research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of aqua­tris­­{μ-N-[bis­(di­ethyl­amino)phosphoryl]-2,2,2-tri­chloroacetamidato-κ3O,O′:O}calciumsodium

CROSSMARK_Color_square_no_text.svg

aTaras Shevchenko National University of Kyiv, Department of Chemistry, Volodymyrska str., 64, 01033 Kyiv, Ukraine, and bSTC "Institute for Single Crystals", 60 Nauki ave., Kharkiv 61072, Ukraine
*Correspondence e-mail: jshatrava@gmail.com

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 5 September 2016; accepted 24 October 2016; online 1 November 2016)

In the mol­ecular structure of the title compound, [CaNa(C10H20Cl3N3O2P)3(H2O)], the Ca2+ ion has a slightly distorted octa­hedral coordination environment defined by six O atoms which belong to the carbonyl and phosphoryl groups of the three coordinating ligands. Two Cl atoms of CCl3 groups and four O atoms form the coordination environment of the Na+ ion: three from the carbonyl groups of ligands and one O atom from a coordinating water mol­ecule. In the crystal, the bimetallic complexes are assembled into chains along the c-axis direction via O—H⋯O hydrogen bonds that involve the coordinating water mol­ecules and the phosphoryl groups.

1. Chemical context

In recent years, the inter­est of many researchers has been focused on metal–phospho­rus containing chelates and their usefulness as reagents (principally the alkali metal derivatives) and as potential precursors (the alkaline earth derivatives) for chemical vapor deposition (CVD) (Hanusa, 2003[Hanusa, T. P. (2003). Comprehensive Coordination Chemistry II, 2nd ed, edited by J. A. McCleverty. Oxford: Elsevier.]), thin films (Hitzbleck et al., 2004[Hitzbleck, J., Deacon, G. B. & Ruhlandt-Senge, K. (2004). Angew. Chem. Int. Ed. 43, 5218-5220.]; Demadis et al., 2009[Demadis, K. D., Anagnostou, Z. & Zhao, H. (2009). Appl. Mater. Interfaces, 1, 35-38.], 2010[Demadis, K. D., Papadaki, M. & Cisarova, I. (2010). Appl. Mater. Interfaces, 2, 1814-1816.]), anti­tumor activity (Liu et al., 2012[Liu, D., Kramer, S. A., Huxford-Phillips, R. C., Wang, S., Della Rocca, J. & Lin, W. (2012). Chem. Commun. 48, 2668-2670.]) and as models for calcium-binding proteins (bearing biologically relevant ligands) (Hoang et al., 2003[Hoang, Q. Q., Sicheri, F., Howard, A. J. & Yang, D. S. C. (2003). Nature, 425, 977-980.]).

Polyfunctional phospho­rus compounds [O=P—C(R)—P=O](L), having oxygen-donor groups capable of binding a number of metal ions into structurally versatile metal phospho­nate hybrids M2+/L (Sr2+, Ba2+, Ca2+) or A+/M2+/L (A = Na, K) have received considerable attention (Colodrero et al., 2011[Colodrero, R. M. P., Cabeza, A., Olivera-Pastor, P., Papadaki, M., Rius, J., Choquesillo-Lazarte, D., García-Ruiz, J. M., Demadis, K. D. & Aranda, M. A. G. (2011). Cryst. Growth Des. 11, 1713-1722.]; Niekiel & Stock, 2014[Niekiel, F. & Stock, N. (2014). Cryst. Growth Des. 14, 599-606.]). Complexes based on carbacyl­amido-­phosphates (CAPhos) containing the phospho­rylated structural core [O=C—NH—P=O] have been used as luminescence markers (Litsis et al., 2015[Litsis, O. O., Ovchynnikov, V. A., Scherbatskii, V. P., Nedilko, S. G., Sliva, T. Yu., Dyakonenko, V. V., Shishkin, O. V., Davydov, V. I., Gawryszewska, P. & Amirkhanov, V. M. (2015). Dalton Trans. 44, 15508-15522.]), for their cytotoxic activity (Grynuyk et al., 2016[Grynuyk, I. I., Prylutska, S. V., Kariaka, N. S., Sliva, T. Yu., Moroz, O. V., Franskevych, D. V., Amirkhanov, V. M., Matyshevska, O. P. & Slobodyanik, M. S. (2016). Ukr. Biokhim. Zh. 87, 154-161.]) and as building-blocks in aimed synthesis of coordination compounds with specified structure (Shatrava et al., 2016[Shatrava, I., Ovchynnikov, V., Gubina, K., Shishkina, S., Shishkin, O. & Amirkhanov, V. (2016). Struct. Chem. 27, 1413-1425.]). The especially inter­esting feature of carbacyl­amido­phosphate ligands is the bidentate or bidentate–chelate character of their coordination to the central atom (Amirkhanov et al., 2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. (2014). Ligands. Synthesis, Characterization and Role in Biochemistry, edited by P. Gawryszewska, pp. 199-248. New York: Nova Science Publishers.]; Gubina et al., 2000[Gubina, K. E., Ovchynnikov, V. A., Amirkhanov, V. M., Fischer, H., Stumpf, R. & Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 576-582.]). On this subject, two papers related to complexes of an alkali element in the coordination chemistry of carbacyl­amido­phosphates have been published (Trush et al., 2005[Trush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007-1014.]; Litsis et al., 2010[Litsis, O. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m426-m427.]).

The present paper is devoted to the synthesis and structural analysis of a Ca2+-containing complex [CaNa(L)3(H2O)], (I)[link], in which the Na+ ion is four-coordinate and has additional contacts with two Cl atoms and where L is the CAPhos ligand with a bidentate–chelate and bridging function of the carbonyl group.

[Scheme 1]

2. Structural commentary

In the title structure (Fig. 1[link]), the Ca atom is coordinated by all six O atoms of three bidentate chelating CAPhos ligands in a distorted octa­hedral geometry. The Ca—O(C) bond lengths [2.371 (2)–2.392 (2) Å] are longer than the Ca—O(P) bonds [2.262 (2)–2.323 (2) Å]. Similar Ca—O(P) bond lengths of 2.283 (6)–2.332 (6) Å are found in the structures of [Ca{Ph2P(O)CH2P(O)Ph2}3]2+ (Hursthouse et al., 2005[Hursthouse, M. B., Levason, W., Ratnani, R., Reid, G., Stainer, H. & Webster, M. (2005). Polyhedron, 24, 121-128.]) and [Ca(C8H11NO5PS)2]n (Trush et al., 2009[Trush, E. A., Trush, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2009). Acta Cryst. E65, m1231.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 30% probability displacement ellipsoids and the atom-numbering scheme. Labels and H atoms of ethyl groups have been omitted for clarity.

The P=O, C—N and C=O bond lengths in (I)[link] are in good agreement with those observed for complexes based on CAPhos ligands (Amirkhanov et al., 2014[Amirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. (2014). Ligands. Synthesis, Characterization and Role in Biochemistry, edited by P. Gawryszewska, pp. 199-248. New York: Nova Science Publishers.]). The coordination polyhedron around Na+ has a distorted tetra­hedron-like geometry, formed by three carbonyl oxygen atoms from three ligands and one from the coordinating water mol­ecule with O(C)—Na—O(C) and O(C)—Na—O(W) angle ranges of 76.19 (8)–77.48 (7)° and 126.09 (10)–141.26 (9)°, respectively. The Na ion also has additional contacts with two Cl atoms of CCl3 groups [2.976 (1) and 3.086 (1) Å. The Na—O(W) bond length [2.276 (2) Å] is significantly shorter than the Na—O(C) bonds [2.333 (2)–2.393 (2) Å]. A similar type of bonding was observed earlier in [Na2(C10H16Cl3N3O4P)2(H2O)2]n (Litsis et al., 2010[Litsis, O. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m426-m427.]), [Na{Ph2P(O)CH2P(O)Ph2}3Cl] (Ding et al., 2000[Ding, Y., Fanwick, P. E. & Walton, R. A. (2000). Inorg. Chim. Acta, 309, 159-162.]), [NaNd(C14H21N3O5PS)4]n (Shatrava et al., 2010[Shatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m397-m398.]) and [NaNd(C8H11NO5PS)4]n (Moroz et al., 2007[Moroz, O. V., Shishkina, S. V., Trush, V. A., Sliva, T. Y. & Amirkhanov, V. M. (2007). Acta Cryst. E63, m3175-m3176.]). The Ca⋯Na distance of 3.321 (3) Å is much shorter than that in [CaNa(PC)2(H2O)]n [4.3972 (5) Å; PC = phospho­citrate ligand; Demadis, 2003[Demadis, K. D. (2003). Inorg. Chem. Commun. 6, 527-530.]).

3. Supra­molecular features

In the crystal, the complex mol­ecules are linked into chains along the c axis via O—H⋯O hydrogen-bonding inter­actions (Fig. 2[link], Table 1[link]) in which the water O atom acts as a donor, and the O atoms of the two phosphoryl groups of a neighbouring mol­ecule act as the acceptors.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3i 0.86 (4) 2.23 (4) 2.959 (3) 143 (3)
O7—H7B⋯O5i 0.80 (4) 2.08 (4) 2.843 (3) 159 (4)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular packing for (I)[link], showing hydrogen-bonded chains running along the c axis. O—H⋯O hydrogen bonds are shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, with one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) returned five entries for crystal structures of calcium sodium binuclear compounds with phospho­rus-containing acids (Demadis et al., 2001[Demadis, K. D., Sallis, J. D., Raptis, R. G. & Baran, P. (2001). J. Am. Chem. Soc. 123, 10129-10130.]). Only one binuclear coordination compound based on the CAPhos ligand with an encapsulated sodium cation is known, viz. NaErL4·H2O (Amirkhanov et al., 1996a[Amirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996a). Russ. J. Inorg. Chem. 41, 2052-2057.]).

5. Synthesis and crystallization

The synthesis of HL was carried out according to a previously reported method (Amirkhanov et al., 1996b[Amirkhanov, V. M., Ovchynnikov, V. A., Trush, V. A. & Skopenko, V. V. (1996b). Russ. J. Org. Chem. 32, 376-380.]). Anhydrous CaCl2 (0.027 g, 0.24 mmol) was dissolved in hot methanol and added to a solution of NaL (0.257 g, 0.73 mmol) in acetone. Colorless crystals of the complex suitable for X-ray diffraction could be separated over a period of three days; they were washed with acetone. IR (KBr pellet, cm−1): 1618 (s, CO) and 1110 (s, PO).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were idealized (C–H = 0.98–0.99 Å) and refined within the riding-model approximation with Uiso(H) = 1.2 or 1.5 Ueq(C). The coordinates of water H atoms were freely refined, with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [CaNa(C10H20Cl3N3O2P)3(H2O)]
Mr 1135.91
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.4014 (5), 21.8127 (10), 18.2427 (6)
β (°) 100.539 (4)
V3) 5242.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.5 × 0.3 × 0.2
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.981, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 56299, 16965, 10752
Rint 0.077
(sin θ/λ)max−1) 0.757
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.131, 1.05
No. of reflections 16965
No. of parameters 559
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.81, −0.53
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Aquatris{µ-N-[bis(diethylamino)phosphoryl]-2,2,2-trichloroacetamidato-κ3O,O':O}calciumsodium top
Crystal data top
[CaNa(C10H20Cl3N3O2P)3(H2O)]F(000) = 2360
Mr = 1135.91Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.4014 (5) ÅCell parameters from 9777 reflections
b = 21.8127 (10) Åθ = 2.9–31.1°
c = 18.2427 (6) ŵ = 0.73 mm1
β = 100.539 (4)°T = 100 K
V = 5242.8 (4) Å3Block, colourless
Z = 40.5 × 0.3 × 0.2 mm
Data collection top
Agilent Xcalibur, Sapphire3
diffractometer
16965 independent reflections
Radiation source: Enhance (Mo) X-ray Source10752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
Detector resolution: 16.1827 pixels mm-1θmax = 32.5°, θmin = 2.9°
ω scansh = 1719
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 3232
Tmin = 0.981, Tmax = 1.000l = 2126
56299 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0333P)2 + 3.9976P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
16965 reflectionsΔρmax = 0.81 e Å3
559 parametersΔρmin = 0.53 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.30938 (4)0.26175 (3)0.05317 (3)0.01394 (11)
Cl10.52209 (7)0.41961 (4)0.07288 (5)0.0412 (2)
Cl20.49248 (6)0.31147 (4)0.16544 (4)0.03247 (19)
Cl30.68577 (7)0.33489 (6)0.07300 (6)0.0556 (3)
Cl40.02206 (7)0.41154 (4)0.15774 (4)0.03229 (19)
Cl50.08582 (6)0.31288 (5)0.10258 (4)0.0352 (2)
Cl60.06795 (6)0.28761 (4)0.18889 (4)0.02943 (18)
Cl70.20528 (7)0.10653 (4)0.18555 (4)0.03215 (19)
Cl80.35228 (7)0.02340 (4)0.10288 (4)0.0350 (2)
Cl90.41532 (7)0.14074 (4)0.14729 (4)0.0340 (2)
P10.56560 (6)0.27334 (4)0.12621 (4)0.02079 (17)
P20.15063 (5)0.37823 (3)0.08914 (4)0.01445 (14)
P30.22119 (6)0.11337 (4)0.07838 (4)0.01754 (15)
Na10.29650 (9)0.26717 (6)0.13032 (6)0.0213 (3)
O10.45756 (15)0.26654 (11)0.13545 (10)0.0231 (5)
O20.42012 (14)0.29851 (10)0.02518 (10)0.0212 (5)
O30.22811 (14)0.32988 (9)0.11674 (10)0.0174 (4)
O40.19420 (14)0.30713 (10)0.04789 (10)0.0198 (4)
O50.25053 (16)0.17625 (10)0.10821 (10)0.0200 (4)
O60.29464 (16)0.18838 (10)0.04410 (10)0.0212 (4)
O70.27508 (19)0.25628 (12)0.25633 (11)0.0259 (5)
H7A0.275 (3)0.221 (2)0.276 (2)0.039*
H7B0.267 (3)0.2825 (19)0.287 (2)0.039*
N10.62190 (18)0.20676 (13)0.14390 (14)0.0249 (6)
N20.63464 (19)0.32149 (13)0.18381 (13)0.0240 (6)
N30.58423 (18)0.29959 (13)0.04559 (13)0.0229 (6)
N40.19814 (18)0.44687 (12)0.08862 (12)0.0180 (5)
N50.06822 (18)0.37906 (11)0.14712 (12)0.0173 (5)
N60.08462 (17)0.36888 (11)0.00484 (12)0.0176 (5)
N70.26564 (19)0.06364 (12)0.14352 (13)0.0215 (5)
N80.09859 (19)0.10053 (13)0.05679 (13)0.0238 (6)
N90.26156 (19)0.09295 (12)0.00233 (12)0.0202 (5)
C10.5617 (3)0.15065 (16)0.13558 (19)0.0315 (8)
H1A0.49560.15920.15040.038*
H1B0.59700.11940.17030.038*
C20.5423 (3)0.1244 (2)0.0581 (2)0.0536 (12)
H2A0.50860.15510.02300.080*
H2B0.49880.08810.05670.080*
H2C0.60700.11270.04430.080*
C30.7291 (2)0.20065 (18)0.1366 (2)0.0338 (8)
H3A0.76180.24150.14170.041*
H3B0.73300.18440.08660.041*
C40.7852 (3)0.1579 (2)0.1958 (2)0.0478 (10)
H4A0.76300.11560.18430.072*
H4B0.77060.16950.24470.072*
H4C0.85840.16100.19670.072*
C50.6416 (3)0.31108 (19)0.26430 (17)0.0353 (8)
H5A0.61330.27020.27210.042*
H5B0.59990.34210.28440.042*
C60.7500 (3)0.3146 (2)0.3069 (2)0.0456 (10)
H6A0.79280.28640.28440.068*
H6B0.75170.30310.35900.068*
H6C0.77540.35650.30460.068*
C70.6476 (3)0.38515 (17)0.1624 (2)0.0332 (8)
H7C0.66960.38560.11350.040*
H7D0.70240.40390.19930.040*
C80.5531 (3)0.4239 (2)0.1572 (2)0.0519 (11)
H8A0.50090.40870.11650.078*
H8B0.56920.46660.14740.078*
H8C0.52800.42150.20430.078*
C90.5147 (2)0.30817 (14)0.01230 (15)0.0180 (6)
C100.5541 (2)0.34089 (17)0.07783 (17)0.0279 (7)
C110.2773 (2)0.46682 (15)0.15059 (15)0.0229 (6)
H11A0.33830.47890.13060.027*
H11B0.29620.43180.18480.027*
C120.2451 (3)0.52007 (16)0.19431 (16)0.0322 (8)
H12A0.22760.55520.16100.048*
H12B0.30110.53130.23460.048*
H12C0.18600.50810.21560.048*
C130.1801 (3)0.48730 (15)0.02316 (15)0.0269 (7)
H13A0.18140.53040.04020.032*
H13B0.11170.47890.00600.032*
C140.2579 (3)0.4792 (2)0.02705 (18)0.0441 (11)
H14A0.24450.50890.06800.066*
H14B0.25330.43750.04740.066*
H14C0.32610.48610.00190.066*
C150.0128 (2)0.42512 (15)0.13284 (16)0.0236 (6)
H15A0.06850.40960.09400.028*
H15B0.01400.46300.11370.028*
C160.0545 (3)0.44007 (17)0.20263 (19)0.0352 (8)
H16A0.10240.47430.19240.053*
H16B0.00150.45150.24280.053*
H16C0.08950.40410.21780.053*
C170.0369 (2)0.31950 (15)0.17294 (17)0.0236 (6)
H17A0.01260.32580.22050.028*
H17B0.09710.29240.18340.028*
C180.0452 (3)0.2872 (2)0.1191 (2)0.0502 (11)
H18A0.02120.27940.07230.075*
H18B0.10590.31310.10920.075*
H18C0.06160.24820.14080.075*
C190.1140 (2)0.33714 (13)0.04671 (14)0.0154 (5)
C200.0332 (2)0.33663 (14)0.12081 (15)0.0189 (6)
C210.0375 (2)0.10914 (17)0.11532 (18)0.0296 (7)
H21A0.01200.14250.10020.036*
H21B0.08270.12190.16190.036*
C220.0188 (3)0.05222 (19)0.1303 (2)0.0439 (10)
H22A0.06530.04000.08480.066*
H22B0.05750.06050.16990.066*
H22C0.02980.01910.14600.066*
C230.0422 (3)0.09849 (18)0.02034 (18)0.0335 (8)
H23A0.02050.07420.02160.040*
H23B0.08400.07720.05190.040*
C240.0138 (3)0.1614 (2)0.0531 (2)0.0544 (12)
H24A0.02560.15690.10360.082*
H24B0.07570.18480.05500.082*
H24C0.02690.18310.02180.082*
C250.3321 (2)0.08055 (16)0.21407 (15)0.0242 (7)
H25A0.35910.12230.20940.029*
H25B0.39040.05190.22360.029*
C260.2770 (3)0.0788 (2)0.27963 (17)0.0370 (9)
H26A0.22240.10930.27220.055*
H26B0.32490.08810.32560.055*
H26C0.24810.03790.28340.055*
C270.2515 (3)0.00186 (16)0.12843 (17)0.0288 (7)
H27A0.19290.00750.08730.035*
H27B0.23490.02210.17320.035*
C280.3436 (3)0.03324 (19)0.1075 (2)0.0425 (10)
H28A0.35980.01420.06250.064*
H28B0.32880.07680.09810.064*
H28C0.40160.02900.14860.064*
C290.2896 (2)0.13098 (14)0.04402 (14)0.0175 (6)
C300.3164 (2)0.10037 (15)0.11537 (15)0.0236 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0156 (3)0.0131 (3)0.0133 (2)0.0009 (2)0.0028 (2)0.00007 (19)
Cl10.0513 (6)0.0240 (5)0.0446 (5)0.0105 (4)0.0008 (4)0.0118 (4)
Cl20.0381 (5)0.0402 (5)0.0217 (3)0.0048 (4)0.0126 (3)0.0056 (3)
Cl30.0214 (4)0.0944 (10)0.0543 (6)0.0021 (5)0.0153 (4)0.0331 (6)
Cl40.0469 (5)0.0223 (4)0.0233 (4)0.0071 (4)0.0051 (3)0.0042 (3)
Cl50.0202 (4)0.0513 (6)0.0325 (4)0.0092 (4)0.0006 (3)0.0041 (4)
Cl60.0339 (4)0.0317 (5)0.0198 (3)0.0090 (4)0.0027 (3)0.0102 (3)
Cl70.0412 (5)0.0340 (5)0.0178 (3)0.0065 (4)0.0036 (3)0.0068 (3)
Cl80.0609 (6)0.0204 (4)0.0253 (4)0.0159 (4)0.0120 (4)0.0013 (3)
Cl90.0403 (5)0.0352 (5)0.0315 (4)0.0041 (4)0.0197 (4)0.0002 (3)
P10.0164 (4)0.0226 (4)0.0215 (4)0.0025 (3)0.0015 (3)0.0061 (3)
P20.0175 (3)0.0124 (4)0.0134 (3)0.0015 (3)0.0027 (3)0.0006 (3)
P30.0245 (4)0.0132 (4)0.0152 (3)0.0002 (3)0.0041 (3)0.0005 (3)
Na10.0260 (6)0.0247 (7)0.0135 (5)0.0025 (5)0.0043 (5)0.0013 (4)
O10.0187 (10)0.0335 (14)0.0160 (9)0.0030 (9)0.0005 (8)0.0050 (9)
O20.0177 (10)0.0281 (13)0.0177 (9)0.0021 (9)0.0031 (8)0.0040 (8)
O30.0207 (10)0.0152 (11)0.0157 (9)0.0031 (8)0.0017 (8)0.0012 (7)
O40.0191 (10)0.0241 (12)0.0164 (9)0.0063 (9)0.0031 (8)0.0000 (8)
O50.0321 (11)0.0156 (11)0.0136 (9)0.0030 (9)0.0077 (8)0.0000 (7)
O60.0324 (12)0.0160 (11)0.0162 (9)0.0004 (9)0.0071 (8)0.0002 (8)
O70.0426 (13)0.0204 (13)0.0155 (10)0.0013 (11)0.0071 (10)0.0008 (8)
N10.0179 (12)0.0221 (15)0.0327 (14)0.0020 (11)0.0012 (11)0.0089 (11)
N20.0235 (13)0.0224 (15)0.0240 (12)0.0038 (11)0.0010 (10)0.0051 (10)
N30.0176 (12)0.0241 (15)0.0261 (12)0.0016 (11)0.0018 (10)0.0077 (11)
N40.0205 (12)0.0180 (13)0.0148 (10)0.0036 (10)0.0015 (9)0.0003 (9)
N50.0214 (12)0.0136 (13)0.0183 (11)0.0018 (10)0.0069 (9)0.0019 (9)
N60.0193 (12)0.0161 (13)0.0171 (11)0.0032 (10)0.0025 (9)0.0025 (9)
N70.0283 (13)0.0173 (14)0.0179 (11)0.0008 (11)0.0018 (10)0.0013 (9)
N80.0245 (13)0.0261 (15)0.0210 (12)0.0011 (11)0.0051 (10)0.0022 (10)
N90.0286 (13)0.0149 (13)0.0173 (11)0.0011 (11)0.0052 (10)0.0011 (9)
C10.0333 (18)0.0201 (18)0.0408 (19)0.0048 (15)0.0056 (15)0.0042 (14)
C20.058 (3)0.033 (2)0.058 (3)0.010 (2)0.019 (2)0.0165 (19)
C30.0220 (16)0.029 (2)0.048 (2)0.0003 (14)0.0000 (15)0.0085 (16)
C40.037 (2)0.043 (3)0.061 (3)0.0092 (19)0.0040 (19)0.008 (2)
C50.041 (2)0.037 (2)0.0256 (16)0.0128 (17)0.0001 (15)0.0051 (14)
C60.051 (2)0.044 (3)0.0330 (19)0.012 (2)0.0152 (18)0.0026 (17)
C70.0310 (18)0.0249 (19)0.0400 (19)0.0062 (15)0.0036 (15)0.0051 (15)
C80.054 (3)0.033 (2)0.063 (3)0.015 (2)0.006 (2)0.003 (2)
C90.0178 (14)0.0167 (15)0.0204 (13)0.0003 (11)0.0057 (11)0.0047 (11)
C100.0217 (15)0.034 (2)0.0282 (16)0.0006 (14)0.0063 (13)0.0110 (14)
C110.0247 (15)0.0238 (18)0.0186 (13)0.0040 (13)0.0001 (12)0.0011 (12)
C120.053 (2)0.0215 (18)0.0192 (14)0.0015 (16)0.0015 (15)0.0048 (12)
C130.048 (2)0.0149 (16)0.0162 (13)0.0053 (14)0.0013 (13)0.0017 (11)
C140.062 (3)0.049 (3)0.0233 (16)0.028 (2)0.0128 (17)0.0003 (16)
C150.0255 (15)0.0189 (17)0.0290 (15)0.0074 (13)0.0117 (13)0.0031 (12)
C160.043 (2)0.025 (2)0.045 (2)0.0116 (16)0.0254 (17)0.0031 (15)
C170.0270 (16)0.0167 (16)0.0297 (15)0.0052 (13)0.0121 (13)0.0061 (12)
C180.060 (3)0.035 (2)0.054 (2)0.027 (2)0.008 (2)0.0079 (19)
C190.0156 (13)0.0146 (14)0.0155 (12)0.0004 (11)0.0012 (10)0.0021 (10)
C200.0196 (14)0.0167 (15)0.0193 (13)0.0013 (12)0.0009 (11)0.0021 (11)
C210.0262 (16)0.033 (2)0.0306 (16)0.0042 (15)0.0081 (14)0.0020 (14)
C220.055 (2)0.039 (3)0.043 (2)0.004 (2)0.0239 (19)0.0048 (17)
C230.0292 (17)0.039 (2)0.0299 (17)0.0060 (16)0.0014 (14)0.0014 (15)
C240.044 (2)0.065 (3)0.051 (2)0.012 (2)0.002 (2)0.023 (2)
C250.0248 (15)0.0296 (19)0.0183 (13)0.0016 (14)0.0043 (12)0.0050 (12)
C260.038 (2)0.053 (3)0.0194 (15)0.0077 (19)0.0047 (14)0.0016 (15)
C270.0407 (19)0.0199 (18)0.0264 (15)0.0014 (15)0.0080 (14)0.0037 (13)
C280.062 (3)0.030 (2)0.039 (2)0.014 (2)0.0179 (19)0.0063 (16)
C290.0218 (14)0.0160 (15)0.0143 (12)0.0031 (12)0.0020 (11)0.0012 (10)
C300.0319 (17)0.0197 (17)0.0191 (13)0.0048 (13)0.0043 (12)0.0015 (11)
Geometric parameters (Å, º) top
Ca1—O12.2621 (19)C5—H5A0.9900
Ca1—O22.380 (2)C5—H5B0.9900
Ca1—O32.281 (2)C5—C61.519 (5)
Ca1—O42.3917 (19)C6—H6A0.9800
Ca1—O52.323 (2)C6—H6B0.9800
Ca1—O62.371 (2)C6—H6C0.9800
Cl1—C101.776 (4)C7—H7C0.9900
Cl2—C101.779 (3)C7—H7D0.9900
Cl3—C101.756 (3)C7—C81.511 (5)
Cl4—C201.763 (3)C8—H8A0.9800
Cl5—C201.766 (3)C8—H8B0.9800
Cl6—C201.765 (3)C8—H8C0.9800
Cl7—C301.783 (3)C9—C101.564 (4)
Cl8—C301.750 (3)C11—H11A0.9900
Cl9—C301.776 (3)C11—H11B0.9900
P1—O11.495 (2)C11—C121.515 (4)
P1—N11.641 (3)C12—H12A0.9800
P1—N21.646 (3)C12—H12B0.9800
P1—N31.639 (3)C12—H12C0.9800
P2—O31.501 (2)C13—H13A0.9900
P2—N41.628 (3)C13—H13B0.9900
P2—N51.663 (2)C13—C141.519 (5)
P2—N61.641 (2)C14—H14A0.9800
P3—O51.501 (2)C14—H14B0.9800
P3—N71.638 (3)C14—H14C0.9800
P3—N81.642 (3)C15—H15A0.9900
P3—N91.640 (2)C15—H15B0.9900
Na1—O22.393 (2)C15—C161.516 (4)
Na1—O42.378 (2)C16—H16A0.9800
Na1—O62.333 (2)C16—H16B0.9800
Na1—O72.276 (2)C16—H16C0.9800
O2—C91.264 (3)C17—H17A0.9900
O4—C191.262 (3)C17—H17B0.9900
O6—C291.254 (4)C17—C181.508 (5)
O7—H7A0.86 (4)C18—H18A0.9800
O7—H7B0.80 (4)C18—H18B0.9800
N1—C11.459 (4)C18—H18C0.9800
N1—C31.472 (4)C19—C201.570 (4)
N2—C51.472 (4)C21—H21A0.9900
N2—C71.461 (4)C21—H21B0.9900
N3—C91.288 (3)C21—C221.504 (5)
N4—C111.467 (3)C22—H22A0.9800
N4—C131.469 (4)C22—H22B0.9800
N5—C151.468 (4)C22—H22C0.9800
N5—C171.469 (4)C23—H23A0.9900
N6—C191.286 (3)C23—H23B0.9900
N7—C251.472 (4)C23—C241.517 (5)
N7—C271.461 (4)C24—H24A0.9800
N8—C211.471 (4)C24—H24B0.9800
N8—C231.471 (4)C24—H24C0.9800
N9—C291.289 (4)C25—H25A0.9900
C1—H1A0.9900C25—H25B0.9900
C1—H1B0.9900C25—C261.516 (4)
C1—C21.502 (5)C26—H26A0.9800
C2—H2A0.9800C26—H26B0.9800
C2—H2B0.9800C26—H26C0.9800
C2—H2C0.9800C27—H27A0.9900
C3—H3A0.9900C27—H27B0.9900
C3—H3B0.9900C27—C281.519 (5)
C3—C41.518 (5)C28—H28A0.9800
C4—H4A0.9800C28—H28B0.9800
C4—H4B0.9800C28—H28C0.9800
C4—H4C0.9800C29—C301.562 (4)
O1—Ca1—O279.33 (7)H8B—C8—H8C109.5
O1—Ca1—O394.32 (7)O2—C9—N3132.7 (3)
O1—Ca1—O4148.96 (8)O2—C9—C10113.6 (2)
O1—Ca1—O594.39 (7)N3—C9—C10113.5 (2)
O1—Ca1—O6118.09 (8)Cl1—C10—Cl2108.53 (17)
O2—Ca1—O477.47 (7)Cl3—C10—Cl1108.61 (19)
O3—Ca1—O2119.61 (8)Cl3—C10—Cl2108.37 (18)
O3—Ca1—O479.71 (7)C9—C10—Cl1106.5 (2)
O3—Ca1—O594.12 (7)C9—C10—Cl2110.9 (2)
O3—Ca1—O6146.96 (7)C9—C10—Cl3113.8 (2)
O5—Ca1—O2145.92 (8)N4—C11—H11A108.9
O5—Ca1—O4116.31 (7)N4—C11—H11B108.9
O5—Ca1—O678.07 (7)N4—C11—C12113.4 (3)
O6—Ca1—O275.74 (7)H11A—C11—H11B107.7
O6—Ca1—O475.45 (7)C12—C11—H11A108.9
O1—P1—N1108.05 (13)C12—C11—H11B108.9
O1—P1—N2115.74 (13)C11—C12—H12A109.5
O1—P1—N3116.44 (12)C11—C12—H12B109.5
N1—P1—N2104.75 (13)C11—C12—H12C109.5
N3—P1—N1110.21 (14)H12A—C12—H12B109.5
N3—P1—N2100.95 (13)H12A—C12—H12C109.5
O3—P2—N4113.64 (12)H12B—C12—H12C109.5
O3—P2—N5107.07 (12)N4—C13—H13A109.0
O3—P2—N6116.65 (12)N4—C13—H13B109.0
N4—P2—Ca1114.86 (9)N4—C13—C14113.1 (3)
N4—P2—N5107.44 (13)H13A—C13—H13B107.8
N4—P2—N6104.66 (12)C14—C13—H13A109.0
N6—P2—N5106.89 (12)C14—C13—H13B109.0
O5—P3—N7107.79 (12)C13—C14—H14A109.5
O5—P3—N8115.28 (13)C13—C14—H14B109.5
O5—P3—N9116.73 (12)C13—C14—H14C109.5
N7—P3—Ca1128.31 (10)H14A—C14—H14B109.5
N7—P3—N8106.03 (14)H14A—C14—H14C109.5
N7—P3—N9107.54 (13)H14B—C14—H14C109.5
N9—P3—N8102.78 (13)N5—C15—H15A109.2
O4—Na1—O277.48 (7)N5—C15—H15B109.2
O6—Na1—O276.19 (8)N5—C15—C16111.9 (2)
O6—Na1—O476.42 (8)H15A—C15—H15B107.9
O7—Na1—O2141.26 (9)C16—C15—H15A109.2
O7—Na1—O4134.11 (9)C16—C15—H15B109.2
O7—Na1—O6126.09 (10)C15—C16—H16A109.5
P1—O1—Ca1132.87 (11)C15—C16—H16B109.5
Ca1—O2—Na188.21 (7)C15—C16—H16C109.5
C9—O2—Ca1131.21 (17)H16A—C16—H16B109.5
C9—O2—Na1136.08 (18)H16A—C16—H16C109.5
P2—O3—Ca1130.74 (10)H16B—C16—H16C109.5
Na1—O4—Ca188.29 (7)N5—C17—H17A108.5
C19—O4—Ca1129.28 (16)N5—C17—H17B108.5
C19—O4—Na1142.40 (17)N5—C17—C18114.9 (3)
P3—O5—Ca1131.58 (11)H17A—C17—H17B107.5
Na1—O6—Ca189.86 (8)C18—C17—H17A108.5
C29—O6—Ca1132.10 (17)C18—C17—H17B108.5
C29—O6—Na1138.03 (18)C17—C18—H18A109.5
Na1—O7—H7A120 (2)C17—C18—H18B109.5
Na1—O7—H7B128 (3)C17—C18—H18C109.5
H7A—O7—H7B111 (4)H18A—C18—H18B109.5
C1—N1—P1119.8 (2)H18A—C18—H18C109.5
C1—N1—C3116.4 (3)H18B—C18—H18C109.5
C3—N1—P1118.9 (2)O4—C19—N6131.8 (2)
C5—N2—P1117.6 (2)O4—C19—C20115.9 (2)
C7—N2—P1121.1 (2)N6—C19—C20112.2 (2)
C7—N2—C5115.1 (3)Cl4—C20—Cl5109.11 (16)
C9—N3—P1125.5 (2)Cl4—C20—Cl6107.91 (15)
C11—N4—P2119.8 (2)Cl6—C20—Cl5108.57 (16)
C11—N4—C13115.9 (2)C19—C20—Cl4108.6 (2)
C13—N4—P2123.43 (19)C19—C20—Cl5110.13 (19)
C15—N5—P2116.78 (18)C19—C20—Cl6112.42 (19)
C15—N5—C17114.6 (2)N8—C21—H21A109.0
C17—N5—P2117.2 (2)N8—C21—H21B109.0
C19—N6—P2124.6 (2)N8—C21—C22113.0 (3)
C25—N7—P3123.4 (2)H21A—C21—H21B107.8
C27—N7—P3119.6 (2)C22—C21—H21A109.0
C27—N7—C25116.5 (2)C22—C21—H21B109.0
C21—N8—P3118.0 (2)C21—C22—H22A109.5
C23—N8—P3123.4 (2)C21—C22—H22B109.5
C23—N8—C21116.2 (3)C21—C22—H22C109.5
C29—N9—P3124.1 (2)H22A—C22—H22B109.5
N1—C1—H1A108.6H22A—C22—H22C109.5
N1—C1—H1B108.6H22B—C22—H22C109.5
N1—C1—C2114.5 (3)N8—C23—H23A108.9
H1A—C1—H1B107.6N8—C23—H23B108.9
C2—C1—H1A108.6N8—C23—C24113.4 (3)
C2—C1—H1B108.6H23A—C23—H23B107.7
C1—C2—H2A109.5C24—C23—H23A108.9
C1—C2—H2B109.5C24—C23—H23B108.9
C1—C2—H2C109.5C23—C24—H24A109.5
H2A—C2—H2B109.5C23—C24—H24B109.5
H2A—C2—H2C109.5C23—C24—H24C109.5
H2B—C2—H2C109.5H24A—C24—H24B109.5
N1—C3—H3A109.5H24A—C24—H24C109.5
N1—C3—H3B109.5H24B—C24—H24C109.5
N1—C3—C4110.9 (3)N7—C25—H25A109.1
H3A—C3—H3B108.1N7—C25—H25B109.1
C4—C3—H3A109.5N7—C25—C26112.3 (3)
C4—C3—H3B109.5H25A—C25—H25B107.9
C3—C4—H4A109.5C26—C25—H25A109.1
C3—C4—H4B109.5C26—C25—H25B109.1
C3—C4—H4C109.5C25—C26—H26A109.5
H4A—C4—H4B109.5C25—C26—H26B109.5
H4A—C4—H4C109.5C25—C26—H26C109.5
H4B—C4—H4C109.5H26A—C26—H26B109.5
N2—C5—H5A109.1H26A—C26—H26C109.5
N2—C5—H5B109.1H26B—C26—H26C109.5
N2—C5—C6112.5 (3)N7—C27—H27A108.8
H5A—C5—H5B107.8N7—C27—H27B108.8
C6—C5—H5A109.1N7—C27—C28113.9 (3)
C6—C5—H5B109.1H27A—C27—H27B107.7
C5—C6—H6A109.5C28—C27—H27A108.8
C5—C6—H6B109.5C28—C27—H27B108.8
C5—C6—H6C109.5C27—C28—H28A109.5
H6A—C6—H6B109.5C27—C28—H28B109.5
H6A—C6—H6C109.5C27—C28—H28C109.5
H6B—C6—H6C109.5H28A—C28—H28B109.5
N2—C7—H7C108.7H28A—C28—H28C109.5
N2—C7—H7D108.7H28B—C28—H28C109.5
N2—C7—C8114.2 (3)O6—C29—N9131.7 (3)
H7C—C7—H7D107.6O6—C29—C30113.9 (2)
C8—C7—H7C108.7N9—C29—C30114.2 (3)
C8—C7—H7D108.7Cl8—C30—Cl7109.84 (18)
C7—C8—H8A109.5Cl8—C30—Cl9108.36 (17)
C7—C8—H8B109.5Cl9—C30—Cl7107.63 (15)
C7—C8—H8C109.5C29—C30—Cl7106.1 (2)
H8A—C8—H8B109.5C29—C30—Cl8113.6 (2)
H8A—C8—H8C109.5C29—C30—Cl9111.1 (2)
Ca1—P1—N1—C16.1 (3)O4—C19—C20—Cl65.3 (3)
Ca1—P1—N1—C3148.2 (2)O5—P3—N7—C256.4 (3)
Ca1—P1—N2—C583.5 (3)O5—P3—N7—C27177.6 (2)
Ca1—P1—N2—C767.6 (3)O5—P3—N8—C2156.9 (3)
Ca1—P1—N3—C90.5 (3)O5—P3—N8—C23104.9 (3)
Ca1—P2—N4—C1173.2 (2)O5—P3—N9—C2920.8 (3)
Ca1—P2—N4—C1395.4 (2)O6—C29—C30—Cl780.1 (3)
Ca1—P2—N5—C15159.31 (17)O6—C29—C30—Cl8159.1 (2)
Ca1—P2—N5—C1717.7 (3)O6—C29—C30—Cl936.6 (3)
Ca1—P2—N6—C1912.7 (3)N1—P1—O1—Ca1106.24 (19)
Ca1—P3—N7—C2518.3 (3)N1—P1—N2—C562.6 (3)
Ca1—P3—N7—C27152.95 (19)N1—P1—N2—C7146.3 (3)
Ca1—P3—N8—C2190.1 (2)N1—P1—N3—C9115.3 (3)
Ca1—P3—N8—C2371.6 (3)N2—P1—O1—Ca1136.72 (17)
Ca1—P3—N9—C2912.2 (2)N2—P1—N1—C1147.9 (2)
Ca1—O2—C9—N33.1 (5)N2—P1—N1—C357.8 (3)
Ca1—O2—C9—C10172.3 (2)N2—P1—N3—C9134.3 (3)
Ca1—O4—C19—N625.0 (5)N3—P1—O1—Ca118.4 (2)
Ca1—O4—C19—C20154.88 (18)N3—P1—N1—C1104.2 (2)
Ca1—O6—C29—N923.4 (5)N3—P1—N1—C350.1 (3)
Ca1—O6—C29—C30160.67 (18)N3—P1—N2—C5177.1 (2)
P1—N1—C1—C286.6 (3)N3—P1—N2—C731.8 (3)
P1—N1—C3—C4144.0 (3)N3—C9—C10—Cl198.5 (3)
P1—N2—C5—C6132.7 (3)N3—C9—C10—Cl2143.6 (2)
P1—N2—C7—C870.5 (4)N3—C9—C10—Cl321.1 (4)
P1—N3—C9—O22.2 (5)N4—P2—O3—Ca199.20 (16)
P1—N3—C9—C10173.2 (2)N4—P2—N5—C1555.0 (2)
P2—N4—C11—C12116.5 (3)N4—P2—N5—C17163.4 (2)
P2—N4—C13—C1489.5 (3)N4—P2—N6—C19102.7 (3)
P2—N5—C15—C16156.2 (2)N5—P2—O3—Ca1142.33 (15)
P2—N5—C17—C1881.3 (3)N5—P2—N4—C1178.0 (2)
P2—N6—C19—O40.5 (5)N5—P2—N4—C13113.4 (2)
P2—N6—C19—C20179.5 (2)N5—P2—N6—C19143.5 (3)
P3—N7—C25—C26106.1 (3)N6—P2—O3—Ca122.7 (2)
P3—N7—C27—C2898.7 (3)N6—P2—N4—C11168.6 (2)
P3—N8—C21—C22121.7 (3)N6—P2—N4—C130.0 (3)
P3—N8—C23—C2481.7 (4)N6—P2—N5—C1556.9 (2)
P3—N9—C29—O60.7 (5)N6—P2—N5—C1784.7 (2)
P3—N9—C29—C30175.2 (2)N6—C19—C20—Cl466.0 (3)
Na1—Cl2—C10—Cl190.41 (15)N6—C19—C20—Cl553.4 (3)
Na1—Cl2—C10—Cl3151.81 (14)N6—C19—C20—Cl6174.6 (2)
Na1—Cl2—C10—C926.2 (2)N7—P3—O5—Ca1138.69 (15)
Na1—Cl6—C20—Cl4103.00 (13)N7—P3—N8—C2162.3 (3)
Na1—Cl6—C20—Cl5138.86 (12)N7—P3—N8—C23136.0 (3)
Na1—Cl6—C20—C1916.8 (2)N7—P3—N9—C29142.0 (2)
Na1—Cl9—C30—Cl768.32 (14)N8—P3—O5—Ca1103.14 (17)
Na1—Cl9—C30—Cl8172.95 (13)N8—P3—N7—C25130.3 (2)
Na1—Cl9—C30—C2947.42 (19)N8—P3—N7—C2758.4 (3)
Na1—O2—C9—N3145.1 (3)N8—P3—N9—C29106.4 (3)
Na1—O2—C9—C1039.5 (4)N9—P3—O5—Ca117.6 (2)
Na1—O4—C19—N6157.6 (2)N9—P3—N7—C25120.3 (2)
Na1—O4—C19—C2022.5 (4)N9—P3—N7—C2751.0 (3)
Na1—O6—C29—N9157.8 (2)N9—P3—N8—C21175.0 (2)
Na1—O6—C29—C3018.1 (4)N9—P3—N8—C2323.2 (3)
O1—P1—N1—C124.0 (3)N9—C29—C30—Cl796.6 (3)
O1—P1—N1—C3178.3 (2)N9—C29—C30—Cl824.2 (3)
O1—P1—N2—C556.2 (3)N9—C29—C30—Cl9146.8 (2)
O1—P1—N2—C794.8 (3)C1—N1—C3—C460.9 (4)
O1—P1—N3—C98.2 (3)C3—N1—C1—C268.4 (4)
O2—C9—C10—Cl177.8 (3)C5—N2—C7—C881.3 (4)
O2—C9—C10—Cl240.1 (3)C7—N2—C5—C674.6 (4)
O2—C9—C10—Cl3162.6 (2)C11—N4—C13—C1479.5 (3)
O3—P2—N4—C1140.2 (2)C13—N4—C11—C1274.1 (3)
O3—P2—N4—C13128.4 (2)C15—N5—C17—C1861.1 (4)
O3—P2—N5—C15177.4 (2)C17—N5—C15—C1661.3 (3)
O3—P2—N5—C1741.0 (2)C21—N8—C23—C2480.4 (4)
O3—P2—N6—C1923.8 (3)C23—N8—C21—C2275.2 (4)
O4—C19—C20—Cl4114.1 (2)C25—N7—C27—C2873.1 (3)
O4—C19—C20—Cl5126.5 (2)C27—N7—C25—C2682.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O3i0.86 (4)2.23 (4)2.959 (3)143 (3)
O7—H7B···O5i0.80 (4)2.08 (4)2.843 (3)159 (4)
Symmetry code: (i) x, y+1/2, z1/2.
 

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAmirkhanov, V., Ovchynnikov, V., Trush, V., Gawryszewska, P. & Jerzykiewicz, L. (2014). Ligands. Synthesis, Characterization and Role in Biochemistry, edited by P. Gawryszewska, pp. 199–248. New York: Nova Science Publishers.  Google Scholar
First citationAmirkhanov, V. M., Ovchynnikov, V. A., Trush, V. A. & Skopenko, V. V. (1996b). Russ. J. Org. Chem. 32, 376–380.  CAS Google Scholar
First citationAmirkhanov, V. M., Trush, V. A., Kapshuk, A. A. & Skopenko, V. V. (1996a). Russ. J. Inorg. Chem. 41, 2052–2057.  CAS Google Scholar
First citationColodrero, R. M. P., Cabeza, A., Olivera-Pastor, P., Papadaki, M., Rius, J., Choquesillo-Lazarte, D., García-Ruiz, J. M., Demadis, K. D. & Aranda, M. A. G. (2011). Cryst. Growth Des. 11, 1713–1722.  Web of Science CSD CrossRef CAS Google Scholar
First citationDemadis, K. D. (2003). Inorg. Chem. Commun. 6, 527–530.  Web of Science CSD CrossRef CAS Google Scholar
First citationDemadis, K. D., Anagnostou, Z. & Zhao, H. (2009). Appl. Mater. Interfaces, 1, 35–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationDemadis, K. D., Papadaki, M. & Cisarova, I. (2010). Appl. Mater. Interfaces, 2, 1814–1816.  Web of Science CSD CrossRef CAS Google Scholar
First citationDemadis, K. D., Sallis, J. D., Raptis, R. G. & Baran, P. (2001). J. Am. Chem. Soc. 123, 10129–10130.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDing, Y., Fanwick, P. E. & Walton, R. A. (2000). Inorg. Chim. Acta, 309, 159–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrynuyk, I. I., Prylutska, S. V., Kariaka, N. S., Sliva, T. Yu., Moroz, O. V., Franskevych, D. V., Amirkhanov, V. M., Matyshevska, O. P. & Slobodyanik, M. S. (2016). Ukr. Biokhim. Zh. 87, 154–161.  Google Scholar
First citationGubina, K. E., Ovchynnikov, V. A., Amirkhanov, V. M., Fischer, H., Stumpf, R. & Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 576–582.  CAS Google Scholar
First citationHanusa, T. P. (2003). Comprehensive Coordination Chemistry II, 2nd ed, edited by J. A. McCleverty. Oxford: Elsevier.  Google Scholar
First citationHitzbleck, J., Deacon, G. B. & Ruhlandt-Senge, K. (2004). Angew. Chem. Int. Ed. 43, 5218–5220.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoang, Q. Q., Sicheri, F., Howard, A. J. & Yang, D. S. C. (2003). Nature, 425, 977–980.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHursthouse, M. B., Levason, W., Ratnani, R., Reid, G., Stainer, H. & Webster, M. (2005). Polyhedron, 24, 121–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationLitsis, O. O., Ovchynnikov, V. A., Scherbatskii, V. P., Nedilko, S. G., Sliva, T. Yu., Dyakonenko, V. V., Shishkin, O. V., Davydov, V. I., Gawryszewska, P. & Amirkhanov, V. M. (2015). Dalton Trans. 44, 15508–15522.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLitsis, O. O., Ovchynnikov, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m426–m427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, D., Kramer, S. A., Huxford-Phillips, R. C., Wang, S., Della Rocca, J. & Lin, W. (2012). Chem. Commun. 48, 2668–2670.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, O. V., Shishkina, S. V., Trush, V. A., Sliva, T. Y. & Amirkhanov, V. M. (2007). Acta Cryst. E63, m3175–m3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiekiel, F. & Stock, N. (2014). Cryst. Growth Des. 14, 599–606.  Web of Science CSD CrossRef CAS Google Scholar
First citationShatrava, I., Ovchynnikov, V., Gubina, K., Shishkina, S., Shishkin, O. & Amirkhanov, V. (2016). Struct. Chem. 27, 1413–1425.  Web of Science CSD CrossRef CAS Google Scholar
First citationShatrava, I. O., Sliva, T. Y., Ovchynnikov, V. A., Konovalova, I. S. & Amirkhanov, V. M. (2010). Acta Cryst. E66, m397–m398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrush, V. A., Gubina, K. E., Amirkhanov, V. M., Swiatek-Kozlowska, J. & Domasevitch, K. V. (2005). Polyhedron, 24, 1007–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrush, E. A., Trush, V. A., Sliva, T. Y., Konovalova, I. S. & Amirkhanov, V. M. (2009). Acta Cryst. E65, m1231.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds