30.0163 (4)0.0153 (4)0.0154 (4)0.0014 (3)0.0019 (3)0.0008 (3)
N40.0234 (4)0.0190 (4)0.0166 (4)0.0018 (3)0.0016 (3)0.0013 (3)
O0.0318 (4)0.0186 (3)0.0258 (4)0.0010 (3)0.0031 (3)0.0021 (3)
Geometric parameters (Å, º) top
C1—N11.3197 (12)C12—C131.5251 (15)
C1—N21.3396 (11)C12—H121.0000
C1—N31.4528 (11)C13—H13A0.9800
C1—LI2.3667 (18)C13—H13B0.9800
C2—N11.4633 (11)C13—H13C0.9800
C2—C31.5296 (14)C14—H14A0.9800
C2—C41.5304 (13)C14—H14B0.9800
C2—H21.0000C14—H14C0.9800
C3—H3A0.9800C15—C161.5376 (13)
C3—H3B0.9800C15—H15A0.9900
C3—H3C0.9800C15—H15B0.9900
C4—H4A0.9800C16—C171.5279 (13)
C4—H4B0.9800C16—H16A0.9900
C4—H4C0.9800C16—H16B0.9900
C5—N21.4681 (11)C17—C181.5252 (14)
C5—C71.5299 (13)C17—H17A0.9900
C5—C61.5309 (13)C17—H17B0.9900
C5—H51.0000C18—H18A0.9800
C6—H6A0.9800C18—H18B0.9800
C6—H6B0.9800C18—H18C0.9800
C6—H6C0.9800C19—O1.4441 (13)
C7—H7A0.9800C19—C201.5111 (18)
C7—H7B0.9800C19—H19A0.9900
C7—H7C0.9800C19—H19B0.9900
C8—N41.2808 (12)C20—C211.512 (2)
C8—N31.3940 (11)C20—H20A0.9900
C8—C151.5245 (12)C20—H20B0.9900
C9—N31.4804 (11)C21—C221.5033 (17)
C9—C101.5251 (13)C21—H21A0.9900
C9—C111.5268 (13)C21—H21B0.9900
C9—H91.0000C22—O1.4419 (12)
C10—H10A0.9800C22—H22A0.9900
C10—H10B0.9800C22—H22B0.9900
C10—H10C0.9800LI—O1.9569 (18)
C11—H11A0.9800LI—N12.0177 (18)
C11—H11B0.9800LI—N2i2.0528 (17)
C11—H11C0.9800LI—N22.1559 (17)
C12—N41.4619 (12)LI—LIi2.495 (3)
C12—C141.5250 (15)N2—LIi2.0528 (17)
N1—C1—N2118.56 (8)H14B—C14—H14C109.5
N1—C1—N3121.64 (8)C8—C15—C16110.49 (7)
N2—C1—N3119.79 (8)C8—C15—H15A109.6
N1—C1—LI58.42 (6)C16—C15—H15A109.6
N2—C1—LI64.32 (6)C8—C15—H15B109.6
N3—C1—LI158.88 (7)C16—C15—H15B109.6
N1—C2—C3110.39 (8)H15A—C15—H15B108.1
N1—C2—C4109.76 (8)C17—C16—C15113.24 (8)
C3—C2—C4109.55 (8)C17—C16—H16A108.9
N1—C2—H2109.0C15—C16—H16A108.9
C3—C2—H2109.0C17—C16—H16B108.9
C4—C2—H2109.0C15—C16—H16B108.9
C2—C3—H3A109.5H16A—C16—H16B107.7
C2—C3—H3B109.5C18—C17—C16112.06 (8)
H3A—C3—H3B109.5C18—C17—H17A109.2
C2—C3—H3C109.5C16—C17—H17A109.2
H3A—C3—H3C109.5C18—C17—H17B109.2
H3B—C3—H3C109.5C16—C17—H17B109.2
C2—C4—H4A109.5H17A—C17—H17B107.9
C2—C4—H4B109.5C17—C18—H18A109.5
H4A—C4—H4B109.5C17—C18—H18B109.5
C2—C4—H4C109.5H18A—C18—H18B109.5
H4A—C4—H4C109.5C17—C18—H18C109.5
H4B—C4—H4C109.5H18A—C18—H18C109.5
N2—C5—C7110.17 (7)H18B—C18—H18C109.5
N2—C5—C6109.66 (7)O—C19—C20106.34 (10)
C7—C5—C6110.30 (8)O—C19—H19A110.5
N2—C5—H5108.9C20—C19—H19A110.5
C7—C5—H5108.9O—C19—H19B110.5
C6—C5—H5108.9C20—C19—H19B110.5
C5—C6—H6A109.5H19A—C19—H19B108.7
C5—C6—H6B109.5C19—C20—C21103.78 (11)
H6A—C6—H6B109.5C19—C20—H20A111.0
C5—C6—H6C109.5C21—C20—H20A111.0
H6A—C6—H6C109.5C19—C20—H20B111.0
H6B—C6—H6C109.5C21—C20—H20B111.0
C5—C7—H7A109.5H20A—C20—H20B109.0
C5—C7—H7B109.5C22—C21—C20102.07 (11)
H7A—C7—H7B109.5C22—C21—H21A111.4
C5—C7—H7C109.5C20—C21—H21A111.4
H7A—C7—H7C109.5C22—C21—H21B111.4
H7B—C7—H7C109.5C20—C21—H21B111.4
N4—C8—N3119.19 (8)H21A—C21—H21B109.2
N4—C8—C15126.58 (8)O—C22—C21104.99 (9)
N3—C8—C15113.86 (8)O—C22—H22A110.7
N3—C9—C10112.98 (8)C21—C22—H22A110.7
N3—C9—C11112.59 (8)O—C22—H22B110.7
C10—C9—C11111.82 (8)C21—C22—H22B110.7
N3—C9—H9106.3H22A—C22—H22B108.8
C10—C9—H9106.3O—LI—N1113.43 (8)
C11—C9—H9106.3O—LI—N2i113.13 (8)
C9—C10—H10A109.5N1—LI—N2i127.65 (9)
C9—C10—H10B109.5O—LI—N2120.78 (8)
H10A—C10—H10B109.5N1—LI—N266.33 (6)
C9—C10—H10C109.5N2i—LI—N2107.34 (7)
H10A—C10—H10C109.5O—LI—C1115.20 (8)
H10B—C10—H10C109.5N1—LI—C133.86 (4)
C9—C11—H11A109.5N2i—LI—C1130.16 (8)
C9—C11—H11B109.5N2—LI—C134.06 (4)
H11A—C11—H11B109.5O—LI—LIi139.94 (12)
C9—C11—H11C109.5N1—LI—LIi98.96 (9)
H11A—C11—H11C109.5N2i—LI—LIi55.58 (6)
H11B—C11—H11C109.5N2—LI—LIi51.76 (6)
N4—C12—C14109.05 (8)C1—LI—LIi79.32 (8)
N4—C12—C13107.78 (8)C1—N1—C2121.42 (8)
C14—C12—C13111.10 (9)C1—N1—LI87.72 (7)
N4—C12—H12109.6C2—N1—LI149.90 (8)
C14—C12—H12109.6C1—N2—C5119.11 (7)
C13—C12—H12109.6C1—N2—LIi131.28 (8)
C12—C13—H13A109.5C5—N2—LIi108.43 (7)
C12—C13—H13B109.5C1—N2—LI81.63 (7)
H13A—C13—H13B109.5C5—N2—LI133.84 (7)
C12—C13—H13C109.5LIi—N2—LI72.66 (7)
H13A—C13—H13C109.5C8—N3—C1120.26 (7)
H13B—C13—H13C109.5C8—N3—C9122.05 (7)
C12—C14—H14A109.5C1—N3—C9116.07 (7)
C12—C14—H14B109.5C8—N4—C12120.47 (8)
H14A—C14—H14B109.5C22—O—C19109.17 (8)
C12—C14—H14C109.5C22—O—LI125.84 (8)
H14A—C14—H14C109.5C19—O—LI119.85 (8)
N4—C8—C15—C1681.54 (11)C7—C5—N2—LIi36.11 (10)
N3—C8—C15—C1691.27 (9)C6—C5—N2—LIi85.46 (9)
C8—C15—C16—C17174.74 (7)C7—C5—N2—LI119.48 (10)
C15—C16—C17—C18172.52 (8)C6—C5—N2—LI2.09 (13)
O—C19—C20—C2120.85 (15)N4—C8—N3—C1144.83 (9)
C19—C20—C21—C2234.32 (15)C15—C8—N3—C141.78 (11)
C20—C21—C22—O35.89 (14)N4—C8—N3—C920.09 (13)
N2—C1—N1—C2164.04 (8)C15—C8—N3—C9153.30 (8)
N3—C1—N1—C216.86 (13)N1—C1—N3—C853.11 (12)
LI—C1—N1—C2172.01 (10)N2—C1—N3—C8125.98 (9)
N2—C1—N1—LI23.95 (9)LI—C1—N3—C830.5 (2)
N3—C1—N1—LI155.15 (9)N1—C1—N3—C9112.67 (9)
C3—C2—N1—C1123.41 (9)N2—C1—N3—C968.23 (10)
C4—C2—N1—C1115.74 (10)LI—C1—N3—C9163.75 (18)
C3—C2—N1—LI40.51 (18)C10—C9—N3—C880.92 (10)
C4—C2—N1—LI80.34 (17)C11—C9—N3—C846.94 (11)
N1—C1—N2—C5158.57 (8)C10—C9—N3—C184.59 (10)
N3—C1—N2—C520.55 (12)C11—C9—N3—C1147.55 (8)
LI—C1—N2—C5136.00 (9)N3—C8—N4—C12173.36 (8)
N1—C1—N2—LIi35.43 (13)C15—C8—N4—C120.89 (14)
N3—C1—N2—LIi145.45 (9)C14—C12—N4—C8120.28 (10)
LI—C1—N2—LIi58.00 (11)C13—C12—N4—C8119.01 (10)
N1—C1—N2—LI22.57 (9)C21—C22—O—C1923.85 (12)
N3—C1—N2—LI156.55 (9)C21—C22—O—LI178.16 (10)
C7—C5—N2—C1132.84 (8)C20—C19—O—C221.70 (13)
C6—C5—N2—C1105.59 (9)C20—C19—O—LI157.79 (11)
Symmetry code: (i) x+2, y+1, z.
(compound_3) [Bis(tetrahydrofuran)lithium]-di-µ-chlorido-{(N,N'-dicyclohexyl-1-butylamidinato-κ2N1,N2)[N,N',N'',N'''-tetracyclohexyl-1-(1-butylamidinato)guanidinato-κ2N1,N2]holmate(III)} top
Crystal data top
[LiHoCl2(C4H8O)2(C17H31N2)(C30H53N4)]Z = 2
Mr = 1120.17F(000) = 1184
Triclinic, P1Dx = 1.254 Mg m3
a = 12.909 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.095 (3) ÅCell parameters from 29309 reflections
c = 16.786 (3) Åθ = 2.2–29.5°
α = 100.67 (3)°µ = 1.47 mm1
β = 97.20 (3)°T = 153 K
γ = 109.50 (3)°Prism, yellow
V = 2967.5 (12) Å30.34 × 0.20 × 0.12 × 0.13 (radius) mm
Data collection top
Stoe IPDS 2T
diffractometer
12948 independent reflections
Radiation source: fine-focus sealed tube9625 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.078
area detector scansθmax = 27.0°, θmin = 2.3°
Absorption correction: for a sphere
(X-AREA and X-RED; Stoe & Cie, 2002)
h = 1616
Tmin = 0.814, Tmax = 0.889k = 1819
29449 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0158P)2]
where P = (Fo2 + 2Fc2)/3
12948 reflections(Δ/σ)max = 0.001
751 parametersΔρmax = 0.98 e Å3
552 restraintsΔρmin = 1.68 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
HO0.88596 (2)0.22098 (2)0.79652 (2)0.02381 (5)
CL11.01515 (10)0.18232 (10)0.90859 (7)0.0502 (3)
CL20.92641 (9)0.38265 (8)0.90918 (6)0.0426 (3)
LI1.0402 (7)0.3342 (8)0.9944 (5)0.059 (2)
N10.7121 (3)0.1321 (2)0.82444 (18)0.0266 (7)
N20.7857 (3)0.0572 (2)0.73204 (19)0.0319 (8)
N30.6167 (3)0.0399 (2)0.77010 (19)0.0291 (8)
N40.5748 (3)0.2042 (3)0.7462 (2)0.0400 (9)
N50.8511 (3)0.2905 (3)0.68838 (19)0.0295 (8)
N61.0136 (3)0.2673 (3)0.7108 (2)0.0315 (8)
C10.7056 (3)0.0497 (3)0.7760 (2)0.0277 (9)
C20.6417 (4)0.1197 (3)0.7857 (3)0.0324 (10)
C30.7431 (3)0.0933 (3)0.8544 (2)0.0324 (10)
H3A0.7974890.0288830.8546790.039*
H3B0.7797680.1409290.8423620.039*
C40.7146 (3)0.0907 (3)0.9401 (2)0.0359 (10)
H4A0.6690970.0498660.9497770.043*
H4B0.6695050.1570290.9430570.043*
C50.8207 (4)0.0503 (4)1.0069 (3)0.0411 (11)
H5A0.8678700.0139661.0008240.049*
H5B0.8636210.0935700.9984760.049*
C60.7985 (4)0.0397 (4)1.0953 (3)0.0552 (14)
H6A0.8700640.0133881.1351460.083*
H6B0.7577040.0044071.1047980.083*
H6C0.7534500.1032391.1024470.083*
C70.6469 (4)0.1335 (3)0.8895 (2)0.0309 (10)
H70.5892710.0672360.8813070.037*
C80.5874 (4)0.2047 (3)0.8852 (3)0.0376 (11)
H8A0.5368440.1855920.8304400.045*
H8B0.6435690.2703060.8914810.045*
C90.5193 (4)0.2068 (4)0.9533 (3)0.0500 (13)
H9A0.4844650.2558240.9509130.060*
H9B0.4583300.1428640.9435190.060*
C100.5916 (4)0.2307 (4)1.0384 (3)0.0511 (14)
H10A0.6461670.2980831.0514090.061*
H10B0.5436510.2259351.0802790.061*
C110.6542 (4)0.1623 (4)1.0429 (3)0.0490 (14)
H11A0.6000100.0960011.0370980.059*
H11B0.7053830.1827561.0975800.059*
C120.7218 (3)0.1618 (4)0.9748 (2)0.0366 (11)
H12A0.7797450.2270980.9832080.044*
H12B0.7603600.1155250.9779930.044*
C130.7848 (4)0.0221 (3)0.6659 (3)0.0354 (10)
H130.7130950.0787570.6569130.042*
C140.8830 (4)0.0521 (4)0.6889 (3)0.0423 (11)
H14A0.8765400.0761420.7397790.051*
H14B0.9536240.0049120.7007140.051*
C150.8872 (5)0.1321 (4)0.6188 (3)0.0543 (14)
H15A0.9536550.1486730.6347120.065*
H15B0.8192700.1910670.6095150.065*
C160.8938 (5)0.0969 (4)0.5397 (3)0.0566 (14)
H16A0.9656980.0419690.5476130.068*
H16B0.8922210.1497080.4941970.068*
C170.7982 (5)0.0651 (4)0.5164 (3)0.0573 (15)
H17A0.7267600.1215390.5029100.069*
H17B0.8070190.0395280.4663850.069*
C180.7937 (4)0.0131 (4)0.5865 (3)0.0442 (12)
H18A0.8622330.0717680.5966440.053*
H18B0.7281300.0305960.5702470.053*
C19A0.5097 (5)0.0672 (5)0.7090 (4)0.0331 (14)0.760 (6)
H19A0.5071990.1210370.6630030.040*0.760 (6)
C20A0.4073 (5)0.1061 (6)0.7469 (4)0.0429 (18)0.760 (6)
H20A0.4057270.0543630.7920010.051*0.760 (6)
H20B0.4119030.1603000.7707100.051*0.760 (6)
C21A0.3004 (5)0.1414 (5)0.6806 (5)0.0578 (18)0.760 (6)
H21A0.2987190.1975990.6386790.069*0.760 (6)
H21B0.2342920.1629160.7063980.069*0.760 (6)
C22A0.2936 (6)0.0619 (6)0.6385 (5)0.0556 (19)0.760 (6)
H22A0.2273230.0890600.5925180.067*0.760 (6)
H22B0.2833410.0101980.6787910.067*0.760 (6)
C23A0.3971 (5)0.0187 (5)0.6052 (5)0.0500 (18)0.760 (6)
H23A0.3922140.0370820.5839900.060*0.760 (6)
H23B0.4002670.0675780.5582330.060*0.760 (6)
C24A0.5048 (5)0.0152 (4)0.6710 (4)0.0402 (14)0.760 (6)
H24A0.5708680.0378830.6453830.048*0.760 (6)
H24B0.5067980.0700180.7146430.048*0.760 (6)
C19B0.5113 (16)0.0319 (18)0.7313 (11)0.042 (3)0.240 (6)
H19B0.5214680.0382590.7448850.050*0.240 (6)
C20B0.4137 (16)0.085 (2)0.7678 (14)0.045 (3)0.240 (6)
H20C0.4313330.0600500.8286580.054*0.240 (6)
H20D0.4017870.1551740.7557930.054*0.240 (6)
C21B0.3073 (14)0.0722 (16)0.7312 (11)0.050 (3)0.240 (6)
H21C0.2436510.1097070.7534770.060*0.240 (6)
H21D0.3170080.0030190.7473490.060*0.240 (6)
C22B0.2814 (16)0.1062 (19)0.6379 (12)0.053 (3)0.240 (6)
H22C0.2663250.1764520.6216430.064*0.240 (6)
H22D0.2133380.0953310.6150600.064*0.240 (6)
C23B0.3782 (16)0.0521 (18)0.6030 (14)0.048 (3)0.240 (6)
H23C0.3905390.0177550.6167840.058*0.240 (6)
H23D0.3604830.0755390.5420010.058*0.240 (6)
C24B0.4863 (13)0.0667 (15)0.6386 (10)0.041 (3)0.240 (6)
H24C0.4758360.1360950.6226810.049*0.240 (6)
H24D0.5498060.0296870.6158590.049*0.240 (6)
C250.5914 (4)0.2901 (3)0.7618 (3)0.0490 (13)
H250.6350510.2752290.8193870.059*
C260.4763 (5)0.3690 (4)0.7521 (3)0.0653 (16)
H26A0.4864330.4266390.7666900.078*
H26B0.4342800.3452600.7909560.078*
C270.4085 (4)0.3980 (4)0.6640 (3)0.0577 (15)
H27A0.3357850.4505640.6596090.069*
H27B0.3929100.3418280.6508280.069*
C280.4717 (4)0.4319 (4)0.6028 (3)0.0584 (15)
H28A0.4285560.4460530.5459170.070*
H28B0.4792900.4925530.6119910.070*
C290.5868 (4)0.3566 (4)0.6113 (3)0.0555 (15)
H29A0.5790150.2990860.5949050.067*
H29B0.6279090.3832140.5733600.067*
C300.6541 (4)0.3261 (4)0.6997 (3)0.0547 (13)
H30A0.7269710.2740070.7034840.066*
H30B0.6695390.3819550.7137600.066*
C310.9532 (3)0.3082 (3)0.6710 (2)0.0312 (10)
C320.9966 (3)0.3686 (3)0.6105 (2)0.0357 (10)
H32A1.0784530.4042690.6291600.043*
H32B0.9600050.4166160.6094580.043*
C330.9724 (4)0.3042 (4)0.5237 (3)0.0429 (12)
H33A0.8908020.2662890.5068490.052*
H33B1.0112780.2578460.5251020.052*
C341.0095 (5)0.3607 (4)0.4587 (3)0.0615 (15)
H34A0.9830180.3153590.4032340.074*
H34B0.9735800.4093240.4591370.074*
C351.1355 (5)0.4118 (5)0.4732 (4)0.080 (2)
H35A1.1542400.4465040.4300020.120*
H35B1.1621390.4579210.5275100.120*
H35C1.1715810.3639070.4715780.120*
C360.7672 (3)0.3214 (3)0.6481 (3)0.0356 (10)
H360.8050560.3723090.6196630.043*
C370.6801 (4)0.2393 (4)0.5858 (3)0.0585 (15)
H37A0.6469120.1866250.6129460.070*
H37B0.7159390.2142750.5426830.070*
C380.5862 (4)0.2662 (5)0.5443 (3)0.0704 (18)
H38A0.6171670.3138610.5118850.085*
H38B0.5286000.2077470.5057500.085*
C390.5330 (4)0.3089 (4)0.6087 (3)0.0543 (14)
H39A0.4769130.3310230.5815310.065*
H39B0.4936390.2584280.6361250.065*
C400.6187 (4)0.3914 (4)0.6715 (3)0.0616 (16)
H40A0.5821900.4152060.7147360.074*
H40B0.6512830.4448410.6448810.074*
C410.7133 (4)0.3643 (4)0.7123 (3)0.0550 (14)
H41A0.7709030.4227890.7507900.066*
H41B0.6825800.3167310.7448050.066*
C421.1312 (3)0.2840 (4)0.7071 (3)0.0308 (10)
H421.1452670.3009540.6535770.037*
C431.1522 (3)0.1916 (3)0.7092 (3)0.0365 (11)
H43A1.1051120.1401950.6597770.044*
H43B1.1302490.1699620.7588790.044*
C441.2756 (4)0.2061 (4)0.7110 (3)0.0479 (13)
H44A1.2872760.1455370.7156850.057*
H44B1.2954290.2207000.6585660.057*
C451.3510 (3)0.2875 (4)0.7826 (3)0.0464 (12)
H45A1.4303630.2974810.7805860.056*
H45B1.3364100.2701850.8352520.056*
C461.3312 (3)0.3804 (4)0.7796 (3)0.0473 (12)
H46A1.3536850.4013610.7298740.057*
H46B1.3784160.4318830.8289590.057*
C471.2085 (3)0.3668 (3)0.7774 (3)0.0376 (10)
H47A1.1889100.3542050.8304310.045*
H47B1.1974920.4272050.7712970.045*
O1A1.2012 (6)0.3939 (5)1.0059 (6)0.068 (2)0.663 (11)
C48A1.2625 (9)0.4994 (8)1.0228 (10)0.080 (3)0.663 (11)
H48A1.2749640.5196230.9708580.096*0.663 (11)
H48B1.2205890.5355031.0511510.096*0.663 (11)
C49A1.3690 (8)0.5161 (8)1.0764 (8)0.090 (3)0.663 (11)
H49A1.4311920.5674651.0636430.107*0.663 (11)
H49B1.3656380.5358231.1353360.107*0.663 (11)
C50A1.3853 (8)0.4236 (8)1.0590 (9)0.091 (3)0.663 (11)
H50A1.4369790.4245961.0200530.109*0.663 (11)
H50B1.4186170.4124191.1108310.109*0.663 (11)
C51A1.2766 (6)0.3465 (6)1.0228 (7)0.068 (2)0.663 (11)
H51A1.2805350.3046910.9712270.081*0.663 (11)
H51B1.2523860.3059211.0620640.081*0.663 (11)
O1B1.1907 (11)0.4215 (12)1.0355 (11)0.071 (3)0.337 (11)
C48B1.2503 (16)0.5020 (18)1.0006 (18)0.077 (3)0.337 (11)
H48C1.2350410.5609291.0224800.093*0.337 (11)
H48D1.2291130.4843650.9393890.093*0.337 (11)
C49B1.3702 (14)0.5162 (14)1.0291 (17)0.085 (3)0.337 (11)
H49C1.4009140.5602761.0850660.102*0.337 (11)
H49D1.4166960.5429130.9903430.102*0.337 (11)
C50B1.3656 (16)0.4157 (16)1.0301 (14)0.082 (3)0.337 (11)
H50C1.3521740.3751450.9734960.098*0.337 (11)
H50D1.4346690.4163761.0636650.098*0.337 (11)
C51B1.2669 (13)0.3833 (16)1.0698 (14)0.078 (3)0.337 (11)
H51C1.2333790.3117311.0570910.093*0.337 (11)
H51D1.2889780.4088651.1306230.093*0.337 (11)
O2A1.0007 (16)0.3190 (12)1.0994 (5)0.0804 (18)0.823 (11)
C52A0.9608 (13)0.3830 (10)1.1520 (5)0.086 (2)0.823 (11)
H52A0.8831030.3742131.1275870.103*0.823 (11)
H52B1.0095420.4515161.1593700.103*0.823 (11)
C53A0.9650 (10)0.3558 (8)1.2315 (5)0.101 (3)0.823 (11)
H53A1.0220400.4092091.2752670.121*0.823 (11)
H53B0.8912060.3418051.2478270.121*0.823 (11)
C54A0.9944 (9)0.2699 (7)1.2204 (4)0.092 (2)0.823 (11)
H54A1.0661630.2835011.2582110.110*0.823 (11)
H54B0.9354060.2161531.2335070.110*0.823 (11)
C55A1.0048 (9)0.2429 (7)1.1357 (5)0.090 (2)0.823 (11)
H55A1.0767930.2334671.1333760.108*0.823 (11)
H55B0.9426570.1816791.1058780.108*0.823 (11)
O2B1.001 (8)0.329 (6)1.0966 (19)0.084 (3)0.177 (11)
C52B1.054 (4)0.291 (3)1.158 (2)0.088 (4)0.177 (11)
H52C1.1300160.2949881.1491830.106*0.177 (11)
H52D1.0080730.2226881.1544480.106*0.177 (11)
C53B1.060 (4)0.355 (3)1.2372 (17)0.093 (4)0.177 (11)
H53C1.0428640.3166911.2791670.112*0.177 (11)
H53D1.1360710.4049921.2572470.112*0.177 (11)
C54B0.978 (4)0.400 (3)1.224 (2)0.095 (4)0.177 (11)
H54C1.0113320.4700841.2496950.114*0.177 (11)
H54D0.9123450.3706141.2480440.114*0.177 (11)
C55B0.943 (6)0.383 (5)1.134 (2)0.088 (4)0.177 (11)
H55C0.8606970.3471291.1165400.106*0.177 (11)
H55D0.9610180.4457251.1179580.106*0.177 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
HO0.02778 (9)0.02410 (10)0.02243 (8)0.01058 (7)0.00729 (6)0.00895 (7)
CL10.0550 (7)0.0666 (9)0.0433 (6)0.0348 (7)0.0066 (5)0.0259 (6)
CL20.0553 (7)0.0321 (7)0.0357 (6)0.0152 (6)0.0048 (5)0.0012 (5)
LI0.057 (5)0.074 (7)0.040 (5)0.016 (5)0.000 (4)0.018 (5)
N10.0327 (18)0.0240 (19)0.0251 (17)0.0121 (15)0.0102 (14)0.0051 (15)
N20.044 (2)0.025 (2)0.0302 (18)0.0167 (17)0.0132 (15)0.0046 (16)
N30.0317 (18)0.0219 (19)0.0303 (18)0.0061 (16)0.0033 (14)0.0073 (16)
N40.053 (2)0.027 (2)0.034 (2)0.0082 (19)0.0046 (17)0.0087 (18)
N50.0266 (18)0.039 (2)0.0319 (18)0.0179 (16)0.0086 (14)0.0160 (17)
N60.0255 (17)0.043 (2)0.0348 (19)0.0171 (17)0.0101 (14)0.0201 (18)
C10.034 (2)0.025 (2)0.026 (2)0.0114 (19)0.0075 (16)0.0094 (18)
C20.040 (2)0.026 (3)0.031 (2)0.010 (2)0.0107 (18)0.008 (2)
C30.040 (2)0.029 (2)0.031 (2)0.014 (2)0.0075 (18)0.0108 (19)
C40.040 (2)0.034 (3)0.034 (2)0.010 (2)0.0089 (18)0.015 (2)
C50.049 (3)0.042 (3)0.036 (2)0.018 (2)0.006 (2)0.015 (2)
C60.065 (3)0.071 (4)0.030 (2)0.029 (3)0.002 (2)0.010 (3)
C70.039 (2)0.028 (3)0.029 (2)0.012 (2)0.0122 (18)0.008 (2)
C80.040 (3)0.040 (3)0.034 (2)0.018 (2)0.0116 (19)0.004 (2)
C90.049 (3)0.065 (4)0.044 (3)0.031 (3)0.019 (2)0.007 (3)
C100.051 (3)0.062 (4)0.037 (3)0.021 (3)0.021 (2)0.002 (3)
C110.053 (3)0.063 (4)0.026 (2)0.016 (3)0.015 (2)0.006 (2)
C120.040 (2)0.048 (3)0.026 (2)0.022 (2)0.0086 (18)0.009 (2)
C130.045 (3)0.028 (3)0.037 (2)0.017 (2)0.0156 (19)0.007 (2)
C140.059 (3)0.045 (3)0.035 (2)0.029 (3)0.021 (2)0.015 (2)
C150.083 (4)0.052 (3)0.050 (3)0.046 (3)0.029 (3)0.014 (3)
C160.087 (4)0.058 (4)0.044 (3)0.042 (3)0.034 (3)0.015 (3)
C170.087 (4)0.067 (4)0.033 (3)0.048 (3)0.020 (2)0.007 (3)
C180.068 (3)0.044 (3)0.034 (2)0.036 (3)0.016 (2)0.010 (2)
C19A0.035 (3)0.028 (3)0.034 (3)0.010 (3)0.002 (2)0.010 (2)
C20A0.038 (3)0.041 (4)0.044 (3)0.008 (3)0.005 (3)0.011 (3)
C21A0.041 (3)0.052 (4)0.067 (4)0.008 (3)0.002 (3)0.011 (3)
C22A0.047 (3)0.040 (4)0.068 (3)0.015 (3)0.015 (3)0.006 (3)
C23A0.051 (3)0.034 (4)0.052 (3)0.009 (3)0.013 (3)0.008 (3)
C24A0.044 (3)0.031 (3)0.041 (3)0.013 (2)0.006 (2)0.008 (2)
C19B0.039 (4)0.036 (5)0.042 (5)0.006 (5)0.003 (4)0.009 (5)
C20B0.038 (4)0.041 (5)0.047 (5)0.007 (4)0.000 (4)0.009 (5)
C21B0.038 (4)0.045 (5)0.056 (5)0.009 (4)0.001 (4)0.008 (5)
C22B0.043 (5)0.042 (5)0.062 (5)0.010 (5)0.012 (4)0.011 (5)
C23B0.048 (5)0.036 (5)0.051 (5)0.011 (5)0.012 (4)0.011 (5)
C24B0.043 (4)0.031 (5)0.041 (4)0.006 (4)0.002 (4)0.010 (4)
C250.073 (3)0.026 (3)0.038 (3)0.011 (3)0.001 (2)0.009 (2)
C260.096 (4)0.029 (3)0.051 (3)0.001 (3)0.022 (3)0.006 (3)
C270.062 (3)0.033 (3)0.060 (3)0.001 (3)0.009 (3)0.002 (3)
C280.080 (4)0.037 (3)0.048 (3)0.023 (3)0.006 (3)0.005 (3)
C290.073 (4)0.051 (4)0.047 (3)0.031 (3)0.015 (3)0.004 (3)
C300.069 (3)0.032 (3)0.060 (3)0.019 (3)0.005 (3)0.010 (3)
C310.033 (2)0.038 (3)0.026 (2)0.015 (2)0.0110 (17)0.010 (2)
C320.039 (2)0.038 (3)0.035 (2)0.015 (2)0.0110 (18)0.015 (2)
C330.050 (3)0.047 (3)0.033 (2)0.015 (2)0.017 (2)0.011 (2)
C340.083 (4)0.071 (4)0.038 (3)0.027 (3)0.025 (3)0.023 (3)
C350.084 (4)0.095 (5)0.065 (4)0.023 (4)0.041 (3)0.032 (4)
C360.032 (2)0.048 (3)0.037 (2)0.019 (2)0.0106 (18)0.024 (2)
C370.050 (3)0.068 (4)0.059 (3)0.036 (3)0.002 (2)0.001 (3)
C380.049 (3)0.096 (5)0.064 (4)0.042 (3)0.011 (3)0.001 (3)
C390.037 (3)0.070 (4)0.064 (3)0.028 (3)0.008 (2)0.022 (3)
C400.062 (3)0.065 (4)0.071 (4)0.046 (3)0.008 (3)0.009 (3)
C410.059 (3)0.061 (4)0.049 (3)0.037 (3)0.002 (2)0.001 (3)
C420.027 (3)0.039 (3)0.030 (2)0.013 (2)0.0072 (18)0.0128 (19)
C430.032 (2)0.032 (3)0.044 (3)0.011 (2)0.0085 (19)0.007 (2)
C440.041 (3)0.045 (3)0.060 (3)0.021 (2)0.014 (2)0.006 (3)
C450.028 (2)0.056 (3)0.051 (3)0.011 (2)0.003 (2)0.013 (3)
C460.033 (2)0.044 (3)0.054 (3)0.004 (2)0.001 (2)0.010 (3)
C470.037 (2)0.030 (3)0.044 (3)0.010 (2)0.0058 (19)0.009 (2)
O1A0.048 (3)0.049 (3)0.092 (5)0.017 (3)0.009 (3)0.003 (3)
C48A0.062 (4)0.057 (4)0.103 (6)0.021 (3)0.007 (4)0.005 (4)
C49A0.065 (4)0.073 (4)0.098 (6)0.010 (3)0.014 (4)0.007 (5)
C50A0.066 (4)0.072 (4)0.108 (6)0.010 (4)0.026 (4)0.018 (5)
C51A0.054 (4)0.057 (4)0.087 (5)0.026 (3)0.007 (4)0.009 (4)
O1B0.052 (4)0.058 (5)0.092 (6)0.017 (4)0.005 (4)0.009 (5)
C48B0.064 (5)0.058 (5)0.092 (6)0.016 (4)0.006 (5)0.001 (5)
C49B0.064 (5)0.067 (5)0.102 (7)0.016 (4)0.012 (5)0.006 (5)
C50B0.062 (5)0.069 (5)0.095 (7)0.019 (4)0.018 (5)0.008 (5)
C51B0.061 (4)0.061 (5)0.095 (6)0.017 (4)0.012 (4)0.010 (5)
O2A0.135 (3)0.077 (5)0.038 (2)0.044 (3)0.019 (2)0.026 (2)
C52A0.150 (5)0.071 (4)0.048 (4)0.046 (4)0.026 (4)0.027 (4)
C53A0.167 (5)0.087 (5)0.055 (4)0.045 (5)0.030 (4)0.028 (4)
C54A0.148 (5)0.091 (5)0.054 (3)0.050 (4)0.031 (4)0.037 (4)
C55A0.145 (5)0.083 (5)0.053 (4)0.047 (4)0.009 (4)0.034 (4)
O2B0.141 (5)0.077 (6)0.045 (5)0.048 (5)0.019 (5)0.029 (5)
C52B0.144 (6)0.082 (6)0.050 (5)0.049 (5)0.021 (5)0.030 (5)
C53B0.152 (6)0.085 (6)0.052 (5)0.046 (6)0.025 (5)0.030 (5)
C54B0.158 (6)0.080 (6)0.053 (6)0.043 (6)0.025 (6)0.029 (6)
C55B0.149 (6)0.077 (6)0.048 (5)0.046 (5)0.025 (5)0.026 (5)
Geometric parameters (Å, º) top
HO—N52.327 (3)C26—C271.525 (7)
HO—N62.339 (3)C26—H26A0.9900
HO—N22.341 (4)C26—H26B0.9900
HO—N12.354 (3)C27—C281.509 (7)
HO—CL12.6326 (13)C27—H27A0.9900
HO—CL22.6453 (15)C27—H27B0.9900
HO—C312.766 (4)C28—C291.510 (7)
HO—C12.770 (4)C28—H28A0.9900
HO—LI3.447 (8)C28—H28B0.9900
CL1—LI2.366 (10)C29—C301.524 (7)
CL2—LI2.306 (9)C29—H29A0.9900
LI—O2B1.86 (5)C29—H29B0.9900
LI—O1B1.898 (17)C30—H30A0.9900
LI—O2A1.928 (13)C30—H30B0.9900
LI—O1A1.937 (11)C31—C321.523 (6)
N1—C11.324 (5)C32—C331.524 (6)
N1—C71.461 (5)C32—H32A0.9900
N2—C11.331 (5)C32—H32B0.9900
N2—C131.469 (5)C33—C341.533 (6)
N3—C21.407 (5)C33—H33A0.9900
N3—C11.429 (5)C33—H33B0.9900
N3—C19B1.49 (2)C34—C351.514 (7)
N3—C19A1.496 (6)C34—H34A0.9900
N4—C21.272 (5)C34—H34B0.9900
N4—C251.447 (6)C35—H35A0.9800
N5—C311.336 (5)C35—H35B0.9800
N5—C361.456 (5)C35—H35C0.9800
N6—C311.334 (5)C36—C371.479 (6)
N6—C421.465 (5)C36—C411.515 (6)
C2—C31.518 (6)C36—H361.0000
C3—C41.527 (5)C37—C381.530 (6)
C3—H3A0.9900C37—H37A0.9900
C3—H3B0.9900C37—H37B0.9900
C4—C51.519 (6)C38—C391.509 (7)
C4—H4A0.9900C38—H38A0.9900
C4—H4B0.9900C38—H38B0.9900
C5—C61.536 (6)C39—C401.479 (7)
C5—H5A0.9900C39—H39A0.9900
C5—H5B0.9900C39—H39B0.9900
C6—H6A0.9800C40—C411.536 (6)
C6—H6B0.9800C40—H40A0.9900
C6—H6C0.9800C40—H40B0.9900
C7—C121.522 (6)C41—H41A0.9900
C7—C81.522 (6)C41—H41B0.9900
C7—H71.0000C42—C471.509 (6)
C8—C91.529 (6)C42—C431.513 (7)
C8—H8A0.9900C42—H421.0000
C8—H8B0.9900C43—C441.529 (6)
C9—C101.515 (6)C43—H43A0.9900
C9—H9A0.9900C43—H43B0.9900
C9—H9B0.9900C44—C451.504 (6)
C10—C111.515 (7)C44—H44A0.9900
C10—H10A0.9900C44—H44B0.9900
C10—H10B0.9900C45—C461.515 (7)
C11—C121.523 (5)C45—H45A0.9900
C11—H11A0.9900C45—H45B0.9900
C11—H11B0.9900C46—C471.522 (6)
C12—H12A0.9900C46—H46A0.9900
C12—H12B0.9900C46—H46B0.9900
C13—C141.511 (6)C47—H47A0.9900
C13—C181.526 (6)C47—H47B0.9900
C13—H131.0000O1A—C51A1.418 (9)
C14—C151.542 (6)O1A—C48A1.477 (11)
C14—H14A0.9900C48A—C49A1.463 (10)
C14—H14B0.9900C48A—H48A0.9900
C15—C161.520 (7)C48A—H48B0.9900
C15—H15A0.9900C49A—C50A1.462 (11)
C15—H15B0.9900C49A—H49A0.9900
C16—C171.500 (7)C49A—H49B0.9900
C16—H16A0.9900C50A—C51A1.458 (10)
C16—H16B0.9900C50A—H50A0.9900
C17—C181.527 (6)C50A—H50B0.9900
C17—H17A0.9900C51A—H51A0.9900
C17—H17B0.9900C51A—H51B0.9900
C18—H18A0.9900O1B—C51B1.411 (14)
C18—H18B0.9900O1B—C48B1.471 (15)
C19A—C24A1.515 (8)C48B—C49B1.492 (15)
C19A—C20A1.525 (7)C48B—H48C0.9900
C19A—H19A1.0000C48B—H48D0.9900
C20A—C21A1.527 (8)C49B—C50B1.501 (15)
C20A—H20A0.9900C49B—H49C0.9900
C20A—H20B0.9900C49B—H49D0.9900
C21A—C22A1.521 (9)C50B—C51B1.491 (16)
C21A—H21A0.9900C50B—H50C0.9900
C21A—H21B0.9900C50B—H50D0.9900
C22A—C23A1.504 (9)C51B—H51C0.9900
C22A—H22A0.9900C51B—H51D0.9900
C22A—H22B0.9900O2A—C55A1.409 (12)
C23A—C24A1.532 (7)O2A—C52A1.452 (9)
C23A—H23A0.9900C52A—C53A1.466 (10)
C23A—H23B0.9900C52A—H52A0.9900
C24A—H24A0.9900C52A—H52B0.9900
C24A—H24B0.9900C53A—C54A1.455 (10)
C19B—C24B1.504 (16)C53A—H53A0.9900
C19B—C20B1.521 (16)C53A—H53B0.9900
C19B—H19B1.0000C54A—C55A1.442 (9)
C20B—C21B1.523 (17)C54A—H54A0.9900
C20B—H20C0.9900C54A—H54B0.9900
C20B—H20D0.9900C55A—H55A0.9900
C21B—C22B1.510 (17)C55A—H55B0.9900
C21B—H21C0.9900O2B—C55B1.408 (17)
C21B—H21D0.9900O2B—C52B1.465 (18)
C22B—C23B1.500 (17)C52B—C53B1.473 (17)
C22B—H22C0.9900C52B—H52C0.9900
C22B—H22D0.9900C52B—H52D0.9900
C23B—C24B1.548 (16)C53B—C54B1.455 (17)
C23B—H23C0.9900C53B—H53C0.9900
C23B—H23D0.9900C53B—H53D0.9900
C24B—H24C0.9900C54B—C55B1.464 (17)
C24B—H24D0.9900C54B—H54C0.9900
C25—C301.529 (7)C54B—H54D0.9900
C25—C261.529 (7)C55B—H55C0.9900
C25—H251.0000C55B—H55D0.9900
N5—HO—N657.33 (11)C23B—C24B—H24D109.9
N5—HO—N299.94 (12)H24C—C24B—H24D108.3
N6—HO—N2102.32 (12)N4—C25—C30110.4 (4)
N5—HO—N1107.97 (11)N4—C25—C26108.4 (4)
N6—HO—N1154.43 (11)C30—C25—C26108.9 (4)
N2—HO—N157.02 (11)N4—C25—H25109.7
N5—HO—CL1154.44 (8)C30—C25—H25109.7
N6—HO—CL198.60 (8)C26—C25—H25109.7
N2—HO—CL193.27 (9)C27—C26—C25111.8 (4)
N1—HO—CL197.59 (9)C27—C26—H26A109.3
N5—HO—CL292.29 (9)C25—C26—H26A109.3
N6—HO—CL2104.14 (10)C27—C26—H26B109.3
N2—HO—CL2153.43 (8)C25—C26—H26B109.3
N1—HO—CL296.82 (9)H26A—C26—H26B107.9
CL1—HO—CL285.19 (5)C28—C27—C26110.7 (5)
N5—HO—C3128.81 (10)C28—C27—H27A109.5
N6—HO—C3128.78 (11)C26—C27—H27A109.5
N2—HO—C31105.55 (12)C28—C27—H27B109.5
N1—HO—C31135.06 (11)C26—C27—H27B109.5
CL1—HO—C31126.18 (9)H27A—C27—H27B108.1
CL2—HO—C3196.54 (10)C27—C28—C29111.5 (4)
N5—HO—C1107.74 (12)C27—C28—H28A109.3
N6—HO—C1130.11 (12)C29—C28—H28A109.3
N2—HO—C128.64 (11)C27—C28—H28B109.3
N1—HO—C128.49 (11)C29—C28—H28B109.3
CL1—HO—C194.33 (9)H28A—C28—H28B108.0
CL2—HO—C1124.91 (9)C28—C29—C30111.7 (4)
C31—HO—C1125.31 (12)C28—C29—H29A109.3
N5—HO—LI128.60 (19)C30—C29—H29A109.3
N6—HO—LI104.43 (17)C28—C29—H29B109.3
N2—HO—LI131.46 (19)C30—C29—H29B109.3
N1—HO—LI100.94 (17)H29A—C29—H29B107.9
CL1—HO—LI43.27 (18)C29—C30—C25111.7 (4)
CL2—HO—LI41.95 (18)C29—C30—H30A109.3
C31—HO—LI117.28 (18)C25—C30—H30A109.3
C1—HO—LI117.41 (18)C29—C30—H30B109.3
LI—CL1—HO87.0 (2)C25—C30—H30B109.3
LI—CL2—HO88.0 (3)H30A—C30—H30B107.9
O2B—LI—O1B97 (3)N6—C31—N5113.9 (4)
O2A—LI—O1A111.1 (7)N6—C31—C32122.9 (3)
O2B—LI—CL2113.7 (17)N5—C31—C32123.2 (4)
O1B—LI—CL2116.8 (7)N6—C31—HO57.6 (2)
O2A—LI—CL2116.6 (6)N5—C31—HO57.0 (2)
O1A—LI—CL2118.3 (5)C32—C31—HO172.5 (3)
O2B—LI—CL1115 (3)C31—C32—C33110.7 (4)
O1B—LI—CL1116.3 (7)C31—C32—H32A109.5
O2A—LI—CL1110.5 (7)C33—C32—H32A109.5
O1A—LI—CL197.8 (5)C31—C32—H32B109.5
CL2—LI—CL199.7 (3)C33—C32—H32B109.5
O2B—LI—HO131 (3)H32A—C32—H32B108.1
O1B—LI—HO132.5 (6)C32—C33—C34113.6 (4)
O2A—LI—HO129.7 (7)C32—C33—H33A108.8
O1A—LI—HO116.8 (4)C34—C33—H33A108.8
CL2—LI—HO50.07 (15)C32—C33—H33B108.8
CL1—LI—HO49.70 (15)C34—C33—H33B108.8
C1—N1—C7121.6 (3)H33A—C33—H33B107.7
C1—N1—HO93.5 (2)C35—C34—C33113.1 (4)
C7—N1—HO140.0 (3)C35—C34—H34A109.0
C1—N2—C13123.8 (4)C33—C34—H34A109.0
C1—N2—HO93.9 (2)C35—C34—H34B109.0
C13—N2—HO142.2 (3)C33—C34—H34B109.0
C2—N3—C1119.9 (3)H34A—C34—H34B107.8
C2—N3—C19B131.9 (10)C34—C35—H35A109.5
C1—N3—C19B107.1 (10)C34—C35—H35B109.5
C2—N3—C19A113.8 (4)H35A—C35—H35B109.5
C1—N3—C19A119.0 (4)C34—C35—H35C109.5
C2—N4—C25121.5 (4)H35A—C35—H35C109.5
C31—N5—C36123.8 (3)H35B—C35—H35C109.5
C31—N5—HO94.2 (2)N5—C36—C37111.0 (4)
C36—N5—HO141.7 (2)N5—C36—C41109.7 (3)
C31—N6—C42123.3 (4)C37—C36—C41109.8 (4)
C31—N6—HO93.6 (2)N5—C36—H36108.8
C42—N6—HO140.3 (3)C37—C36—H36108.8
N1—C1—N2115.2 (4)C41—C36—H36108.8
N1—C1—N3121.9 (3)C36—C37—C38113.5 (4)
N2—C1—N3122.9 (4)C36—C37—H37A108.9
N1—C1—HO58.0 (2)C38—C37—H37A108.9
N2—C1—HO57.5 (2)C36—C37—H37B108.9
N3—C1—HO176.1 (3)C38—C37—H37B108.9
N4—C2—N3118.1 (4)H37A—C37—H37B107.7
N4—C2—C3127.5 (4)C39—C38—C37110.3 (4)
N3—C2—C3114.2 (4)C39—C38—H38A109.6
C2—C3—C4113.6 (3)C37—C38—H38A109.6
C2—C3—H3A108.8C39—C38—H38B109.6
C4—C3—H3A108.8C37—C38—H38B109.6
C2—C3—H3B108.8H38A—C38—H38B108.1
C4—C3—H3B108.8C40—C39—C38110.9 (4)
H3A—C3—H3B107.7C40—C39—H39A109.5
C5—C4—C3110.8 (3)C38—C39—H39A109.5
C5—C4—H4A109.5C40—C39—H39B109.5
C3—C4—H4A109.5C38—C39—H39B109.5
C5—C4—H4B109.5H39A—C39—H39B108.0
C3—C4—H4B109.5C39—C40—C41112.5 (4)
H4A—C4—H4B108.1C39—C40—H40A109.1
C4—C5—C6113.7 (4)C41—C40—H40A109.1
C4—C5—H5A108.8C39—C40—H40B109.1
C6—C5—H5A108.8C41—C40—H40B109.1
C4—C5—H5B108.8H40A—C40—H40B107.8
C6—C5—H5B108.8C36—C41—C40111.2 (4)
H5A—C5—H5B107.7C36—C41—H41A109.4
C5—C6—H6A109.5C40—C41—H41A109.4
C5—C6—H6B109.5C36—C41—H41B109.4
H6A—C6—H6B109.5C40—C41—H41B109.4
C5—C6—H6C109.5H41A—C41—H41B108.0
H6A—C6—H6C109.5N6—C42—C47110.7 (4)
H6B—C6—H6C109.5N6—C42—C43108.9 (4)
N1—C7—C12111.1 (3)C47—C42—C43111.3 (4)
N1—C7—C8110.5 (3)N6—C42—H42108.6
C12—C7—C8109.0 (4)C47—C42—H42108.6
N1—C7—H7108.7C43—C42—H42108.6
C12—C7—H7108.7C42—C43—C44111.5 (4)
C8—C7—H7108.7C42—C43—H43A109.3
C7—C8—C9110.8 (4)C44—C43—H43A109.3
C7—C8—H8A109.5C42—C43—H43B109.3
C9—C8—H8A109.5C44—C43—H43B109.3
C7—C8—H8B109.5H43A—C43—H43B108.0
C9—C8—H8B109.5C45—C44—C43111.2 (4)
H8A—C8—H8B108.1C45—C44—H44A109.4
C10—C9—C8111.8 (4)C43—C44—H44A109.4
C10—C9—H9A109.3C45—C44—H44B109.4
C8—C9—H9A109.3C43—C44—H44B109.4
C10—C9—H9B109.3H44A—C44—H44B108.0
C8—C9—H9B109.3C44—C45—C46110.8 (4)
H9A—C9—H9B107.9C44—C45—H45A109.5
C11—C10—C9111.2 (4)C46—C45—H45A109.5
C11—C10—H10A109.4C44—C45—H45B109.5
C9—C10—H10A109.4C46—C45—H45B109.5
C11—C10—H10B109.4H45A—C45—H45B108.1
C9—C10—H10B109.4C45—C46—C47111.4 (4)
H10A—C10—H10B108.0C45—C46—H46A109.4
C10—C11—C12110.7 (4)C47—C46—H46A109.4
C10—C11—H11A109.5C45—C46—H46B109.4
C12—C11—H11A109.5C47—C46—H46B109.4
C10—C11—H11B109.5H46A—C46—H46B108.0
C12—C11—H11B109.5C42—C47—C46112.0 (4)
H11A—C11—H11B108.1C42—C47—H47A109.2
C7—C12—C11111.4 (3)C46—C47—H47A109.2
C7—C12—H12A109.3C42—C47—H47B109.2
C11—C12—H12A109.3C46—C47—H47B109.2
C7—C12—H12B109.3H47A—C47—H47B107.9
C11—C12—H12B109.3C51A—O1A—C48A110.3 (6)
H12A—C12—H12B108.0C51A—O1A—LI123.6 (6)
N2—C13—C14110.4 (3)C48A—O1A—LI123.8 (7)
N2—C13—C18108.7 (4)C49A—C48A—O1A104.2 (8)
C14—C13—C18109.2 (3)C49A—C48A—H48A110.9
N2—C13—H13109.5O1A—C48A—H48A110.9
C14—C13—H13109.5C49A—C48A—H48B110.9
C18—C13—H13109.5O1A—C48A—H48B110.9
C13—C14—C15111.5 (4)H48A—C48A—H48B108.9
C13—C14—H14A109.3C50A—C49A—C48A105.5 (8)
C15—C14—H14A109.3C50A—C49A—H49A110.6
C13—C14—H14B109.3C48A—C49A—H49A110.6
C15—C14—H14B109.3C50A—C49A—H49B110.6
H14A—C14—H14B108.0C48A—C49A—H49B110.6
C16—C15—C14109.7 (4)H49A—C49A—H49B108.8
C16—C15—H15A109.7C51A—C50A—C49A108.7 (8)
C14—C15—H15A109.7C51A—C50A—H50A110.0
C16—C15—H15B109.7C49A—C50A—H50A110.0
C14—C15—H15B109.7C51A—C50A—H50B110.0
H15A—C15—H15B108.2C49A—C50A—H50B110.0
C17—C16—C15111.4 (4)H50A—C50A—H50B108.3
C17—C16—H16A109.4O1A—C51A—C50A105.6 (7)
C15—C16—H16A109.4O1A—C51A—H51A110.6
C17—C16—H16B109.4C50A—C51A—H51A110.6
C15—C16—H16B109.4O1A—C51A—H51B110.6
H16A—C16—H16B108.0C50A—C51A—H51B110.6
C16—C17—C18111.3 (4)H51A—C51A—H51B108.7
C16—C17—H17A109.4C51B—O1B—C48B109.9 (12)
C18—C17—H17A109.4C51B—O1B—LI116.5 (12)
C16—C17—H17B109.4C48B—O1B—LI125.7 (14)
C18—C17—H17B109.4O1B—C48B—C49B102.4 (12)
H17A—C17—H17B108.0O1B—C48B—H48C111.3
C13—C18—C17111.0 (4)C49B—C48B—H48C111.3
C13—C18—H18A109.4O1B—C48B—H48D111.3
C17—C18—H18A109.4C49B—C48B—H48D111.3
C13—C18—H18B109.4H48C—C48B—H48D109.2
C17—C18—H18B109.4C48B—C49B—C50B103.2 (13)
H18A—C18—H18B108.0C48B—C49B—H49C111.1
N3—C19A—C24A112.4 (5)C50B—C49B—H49C111.1
N3—C19A—C20A111.6 (5)C48B—C49B—H49D111.1
C24A—C19A—C20A111.1 (5)C50B—C49B—H49D111.1
N3—C19A—H19A107.2H49C—C49B—H49D109.1
C24A—C19A—H19A107.2C51B—C50B—C49B99.5 (13)
C20A—C19A—H19A107.2C51B—C50B—H50C111.9
C19A—C20A—C21A109.9 (5)C49B—C50B—H50C111.9
C19A—C20A—H20A109.7C51B—C50B—H50D111.9
C21A—C20A—H20A109.7C49B—C50B—H50D111.9
C19A—C20A—H20B109.7H50C—C50B—H50D109.6
C21A—C20A—H20B109.7O1B—C51B—C50B104.8 (12)
H20A—C20A—H20B108.2O1B—C51B—H51C110.8
C22A—C21A—C20A111.4 (6)C50B—C51B—H51C110.8
C22A—C21A—H21A109.3O1B—C51B—H51D110.8
C20A—C21A—H21A109.3C50B—C51B—H51D110.8
C22A—C21A—H21B109.3H51C—C51B—H51D108.9
C20A—C21A—H21B109.3C55A—O2A—C52A110.0 (7)
H21A—C21A—H21B108.0C55A—O2A—LI124.7 (7)
C23A—C22A—C21A112.3 (6)C52A—O2A—LI125.3 (9)
C23A—C22A—H22A109.1O2A—C52A—C53A105.7 (8)
C21A—C22A—H22A109.1O2A—C52A—H52A110.6
C23A—C22A—H22B109.1C53A—C52A—H52A110.6
C21A—C22A—H22B109.1O2A—C52A—H52B110.6
H22A—C22A—H22B107.9C53A—C52A—H52B110.6
C22A—C23A—C24A112.3 (6)H52A—C52A—H52B108.7
C22A—C23A—H23A109.1C54A—C53A—C52A107.0 (7)
C24A—C23A—H23A109.1C54A—C53A—H53A110.3
C22A—C23A—H23B109.1C52A—C53A—H53A110.3
C24A—C23A—H23B109.1C54A—C53A—H53B110.3
H23A—C23A—H23B107.9C52A—C53A—H53B110.3
C19A—C24A—C23A110.1 (5)H53A—C53A—H53B108.6
C19A—C24A—H24A109.6C55A—C54A—C53A108.6 (7)
C23A—C24A—H24A109.6C55A—C54A—H54A110.0
C19A—C24A—H24B109.6C53A—C54A—H54A110.0
C23A—C24A—H24B109.6C55A—C54A—H54B110.0
H24A—C24A—H24B108.2C53A—C54A—H54B110.0
N3—C19B—C24B112.2 (15)H54A—C54A—H54B108.4
N3—C19B—C20B110.5 (15)O2A—C55A—C54A106.9 (7)
C24B—C19B—C20B111.1 (15)O2A—C55A—H55A110.3
N3—C19B—H19B107.6C54A—C55A—H55A110.3
C24B—C19B—H19B107.6O2A—C55A—H55B110.3
C20B—C19B—H19B107.6C54A—C55A—H55B110.3
C19B—C20B—C21B110.2 (16)H55A—C55A—H55B108.6
C19B—C20B—H20C109.6C55B—O2B—C52B110.4 (17)
C21B—C20B—H20C109.6C55B—O2B—LI124 (3)
C19B—C20B—H20D109.6C52B—O2B—LI123 (3)
C21B—C20B—H20D109.6O2B—C52B—C53B103.3 (17)
H20C—C20B—H20D108.1O2B—C52B—H52C111.1
C22B—C21B—C20B110.7 (16)C53B—C52B—H52C111.1
C22B—C21B—H21C109.5O2B—C52B—H52D111.1
C20B—C21B—H21C109.5C53B—C52B—H52D111.1
C22B—C21B—H21D109.5H52C—C52B—H52D109.1
C20B—C21B—H21D109.5C54B—C53B—C52B107.6 (17)
H21C—C21B—H21D108.1C54B—C53B—H53C110.2
C23B—C22B—C21B110.3 (16)C52B—C53B—H53C110.2
C23B—C22B—H22C109.6C54B—C53B—H53D110.2
C21B—C22B—H22C109.6C52B—C53B—H53D110.2
C23B—C22B—H22D109.6H53C—C53B—H53D108.5
C21B—C22B—H22D109.6C53B—C54B—C55B107.3 (16)
H22C—C22B—H22D108.1C53B—C54B—H54C110.3
C22B—C23B—C24B110.8 (16)C55B—C54B—H54C110.3
C22B—C23B—H23C109.5C53B—C54B—H54D110.3
C24B—C23B—H23C109.5C55B—C54B—H54D110.3
C22B—C23B—H23D109.5H54C—C54B—H54D108.5
C24B—C23B—H23D109.5O2B—C55B—C54B106.8 (16)
H23C—C23B—H23D108.1O2B—C55B—H55C110.4
C19B—C24B—C23B108.8 (15)C54B—C55B—H55C110.4
C19B—C24B—H24C109.9O2B—C55B—H55D110.4
C23B—C24B—H24C109.9C54B—C55B—H55D110.4
C19B—C24B—H24D109.9H55C—C55B—H55D108.6
C7—N1—C1—N2166.2 (3)N4—C25—C30—C2963.1 (5)
HO—N1—C1—N26.4 (3)C26—C25—C30—C2955.9 (6)
C7—N1—C1—N315.7 (6)C42—N6—C31—N5174.3 (4)
HO—N1—C1—N3175.4 (3)HO—N6—C31—N59.5 (4)
C7—N1—C1—HO159.8 (4)C42—N6—C31—C326.3 (6)
C13—N2—C1—N1170.7 (3)HO—N6—C31—C32171.1 (4)
HO—N2—C1—N16.4 (3)C42—N6—C31—HO164.8 (4)
C13—N2—C1—N37.5 (6)C36—N5—C31—N6175.4 (4)
HO—N2—C1—N3175.4 (3)HO—N5—C31—N69.6 (4)
C13—N2—C1—HO177.1 (4)C36—N5—C31—C324.0 (6)
C2—N3—C1—N1124.8 (4)HO—N5—C31—C32171.1 (4)
C19B—N3—C1—N165.9 (9)C36—N5—C31—HO175.1 (4)
C19A—N3—C1—N186.9 (5)N6—C31—C32—C3387.0 (5)
C2—N3—C1—N257.1 (5)N5—C31—C32—C3392.3 (5)
C19B—N3—C1—N2112.1 (8)C31—C32—C33—C34177.6 (4)
C19A—N3—C1—N291.1 (5)C32—C33—C34—C3565.5 (6)
C25—N4—C2—N3176.7 (4)C31—N5—C36—C37103.3 (5)
C25—N4—C2—C32.1 (7)HO—N5—C36—C3784.7 (5)
C1—N3—C2—N4148.1 (4)C31—N5—C36—C41135.2 (4)
C19B—N3—C2—N418.0 (11)HO—N5—C36—C4136.8 (6)
C19A—N3—C2—N41.7 (6)N5—C36—C37—C38177.1 (4)
C1—N3—C2—C336.6 (5)C41—C36—C37—C3855.6 (6)
C19B—N3—C2—C3157.3 (10)C36—C37—C38—C3956.1 (7)
C19A—N3—C2—C3173.7 (4)C37—C38—C39—C4054.4 (7)
N4—C2—C3—C485.4 (5)C38—C39—C40—C4155.2 (7)
N3—C2—C3—C489.3 (4)N5—C36—C41—C40176.1 (4)
C2—C3—C4—C5172.0 (4)C37—C36—C41—C4053.9 (6)
C3—C4—C5—C6176.4 (4)C39—C40—C41—C3655.2 (6)
C1—N1—C7—C12107.3 (4)C31—N6—C42—C4792.4 (5)
HO—N1—C7—C1240.2 (6)HO—N6—C42—C4763.4 (6)
C1—N1—C7—C8131.5 (4)C31—N6—C42—C43145.0 (4)
HO—N1—C7—C880.9 (5)HO—N6—C42—C4359.3 (6)
N1—C7—C8—C9179.8 (4)N6—C42—C43—C44176.4 (3)
C12—C7—C8—C957.5 (5)C47—C42—C43—C4454.1 (5)
C7—C8—C9—C1056.2 (6)C42—C43—C44—C4555.8 (5)
C8—C9—C10—C1154.3 (6)C43—C44—C45—C4656.3 (5)
C9—C10—C11—C1254.6 (6)C44—C45—C46—C4755.8 (5)
N1—C7—C12—C11179.3 (4)N6—C42—C47—C46175.1 (4)
C8—C7—C12—C1158.7 (5)C43—C42—C47—C4653.8 (5)
C10—C11—C12—C757.6 (5)C45—C46—C47—C4254.7 (5)
C1—N2—C13—C14116.1 (4)C51A—O1A—C48A—C49A18.8 (13)
HO—N2—C13—C1468.6 (5)LI—O1A—C48A—C49A144.5 (9)
C1—N2—C13—C18124.1 (4)O1A—C48A—C49A—C50A23.9 (15)
HO—N2—C13—C1851.1 (6)C48A—C49A—C50A—C51A21.4 (15)
N2—C13—C14—C15177.3 (4)C48A—O1A—C51A—C50A5.8 (12)
C18—C13—C14—C1557.9 (5)LI—O1A—C51A—C50A157.6 (11)
C13—C14—C15—C1657.4 (6)C49A—C50A—C51A—O1A9.7 (14)
C14—C15—C16—C1755.8 (6)O2B—LI—O1B—C51B75 (2)
C15—C16—C17—C1856.2 (6)CL2—LI—O1B—C51B164.7 (12)
N2—C13—C18—C17177.6 (4)CL1—LI—O1B—C51B47.2 (15)
C14—C13—C18—C1757.1 (5)HO—LI—O1B—C51B105.5 (14)
C16—C17—C18—C1356.8 (6)O2B—LI—O1B—C48B140 (3)
C2—N3—C19A—C24A159.8 (5)CL2—LI—O1B—C48B19 (2)
C1—N3—C19A—C24A9.8 (7)CL1—LI—O1B—C48B99 (2)
C2—N3—C19A—C20A74.6 (6)HO—LI—O1B—C48B40 (2)
C1—N3—C19A—C20A135.4 (5)C51B—O1B—C48B—C49B8 (3)
N3—C19A—C20A—C21A175.1 (6)LI—O1B—C48B—C49B155.8 (17)
C24A—C19A—C20A—C21A58.7 (8)O1B—C48B—C49B—C50B33 (3)
C19A—C20A—C21A—C22A55.8 (8)C48B—C49B—C50B—C51B44 (2)
C20A—C21A—C22A—C23A53.4 (8)C48B—O1B—C51B—C50B20 (2)
C21A—C22A—C23A—C24A52.7 (8)LI—O1B—C51B—C50B131.1 (18)
N3—C19A—C24A—C23A176.5 (5)C49B—C50B—C51B—O1B39 (2)
C20A—C19A—C24A—C23A57.7 (7)C55A—O2A—C52A—C53A12.7 (17)
C22A—C23A—C24A—C19A54.5 (8)LI—O2A—C52A—C53A168.1 (13)
C2—N3—C19B—C24B76.8 (18)O2A—C52A—C53A—C54A6.5 (16)
C1—N3—C19B—C24B90.7 (16)C52A—C53A—C54A—C55A1.6 (14)
C2—N3—C19B—C20B48 (2)C52A—O2A—C55A—C54A13.8 (16)
C1—N3—C19B—C20B144.7 (15)LI—O2A—C55A—C54A167.0 (11)
N3—C19B—C20B—C21B176.9 (17)C53A—C54A—C55A—O2A9.4 (14)
C24B—C19B—C20B—C21B58 (3)O1B—LI—O2B—C55B99 (7)
C19B—C20B—C21B—C22B57 (3)CL2—LI—O2B—C55B25 (9)
C20B—C21B—C22B—C23B58 (3)CL1—LI—O2B—C55B138 (7)
C21B—C22B—C23B—C24B59 (3)HO—LI—O2B—C55B81 (8)
N3—C19B—C24B—C23B177.8 (16)O1B—LI—O2B—C52B63 (7)
C20B—C19B—C24B—C23B58 (2)CL2—LI—O2B—C52B174 (6)
C22B—C23B—C24B—C19B59 (2)CL1—LI—O2B—C52B60 (8)
C2—N4—C25—C3095.9 (5)HO—LI—O2B—C52B117 (6)
C2—N4—C25—C26144.9 (4)C55B—O2B—C52B—C53B21 (8)
N4—C25—C26—C2763.1 (6)LI—O2B—C52B—C53B143 (6)
C30—C25—C26—C2757.1 (6)O2B—C52B—C53B—C54B21 (6)
C25—C26—C27—C2857.3 (6)C52B—C53B—C54B—C55B14 (6)
C26—C27—C28—C2955.2 (6)C52B—O2B—C55B—C54B13 (9)
C27—C28—C29—C3054.6 (6)LI—O2B—C55B—C54B151 (6)
C28—C29—C30—C2555.5 (6)C53B—C54B—C55B—O2B1 (8)
 

Acknowledgements

Financial support of this work by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged. FMS is grateful to the Ministry of Higher Educational Scientific Research (MHESR), Egypt, and the German Academic Exchange Service (DAAD), Germany, for a PhD scholarship within the German Egyptian Research Long-Term Scholarship (GERLS) program.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, 27, 1869–1877.  Web of Science CSD CrossRef CAS Google Scholar
First citationBailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91–141.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346–2354.  Google Scholar
First citationCollins, S. (2011). Coord. Chem. Rev. 255, 118–138.  Web of Science CrossRef CAS Google Scholar
First citationDeacon, G. B., Junk, P. C., Wang, J. & Werner, D. (2014). Inorg. Chem. 53, 12553–12563.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDevi, A. (2013). Coord. Chem. Rev. 257, 3332–3384.  Web of Science CrossRef CAS Google Scholar
First citationDownard, A. & Chivers, T. (2001). Eur. J. Inorg. Chem. pp. 2193–2201.  CrossRef Google Scholar
First citationEdelmann, F. T. (2006). In Comprehensive Organometallic Chemistry III, Vol. 3, Complexes of Scandium, Yttrium and the Lanthanide Elements, edited by R. H. Crabtree & D. M. P. Mingos. Oxford: Elsevier.  Google Scholar
First citationEdelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253–2268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657–7672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEdelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55–374.  CAS Google Scholar
First citationFreeman, J. H. & Smith, M. L. (1958). J. Inorg. Nucl. Chem. 7, 224–227.  CrossRef CAS Web of Science Google Scholar
First citationHong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312–7322.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Z. P., Yap, G. P. A. & Richeson, D. S. (2001). Organometallics, 20, 706–712.  Web of Science CSD CrossRef CAS Google Scholar
First citationNevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. 745–746, 186–189.  Google Scholar
First citationRichter, J., Feiling, J., Schmidt, H.-G., Noltemeyer, M., Brüser, W. & Edelmann, F. T. (2004). Z. Anorg. Allg. Chem. 630, 1269–1275.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSnaith, R. & Wright, D. S. (1995). In Lithium Chemistry, A Theoretical and Experimental Overview, edited by A. Sapse & P. von R. Schleyer. New York: Wiley.  Google Scholar
First citationStalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1–C5.  CSD CrossRef CAS Web of Science Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTrifonov, A. A. (2010). Coord. Chem. Rev. 254, 1327–1347.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, D., Yap, G. P. A. & Richeson, D. S. (1999). Inorg. Chem. 38, 5788–5794.  CSD CrossRef CAS Google Scholar
First citationZhou, Y., Yap, G. P. A. & Richeson, D. S. (1998). Organometallics, 17, 4387–4391.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds