research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(bis­­{μ3-3-methyl-3-[(4-nitro-2-oxido­benzyl­­idene)amino]­propane-1,3-diolato}tris­­[chlorido­(di­methyl sulfoxide)­iron(III)]) di­methyl sulfoxide hepta­solvate dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Taras Shevchenko National University of Kyiv, 64 Volodymyrs'ka St., Kyiv 01601, Ukraine, and bSSI `Institute for Single Crystals' NAS of Ukraine, 60 Nauky ave, Kharkiv, 61072, Ukraine
*Correspondence e-mail: chygorin.eduard@gmail.com

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 14 September 2016; accepted 18 November 2016; online 29 November 2016)

The title compound, [Fe3(C11H11N2O5)2Cl3(C2H6OS)3]2·7C2H6OS·2H2O, was isolated accidentally from an Fe0–NiCl2·6H2O–H3L–TEA–DMSO system [where H3L is the product of the condensation between p-nitro­salicyl­aldehyde and 2-amino-2-methyl­propane-1,3-diol and dimethyl sulfoxide (DMSO), and TEA is triethylamine]. The structure is based on a trinuclear {Fe3(μ-O)4} core, with an angular arrangement of the FeIII ions that can be explained by the geometrical restrictions of two bulky ligands, each coordinating to all of the metal cations.

1. Chemical context

Almost 30% of GDP (gross domestic product) is generated through catalysis, which explains the ongoing inter­est in the development of compounds with potential as new efficient catalysts. Polynuclear associates have been found to be co-factors of many enzymes and catalysts for various pro­cesses (Buchwalter et al., 2015[Buchwalter, P., Rose, J. & Braunstein, P. (2015). Chem. Rev. 115, 28-126.]). In this work, we present the synthesis of a new trinuclear FeIII complex obtained accidentally while exploring the Fe0–NiCl2·6H2O–H3L–TEA–DMSO system (TEA is tri­ethyl­amine and DMSO is dimethyl sulfoxide). We did not investigate this complex for any catalytic activity, although it has a hypothetical practical inter­est because it was obtained in facile way from commercially abundant air-stable non-haza­rdous materials and consists of redoxactive metal atoms and ligands. The synthesis is based on the self-assembling paradigm, in particular on direct synthesis (Garnovskii et al., 1999[Garnovskii, D. A., Kharisov, B. I., Skopenko, V. V., Blanco-Jerez, L. M., Kokozay, V. N., Kuzharov, A. S., Garnovskii, A. D., Vassilyeva, O. Yu., Burlov, A. S. & Pavlenko, V. A. (1999). In Direct Synthesis of Coordination and Organometallic Compounds. Amsterdam: Elsevier.]); the metal ions and ligands are allowed to choose the most favourable charge and coordination modes and do not require specific synthetic manipulations and laboratory equipment. However, under these conditions we cannot predict the structure of the final mol­ecule that will be obtained. Earlier, our group has shown the successful application of this approach for obtaining novel monometallic [either polynuclear, as in Babich & Kokozay (1997[Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 1487-1490.]), or mixed valence, as in Kovbasyuk et al. (1997[Kovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161-163.])], heterobimetallic [either polynuclear, as in Kovbasyuk et al. (1998[Kovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735-2738.]), Vassilyeva et al. (1997[Vassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263-266.]) and Nikitina et al. (2008[Nikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426-2430.]) or polymeric, as in Nesterova et al. (2004[Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450-454.], 2005[Nesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425-1434.], 2008[Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. 11, 1431-1436.])] and heterotrimetallic [as in Nesterov et al. (2011[Nesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boca, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401-4411.])] complexes.

2. Structural commentary

The mol­ecular complex [FeIII3L2Cl3(DMSO)3]2·7DMSO·2H2O is based on a trinuclear {Fe3(μ-O)4} core with an angular arrangement of the metal cations [the Fe⋯Fe⋯Fe angle is 104.70 (4)°], linked pairwise by two μ-O bridges from the fully deprotonated Schiff base ligand (Fig. 1[link]). The structure can also be viewed as a combination of two {FeIIIL} blocks joined through a central FeIII ion via alk­oxy bridges and completed by chloride ligands and solvent mol­ecules (DMSO and water).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title complex. Displacement ellipsoids are drawn at the 70% probability level. Colour key: Fe dark green, N blue, O red, S yellow and Cl green.

The {Fe(μ-O)2Fe} fragments are almost perpendicular [angle between planes = 96.4 (1)°]. Both Schiff base ligands reveal a 3.2211 coordination mode (Coxall et al., 2000[Coxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349-2356.]). The NO4Cl donor set of each of the terminal FeIII cations includes two μ-O-bridging atoms from alk­oxy groups, as well as N and O atoms from the Schiff base ligands. The O5Cl donor set of the central FeIII atom includes four μ-O-bridging atoms from the alk­oxy groups of two ligands. Both donor sets contain one O atom from a coordinating DMSO mol­ecule and one chloride ligand. All three FeII atoms have a distorted octa­hedral environment. The main source of distortion is the difference between the Fe—Cl [2.332 (2)–2.378 (2) Å], Fe—O [1.925 (3)–2.046 (5) Å] and Fe—N [2.132 (6)-2.157 (4) Å] bond lengths. The deviations of the O(N)—Fe—O(N,Cl) bond angles from ideal octa­hedral values are up to 19.4 (2)°, the mean deviation being slightly higher for the terminal complex fragments than for the central one [8.54 (5) versus 7.68 (5)°]. It should be noted that the coordination environments of the terminal metal cations are not equivalent. The N atom occupies an axial position at atom Fe3, but an equatorial one at atom Fe1, assuming the chloride ligand is in an axial position in both polyhedra, due to an anti­parallel arrangement of the two Schiff base ligands, which is also favourable for an intra­molecular stacking inter­action between the benzene rings [inter­centroid distance = 4.034 (4) Å, plane-to-centroid dis­tance = 3.505 (7) Å, centroid displacement = 2.00 (1) Å and angle between planes = 7.8 (2)°]. The weak intra­molecular attractive inter­action C23—H23C⋯O12 (H⋯O = 2.43 Å) stabilizes the orientation of adjacent DMSO ligands.

3. Supra­molecular features

In the crystal, there are supra­molecular four-membered hydrogen-bonded rings aggregating water mol­ecules with two non-coordinating DMSO mol­ecules (Table 1[link]). They are linked to the mol­ecular complexes and other solvent mol­ecules by a number of weak attractive H⋯Cl, H⋯O, H⋯S, S⋯Cl and S⋯S contacts giving a three-dimensional structure (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C30—H30A⋯Cl2i 0.98 2.75 3.689 (7) 161
C32—H32A⋯O6 0.98 2.60 3.397 (9) 138
C32—H32B⋯Cl1ii 0.98 2.71 3.625 (6) 155
C32—H32C⋯Cl3iii 0.98 2.82 3.659 (7) 144
C34A—H34A⋯O4iv 0.98 2.52 3.47 (2) 164
C33B—H33D⋯O2v 0.98 2.35 3.06 (3) 128
C33B—H33D⋯N2v 0.98 2.26 3.08 (3) 141
C34B—H34D⋯O2v 0.98 2.58 3.19 (4) 120
C3—H3⋯O16A 0.95 2.60 3.391 (9) 141
C7—H7⋯O3ii 0.95 2.40 3.325 (8) 164
C23—H23C⋯O12 0.98 2.43 3.377 (8) 163
C25—H25A⋯Cl2 0.98 2.80 3.524 (6) 131
C25—H25B⋯O10vi 0.98 2.39 3.303 (7) 155
C26—H26C⋯O1W 0.98 2.55 3.393 (10) 144
C27—H27A⋯O14 0.98 2.27 3.243 (8) 171
O1W—H1WA⋯O15vii 0.87 2.12 2.949 (8) 158
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) -x, -y, -z+1; (iv) x+1, y+1, z; (v) -x+1, -y+2, -z+1; (vi) -x, -y, -z; (vii) x, y, z-1.
[Figure 2]
Figure 2
Crystal packing diagram showing the presence of supra­molecular four-membered hydrogen-bonded rings aggregating two water mol­ecules with two uncoordinated DMSO mol­ecules. Hydrogen bonds are denoted with dashed lines and H atoms have been omited for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37; last update March 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related com­plexes with a similar trinuclear {Me3(μ-X)4} core containing hexa­coordinated metal cations gave 263 hits. Though most of these cores reveal a linear arrangement of the metal atoms (207 complexes in 192 structures with an MMM angle in the range 167–180°), there are 28 strongly folded cores (82–112°) and 43 less folded cores (118–162°). Among them, three structures with the {Fe3(μ-O)4} core were found (Lieberman et al., 2015[Lieberman, C. M., Filatov, A. S., Zheng, W., Rogachev, A. Yu., Abakumov, A. M. & Dikarev, E. V. (2015). Chem. Sci. 6, 2835-2842.]), all with an angular arrangement of the Fe atoms (109–111°). There are 79 organometallic complexes based on the 2-[(2-hy­droxy­benzyl­idene)­amino]-2-methyl­propane-1,3-diol Schiff base ligand with different substituents in the benzene ring. Among them, 16 have a similar {Me3(μ-X)4} trinuclear core, each containing an octa­coordinated central lanthanide cation.

5. Synthesis and crystallization

To a mixture of p-nitro­salicylaldehyde (0.42 g, 2.5 mmol), 2-amino-2-methyl­propane-1,3-diol (0.26 g, 2.5 mmol) and tri­ethyl­amine (TEA; 0.35 ml, 2.5 mmol) in dimethyl sulfoxide (DMSO; 20 ml) were added iron powder (0.07 g, 1.25 mmol) and NiCl2·6H2O (0.3 g, 1.25 mmol) in one portion at 323–333 K and the resulting solution was stirred for 1 h to form a dark-red solution. Dark-red crystals suitable for X-ray analysis were isolated by adding Et2O after 2 d (yield: 0.57 g, 53%). The compound is sparingly soluble in MeOH, DMSO and DMF, and it is stable in air.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in idealized positions (C—H = 0.95–0.99 Å and O—H = 0.87 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C,O) for water molecules and methyl groups, and 1.2Ueq(C) otherwise. Two of the non-coordinating DMSO solvent mol­ecules were disordered, each over two sites. The refined occupancy factors for the S6A/S6B disordered DMSO mol­ecule converged to 0.745:0.255. For the S7 disordered mol­ecule, the occupancy factors were fixed at 0.50:0.50 due to symmetry restrictions; two sites of this mol­ecule are located in neighbouring asymmetric parts of the unit cells and are connected by the symmetry transformation (−x + 1, −y + 2, −z + 1). SAME and RIGU restraints (SHELXL2014; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) were applied to the atoms of all non-coordinating DMSO mol­ecules.

Table 2
Experimental details

Crystal data
Chemical formula [Fe3(C11H11N2O5)2Cl3(C2H6OS)3]2·7C2H6OS·2H2O
Mr 2604.36
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 11.4286 (7), 12.7227 (8), 20.1915 (12)
α, β, γ (°) 94.005 (5), 105.839 (6), 103.952 (6)
V3) 2712.0 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.26
Crystal size (mm) 0.4 × 0.4 × 0.4
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.985, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21211, 12221, 6081
Rint 0.085
(sin θ/λ)max−1) 0.682
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.163, 0.99
No. of reflections 12221
No. of parameters 697
No. of restraints 150
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.96, −0.79
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(bis{µ3-3-methyl-3-[(4-nitro-2-oxidobenzylidene)amino]propane-1,3-diolato}tris[chlorido(dimethyl sulfoxide)iron(III)]) dimethyl sulfoxide heptasolvate dihydrate top
Crystal data top
[Fe3(C11H11N2O5)2Cl3(C2H6OS)3]2·7C2H6OS·2H2OZ = 1
Mr = 2604.36F(000) = 1348
Triclinic, P1Dx = 1.595 Mg m3
a = 11.4286 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7227 (8) ÅCell parameters from 2112 reflections
c = 20.1915 (12) Åθ = 2.8–28.9°
α = 94.005 (5)°µ = 1.26 mm1
β = 105.839 (6)°T = 100 K
γ = 103.952 (6)°Block, metallic dark red
V = 2712.0 (3) Å30.4 × 0.4 × 0.4 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
12221 independent reflections
Radiation source: Enhance (Mo) X-ray Source6081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 16.1827 pixels mm-1θmax = 29.0°, θmin = 2.8°
ω scansh = 1115
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1415
Tmin = 0.985, Tmax = 1.000l = 2627
21211 measured reflections
Refinement top
Refinement on F2150 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.081H-atom parameters constrained
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
12221 reflectionsΔρmax = 0.96 e Å3
697 parametersΔρmin = 0.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S40.51353 (18)0.00966 (16)0.15206 (10)0.0340 (5)
O140.3925 (4)0.0478 (4)0.1641 (3)0.0435 (15)
C290.4752 (7)0.0883 (6)0.0847 (3)0.0354 (19)
H29A0.54900.11520.06860.053*
H29B0.45010.15060.10220.053*
H29C0.40510.04270.04590.053*
C300.5565 (7)0.0887 (5)0.1037 (4)0.042 (2)
H30A0.63270.05310.09180.062*
H30B0.48730.12090.06100.062*
H30C0.57320.14630.13170.062*
S50.43965 (17)0.41956 (16)0.81772 (10)0.0333 (5)
O150.4863 (5)0.4117 (5)0.8934 (2)0.0581 (18)
C310.5097 (6)0.3396 (5)0.7736 (4)0.0304 (18)
H31A0.46720.32920.72340.046*
H31B0.50120.26810.78980.046*
H31C0.59940.37700.78290.046*
C320.2822 (5)0.3337 (6)0.7873 (4)0.0342 (19)
H32A0.24910.33180.73690.051*
H32B0.22920.36250.81050.051*
H32C0.28160.25950.79760.051*
S6A0.6950 (3)0.8852 (3)0.3566 (2)0.0711 (14)0.745 (5)
O16A0.6098 (8)0.8336 (7)0.3963 (5)0.082 (3)0.745 (5)
C33A0.652 (2)1.0034 (10)0.3327 (7)0.063 (4)0.745 (5)
H33A0.71391.04630.31280.094*0.745 (5)
H33B0.64921.04740.37380.094*0.745 (5)
H33C0.56820.98270.29800.094*0.745 (5)
C34A0.8471 (9)0.9506 (14)0.4144 (10)0.080 (6)0.745 (5)
H34A0.89780.99600.38940.120*0.745 (5)
H34B0.88860.89520.43270.120*0.745 (5)
H34C0.83920.99680.45290.120*0.745 (5)
S6B0.7275 (11)0.9895 (10)0.4285 (6)0.077 (4)0.255 (5)
O16B0.836 (3)0.947 (4)0.423 (3)0.132 (16)0.255 (5)
C33B0.784 (3)1.1108 (17)0.4868 (13)0.055 (8)0.255 (5)
H33D0.79681.17330.46130.083*0.255 (5)
H33E0.86461.11130.52020.083*0.255 (5)
H33F0.72271.11620.51170.083*0.255 (5)
C34B0.679 (6)1.043 (3)0.3497 (13)0.081 (15)0.255 (5)
H34D0.60791.07330.35000.121*0.255 (5)
H34E0.65200.98390.31030.121*0.255 (5)
H34F0.74931.10040.34520.121*0.255 (5)
S70.6166 (5)1.0553 (4)0.5331 (2)0.0476 (12)0.5
O170.7281 (9)1.0973 (8)0.5074 (6)0.050 (3)0.5
C350.4830 (11)1.0142 (15)0.4589 (6)0.059 (5)0.5
H35A0.40670.99010.47340.088*0.5
H35B0.49090.95370.42920.088*0.5
H35C0.47701.07600.43300.088*0.5
C360.6246 (14)0.9233 (8)0.5537 (8)0.041 (4)0.5
H36A0.54720.88640.56410.062*0.5
H36B0.69780.93040.59430.062*0.5
H36C0.63310.88020.51400.062*0.5
Fe10.08933 (9)0.47702 (8)0.19107 (5)0.0185 (2)
Fe20.00286 (9)0.22654 (8)0.13027 (5)0.0177 (2)
Fe30.04940 (9)0.10574 (8)0.26158 (5)0.0197 (2)
Cl10.00668 (16)0.62291 (13)0.17118 (9)0.0241 (4)
Cl20.18724 (15)0.10406 (13)0.06019 (9)0.0228 (4)
Cl30.13256 (16)0.04056 (14)0.22910 (10)0.0294 (4)
S10.15125 (16)0.57248 (14)0.05967 (9)0.0218 (4)
S20.07383 (17)0.13945 (14)0.00193 (9)0.0228 (4)
S30.11479 (17)0.12355 (14)0.26358 (9)0.0248 (4)
O10.2222 (4)0.5484 (3)0.2747 (2)0.0232 (11)
O20.3496 (5)0.7307 (5)0.5881 (3)0.0513 (17)
O30.1605 (5)0.6284 (5)0.5700 (3)0.0490 (17)
O40.0384 (4)0.1516 (4)0.3533 (2)0.0246 (11)
O50.4440 (5)0.5034 (5)0.5888 (3)0.0509 (17)
O60.3049 (5)0.4414 (4)0.6405 (3)0.0499 (16)
O70.0604 (4)0.3623 (3)0.1237 (2)0.0171 (10)
O80.0458 (4)0.2050 (3)0.2166 (2)0.0182 (10)
O90.1544 (4)0.3463 (3)0.1846 (2)0.0179 (10)
O100.0923 (4)0.1161 (3)0.1704 (2)0.0196 (11)
O110.1978 (4)0.5401 (4)0.1319 (2)0.0229 (11)
O120.0731 (4)0.2370 (3)0.0472 (2)0.0196 (11)
O130.1561 (4)0.0003 (3)0.2918 (2)0.0243 (11)
N10.0261 (5)0.4270 (4)0.2565 (3)0.0152 (12)
N20.2514 (6)0.6657 (5)0.5500 (3)0.0312 (15)
N30.2315 (5)0.2249 (4)0.2927 (3)0.0186 (13)
N40.3423 (6)0.4435 (5)0.5889 (3)0.0370 (17)
C10.1212 (6)0.5323 (5)0.3645 (3)0.0201 (16)
C20.2279 (6)0.5727 (5)0.3398 (3)0.0200 (16)
C30.3396 (6)0.6422 (5)0.3870 (4)0.0256 (18)
H30.41100.66840.37120.031*
C40.3478 (7)0.6724 (5)0.4541 (4)0.0269 (17)
H40.42350.72040.48460.032*
C50.2436 (7)0.6321 (5)0.4784 (4)0.0242 (17)
C60.1330 (6)0.5636 (5)0.4342 (3)0.0237 (17)
H60.06360.53730.45150.028*
C70.0034 (6)0.4584 (5)0.3219 (3)0.0196 (16)
H70.05780.43040.34460.023*
C80.2326 (6)0.2906 (6)0.4096 (4)0.0238 (17)
C90.1100 (7)0.2252 (6)0.4059 (4)0.0233 (16)
C100.0664 (7)0.2414 (6)0.4638 (4)0.0276 (18)
H100.01630.20120.46210.033*
C110.1388 (7)0.3125 (6)0.5218 (4)0.034 (2)
H110.10640.32180.55980.040*
C120.2624 (7)0.3730 (6)0.5260 (4)0.0297 (18)
C130.3071 (6)0.3625 (5)0.4698 (4)0.0248 (17)
H130.38930.40460.47210.030*
C140.2859 (6)0.2869 (5)0.3512 (3)0.0229 (16)
H140.36740.33440.35750.027*
C150.1529 (6)0.3491 (5)0.2202 (3)0.0174 (15)
C160.1743 (6)0.3578 (5)0.1428 (3)0.0178 (15)
H16A0.24240.29370.11480.021*
H16B0.20170.42450.13240.021*
C170.1451 (6)0.2349 (5)0.2352 (3)0.0201 (16)
H17A0.13270.23190.28550.024*
H17B0.22620.18120.20920.024*
C180.2612 (6)0.3752 (5)0.2418 (3)0.0203 (16)
H18A0.26160.35030.28660.031*
H18B0.34140.33760.20650.031*
H18C0.25060.45440.24620.031*
C190.2947 (6)0.2383 (5)0.2368 (3)0.0197 (16)
C200.2822 (6)0.3438 (5)0.2084 (3)0.0218 (16)
H20A0.33030.40670.24540.026*
H20B0.31940.35120.16950.026*
C210.2246 (6)0.1391 (5)0.1814 (3)0.0199 (16)
H21A0.24350.15320.13730.024*
H21B0.25380.07480.19620.024*
C220.4351 (6)0.2406 (6)0.2638 (4)0.0289 (18)
H22A0.48330.31140.29220.043*
H22B0.46730.23000.22420.043*
H22C0.44390.18180.29210.043*
C230.1973 (6)0.4836 (5)0.0061 (4)0.0261 (17)
H23A0.28900.49500.02310.039*
H23B0.17370.49920.04190.039*
H23C0.15460.40740.00750.039*
C240.2629 (6)0.6974 (5)0.0616 (4)0.0287 (18)
H24A0.26300.75210.09820.043*
H24B0.24030.72340.01650.043*
H24C0.34730.68560.07110.043*
C250.0546 (6)0.1214 (5)0.0784 (3)0.0247 (17)
H25A0.13430.09710.06730.037*
H25B0.05010.06600.11320.037*
H25C0.05040.19090.09690.037*
C260.1979 (6)0.1938 (6)0.0382 (4)0.0309 (19)
H26A0.17850.25340.06370.046*
H26B0.20550.13600.07020.046*
H26C0.27770.22200.00080.046*
C270.2614 (6)0.1576 (6)0.2754 (4)0.0292 (18)
H27A0.30730.11840.24610.044*
H27B0.24490.23670.26240.044*
H27C0.31240.13650.32440.044*
C280.0646 (7)0.1885 (6)0.3300 (4)0.0311 (19)
H28A0.13010.16110.37480.047*
H28B0.04980.26780.31940.047*
H28C0.01390.17230.33240.047*
O1W0.4926 (8)0.3634 (5)0.0349 (4)0.077 (2)
H1WA0.48200.35890.00970.116*
H1WB0.50640.43130.05240.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S40.0300 (11)0.0397 (13)0.0301 (12)0.0055 (9)0.0090 (10)0.0044 (9)
O140.038 (3)0.047 (4)0.052 (4)0.006 (3)0.029 (3)0.006 (3)
C290.034 (4)0.034 (5)0.042 (5)0.012 (4)0.016 (4)0.001 (4)
C300.036 (5)0.044 (5)0.053 (6)0.009 (4)0.028 (5)0.014 (4)
S50.0225 (10)0.0383 (13)0.0352 (12)0.0077 (9)0.0043 (10)0.0013 (10)
O150.041 (3)0.108 (5)0.033 (3)0.036 (3)0.012 (3)0.001 (3)
C310.024 (4)0.039 (5)0.026 (4)0.009 (3)0.005 (3)0.005 (3)
C320.025 (4)0.033 (5)0.046 (5)0.008 (3)0.015 (4)0.003 (4)
S6A0.050 (2)0.041 (2)0.105 (3)0.0100 (16)0.025 (2)0.021 (2)
O16A0.055 (6)0.063 (6)0.119 (8)0.005 (5)0.034 (6)0.002 (5)
C33A0.071 (11)0.079 (9)0.041 (8)0.023 (8)0.022 (8)0.003 (7)
C34A0.057 (8)0.072 (11)0.100 (12)0.006 (7)0.019 (7)0.042 (9)
S6B0.085 (9)0.102 (10)0.057 (7)0.026 (7)0.038 (7)0.029 (6)
O16B0.12 (2)0.17 (3)0.13 (3)0.07 (2)0.044 (18)0.03 (2)
C33B0.033 (18)0.095 (16)0.047 (14)0.019 (12)0.017 (13)0.047 (11)
C34B0.08 (3)0.11 (3)0.056 (14)0.02 (3)0.028 (15)0.027 (15)
S70.063 (3)0.046 (3)0.032 (3)0.019 (2)0.009 (2)0.002 (2)
O170.056 (7)0.031 (7)0.053 (8)0.002 (5)0.006 (6)0.014 (6)
C350.057 (9)0.076 (13)0.042 (9)0.019 (8)0.013 (7)0.004 (8)
C360.041 (9)0.034 (7)0.040 (9)0.001 (6)0.009 (8)0.003 (6)
Fe10.0180 (5)0.0187 (6)0.0194 (6)0.0032 (4)0.0085 (5)0.0004 (4)
Fe20.0165 (5)0.0193 (6)0.0171 (5)0.0040 (4)0.0057 (4)0.0007 (4)
Fe30.0193 (5)0.0196 (6)0.0199 (6)0.0047 (4)0.0059 (5)0.0027 (4)
Cl10.0243 (9)0.0198 (10)0.0303 (10)0.0068 (7)0.0114 (8)0.0020 (8)
Cl20.0194 (9)0.0228 (10)0.0226 (10)0.0017 (7)0.0047 (8)0.0002 (7)
Cl30.0239 (10)0.0238 (11)0.0374 (12)0.0022 (8)0.0078 (9)0.0045 (8)
S10.0176 (9)0.0273 (11)0.0211 (10)0.0054 (7)0.0070 (8)0.0044 (8)
S20.0278 (10)0.0219 (10)0.0226 (10)0.0094 (8)0.0113 (9)0.0024 (8)
S30.0275 (10)0.0239 (11)0.0242 (11)0.0096 (8)0.0075 (9)0.0038 (8)
O10.020 (3)0.028 (3)0.019 (3)0.004 (2)0.005 (2)0.004 (2)
O20.044 (4)0.068 (4)0.021 (3)0.006 (3)0.000 (3)0.017 (3)
O30.039 (3)0.077 (5)0.025 (3)0.000 (3)0.014 (3)0.002 (3)
O40.023 (3)0.025 (3)0.024 (3)0.002 (2)0.009 (2)0.004 (2)
O50.049 (4)0.058 (4)0.035 (4)0.007 (3)0.008 (3)0.017 (3)
O60.060 (4)0.064 (4)0.023 (3)0.019 (3)0.009 (3)0.008 (3)
O70.018 (2)0.016 (3)0.020 (3)0.0043 (19)0.011 (2)0.002 (2)
O80.017 (2)0.020 (3)0.019 (3)0.007 (2)0.006 (2)0.002 (2)
O90.018 (2)0.016 (3)0.021 (3)0.0069 (19)0.007 (2)0.001 (2)
O100.016 (2)0.022 (3)0.022 (3)0.005 (2)0.008 (2)0.001 (2)
O110.018 (2)0.031 (3)0.022 (3)0.009 (2)0.009 (2)0.008 (2)
O120.023 (3)0.019 (3)0.018 (3)0.004 (2)0.009 (2)0.002 (2)
O130.033 (3)0.015 (3)0.026 (3)0.011 (2)0.008 (2)0.003 (2)
N10.012 (3)0.016 (3)0.017 (3)0.005 (2)0.002 (3)0.002 (2)
N20.034 (4)0.037 (4)0.019 (4)0.009 (3)0.003 (3)0.000 (3)
N30.015 (3)0.022 (3)0.017 (3)0.006 (2)0.001 (3)0.000 (3)
N40.044 (4)0.047 (5)0.016 (4)0.019 (4)0.002 (3)0.005 (3)
C10.022 (4)0.016 (4)0.023 (4)0.003 (3)0.008 (3)0.004 (3)
C20.025 (4)0.015 (4)0.020 (4)0.007 (3)0.007 (3)0.001 (3)
C30.029 (4)0.022 (4)0.024 (4)0.003 (3)0.011 (4)0.004 (3)
C40.024 (4)0.026 (4)0.028 (4)0.008 (3)0.004 (4)0.003 (3)
C50.034 (4)0.025 (4)0.018 (4)0.010 (3)0.011 (4)0.004 (3)
C60.023 (4)0.025 (4)0.023 (4)0.007 (3)0.007 (3)0.000 (3)
C70.022 (4)0.023 (4)0.019 (4)0.012 (3)0.009 (3)0.005 (3)
C80.023 (4)0.028 (4)0.021 (4)0.009 (3)0.005 (3)0.002 (3)
C90.029 (4)0.025 (4)0.021 (4)0.013 (3)0.009 (4)0.009 (3)
C100.028 (4)0.030 (5)0.027 (4)0.008 (3)0.013 (4)0.003 (3)
C110.044 (5)0.036 (5)0.027 (5)0.017 (4)0.016 (4)0.001 (4)
C120.037 (5)0.035 (5)0.024 (4)0.024 (4)0.007 (4)0.004 (4)
C130.019 (4)0.026 (4)0.027 (4)0.008 (3)0.003 (3)0.002 (3)
C140.023 (4)0.023 (4)0.020 (4)0.008 (3)0.002 (3)0.000 (3)
C150.017 (3)0.018 (4)0.017 (4)0.005 (3)0.007 (3)0.003 (3)
C160.015 (3)0.015 (4)0.021 (4)0.003 (3)0.003 (3)0.003 (3)
C170.013 (3)0.024 (4)0.021 (4)0.002 (3)0.005 (3)0.002 (3)
C180.022 (4)0.017 (4)0.019 (4)0.000 (3)0.007 (3)0.004 (3)
C190.016 (3)0.027 (4)0.021 (4)0.006 (3)0.012 (3)0.004 (3)
C200.013 (3)0.034 (4)0.019 (4)0.007 (3)0.006 (3)0.000 (3)
C210.017 (4)0.021 (4)0.018 (4)0.001 (3)0.005 (3)0.002 (3)
C220.024 (4)0.035 (5)0.028 (4)0.012 (3)0.006 (4)0.004 (3)
C230.023 (4)0.023 (4)0.030 (4)0.004 (3)0.009 (4)0.003 (3)
C240.032 (4)0.030 (5)0.027 (4)0.009 (3)0.011 (4)0.010 (3)
C250.029 (4)0.020 (4)0.018 (4)0.002 (3)0.002 (3)0.004 (3)
C260.031 (4)0.039 (5)0.030 (5)0.010 (4)0.021 (4)0.001 (4)
C270.030 (4)0.033 (5)0.032 (5)0.016 (3)0.013 (4)0.009 (4)
C280.039 (5)0.028 (5)0.036 (5)0.015 (4)0.018 (4)0.012 (4)
O1W0.072 (5)0.078 (5)0.074 (5)0.015 (5)0.014 (5)0.005 (4)
Geometric parameters (Å, º) top
S4—O141.493 (4)O3—N21.220 (7)
S4—C291.766 (6)O4—C91.301 (8)
S4—C301.773 (6)O5—N41.227 (7)
C29—H29A0.9800O6—N41.230 (7)
C29—H29B0.9800O7—C161.445 (7)
C29—H29C0.9800O8—C171.413 (7)
C30—H30A0.9800O9—C201.417 (7)
C30—H30B0.9800O10—C211.419 (7)
C30—H30C0.9800N1—C71.281 (7)
S5—O151.494 (5)N1—C151.499 (7)
S5—C311.768 (6)N2—C51.451 (8)
S5—C321.778 (6)N3—C141.280 (8)
C31—H31A0.9800N3—C191.496 (7)
C31—H31B0.9800N4—C121.437 (9)
C31—H31C0.9800C1—C21.437 (8)
C32—H32A0.9800C1—C61.397 (9)
C32—H32B0.9800C1—C71.443 (8)
C32—H32C0.9800C2—C31.412 (9)
S6A—O16A1.488 (6)C3—H30.9500
S6A—C33A1.752 (8)C3—C41.355 (8)
S6A—C34A1.771 (9)C4—H40.9500
C33A—H33A0.9800C4—C51.407 (9)
C33A—H33B0.9800C5—C61.377 (9)
C33A—H33C0.9800C6—H60.9500
C34A—H34A0.9800C7—H70.9500
C34A—H34B0.9800C8—C91.426 (9)
C34A—H34C0.9800C8—C131.395 (9)
S6B—O16B1.495 (9)C8—C141.469 (8)
S6B—C33B1.742 (9)C9—C101.411 (8)
S6B—C34B1.775 (9)C10—H100.9500
S6B—O172.025 (16)C10—C111.355 (9)
C33B—H33D0.9800C11—H110.9500
C33B—H33E0.9801C11—C121.413 (10)
C33B—H33F0.9801C12—C131.375 (9)
C33B—O170.84 (3)C13—H130.9500
C34B—H34D0.9800C14—H140.9500
C34B—H34E0.9800C15—C161.531 (8)
C34B—H34F0.9800C15—C171.524 (9)
S7—O171.501 (7)C15—C181.517 (8)
S7—C351.762 (8)C16—H16A0.9900
S7—C361.776 (8)C16—H16B0.9900
C35—H35A0.9800C17—H17A0.9900
C35—H35B0.9800C17—H17B0.9900
C35—H35C0.9800C18—H18A0.9800
C36—H36A0.9800C18—H18B0.9800
C36—H36B0.9800C18—H18C0.9800
C36—H36C0.9800C19—C201.518 (9)
Fe1—Cl12.378 (2)C19—C211.520 (8)
Fe1—O11.924 (4)C19—C221.540 (9)
Fe1—O72.038 (4)C20—H20A0.9900
Fe1—O91.989 (4)C20—H20B0.9900
Fe1—O112.018 (4)C21—H21A0.9900
Fe1—N12.133 (5)C21—H21B0.9900
Fe2—Cl22.3520 (18)C22—H22A0.9800
Fe2—O72.025 (4)C22—H22B0.9800
Fe2—O81.986 (4)C22—H22C0.9800
Fe2—O91.995 (4)C23—H23A0.9800
Fe2—O102.019 (5)C23—H23B0.9800
Fe2—O122.047 (4)C23—H23C0.9800
Fe3—Cl32.3319 (19)C24—H24A0.9800
Fe3—O41.948 (4)C24—H24B0.9800
Fe3—O81.971 (5)C24—H24C0.9800
Fe3—O102.036 (4)C25—H25A0.9800
Fe3—O132.045 (5)C25—H25B0.9800
Fe3—N32.158 (5)C25—H25C0.9800
S1—O111.531 (5)C26—H26A0.9800
S1—C231.776 (6)C26—H26B0.9800
S1—C241.773 (6)C26—H26C0.9800
S2—O121.537 (4)C27—H27A0.9800
S2—C251.773 (7)C27—H27B0.9800
S2—C261.786 (6)C27—H27C0.9800
S3—O131.542 (4)C28—H28A0.9800
S3—C271.789 (7)C28—H28B0.9800
S3—C281.776 (6)C28—H28C0.9800
O1—C21.308 (7)O1W—H1WA0.8698
O2—N21.235 (7)O1W—H1WB0.8700
O14—S4—C29107.0 (3)C20—O9—Fe1126.5 (4)
O14—S4—C30106.7 (3)C20—O9—Fe2128.8 (4)
C29—S4—C3096.9 (4)Fe2—O10—Fe3101.55 (18)
S4—C29—H29A109.5C21—O10—Fe2118.4 (4)
S4—C29—H29B109.5C21—O10—Fe3111.4 (4)
S4—C29—H29C109.5S1—O11—Fe1126.3 (3)
H29A—C29—H29B109.5S2—O12—Fe2125.6 (2)
H29A—C29—H29C109.5S3—O13—Fe3124.4 (3)
H29B—C29—H29C109.5C7—N1—Fe1125.9 (4)
S4—C30—H30A109.5C7—N1—C15118.9 (5)
S4—C30—H30B109.5C15—N1—Fe1115.1 (4)
S4—C30—H30C109.5O2—N2—C5118.9 (6)
H30A—C30—H30B109.5O3—N2—O2122.7 (6)
H30A—C30—H30C109.5O3—N2—C5118.5 (6)
H30B—C30—H30C109.5C14—N3—Fe3127.2 (4)
O15—S5—C31107.3 (3)C14—N3—C19118.3 (5)
O15—S5—C32106.2 (3)C19—N3—Fe3114.4 (4)
C31—S5—C3297.8 (3)O5—N4—O6122.9 (6)
S5—C31—H31A109.5O5—N4—C12119.0 (6)
S5—C31—H31B109.5O6—N4—C12118.2 (6)
S5—C31—H31C109.5C2—C1—C7123.8 (6)
H31A—C31—H31B109.5C6—C1—C2118.4 (6)
H31A—C31—H31C109.5C6—C1—C7117.8 (6)
H31B—C31—H31C109.5O1—C2—C1121.4 (6)
S5—C32—H32A109.5O1—C2—C3120.0 (6)
S5—C32—H32B109.5C3—C2—C1118.6 (6)
S5—C32—H32C109.5C2—C3—H3119.1
H32A—C32—H32B109.5C4—C3—C2121.8 (6)
H32A—C32—H32C109.5C4—C3—H3119.1
H32B—C32—H32C109.5C3—C4—H4120.2
O16A—S6A—C33A106.6 (8)C3—C4—C5119.6 (7)
O16A—S6A—C34A109.9 (8)C5—C4—H4120.2
C33A—S6A—C34A97.6 (8)C4—C5—N2119.7 (6)
S6A—C33A—H33A109.5C6—C5—N2119.7 (6)
S6A—C33A—H33B109.5C6—C5—C4120.6 (6)
S6A—C33A—H33C109.5C1—C6—H6119.5
H33A—C33A—H33B109.5C5—C6—C1121.1 (6)
H33A—C33A—H33C109.5C5—C6—H6119.5
H33B—C33A—H33C109.5N1—C7—C1125.9 (6)
S6A—C34A—H34A109.5N1—C7—H7117.1
S6A—C34A—H34B109.5C1—C7—H7117.1
S6A—C34A—H34C109.5C9—C8—C14122.6 (6)
H34A—C34A—H34B109.5C13—C8—C9120.4 (6)
H34A—C34A—H34C109.5C13—C8—C14117.0 (6)
H34B—C34A—H34C109.5O4—C9—C8123.9 (6)
O16B—S6B—C33B109.3 (16)O4—C9—C10119.0 (6)
O16B—S6B—C34B105.2 (18)C10—C9—C8117.1 (6)
O16B—S6B—O17126.1 (17)C9—C10—H10119.0
C33B—S6B—C34B99.5 (14)C11—C10—C9122.1 (6)
C33B—S6B—O1724.4 (10)C11—C10—H10119.0
C34B—S6B—O17107.9 (16)C10—C11—H11119.9
S6B—C33B—H33D109.5C10—C11—C12120.2 (6)
S6B—C33B—H33E109.4C12—C11—H11119.9
S6B—C33B—H33F109.6C11—C12—N4120.4 (6)
H33D—C33B—H33E109.5C13—C12—N4120.0 (6)
H33D—C33B—H33F109.5C13—C12—C11119.6 (7)
H33E—C33B—H33F109.4C8—C13—H13119.7
O17—C33B—S6B96.9 (18)C12—C13—C8120.5 (6)
O17—C33B—H33D123.1C12—C13—H13119.7
O17—C33B—H33E107.5N3—C14—C8125.3 (6)
O17—C33B—H33F15.2N3—C14—H14117.3
S6B—C34B—H34D109.5C8—C14—H14117.3
S6B—C34B—H34E109.5N1—C15—C16105.1 (5)
S6B—C34B—H34F109.5N1—C15—C17107.5 (5)
H34D—C34B—H34E109.5N1—C15—C18114.4 (5)
H34D—C34B—H34F109.5C17—C15—C16111.2 (5)
H34E—C34B—H34F109.5C18—C15—C16109.0 (6)
O17—S7—C35106.5 (7)C18—C15—C17109.5 (5)
O17—S7—C36105.2 (7)O7—C16—C15111.2 (5)
C35—S7—C3698.1 (8)O7—C16—H16A109.4
C33B—O17—S6B58.6 (12)O7—C16—H16B109.4
C33B—O17—S7169.1 (17)C15—C16—H16A109.4
S7—O17—S6B110.7 (6)C15—C16—H16B109.4
S7—C35—H35A109.5H16A—C16—H16B108.0
S7—C35—H35B109.5O8—C17—C15112.7 (5)
S7—C35—H35C109.5O8—C17—H17A109.0
H35A—C35—H35B109.5O8—C17—H17B109.0
H35A—C35—H35C109.5C15—C17—H17A109.0
H35B—C35—H35C109.5C15—C17—H17B109.0
S7—C36—H36A109.5H17A—C17—H17B107.8
S7—C36—H36B109.5C15—C18—H18A109.5
S7—C36—H36C109.5C15—C18—H18B109.5
H36A—C36—H36B109.5C15—C18—H18C109.5
H36A—C36—H36C109.5H18A—C18—H18B109.5
H36B—C36—H36C109.5H18A—C18—H18C109.5
O1—Fe1—Cl197.77 (15)H18B—C18—H18C109.5
O1—Fe1—O7160.59 (18)N3—C19—C20108.7 (5)
O1—Fe1—O993.60 (19)N3—C19—C21105.5 (5)
O1—Fe1—O1191.01 (18)N3—C19—C22111.9 (5)
O1—Fe1—N186.88 (18)C20—C19—C21111.3 (6)
O7—Fe1—Cl194.34 (13)C20—C19—C22109.9 (5)
O7—Fe1—N178.53 (17)C21—C19—C22109.4 (5)
O9—Fe1—Cl1167.12 (14)O9—C20—C19111.8 (5)
O9—Fe1—O776.39 (17)O9—C20—H20A109.3
O9—Fe1—O1186.41 (17)O9—C20—H20B109.3
O9—Fe1—N199.18 (18)C19—C20—H20A109.3
O11—Fe1—Cl187.35 (14)C19—C20—H20B109.3
O11—Fe1—O7104.69 (17)H20A—C20—H20B107.9
O11—Fe1—N1174.13 (19)O10—C21—C19110.6 (5)
N1—Fe1—Cl187.51 (15)O10—C21—H21A109.5
O7—Fe2—Cl296.05 (13)O10—C21—H21B109.5
O7—Fe2—O1297.47 (17)C19—C21—H21A109.5
O8—Fe2—Cl292.49 (12)C19—C21—H21B109.5
O8—Fe2—O790.10 (17)H21A—C21—H21B108.1
O8—Fe2—O989.57 (17)C19—C22—H22A109.5
O8—Fe2—O1076.59 (17)C19—C22—H22B109.5
O8—Fe2—O12171.43 (19)C19—C22—H22C109.5
O9—Fe2—Cl2172.35 (14)H22A—C22—H22B109.5
O9—Fe2—O776.56 (17)H22A—C22—H22C109.5
O9—Fe2—O1089.12 (18)H22B—C22—H22C109.5
O9—Fe2—O1288.28 (16)S1—C23—H23A109.5
O10—Fe2—Cl298.52 (13)S1—C23—H23B109.5
O10—Fe2—O7160.60 (17)S1—C23—H23C109.5
O10—Fe2—O1295.08 (17)H23A—C23—H23B109.5
O12—Fe2—Cl290.72 (13)H23A—C23—H23C109.5
O4—Fe3—Cl396.40 (13)H23B—C23—H23C109.5
O4—Fe3—O893.36 (19)S1—C24—H24A109.5
O4—Fe3—O10159.40 (18)S1—C24—H24B109.5
O4—Fe3—O1396.78 (19)S1—C24—H24C109.5
O4—Fe3—N386.10 (18)H24A—C24—H24B109.5
O8—Fe3—Cl391.48 (13)H24A—C24—H24C109.5
O8—Fe3—O1076.50 (17)H24B—C24—H24C109.5
O8—Fe3—O13169.61 (17)S2—C25—H25A109.5
O8—Fe3—N395.57 (19)S2—C25—H25B109.5
O10—Fe3—Cl3101.68 (13)S2—C25—H25C109.5
O10—Fe3—O1393.15 (18)H25A—C25—H25B109.5
O10—Fe3—N377.26 (18)H25A—C25—H25C109.5
O13—Fe3—Cl389.66 (13)H25B—C25—H25C109.5
O13—Fe3—N382.88 (19)S2—C26—H26A109.5
N3—Fe3—Cl3172.37 (16)S2—C26—H26B109.5
O11—S1—C23102.8 (3)S2—C26—H26C109.5
O11—S1—C24104.3 (3)H26A—C26—H26B109.5
C24—S1—C2399.6 (3)H26A—C26—H26C109.5
O12—S2—C25107.6 (3)H26B—C26—H26C109.5
O12—S2—C26104.2 (3)S3—C27—H27A109.5
C25—S2—C2697.6 (3)S3—C27—H27B109.5
O13—S3—C27103.4 (3)S3—C27—H27C109.5
O13—S3—C28104.6 (3)H27A—C27—H27B109.5
C28—S3—C2799.6 (3)H27A—C27—H27C109.5
C2—O1—Fe1134.9 (4)H27B—C27—H27C109.5
C9—O4—Fe3134.7 (4)S3—C28—H28A109.5
Fe2—O7—Fe1101.6 (2)S3—C28—H28B109.5
C16—O7—Fe1110.6 (3)S3—C28—H28C109.5
C16—O7—Fe2116.5 (3)H28A—C28—H28B109.5
Fe3—O8—Fe2105.10 (19)H28A—C28—H28C109.5
C17—O8—Fe2127.7 (4)H28B—C28—H28C109.5
C17—O8—Fe3126.1 (4)H1WA—O1W—H1WB109.6
Fe1—O9—Fe2104.4 (2)
S6B—C33B—O17—S710 (17)C2—C3—C4—C51.3 (11)
O16B—S6B—C33B—O17137 (4)C3—C4—C5—N2179.0 (6)
C34B—S6B—C33B—O17113 (3)C3—C4—C5—C61.0 (11)
C35—S7—O17—S6B49.1 (10)C4—C5—C6—C10.1 (11)
C35—S7—O17—C33B40 (16)C6—C1—C2—O1178.5 (6)
C36—S7—O17—S6B54.3 (9)C6—C1—C2—C30.1 (10)
C36—S7—O17—C33B63 (16)C6—C1—C7—N1175.3 (6)
Fe1—O1—C2—C18.6 (10)C7—N1—C15—C16162.4 (6)
Fe1—O1—C2—C3169.8 (5)C7—N1—C15—C1779.0 (7)
Fe1—O7—C16—C1549.5 (6)C7—N1—C15—C1842.8 (8)
Fe1—O9—C20—C19144.7 (4)C7—C1—C2—O13.5 (11)
Fe1—N1—C7—C11.0 (10)C7—C1—C2—C3178.1 (6)
Fe1—N1—C15—C1617.0 (6)C7—C1—C6—C5178.5 (6)
Fe1—N1—C15—C17101.6 (5)C8—C9—C10—C112.6 (11)
Fe1—N1—C15—C18136.5 (5)C9—C8—C13—C121.3 (11)
Fe2—O7—C16—C1565.7 (5)C9—C8—C14—N31.5 (11)
Fe2—O8—C17—C1544.0 (7)C9—C10—C11—C120.3 (12)
Fe2—O9—C20—C1941.6 (7)C10—C11—C12—N4176.2 (7)
Fe2—O10—C21—C1965.3 (6)C10—C11—C12—C132.6 (12)
Fe3—O4—C9—C85.7 (11)C11—C12—C13—C81.7 (11)
Fe3—O4—C9—C10175.3 (5)C13—C8—C9—O4175.6 (7)
Fe3—O8—C17—C15150.0 (4)C13—C8—C9—C103.4 (10)
Fe3—O10—C21—C1951.8 (6)C13—C8—C14—N3179.0 (7)
Fe3—N3—C14—C81.2 (10)C14—N3—C19—C2072.8 (7)
Fe3—N3—C19—C20103.8 (5)C14—N3—C19—C21167.7 (6)
Fe3—N3—C19—C2115.6 (6)C14—N3—C19—C2248.8 (8)
Fe3—N3—C19—C22134.6 (5)C14—C8—C9—O44.9 (11)
O1—C2—C3—C4177.6 (6)C14—C8—C9—C10176.0 (6)
O2—N2—C5—C41.0 (10)C14—C8—C13—C12178.2 (7)
O2—N2—C5—C6177.0 (7)C15—N1—C7—C1179.8 (6)
O3—N2—C5—C4178.9 (7)C16—C15—C17—O859.6 (7)
O3—N2—C5—C63.0 (10)C17—C15—C16—O774.2 (6)
O4—C9—C10—C11176.5 (7)C18—C15—C16—O7165.0 (5)
O5—N4—C12—C11172.6 (7)C18—C15—C17—O8179.8 (5)
O5—N4—C12—C138.6 (11)C19—N3—C14—C8174.9 (6)
O6—N4—C12—C117.0 (11)C20—C19—C21—O1075.6 (6)
O6—N4—C12—C13171.8 (7)C21—C19—C20—O960.1 (6)
N1—C15—C16—O741.9 (6)C22—C19—C20—O9178.5 (5)
N1—C15—C17—O854.9 (6)C22—C19—C21—O10162.7 (5)
N2—C5—C6—C1178.1 (6)C23—S1—O11—Fe1117.7 (3)
N3—C19—C20—O955.7 (7)C24—S1—O11—Fe1138.7 (3)
N3—C19—C21—O1042.2 (7)C25—S2—O12—Fe2100.0 (4)
N4—C12—C13—C8177.1 (7)C26—S2—O12—Fe2157.1 (3)
C1—C2—C3—C40.8 (11)C27—S3—O13—Fe3154.6 (3)
C2—C1—C6—C50.4 (10)C28—S3—O13—Fe3101.6 (4)
C2—C1—C7—N16.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C30—H30A···Cl2i0.982.753.689 (7)161
C32—H32A···O60.982.603.397 (9)138
C32—H32B···Cl1ii0.982.713.625 (6)155
C32—H32C···Cl3iii0.982.823.659 (7)144
C34A—H34A···O4iv0.982.523.47 (2)164
C33B—H33D···O2v0.982.353.06 (3)128
C33B—H33D···N2v0.982.263.08 (3)141
C34B—H34D···O2v0.982.583.19 (4)120
C3—H3···O16A0.952.603.391 (9)141
C7—H7···O3ii0.952.403.325 (8)164
C23—H23C···O120.982.433.377 (8)163
C25—H25A···Cl20.982.803.524 (6)131
C25—H25B···O10vi0.982.393.303 (7)155
C26—H26C···O1W0.982.553.393 (10)144
C27—H27A···O140.982.273.243 (8)171
O1W—H1WA···O15vii0.872.122.949 (8)158
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x+1, y+2, z+1; (vi) x, y, z; (vii) x, y, z1.
 

References

First citationAgilent (2012). CrysAlis PRO, CrysAlis CCD and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBabich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 1487–1490.  CSD CrossRef CAS Web of Science Google Scholar
First citationBuchwalter, P., Rose, J. & Braunstein, P. (2015). Chem. Rev. 115, 28–126.  CAS Google Scholar
First citationCoxall, R. A., Harris, S. G., Henderson, D. K., Parsons, S., Tasker, P. A. & Winpenny, R. E. P. (2000). J. Chem. Soc. Dalton Trans. pp. 2349–2356.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarnovskii, D. A., Kharisov, B. I., Skopenko, V. V., Blanco-Jerez, L. M., Kokozay, V. N., Kuzharov, A. S., Garnovskii, A. D., Vassilyeva, O. Yu., Burlov, A. S. & Pavlenko, V. A. (1999). In Direct Synthesis of Coordination and Organometallic Compounds. Amsterdam: Elsevier.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKovbasyuk, L. A., Babich, O. A. & Kokozay, V. N. (1997). Polyhedron, 16, 161–163.  CSD CrossRef CAS Web of Science Google Scholar
First citationKovbasyuk, L. A., Vassilyeva, O. Yu., Kokozay, V. N., Linert, W., Reedijk, J., Skelton, B. W. & Oliver, A. G. (1998). J. Chem. Soc. Dalton Trans. pp. 2735–2738.  Web of Science CSD CrossRef Google Scholar
First citationLieberman, C. M., Filatov, A. S., Zheng, W., Rogachev, A. Yu., Abakumov, A. M. & Dikarev, E. V. (2015). Chem. Sci. 6, 2835–2842.  CAS Google Scholar
First citationNesterova, O. V., Lipetskaya, A. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Jezierska, J. (2005). Polyhedron, 24, 1425–1434.  Web of Science CSD CrossRef CAS Google Scholar
First citationNesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Jezierska, J., Linert, W. & Ozarowski, A. (2008). Dalton Trans. 11, 1431–1436.  Google Scholar
First citationNesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W. & Linert, W. (2004). Inorg. Chem. Commun. 7, 450–454.  CAS Google Scholar
First citationNesterov, D. S., Kokozay, V. N., Jezierska, J., Pavlyuk, O. V., Boca, R. & Pombeiro, A. J. L. (2011). Inorg. Chem. 50, 4401–4411.  CAS Google Scholar
First citationNikitina, V. M., Nesterova, O. V., Kokozay, V. N., Goreshnik, E. A. & Jezierska, J. (2008). Polyhedron, 27, 2426–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVassilyeva, O. Yu., Kokozay, V. N., Zhukova, N. I. & Kovbasyuk, L. A. (1997). Polyhedron, 16, 263–266.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds