research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of a new alluaudite-like iron phosphate Na2CaMnFe(PO4)3

CROSSMARK_Color_square_no_text.svg

aUnité de Recherche, Matériaux Inorganiques, Faculté des Sciences, Université de Monastir, 5019, Monastir, Tunisia
*Correspondence e-mail: seme7jebli@gmail.com

Edited by I. D. Brown, McMaster University, Canada (Received 30 August 2016; accepted 7 November 2016; online 15 November 2016)

A new iron phosphate, disodium calcium manganese(II) iron(III) tris(phosphate), Na2CaMnFe(PO4)3, has been synthesized as single crystals by the flux technique. This compound crystallizes in the monoclinic space group C2/c. The structure belongs to the alluaudite structural type and thus, it obeys the X(2)X(1)M(1)M(2)2(PO4)3 general formula. Both the X(2) and X(1) sites are fully occupied by sodium, while M(1) is occupied by calcium and M(2) exhibits a statistical distribution of iron and manganese.

1. Chemical context

A promising line of research in the materials science field is the creation of materials based on inorganic phosphates, which have considerable potential for use in laser engineering, optics and electronics owing to their non-linear optical, electrical and luminescent properties. In recent years, iron monophosphates have assumed great importance for their promising applications in several fields such as catalysis (Moffat, 1978[Moffat, J. B. (1978). Catal. Rev. 18, 199-258.]), corrosion inhibition (Meisel et al., 1983[Meisel, W., Guttmann, H. J. & Gütlich, P. (1983). Corros. Sci. 23, 1373-1379.]) and electrochemistry as a positive electrode for lithium ion batteries (Padhi et al., 1997[Padhi, A., Nanjundaswamy, K. & Goodenough, J. (1997). J. Electrochem. Soc. 144, 1188-1194.]; Ravet et al.,2005[Ravet, N., Besner, S., Simoneau, M., Vallée, A., Armand, M. & Magnan, J. F. (2005). US Patent 6,962,666.]; Trad et al., 2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Lajmi, B., Ben Amara, M. & Delmas, C. (2010). J. Phys. Chem. C, 114, 10034-10044.]). The physical properties of inorganic materials are related to their structure. A large number of iron phosphates belong to the alluaudite structure type (Yakubovich et al., 1977[Yakubovich, O. V., Simonov, M. A., Tismenko, Y. K. E. & Belov, N. V. (1977). Dokl. Acad. Nauk SSSR, 236, 1123-1126.]; Corbin et al., 1986[Corbin, D. R., Whitney, J. F., Fultz, W. C., Stucky, G. D., Eddy, M. M. & Cheetham, A. K. (1986). Inorg. Chem. 25, 2279-2280.]; Korzenski et al., 1998[Korzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152-160.]; Hatert et al., 2003[Hatert, F., Hermann, R. P., Long, G. J., Fransolet, A.-M. & Grandjean, F. (2003). Am. Mineral. 88, 211-222.]; Strutynska et al., 2013[Strutynska, N. Yu., Kovba, Ya. Yu., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2013). Inorg. Mater. 49, 709-714.]) discovered for the first time from natural minerals by Fisher (1955[Fisher, D. J. (1955). Am. Mineral. 40, 1100-1109.]). The term alluaudite refers to a large family of natural or synthetic compounds with the general formula proposed by Moore (1971[Moore, P. B. (1971). Am. Mineral. 56, 1955-1975.]) of X(2)X(1)M(1)M(2)2(PO4)3 with X and M being cationic sites ranked in descending order of size. The M sites are fully occupied while the X sites can be empty or partially occupied. In this paper, we report a structural study of a new composition of alluaudite-like iron phosphate Na2CaMnFe(PO4)3. In this compound the M(1) and M(2) sites are occupied by Ca and (0.5Mn + 0.5Fe), respectively, while the X(1) and X(2) sites are fully occupied by Na atoms.

In iron phosphates adopting the alluaudite-type structure, the M(2) site is often preferentially occupied by iron with oxidation state +III. Consequently, and on basis of the Mössbauer spectroscopy results observed in similar compounds, the presence of FeII and MnIII in the M(2) site was not considered in the Na2CaMnFe(PO4)3 compound. Indeed, in Na2Mn2Fe(PO4)3 (Hidouri et al., 2011[Hidouri, M., Wattiaux, A., Fournés, L., Darriet, J. & Amara, M. B. (2011). C. R. Chim. 14, 904-910.]), iron and manganese adopt exclusively the oxidation states +III and +II, respectively, whereas in NaMnFe2(PO4)3 (Trad et al., 2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Lajmi, B., Ben Amara, M. & Delmas, C. (2010). J. Phys. Chem. C, 114, 10034-10044.]), MnIII and FeII were observed in very low amounts, leading to a Mn/Fe ratio close to 1.

2. Structural commentary

The structure of the title compound consists of infinite chains (Fig. 1[link]) formed by a succession of pairs of M(2)O6 octa­hedra linked together by common edges and sharing edges with a strongly distorted M(1)O8 polyhedron. Connected equivalent chains through the PO4 tetra­hedra lead to the formation of sheets stacked parallel to the ac plane (Fig. 2[link]) and inter­connected along the b axis by PO4 tetra­hedra. The resulting three-dimensional anionic framework exhibits two kinds of tunnels parallel to the c axis situated at (1/2, 0, z) and (0, 0, z) (Fig. 3[link]) and occupied by the Na+ ions. Fig. 4[link] shows the displacement ellipsoids of the coordination polyhedra of Ca, Mn/Fe, P1 and P2.

[Figure 1]
Figure 1
View of a chain showing the distorted octa­hedral sites M(1) (orange polyhedra) and M(2) (cyan polyhedra).
[Figure 2]
Figure 2
View showing a sheet made of MO6 octa­hedra and PO4 tetra­hedra (light grey).
[Figure 3]
Figure 3
View of the alluaudite structure in the ab plane. The polyhedra represent a chain of MO6 octa­hedra parallel to [101]; Tunnel 1 (light-green atoms) and Tunnel 2 (dark-green atoms).
[Figure 4]
Figure 4
The environment of atoms (a) Ca, (b) Mn/Fe, (c) P1 and (d) P2.

The M(2)—O distances and the O—M(2)—O angles range from 2.027 (2) to 2.246 (2) Å and from 80.11 (9) to 174.29 (9)°, respectively. This dispersion evidences an important distortion of the M(2)O6 octa­hedron due to edge-sharing. The M(1)O8 polyhedron is also very distorted as indicated by the M(1)—O distances and the O—M(1)—O angles which vary from 2.336 (2) to 2.951 (3) Å and from 54.00 (8) to 161.85 (8)°, respectively. In the P1O4 and P2O4 tetra­hedra, the P—O distances vary between 1.521 (2) and 1.547 (2) Å. Their mean distances 〈P1—O〉= 1.538 (2) Å and 〈P2—O〉= 1.537 (2) Å are in a good accordance with the value of 1.537 Å calculated by Baur (1974[Baur, W. H. (1974). Acta Cryst. B30, 1195-1215.]) for monophosphate groups.

Assuming sodium–oxygen distances below 3.0, both the Na1 and Na2 sites are surrounded by six oxygen atoms. Their environments approximate strongly distorted octa­hedra (Fig. 5[link]). Note that in the ideal alluaudite-type structure, both X(2) and X(1) sites are eightfold coordinated, such as for example in Na2Mn2Fe(PO4)3 and Na2Cd2Fe(PO4)3 (Hidouri et al., 2011[Hidouri, M., Wattiaux, A., Fournés, L., Darriet, J. & Amara, M. B. (2011). C. R. Chim. 14, 904-910.]). However, in Na4CaFe4(PO4)6 (Hidouri et al., 2004[Hidouri, M., Lajmi, B., Wattiaux, A., Fournés, L., Darriet, J. & Amara, M. B. (2004). J. Solid State Chem. 177, 55-60.]), the coordination numbers of the X(1) and X(2) sites are eight and six, respectively. The decrease of the X(2) coordination number seems to be related to the presence of calcium (0.5 Ca + 0.5 Na) in the M(1) site. In the title compound, the decrease of the coordination numbers from eight to six for both the X(1) and X(2) sites is probably related to the increase of the calcium content in the M(1) site, which becomes exclusively occupied by calcium.

[Figure 5]
Figure 5
The environment of cations (a) Na1 and (b) Na2.

3. Synthesis and crystallization

Single crystals of the title compound were obtained in a flux of sodium dimolybdate Na2Mo2O7. A starting mixture of appropriate amounts of Fe(NO3)3·9H2O (3.999 g); Mn(NO3)2·6H2O (2.472 g); CaCO3 (0.985 g); (NH4)2HPO4 (3.921 g); Na2CO3 (1.845 g) and MoO3 (2.148 g) was dissolved in nitric acid and then dried for 24 h at 353 K. The dry residue was well ground in an agate mortar and was gradually heated up to 873 K in a platinum crucible to evacuate the decomposition products NH3, CO2 and H2O. Then, the obtained product was melted for 1 h at 1073 K and was cooled slowly to 473 K at a rate of 10 K h−1. Finally, hexa­gonally shaped brown crystals of Na2CaMnFe(PO4)3 were obtained after washing the mixture with boiling water.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The refinement was performed on the basis of electrical neutrality and previous work. Application of direct methods revealed the position of the site, labeled M(2), statistically occupied by the Fe3+ and Mn2+ ions. This distribution was supported by the M(2)—O distances, which range between those of Mn—O and Fe—O observed in similar environments.

Table 1
Experimental details

Crystal data
Chemical formula Na2CaMnFe(PO4)3
Mr 481.76
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 12.283 (1), 12.736 (1), 6.494 (5)
β (°) 114.76 (3)
V3) 922.5 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.19
Crystal size (mm) 0.22 × 0.14 × 0.07
 
Data collection
Diffractometer Enraf–Nonius TurboCAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.514, 0.689
No. of measured, independent and observed [I > 2σ(I)] reflections 1780, 1333, 1139
Rint 0.023
(sin θ/λ)max−1) 0.702
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 1.07
No. of reflections 1333
No. of parameters 97
No. of restraints 2
Δρmax, Δρmin (e Å−3) 0.63, −0.90
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Disodium calcium manganese iron tris(phosphate) top
Crystal data top
Na2CaMnFe(PO4)3F(000) = 936
Mr = 481.76Dx = 3.469 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 12.283 (1) ÅCell parameters from 25 reflections
b = 12.736 (1) Åθ = 8.0–14.7°
c = 6.494 (5) ŵ = 4.19 mm1
β = 114.76 (3)°T = 293 K
V = 922.5 (7) Å3Prism, brown
Z = 40.22 × 0.14 × 0.07 mm
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.4°
non–profiled ω/2τ scansh = 1716
Absorption correction: ψ scan
(North et al., 1968)
k = 117
Tmin = 0.514, Tmax = 0.689l = 19
1780 measured reflections2 standard reflections every 60 min
1333 independent reflections intensity decay: none
1139 reflections with I > 2σ(I)
Refinement top
Refinement on F22 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0351P)2 + 3.0677P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max < 0.001
wR(F2) = 0.081Δρmax = 0.63 e Å3
S = 1.07Δρmin = 0.90 e Å3
1333 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
97 parametersExtinction coefficient: 0.0026 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.50000.00000.00000.0223 (4)
Na20.00000.0217 (2)0.75000.0464 (7)
Ca0.00000.26845 (6)0.25000.01178 (18)
Mn0.22734 (3)0.15466 (3)0.14341 (7)0.01013 (14)0.4999 (3)
Fe0.22734 (3)0.15466 (3)0.14341 (7)0.01013 (14)0.5001 (2)
P10.00000.27735 (8)0.75000.0081 (2)
O110.05225 (18)0.20662 (17)0.9616 (3)0.0139 (4)
O120.0910 (2)0.35033 (18)0.7174 (4)0.0204 (5)
P20.23941 (6)0.10428 (6)0.13282 (11)0.00951 (17)
O210.37036 (19)0.08841 (17)0.1794 (4)0.0160 (4)
O220.1756 (2)0.00101 (19)0.1190 (4)0.0228 (5)
O230.1718 (2)0.16191 (17)0.0952 (4)0.0165 (4)
O240.23187 (19)0.17266 (18)0.3233 (4)0.0164 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0296 (10)0.0080 (8)0.0110 (8)0.0041 (7)0.0095 (7)0.0027 (6)
Na20.0339 (13)0.0492 (16)0.0406 (15)0.0000.0004 (11)0.000
Ca0.0109 (3)0.0092 (4)0.0175 (4)0.0000.0082 (3)0.000
Mn0.0079 (2)0.0119 (2)0.0101 (2)0.00091 (14)0.00324 (16)0.00062 (14)
Fe0.0079 (2)0.0119 (2)0.0101 (2)0.00091 (14)0.00324 (16)0.00062 (14)
P10.0079 (4)0.0090 (4)0.0060 (4)0.0000.0016 (3)0.000
O110.0132 (9)0.0180 (10)0.0082 (8)0.0031 (8)0.0023 (7)0.0036 (8)
O120.0163 (10)0.0184 (11)0.0255 (12)0.0014 (8)0.0076 (9)0.0111 (9)
P20.0116 (3)0.0087 (3)0.0062 (3)0.0015 (2)0.0017 (2)0.0004 (2)
O210.0143 (9)0.0160 (10)0.0160 (10)0.0034 (8)0.0049 (8)0.0015 (8)
O220.0291 (12)0.0189 (11)0.0173 (11)0.0124 (9)0.0064 (10)0.0018 (9)
O230.0211 (10)0.0138 (10)0.0094 (9)0.0034 (8)0.0012 (8)0.0015 (8)
O240.0159 (9)0.0212 (11)0.0114 (10)0.0005 (9)0.0052 (8)0.0028 (8)
Geometric parameters (Å, º) top
Na1—O21i2.315 (2)Ca—O11x2.355 (3)
Na1—O21ii2.315 (2)Ca—O12vi2.951 (3)
Na1—O12iii2.357 (2)Ca—O122.951 (3)
Na1—O12iv2.357 (2)Mn—O12xv2.027 (2)
Na1—O21v2.591 (2)Mn—O222.043 (3)
Na1—O212.591 (2)Mn—O23ix2.080 (3)
Na2—O22vi2.477 (3)Mn—O11xiv2.081 (2)
Na2—O22vii2.477 (3)Mn—O24i2.115 (3)
Na2—O22viii2.645 (3)Mn—O24xi2.246 (2)
Na2—O22ix2.645 (3)P1—O12x1.535 (2)
Na2—O11x2.667 (3)P1—O121.535 (2)
Na2—O112.667 (3)P1—O111.541 (2)
Ca—O21xi2.336 (2)P1—O11x1.541 (2)
Ca—O21xii2.336 (2)P2—O211.521 (2)
Ca—O23xiii2.351 (2)P2—O221.537 (2)
Ca—O23ix2.351 (2)P2—O231.546 (2)
Ca—O11xiv2.355 (3)P2—O241.547 (2)
O21i—Na1—O21ii180.00 (13)O23ix—Ca—O11x87.80 (8)
O21i—Na1—O12iii96.91 (9)O11xiv—Ca—O11x140.93 (11)
O21ii—Na1—O12iii83.09 (9)O21xi—Ca—O12vi81.93 (8)
O21i—Na1—O12iv83.09 (9)O21xii—Ca—O12vi65.72 (7)
O21ii—Na1—O12iv96.91 (9)O23xiii—Ca—O12vi83.03 (8)
O12iii—Na1—O12iv180.00 (13)O23ix—Ca—O12vi121.96 (7)
O21i—Na1—O21v72.85 (9)O11xiv—Ca—O12vi54.00 (8)
O21ii—Na1—O21v107.15 (9)O11x—Ca—O12vi145.50 (7)
O12iii—Na1—O21v72.01 (9)O21xi—Ca—O1265.72 (7)
O12iv—Na1—O21v107.99 (9)O21xii—Ca—O1281.93 (8)
O21i—Na1—O21107.15 (9)O23xiii—Ca—O12121.96 (7)
O21ii—Na1—O2172.85 (9)O23ix—Ca—O1283.03 (8)
O12iii—Na1—O21107.99 (9)O11xiv—Ca—O12145.50 (7)
O12iv—Na1—O2172.01 (9)O11x—Ca—O1254.00 (8)
O21v—Na1—O21180.0O12vi—Ca—O12138.61 (10)
O22vi—Na2—O22vii167.80 (17)O12xv—Mn—O22104.67 (10)
O22vi—Na2—O22viii78.62 (9)O12xv—Mn—O23ix108.27 (10)
O22vii—Na2—O22viii100.03 (9)O22—Mn—O23ix84.73 (9)
O22vi—Na2—O22ix100.03 (9)O12xv—Mn—O11xiv161.07 (9)
O22vii—Na2—O22ix78.62 (9)O22—Mn—O11xiv92.66 (9)
O22viii—Na2—O22ix167.47 (16)O23ix—Mn—O11xiv80.46 (9)
O22vi—Na2—O11x70.80 (8)O12xv—Mn—O24i87.98 (10)
O22vii—Na2—O11x121.10 (12)O22—Mn—O24i99.38 (10)
O22viii—Na2—O11x102.10 (9)O23ix—Mn—O24i161.79 (9)
O22ix—Na2—O11x89.04 (9)O11xiv—Mn—O24i81.62 (9)
O22vi—Na2—O11121.10 (12)O12xv—Mn—O24xi80.11 (9)
O22vii—Na2—O1170.80 (8)O22—Mn—O24xi174.29 (9)
O22viii—Na2—O1189.04 (9)O23ix—Mn—O24xi90.82 (8)
O22ix—Na2—O11102.10 (9)O11xiv—Mn—O24xi83.06 (8)
O11x—Na2—O1155.90 (11)O24i—Mn—O24xi83.79 (9)
O21xi—Ca—O21xii77.41 (11)O12x—P1—O12105.48 (19)
O21xi—Ca—O23xiii161.85 (8)O12x—P1—O11106.63 (13)
O21xii—Ca—O23xiii87.17 (8)O12—P1—O11114.95 (12)
O21xi—Ca—O23ix87.17 (8)O12x—P1—O11x114.95 (12)
O21xii—Ca—O23ix161.85 (8)O12—P1—O11x106.63 (13)
O23xiii—Ca—O23ix109.49 (11)O11—P1—O11x108.44 (18)
O21xi—Ca—O11xiv91.53 (8)O21—P2—O22111.53 (14)
O21xii—Ca—O11xiv119.68 (8)O21—P2—O23110.66 (13)
O23xiii—Ca—O11xiv87.80 (8)O22—P2—O23107.57 (13)
O23ix—Ca—O11xiv69.66 (8)O21—P2—O24109.17 (13)
O21xi—Ca—O11x119.68 (8)O22—P2—O24109.76 (14)
O21xii—Ca—O11x91.53 (8)O23—P2—O24108.08 (13)
O23xiii—Ca—O11x69.66 (8)
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1, y, z; (vi) x, y, z+1/2; (vii) x, y, z+1; (viii) x, y, z+1; (ix) x, y, z+1/2; (x) x, y, z+3/2; (xi) x+1/2, y+1/2, z+1/2; (xii) x1/2, y+1/2, z; (xiii) x, y, z; (xiv) x, y, z1; (xv) x+1/2, y+1/2, z+1.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBaur, W. H. (1974). Acta Cryst. B30, 1195–1215.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationCorbin, D. R., Whitney, J. F., Fultz, W. C., Stucky, G. D., Eddy, M. M. & Cheetham, A. K. (1986). Inorg. Chem. 25, 2279–2280.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFisher, D. J. (1955). Am. Mineral. 40, 1100–1109.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHatert, F., Hermann, R. P., Long, G. J., Fransolet, A.-M. & Grandjean, F. (2003). Am. Mineral. 88, 211–222.  CrossRef CAS Google Scholar
First citationHidouri, M., Lajmi, B., Wattiaux, A., Fournés, L., Darriet, J. & Amara, M. B. (2004). J. Solid State Chem. 177, 55–60.  Web of Science CrossRef CAS Google Scholar
First citationHidouri, M., Wattiaux, A., Fournés, L., Darriet, J. & Amara, M. B. (2011). C. R. Chim. 14, 904–910.  Web of Science CrossRef CAS Google Scholar
First citationKorzenski, M. B., Schimek, G. L., Kolis, J. W. & Long, G. J. (1998). J. Solid State Chem. 139, 152–160.  Web of Science CrossRef CAS Google Scholar
First citationMeisel, W., Guttmann, H. J. & Gütlich, P. (1983). Corros. Sci. 23, 1373–1379.  CrossRef CAS Web of Science Google Scholar
First citationMoffat, J. B. (1978). Catal. Rev. 18, 199–258.  CrossRef CAS Web of Science Google Scholar
First citationMoore, P. B. (1971). Am. Mineral. 56, 1955–1975.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPadhi, A., Nanjundaswamy, K. & Goodenough, J. (1997). J. Electrochem. Soc. 144, 1188–1194.  CrossRef CAS Web of Science Google Scholar
First citationRavet, N., Besner, S., Simoneau, M., Vallée, A., Armand, M. & Magnan, J. F. (2005). US Patent 6,962,666.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrutynska, N. Yu., Kovba, Ya. Yu., Zatovsky, I. V., Baumer, V. N., Ogorodnyk, I. V. & Slobodyanik, N. S. (2013). Inorg. Mater. 49, 709–714.  Web of Science CrossRef CAS Google Scholar
First citationTrad, K., Carlier, D., Croguennec, L., Wattiaux, A., Lajmi, B., Ben Amara, M. & Delmas, C. (2010). J. Phys. Chem. C, 114, 10034–10044.  Web of Science CrossRef CAS Google Scholar
First citationYakubovich, O. V., Simonov, M. A., Tismenko, Y. K. E. & Belov, N. V. (1977). Dokl. Acad. Nauk SSSR, 236, 1123–1126.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds