research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two solvates of (18-crown-6)potassium acetate

CROSSMARK_Color_square_no_text.svg

aChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, bChemistry Department, Haluoleo University, Kendari, Indonesia, and cInstitut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 October 2016; accepted 31 October 2016; online 8 November 2016)

The crystal and mol­ecular strutures of two solvated forms of [K(18c6)]OAc (18c6 = 18-crown-6 = 1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane and OAc = acetate) were determined by single-crystal X-ray diffraction, namely (acetato-κ2O,O′)(1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-κ6O)potassium dihydrate, [K(CH3COO)(C12H24O6)]·2H2O (1) and (acetato-κ2O,O′)aqua­(1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-κ6O)potassium acetic acid monosolvate [K(CH3COO)(C12H24O6)(H2O)]·CH3COOH (2). In both compounds, the acetate anion is bonded to the potassium ion in a chelating fashion and the metal atom is consequently slightly displaced from the O6 plane of the crown ether. In the crystals, O—H⋯O hydrogen bonds lead to a polymeric ladder structure in the dihydrate 1, while the acetic acid hydrate 2 features inversion dimers.

1. Chemical context

As a result of the macrocyclic ether 1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane (`18-crown-6') being a hexa­dentate ligand that is highly specific for the potassium cation, it is frequently used to manipulate the properties of various potassium compounds. On the one hand, the [K(18c6)]+ cation (18c6 = 18-crown-6) is a powerful tool to crystallize large anions with the objective to make them accessible for single-crystal structure determination. Thus, the crystal structures of numerous anionic complex compounds have been observed from their [K(18c6)]+ salts, e.g. [HPMo12O40]4– (Neier et al., 1995[Neier, R., Trojanowski, C. & Mattes, R. (1995). J. Chem. Soc. Dalton Trans. pp. 2521-2528.]) and [HgRf2X] (Rf = CF3, C6F5, X = Br, I; Schulz et al., 2003[Schulz, F., Pantenburg, I. & Naumann, D. (2003). Z. Anorg. Allg. Chem. 629, 2312-2316.]) to mention just two examples among many. The same applies to a broad ensemble of unusual non-metal anions such as I3 (Sievert et al., 1996[Sievert, M., Krenzel, V. & Bock, H. (1996). Z. Kristallogr. 211, 794-797.]) and the radical species C2N4S2 (Makarov et al., 2005[Makarov, A. Y., Irtegova, I. G., Vasilieva, N. V., Bagryanskaya, I. Y., Borrmann, T., Gatilov, Y. V., Lork, E., Mews, R., Stohrer, W.-D. & Zibarev, A. V. (2005). Inorg. Chem. 44, 7194-7199.]). Moreover, since the early days of crown-ether chemistry, 18-crown-6 has been used to enhance the solubility of reactive potassium salts in organic media, e.g. KMnO4 (Doheny & Ganem, 1980[Doheny, A. J. & Ganem, B. (1980). J. Chem. Educ. 57, 308.]). [K(18c6)]OAc (OAc = acetate) has been shown to be useful as an acetyl­ation agent for alkyl halides (Liotta et al., 1974[Liotta, C. L., Harris, H. P., McDermott, M., Gonzalez, T. & Smith, K. (1974). Tetrahedron Lett. 15, 2417-2420.]), and over the past few years `CECILs' (crown ether complex cation ionic liquids) such as [K(18c6)]OAc and [K(18c6)]OH gained in importance as basic catalysts for various organic transformations (e.g. Song et al., 2011[Song, Y., Jing, H., Li, B. & Bai, D. (2011). Chem. Eur. J. 17, 8731-8738.]; Abaszadeh & Seifi, 2015[Abaszadeh, M. & Seifi, M. (2015). Res. Chem. Intermed. 41, 7715-7723.]).

In view of the broad application of 18-crown-6-complexed potassium acetate, [K(18c6)]OAc, it is surprising that the crystal structure of this simple compound has never been determined. In this paper we present the structures of two solvated forms thereof, namely the dihydrate, [K(18c6)]OAc·2 H2O (1), and the acetic acid hydrate, [K(18c6)]OAc·HOAc·H2O (2).

[Scheme 1]

2. Structural commentary

Both title compounds crystallize in the monoclinic space group P21/c with one formula unit of [K(18c6)]OAc and two solvent mol­ecules in the asymmetric unit. In the dihydrate 1 (Fig. 1[link]), the potassium atom is coordinated by the crown ether ligand in a slightly unsymmetrical hexa­dentate mode with K—O distances (Table 1[link]) ranging from 2.8248 (13) to 2.9684 (11) Å and a median value of 2.922 Å. The acetate counter-ion is attached to potassium in a chelating coordination mode where the K—O distances are significantly different with 2.6992 (11) (K—O7) and 2.8861 (11) Å (K—O8). As a result of the additional coordination of the acetate ion, the potassium ion is slightly displaced from the crown ether O6 plane. The two water mol­ecules do not coordinate to the potassium ion and inter­act via O—H⋯O hydrogen bonds (see Supra­molecular features section).

Table 1
Selected bond lengths (Å) for 1[link]

K—O1 2.9684 (11) K—O5 2.9506 (12)
K—O2 2.8649 (10) K—O6 2.8248 (13)
K—O3 2.9244 (11) K—O7 2.6992 (11)
K—O4 2.9380 (11) K—O8 2.8861 (11)
[Figure 1]
Figure 1
The mol­ecular structure of compound 1, with displacement ellipsoids drawn at the 50% probability level. C-bound H atoms have been omitted for clarity.

By contast, in the acetic acid hydrate 2 (Fig. 2[link]) the coordination number of the potassium atom is raised to nine by a coordinating water mol­ecule and consequently the K—O bonds (Table 2[link]) to the acetate ligand are significantly elongated to 2.9562 (16) (K—O8) and 3.0303 (19) Å (K—O7). Moreover, in compound 2 the coordination of the 18c6 ligand is more unsymmetrical than in compound 1 [K—O = 2.7855 (14)–3.0337 (13) Å], but the average K—O distance is virtually identical at 2.920 Å. In general, the geometry of the [K(18c6)]OAc ion pair is not fundamentally influenced by the additional water ligand. Thus, the angle between the KO2C(acetate) plane and the O6 plane of the 18c6 ligand is similar in both compounds [1: 68 (1), 2 64 (1)°]. The same applies to the displacement of the potassium ion from the O6 centroid, which is 0.080 Å in 1 and 0.082 Å in 2.

Table 2
Selected bond lengths (Å) for 2[link]

K—O1 2.7861 (12) K—O6 2.9435 (13)
K—O2 3.0045 (13) K—O7 3.0303 (19)
K—O3 2.8510 (12) K—O8 2.9562 (16)
K—O4 3.0337 (13) K—O9 2.7855 (14)
K—O5 2.9019 (13)    
[Figure 2]
Figure 2
The mol­ecular structure of compound 2, with dispalcement ellipsoids drawn at the 50% probability level. C-bound H atoms have been omitted for clarity.

The geometry of the [K(18c6)]OAc ion pair in the title compounds fits well with other [K(18c6)]+ salts with coordinating anions, e.g. the picrate [K(18c6)]O-C6H2-2,4,6-(NO2)3 [K—O = 2.862 (4)–2.989 (4) Å, K–centroid(O6) 0.0892 (1) Å; Barnes & Collard, 1988[Barnes, J. C. & Collard, J. (1988). Acta Cryst. C44, 565-566.]) and the triflate [K(18c6)]OSO2CF3 [K—O = 2.765 (4)–2.853 (4) Å, K–centroid(O6) 0.043 Å; Mandai et al., 2015[Mandai, T., Tsuzuki, S., Ueno, K., Dokko, K. & Watanabe, M. (2015). Phys. Chem. Chem. Phys. 17, 2838-2849.]). By contrast, in numerous other compounds the potassium ion is situated exactly in the center of the macrocycle and is coordinated symmetrically by the six crown ether O atoms. Since this case resembles the situation in isolated [K(18c6)]+ ions, it has been frequently observed in salts with weakly coordinating anions such as thio­cyanate [K—O = 2.768 (1)–2.836 (1) Å, median 2.805 Å] and hexa­fluorido­phosphate [K—O = 2.791 (2)–2.825 (5) Å, median 2.809 Å], where the anions are weakly attached to the potassium ion symmetrically from both sides of the K(18c6)]+ cation (Mandai et al., 2015[Mandai, T., Tsuzuki, S., Ueno, K., Dokko, K. & Watanabe, M. (2015). Phys. Chem. Chem. Phys. 17, 2838-2849.]). Of course, there are also many inter­mediate cases such as the halidomercurates [K(18c6)][Hg(CF3)2X] (X = Br, I; Schulz et al., 2003[Schulz, F., Pantenburg, I. & Naumann, D. (2003). Z. Anorg. Allg. Chem. 629, 2312-2316.]). Herein the cation–anion inter­actions are weak in general, but the K⋯X inter­action is a little stronger than the K⋯F inter­action on the opposite side of the K(18c6)]+ cation and the potassium ion is therefore moved slightly out of the macrocycle [e.g. X = I: K—O = 2.768 (6)–2.895 (6) Å, K–centroid(O6) = 0.020 Å].

3. Supra­molecular features

In both title compounds, both acetate oxygen atoms O7 and O8 are involved in hydrogen bonding (Table 3[link]). In the case of compound 1 (Fig. 3[link]), two hydrogen atoms of adjacent water mol­ecules donate to the acetate ligand with slightly different O⋯O distances of 2.741 (3) Å (O7⋯O9 including H2) and 2.810 (3) Å (O8⋯O10 including H3). Through the oxygen atom (O9, O10) and the second hydrogen atom (H1, H4) of each water mol­ecule, a cyclic (H2O)4 moiety is formed with similar O⋯O distances of 2.790 (3) Å (O9⋯O10 including H1) and 2.827 (3) Å (O9⋯O10′ including H4′). By this inter­connection of [K(18c6)(OAc)] moieties and water mol­ecules, a double-stranded polymeric structure is formed. Each chain is characterized by repeating O(H)–H⋯O–C(Me)-O⋯H–O–H units, and through inter­connection of the two chains a ladder-like architecture with alternating C2O8H4 14-membered rings and O4H4 eight-membered rings is built. The strength of the hydrogen bonds between the water mol­ecules and acetate ions is similar to those observed in other hydrated metal acetates, e.g. [Zn(OAc)2(Diap)2]·H2O [Diap = cyclo-C4H10N2C=S; O⋯O = 2.773 (2)–2.814 (1) Å; Beheshti et al., 2007[Beheshti, A., Clegg, W., Dale, S. H. & Hyvadi, R. (2007). Inorg. Chim. Acta, 360, 2967-2972.]] and [{Na2Cu(OAc)4(H2O)·H2O}n] [O⋯O = 2.764 (4)–2.944 (8) Å; Li et al., 2010[Li, Q., Li, Q., Shen, Y., Meng, X., Luan, F. & Xiang, A. (2010). J. Chem. Crystallogr. 40, 1155-1158.]].

Table 3
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H1⋯O10i 0.94 (1) 1.88 (1) 2.790 (3) 165 (4)
O9—H2⋯O7i 0.93 (1) 1.81 (2) 2.741 (3) 175 (4)
O10—H3⋯O8ii 0.93 (1) 1.88 (2) 2.810 (3) 175 (4)
O10—H4⋯O9 0.93 (1) 1.92 (1) 2.827 (3) 166 (4)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z.
[Figure 3]
Figure 3
Representation of the polymeric supra­molecular structure of compound 1 linked by O—H⋯O hydrogen bonds. The double-stranded chain extends along the crystallographic b-axis direction.

In the acetic acid hydrate 2 (Fig. 4[link]), the acetate ligand accepts two O—H⋯O hydrogen bonds (Table 4[link]) from water mol­ecules with very similar O⋯O distances, an intra­molecular one to the K-coordinating water mol­ecule [O7⋯O9 = 2.785 (7) Å, including H1] and an inter­molecular one to an adjacent [K(18c6)(OAc)(H2O)] moiety [O8⋯O9′ = 2.786 (7) Å, including H2′]. In addition, one of the acetate oxygen atoms is attached to the acetic acid mol­ecule with a considerably stronger O—H⋯O bond [O7⋯O11 = 2.513 (6) Å, including H3]. The strength of this hydrogen bond between the acetic acid mol­ecule and acetate ion is comparable with that observed in non-complexed KOAc·HOAc [O⋯O = 2.476 (8) Å; Currie, 1972[Currie, M. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 832-835.]] and in NaOAc·HOAc [O⋯O = 2.48 (1) Å; Barrow et al., 1975[Barrow, M. J., Currie, M., Muir, K. W., Speakman, J. C. & White, D. N. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 15-18.]]. Neither of the oxygen atoms of the acetic acid moiety in compound 2 (O10, O11) are involved in hydrogen bonding and consequently the supra­molecular structure is simpler than that of compound 1. Namely, through inter­connection of two [K(18c6)(OAc)(H2O)] moieties by the aforementioned H2O⋯OAc bridges, a dimeric structure with a centrosymmetric C2O6H4 ring is present.

Table 4
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H1⋯O7 0.94 (1) 1.93 (2) 2.785 (7) 151 (9)
O9—H2⋯O8i 0.94 (1) 1.89 (2) 2.786 (7) 160 (9)
O11—H3⋯O7 1.08 (5) 1.43 (5) 2.513 (6) 168 (5)
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 4]
Figure 4
Representation of the dimeric supra­molecular structure of compound 2 arising from O—H⋯O hydrogen bonding.

4. Database survey

For other structurally characterized salts with the [K(18c6)]+ cation, see: Neier et al. (1995[Neier, R., Trojanowski, C. & Mattes, R. (1995). J. Chem. Soc. Dalton Trans. pp. 2521-2528.]), Sievert et al. (1996[Sievert, M., Krenzel, V. & Bock, H. (1996). Z. Kristallogr. 211, 794-797.]), Schulz et al. (2003[Schulz, F., Pantenburg, I. & Naumann, D. (2003). Z. Anorg. Allg. Chem. 629, 2312-2316.]), Makarov et al. (2005[Makarov, A. Y., Irtegova, I. G., Vasilieva, N. V., Bagryanskaya, I. Y., Borrmann, T., Gatilov, Y. V., Lork, E., Mews, R., Stohrer, W.-D. & Zibarev, A. V. (2005). Inorg. Chem. 44, 7194-7199.]) and Mandai et al. (2015[Mandai, T., Tsuzuki, S., Ueno, K., Dokko, K. & Watanabe, M. (2015). Phys. Chem. Chem. Phys. 17, 2838-2849.]). For a review of metal complexes with crown ethers, see: Dalley (1978[Dalley, N. K. (1978). Synth. Multident. Macrocyclic Compd, pp. 207-243.]) and Shono (1994[Shono, T. (1994). Kagaku, 49, 701-703.]).

For other structurally characterized hydrates and acetic acid solvates of metal acetates, see: Currie (1972[Currie, M. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 832-835.]), Barrow et al. (1975[Barrow, M. J., Currie, M., Muir, K. W., Speakman, J. C. & White, D. N. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 15-18.]), Beheshti et al. (2007[Beheshti, A., Clegg, W., Dale, S. H. & Hyvadi, R. (2007). Inorg. Chim. Acta, 360, 2967-2972.]) and Li et al. (2010[Li, Q., Li, Q., Shen, Y., Meng, X., Luan, F. & Xiang, A. (2010). J. Chem. Crystallogr. 40, 1155-1158.]).

5. Synthesis and crystallization

Single crystals of the title compounds were obtained by slow evaporation of a solution of commercial available potassium acetate in the presence of an equimolar amount of 18-crown-6 in water (1) or in diluted acetic acid (2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All H atoms were fixed geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C). C—H distances in CH3 groups were constrained to 0.98 Å and those in CH2 groups to 0.99 Å. Methyl H atoms were allowed to rotate around the C—C vector (AFIX 137 in SHELXL). O—H distances within H2O mol­ecules were restrained to 0.96 Å (DFIX restraint in SHELXL; the s.u. applied was 0.01 Å), while the coordinates of the HOAc hydrogen atom H3 in compound 2 was refined freely.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [K(C2H3O2)(C12H24O6)]·2H2O [K(C2H3O2)(C12H24O6)(H2O)]·C2H4O2
Mr 398.49 440.52
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 173 200
a, b, c (Å) 11.683 (2), 8.594 (2), 20.083 (4) 11.3233 (1), 8.5450 (1), 23.3869 (3)
β (°) 100.59 (3) 99.053 (1)
V3) 1982.1 (7) 2234.67 (4)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.31 0.29
Crystal size (mm) 0.60 × 0.40 × 0.30 0.40 × 0.40 × 0.20
 
Data collection
Diffractometer Bruker SMART CCD Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.834, 0.912 0.893, 0.945
No. of measured, independent and observed [I > 2σ(I)] reflections 11876, 4316, 3626 13151, 4846, 3833
Rint 0.025 0.035
(sin θ/λ)max−1) 0.639 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.04 0.041, 0.104, 1.05
No. of reflections 4316 4846
No. of parameters 244 268
No. of restraints 4 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.25 0.43, −0.31
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

(1) (Acetato-κ2O,O')(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O)potassium dihydrate top
Crystal data top
[K(C2H3O2)(C12H24O6)]·2H2OF(000) = 856
Mr = 398.49Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.683 (2) ÅCell parameters from 100 reflections
b = 8.594 (2) Åθ = 2.0–27.5°
c = 20.083 (4) ŵ = 0.31 mm1
β = 100.59 (3)°T = 173 K
V = 1982.1 (7) Å3Block, colorless
Z = 40.60 × 0.40 × 0.30 mm
Data collection top
Bruker SMART CCD
diffractometer
3626 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.834, Tmax = 0.912k = 1010
11876 measured reflectionsl = 2512
4316 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.3159P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4316 reflectionsΔρmax = 0.19 e Å3
244 parametersΔρmin = 0.25 e Å3
4 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0102 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19215 (12)0.24843 (16)0.26697 (7)0.0406 (3)
H1A0.2210330.3138620.3071130.049*
H1B0.2303180.2833020.2294440.049*
C20.06322 (12)0.26499 (16)0.24703 (7)0.0382 (3)
H2A0.0417120.3765380.2441260.046*
H2B0.0243970.2153620.2814290.046*
C30.09719 (11)0.19603 (16)0.16312 (7)0.0374 (3)
H3A0.1336760.1416900.1973520.045*
H3B0.1246280.3052380.1601180.045*
C40.13129 (12)0.11823 (15)0.09584 (7)0.0391 (3)
H4A0.0910940.1682960.0621540.047*
H4B0.2163340.1277430.0797870.047*
C50.14346 (12)0.13078 (17)0.04410 (7)0.0403 (3)
H5A0.2285830.1152800.0309220.048*
H5B0.1063060.0968930.0060170.048*
C60.11728 (11)0.29849 (16)0.05959 (7)0.0377 (3)
H6A0.1516220.3635270.0202830.045*
H6B0.1514570.3309530.0990060.045*
C70.03764 (12)0.47494 (15)0.09298 (7)0.0370 (3)
H7A0.0044960.5049280.1331000.044*
H7B0.0061230.5462530.0553500.044*
C80.16749 (12)0.48729 (16)0.10895 (7)0.0396 (3)
H8A0.2016470.4383660.0724780.048*
H8B0.1911220.5980560.1124130.048*
C90.33226 (12)0.41468 (17)0.18955 (7)0.0422 (3)
H9A0.3597440.5238400.1914390.051*
H9B0.3673610.3585120.1552300.051*
C100.36735 (11)0.33922 (18)0.25737 (7)0.0430 (3)
H10A0.4521590.3517750.2734460.052*
H10B0.3261780.3892410.2906180.052*
C110.36879 (11)0.09996 (19)0.31478 (7)0.0452 (4)
H11A0.3238730.1436000.3476870.054*
H11B0.4527330.1142200.3331810.054*
C120.34212 (12)0.0685 (2)0.30425 (8)0.0483 (4)
H12A0.3843330.1107250.2697610.058*
H12B0.3682620.1258580.3471120.058*
C140.37145 (11)0.02001 (15)0.09102 (6)0.0323 (3)
C150.50091 (13)0.0405 (2)0.09116 (9)0.0514 (4)
H15A0.5355820.0607180.0842880.062*
H15B0.5389630.0840590.1347280.062*
H15C0.5115300.1113630.0545470.062*
O10.21942 (8)0.08938 (11)0.28225 (5)0.0363 (2)
O20.02642 (7)0.19209 (10)0.18282 (4)0.0337 (2)
O30.09923 (8)0.04182 (10)0.10328 (4)0.0358 (2)
O40.00621 (8)0.31881 (10)0.07425 (4)0.0353 (2)
O50.20816 (8)0.41003 (11)0.17174 (5)0.0371 (2)
O60.33857 (8)0.17840 (12)0.25161 (5)0.0421 (2)
O70.30476 (8)0.13088 (11)0.06867 (5)0.0371 (2)
O80.33793 (9)0.10438 (11)0.11438 (5)0.0411 (2)
O90.63538 (9)0.64950 (12)0.01773 (5)0.0439 (2)
H10.6336 (18)0.5550 (15)0.0055 (9)0.073 (6)*
H20.6560 (16)0.7200 (18)0.0134 (8)0.068 (6)*
O100.40196 (10)0.64828 (13)0.03746 (7)0.0561 (3)
H30.3823 (17)0.7270 (19)0.0651 (9)0.078 (6)*
H40.4786 (9)0.666 (2)0.0337 (10)0.072 (6)*
K0.15130 (2)0.07687 (3)0.15141 (2)0.03251 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0477 (8)0.0403 (7)0.0343 (7)0.0144 (6)0.0086 (6)0.0010 (5)
C20.0502 (8)0.0332 (7)0.0334 (7)0.0008 (6)0.0135 (6)0.0018 (5)
C30.0289 (6)0.0326 (7)0.0528 (8)0.0046 (5)0.0130 (5)0.0003 (6)
C40.0320 (6)0.0335 (7)0.0490 (8)0.0077 (5)0.0002 (6)0.0065 (6)
C50.0383 (7)0.0467 (8)0.0315 (7)0.0040 (6)0.0054 (5)0.0027 (6)
C60.0340 (7)0.0431 (7)0.0344 (7)0.0025 (6)0.0022 (5)0.0097 (6)
C70.0498 (8)0.0300 (6)0.0330 (7)0.0010 (6)0.0122 (6)0.0020 (5)
C80.0503 (8)0.0352 (7)0.0367 (7)0.0104 (6)0.0169 (6)0.0043 (6)
C90.0336 (7)0.0474 (8)0.0496 (8)0.0148 (6)0.0180 (6)0.0163 (6)
C100.0264 (6)0.0584 (9)0.0453 (8)0.0128 (6)0.0094 (5)0.0213 (7)
C110.0249 (6)0.0722 (10)0.0360 (7)0.0049 (6)0.0008 (5)0.0059 (7)
C120.0284 (7)0.0660 (10)0.0488 (8)0.0141 (7)0.0029 (6)0.0021 (7)
C140.0370 (6)0.0346 (7)0.0254 (6)0.0023 (5)0.0057 (5)0.0034 (5)
C150.0366 (7)0.0540 (9)0.0601 (10)0.0016 (7)0.0002 (6)0.0185 (7)
O10.0293 (4)0.0430 (5)0.0365 (5)0.0083 (4)0.0056 (4)0.0000 (4)
O20.0297 (4)0.0368 (5)0.0358 (5)0.0009 (4)0.0090 (3)0.0042 (4)
O30.0361 (5)0.0321 (5)0.0345 (5)0.0052 (4)0.0056 (4)0.0002 (4)
O40.0352 (5)0.0319 (5)0.0384 (5)0.0017 (4)0.0063 (4)0.0023 (4)
O50.0333 (5)0.0428 (5)0.0369 (5)0.0102 (4)0.0111 (4)0.0038 (4)
O60.0367 (5)0.0542 (6)0.0341 (5)0.0079 (4)0.0035 (4)0.0097 (4)
O70.0401 (5)0.0349 (5)0.0380 (5)0.0031 (4)0.0111 (4)0.0016 (4)
O80.0480 (6)0.0338 (5)0.0443 (5)0.0002 (4)0.0162 (4)0.0032 (4)
O90.0538 (6)0.0397 (6)0.0411 (5)0.0111 (5)0.0161 (5)0.0043 (4)
O100.0452 (6)0.0414 (6)0.0854 (9)0.0081 (5)0.0213 (6)0.0203 (6)
K0.03047 (15)0.03681 (16)0.03057 (15)0.00472 (11)0.00648 (10)0.00161 (10)
Geometric parameters (Å, º) top
C1—O11.4241 (17)C9—H9B0.9900
C1—C21.493 (2)C10—O61.4220 (18)
C1—H1A0.9900C10—H10A0.9900
C1—H1B0.9900C10—H10B0.9900
C2—O21.4271 (15)C11—O61.4227 (17)
C2—H2A0.9900C11—C121.488 (2)
C2—H2B0.9900C11—H11A0.9900
C3—O21.4259 (15)C11—H11B0.9900
C3—C41.495 (2)C12—O11.4316 (16)
C3—H3A0.9900C12—H12A0.9900
C3—H3B0.9900C12—H12B0.9900
C4—O31.4261 (16)C14—O81.2584 (16)
C4—H4A0.9900C14—O71.2601 (16)
C4—H4B0.9900C14—C151.5222 (19)
C5—O31.4277 (16)C14—K3.0775 (14)
C5—C61.494 (2)C15—H15A0.9800
C5—H5A0.9900C15—H15B0.9800
C5—H5B0.9900C15—H15C0.9800
C6—O41.4292 (15)K—O12.9684 (11)
C6—H6A0.9900K—O22.8649 (10)
C6—H6B0.9900K—O32.9244 (11)
C7—O41.4234 (16)K—O42.9380 (11)
C7—C81.4956 (19)K—O52.9506 (12)
C7—H7A0.9900K—O62.8248 (13)
C7—H7B0.9900K—O72.6992 (11)
C8—O51.4270 (17)K—O82.8861 (11)
C8—H8A0.9900O9—H10.935 (9)
C8—H8B0.9900O9—H20.933 (9)
C9—O51.4287 (16)O10—H30.930 (9)
C9—C101.496 (2)O10—H40.925 (9)
C9—H9A0.9900
O1—C1—C2108.91 (11)O1—C12—H12A109.7
O1—C1—H1A109.9C11—C12—H12A109.7
C2—C1—H1A109.9O1—C12—H12B109.7
O1—C1—H1B109.9C11—C12—H12B109.7
C2—C1—H1B109.9H12A—C12—H12B108.2
H1A—C1—H1B108.3O8—C14—O7124.10 (12)
O2—C2—C1108.79 (11)O8—C14—C15118.35 (12)
O2—C2—H2A109.9O7—C14—C15117.53 (12)
C1—C2—H2A109.9O8—C14—K69.40 (7)
O2—C2—H2B109.9O7—C14—K60.89 (7)
C1—C2—H2B109.9C15—C14—K152.01 (10)
H2A—C2—H2B108.3C14—C15—H15A109.5
O2—C3—C4109.16 (10)C14—C15—H15B109.5
O2—C3—H3A109.8H15A—C15—H15B109.5
C4—C3—H3A109.8C14—C15—H15C109.5
O2—C3—H3B109.8H15A—C15—H15C109.5
C4—C3—H3B109.8H15B—C15—H15C109.5
H3A—C3—H3B108.3C1—O1—C12110.99 (10)
O3—C4—C3108.40 (11)C1—O1—K104.96 (7)
O3—C4—H4A110.0C12—O1—K107.66 (8)
C3—C4—H4A110.0C3—O2—C2111.21 (10)
O3—C4—H4B110.0C3—O2—K119.27 (7)
C3—C4—H4B110.0C2—O2—K118.17 (7)
H4A—C4—H4B108.4C4—O3—C5112.42 (10)
O3—C5—C6108.32 (10)C4—O3—K111.20 (7)
O3—C5—H5A110.0C5—O3—K114.02 (8)
C6—C5—H5A110.0C7—O4—C6111.79 (10)
O3—C5—H5B110.0C7—O4—K115.59 (7)
C6—C5—H5B110.0C6—O4—K119.00 (7)
H5A—C5—H5B108.4C8—O5—C9111.47 (10)
O4—C6—C5108.72 (11)C8—O5—K107.42 (7)
O4—C6—H6A109.9C9—O5—K104.72 (8)
C5—C6—H6A109.9C10—O6—C11111.82 (11)
O4—C6—H6B109.9C10—O6—K119.92 (8)
C5—C6—H6B109.9C11—O6—K121.45 (8)
H6A—C6—H6B108.3C14—O7—K95.04 (7)
O4—C7—C8109.02 (11)C14—O8—K86.51 (8)
O4—C7—H7A109.9H1—O9—H2102.4 (17)
C8—C7—H7A109.9H3—O10—H4106.0 (17)
O4—C7—H7B109.9O7—K—O682.55 (3)
C8—C7—H7B109.9O7—K—O2134.19 (3)
H7A—C7—H7B108.3O6—K—O2116.84 (3)
O5—C8—C7108.44 (10)O7—K—O846.80 (3)
O5—C8—H8A110.0O6—K—O880.06 (3)
C7—C8—H8A110.0O2—K—O893.48 (3)
O5—C8—H8B110.0O7—K—O3123.50 (3)
C7—C8—H8B110.0O6—K—O3149.82 (3)
H8A—C8—H8B108.4O2—K—O358.02 (3)
O5—C9—C10108.15 (11)O8—K—O3128.09 (3)
O5—C9—H9A110.1O7—K—O486.43 (3)
C10—C9—H9A110.1O6—K—O4116.96 (3)
O5—C9—H9B110.1O2—K—O4114.79 (3)
C10—C9—H9B110.1O8—K—O4129.49 (3)
H9A—C9—H9B108.4O3—K—O456.85 (3)
O6—C10—C9109.03 (11)O7—K—O576.12 (3)
O6—C10—H10A109.9O6—K—O558.43 (3)
C9—C10—H10A109.9O2—K—O5149.68 (3)
O6—C10—H10B109.9O8—K—O5113.44 (3)
C9—C10—H10B109.9O3—K—O5109.39 (3)
H10A—C10—H10B108.3O4—K—O558.64 (3)
O6—C11—C12108.85 (11)O7—K—O1121.82 (3)
O6—C11—H11A109.9O6—K—O158.09 (3)
C12—C11—H11A109.9O2—K—O158.75 (3)
O6—C11—H11B109.9O8—K—O182.87 (3)
C12—C11—H11B109.9O3—K—O1109.41 (4)
H11A—C11—H11B108.3O4—K—O1147.39 (3)
O1—C12—C11109.71 (11)O5—K—O1109.13 (3)
O1—C1—C2—O269.56 (13)C6—C5—O3—K58.71 (12)
O2—C3—C4—O364.30 (14)C8—C7—O4—C6178.85 (10)
O3—C5—C6—O463.29 (14)C8—C7—O4—K38.46 (12)
O4—C7—C8—O571.79 (13)C5—C6—O4—C7176.94 (10)
O5—C9—C10—O666.16 (13)C5—C6—O4—K38.05 (12)
O6—C11—C12—O163.66 (15)C7—C8—O5—C9178.87 (10)
C2—C1—O1—C12177.74 (11)C7—C8—O5—K64.69 (11)
C2—C1—O1—K66.22 (11)C10—C9—O5—C8177.00 (11)
C11—C12—O1—C1175.73 (11)C10—C9—O5—K67.16 (10)
C11—C12—O1—K61.37 (12)C9—C10—O6—C11179.41 (10)
C4—C3—O2—C2179.89 (10)C9—C10—O6—K27.92 (13)
C4—C3—O2—K36.94 (13)C12—C11—O6—C10177.04 (11)
C1—C2—O2—C3176.43 (11)C12—C11—O6—K31.96 (14)
C1—C2—O2—K33.03 (13)O8—C14—O7—K30.29 (13)
C3—C4—O3—C5171.43 (11)C15—C14—O7—K148.16 (11)
C3—C4—O3—K59.34 (12)O7—C14—O8—K28.09 (12)
C6—C5—O3—C4173.54 (11)C15—C14—O8—K150.35 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H1···O10i0.94 (1)1.88 (1)2.790 (3)165 (4)
O9—H2···O7i0.93 (1)1.81 (2)2.741 (3)175 (4)
O10—H3···O8ii0.93 (1)1.88 (2)2.810 (3)175 (4)
O10—H4···O90.93 (1)1.92 (1)2.827 (3)166 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
(2) (Acetato-κ2O,O')aqua(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O)potassium acetic acid monosolvate top
Crystal data top
[K(C2H3O2)(C12H24O6)(H2O)]·C2H4O2F(000) = 944
Mr = 440.52Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3233 (1) ÅCell parameters from 100 reflections
b = 8.5450 (1) Åθ = 2.0–27.5°
c = 23.3869 (3) ŵ = 0.29 mm1
β = 99.053 (1)°T = 200 K
V = 2234.67 (4) Å3Block, colorless
Z = 40.40 × 0.40 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3833 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.893, Tmax = 0.945k = 1010
13151 measured reflectionsl = 2919
4846 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.8233P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4846 reflectionsΔρmax = 0.43 e Å3
268 parametersΔρmin = 0.31 e Å3
2 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0064 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26514 (15)0.3641 (2)0.59639 (8)0.0344 (4)
H1A0.2956020.3168100.6298590.041*
H1B0.3258990.3486560.5614930.041*
C20.24318 (16)0.5356 (2)0.60680 (8)0.0339 (4)
H2A0.2116140.5823880.5735340.041*
H2B0.3192740.5887130.6106000.041*
C30.12935 (17)0.7194 (2)0.66672 (8)0.0326 (4)
H3A0.2021390.7805290.6702530.039*
H3B0.0957770.7595570.6329500.039*
C40.03993 (17)0.7378 (2)0.72029 (8)0.0322 (4)
H4A0.0273260.8501970.7294700.039*
H4B0.0695960.6866690.7532750.039*
C50.15966 (17)0.6830 (2)0.76087 (8)0.0318 (4)
H5A0.1361120.6243240.7937960.038*
H5B0.1696250.7945190.7720890.038*
C60.27450 (17)0.6196 (2)0.74649 (9)0.0347 (4)
H6A0.2928500.6689680.7106100.042*
H6B0.3408180.6428390.7782670.042*
C70.36809 (16)0.3840 (2)0.72475 (9)0.0357 (4)
H7A0.4366840.4065510.7554380.043*
H7B0.3862650.4261190.6876750.043*
C80.34709 (17)0.2111 (2)0.71987 (9)0.0374 (5)
H8A0.4216450.1572510.7139680.045*
H8B0.3228390.1707560.7559750.045*
C90.22477 (18)0.0196 (2)0.66723 (9)0.0373 (5)
H9A0.1886850.0136630.7011760.045*
H9B0.2976030.0438050.6662020.045*
C100.13805 (17)0.0062 (2)0.61311 (9)0.0370 (5)
H10A0.1704120.0375990.5795650.044*
H10B0.1246890.1197100.6065450.044*
C110.05449 (18)0.0615 (2)0.56565 (8)0.0347 (4)
H11A0.0652850.0487740.5529560.042*
H11B0.0220180.1207010.5352080.042*
C120.17179 (17)0.1291 (2)0.57418 (8)0.0341 (4)
H12A0.2304120.1172910.5382890.041*
H12B0.2027760.0728610.6057450.041*
C130.26513 (17)0.4042 (3)0.54918 (9)0.0395 (5)
C140.3933 (2)0.3558 (4)0.54951 (12)0.0628 (7)
H14A0.4416720.4484090.5445050.075*
H14B0.3974900.2821640.5177590.075*
H14C0.4240670.3052880.5864890.075*
C150.46601 (19)0.7951 (3)0.60242 (11)0.0458 (5)
C160.5436 (3)0.9332 (3)0.59606 (15)0.0734 (8)
H16A0.5881370.9151240.5639680.088*
H16B0.5999440.9484280.6319680.088*
H16C0.4937201.0268160.5880640.088*
O10.15612 (11)0.29088 (15)0.58855 (6)0.0329 (3)
O20.15927 (11)0.55729 (14)0.65841 (5)0.0299 (3)
O30.06996 (11)0.66769 (15)0.71136 (5)0.0298 (3)
O40.26219 (11)0.45464 (14)0.73867 (6)0.0311 (3)
O50.25553 (11)0.18135 (14)0.67223 (5)0.0322 (3)
O60.02708 (11)0.06945 (14)0.61872 (5)0.0319 (3)
O70.24709 (14)0.5417 (2)0.56419 (9)0.0654 (5)
O80.18335 (13)0.30957 (19)0.53554 (6)0.0459 (4)
O90.01027 (12)0.64125 (16)0.55199 (6)0.0339 (3)
H20.0421 (19)0.648 (3)0.5168 (7)0.066 (8)*
H10.0852 (12)0.616 (3)0.5426 (10)0.054 (7)*
O100.47534 (17)0.7214 (2)0.64660 (8)0.0707 (5)
O110.39035 (17)0.7625 (3)0.55675 (8)0.0718 (6)
H30.337 (4)0.662 (6)0.564 (2)0.165 (18)*
K0.06834 (3)0.40782 (4)0.63478 (2)0.02625 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (9)0.0459 (12)0.0334 (10)0.0006 (8)0.0003 (7)0.0009 (8)
C20.0258 (9)0.0432 (11)0.0312 (10)0.0080 (8)0.0002 (7)0.0040 (8)
C30.0370 (10)0.0278 (10)0.0342 (10)0.0096 (8)0.0097 (8)0.0035 (8)
C40.0393 (10)0.0265 (9)0.0328 (10)0.0053 (8)0.0114 (8)0.0041 (8)
C50.0433 (11)0.0251 (9)0.0255 (9)0.0039 (8)0.0006 (8)0.0026 (7)
C60.0352 (10)0.0311 (10)0.0357 (10)0.0073 (8)0.0013 (8)0.0003 (8)
C70.0228 (9)0.0441 (12)0.0385 (11)0.0011 (8)0.0003 (8)0.0001 (9)
C80.0290 (10)0.0416 (11)0.0399 (11)0.0117 (8)0.0002 (8)0.0031 (9)
C90.0380 (11)0.0239 (10)0.0516 (12)0.0078 (8)0.0118 (9)0.0052 (8)
C100.0394 (11)0.0233 (9)0.0515 (12)0.0009 (8)0.0170 (9)0.0083 (8)
C110.0495 (12)0.0283 (10)0.0270 (9)0.0070 (8)0.0083 (8)0.0059 (7)
C120.0380 (10)0.0328 (10)0.0295 (9)0.0111 (8)0.0010 (8)0.0044 (8)
C130.0294 (10)0.0581 (14)0.0307 (10)0.0042 (10)0.0040 (8)0.0103 (9)
C140.0367 (12)0.083 (2)0.0697 (17)0.0152 (12)0.0132 (12)0.0046 (15)
C150.0327 (11)0.0464 (13)0.0581 (14)0.0032 (9)0.0066 (10)0.0108 (11)
C160.0665 (18)0.0566 (17)0.094 (2)0.0209 (14)0.0030 (16)0.0084 (15)
O10.0250 (6)0.0326 (7)0.0400 (7)0.0027 (5)0.0022 (5)0.0051 (6)
O20.0319 (7)0.0295 (7)0.0273 (6)0.0038 (5)0.0014 (5)0.0018 (5)
O30.0332 (7)0.0316 (7)0.0241 (6)0.0051 (5)0.0027 (5)0.0048 (5)
O40.0275 (6)0.0265 (7)0.0391 (7)0.0013 (5)0.0046 (5)0.0015 (5)
O50.0347 (7)0.0250 (7)0.0352 (7)0.0033 (5)0.0002 (6)0.0024 (5)
O60.0352 (7)0.0286 (7)0.0329 (7)0.0006 (5)0.0085 (6)0.0048 (5)
O70.0289 (8)0.0635 (12)0.1036 (15)0.0045 (8)0.0099 (9)0.0225 (11)
O80.0396 (8)0.0536 (9)0.0422 (8)0.0021 (7)0.0002 (7)0.0117 (7)
O90.0345 (7)0.0357 (7)0.0314 (7)0.0034 (6)0.0043 (6)0.0001 (6)
O100.0710 (12)0.0823 (14)0.0568 (11)0.0218 (10)0.0037 (9)0.0083 (10)
O110.0637 (12)0.0804 (14)0.0629 (12)0.0156 (10)0.0156 (10)0.0053 (10)
K0.02579 (19)0.0254 (2)0.0272 (2)0.00122 (15)0.00280 (14)0.00003 (15)
Geometric parameters (Å, º) top
C1—O11.421 (2)C10—H10B0.9900
C1—C21.500 (3)C11—O61.427 (2)
C1—H1A0.9900C11—C121.490 (3)
C1—H1B0.9900C11—H11A0.9900
C2—O21.426 (2)C11—H11B0.9900
C2—H2A0.9900C12—O11.427 (2)
C2—H2B0.9900C12—H12A0.9900
C3—O21.432 (2)C12—H12B0.9900
C3—C41.490 (3)C13—O81.233 (3)
C3—H3A0.9900C13—O71.252 (3)
C3—H3B0.9900C13—C141.508 (3)
C4—O31.426 (2)C13—K3.221 (2)
C4—H4A0.9900C14—H14A0.9800
C4—H4B0.9900C14—H14B0.9800
C5—O31.421 (2)C14—H14C0.9800
C5—C61.495 (3)C15—O101.201 (3)
C5—H5A0.9900C15—O111.290 (3)
C5—H5B0.9900C15—C161.493 (3)
C6—O41.425 (2)C16—H16A0.9800
C6—H6A0.9900C16—H16B0.9800
C6—H6B0.9900C16—H16C0.9800
C7—O41.425 (2)K—O12.7861 (12)
C7—C81.498 (3)K—O23.0045 (13)
C7—H7A0.9900K—O32.8510 (12)
C7—H7B0.9900K—O43.0337 (13)
C8—O51.420 (2)K—O52.9019 (13)
C8—H8A0.9900K—O62.9435 (13)
C8—H8B0.9900K—O73.0303 (19)
C9—O51.426 (2)K—O82.9562 (16)
C9—C101.491 (3)K—O92.7855 (14)
C9—H9A0.9900O9—H20.937 (10)
C9—H9B0.9900O9—H10.935 (10)
C10—O61.437 (2)O11—H31.08 (5)
C10—H10A0.9900
O1—C1—C2109.02 (15)C13—C14—H14A109.5
O1—C1—H1A109.9C13—C14—H14B109.5
C2—C1—H1A109.9H14A—C14—H14B109.5
O1—C1—H1B109.9C13—C14—H14C109.5
C2—C1—H1B109.9H14A—C14—H14C109.5
H1A—C1—H1B108.3H14B—C14—H14C109.5
O2—C2—C1109.61 (15)O10—C15—O11123.8 (2)
O2—C2—H2A109.7O10—C15—C16121.8 (2)
C1—C2—H2A109.7O11—C15—C16114.4 (2)
O2—C2—H2B109.7C15—C16—H16A109.5
C1—C2—H2B109.7C15—C16—H16B109.5
H2A—C2—H2B108.2H16A—C16—H16B109.5
O2—C3—C4109.30 (14)C15—C16—H16C109.5
O2—C3—H3A109.8H16A—C16—H16C109.5
C4—C3—H3A109.8H16B—C16—H16C109.5
O2—C3—H3B109.8C1—O1—C12112.24 (14)
C4—C3—H3B109.8C1—O1—K123.36 (10)
H3A—C3—H3B108.3C12—O1—K120.72 (10)
O3—C4—C3109.03 (14)C2—O2—C3110.62 (14)
O3—C4—H4A109.9C2—O2—K105.41 (10)
C3—C4—H4A109.9C3—O2—K104.17 (10)
O3—C4—H4B109.9C5—O3—C4111.74 (13)
C3—C4—H4B109.9C5—O3—K121.11 (10)
H4A—C4—H4B108.3C4—O3—K119.97 (10)
O3—C5—C6108.58 (14)C7—O4—C6112.30 (14)
O3—C5—H5A110.0C7—O4—K106.86 (10)
C6—C5—H5A110.0C6—O4—K106.08 (10)
O3—C5—H5B110.0C8—O5—C9112.12 (14)
C6—C5—H5B110.0C8—O5—K121.71 (10)
H5A—C5—H5B108.4C9—O5—K117.67 (10)
O4—C6—C5108.44 (15)C11—O6—C10110.78 (14)
O4—C6—H6A110.0C11—O6—K103.03 (10)
C5—C6—H6A110.0C10—O6—K109.26 (10)
O4—C6—H6B110.0C13—O7—K87.18 (13)
C5—C6—H6B110.0C13—O7—H3121.1 (19)
H6A—C6—H6B108.4K—O7—H3143.3 (19)
O4—C7—C8107.82 (15)C13—O8—K90.94 (13)
O4—C7—H7A110.1K—O9—H2134.4 (17)
C8—C7—H7A110.1K—O9—H182.7 (15)
O4—C7—H7B110.1H2—O9—H1106 (2)
C8—C7—H7B110.1C15—O11—H3111 (3)
H7A—C7—H7B108.5O9—K—O183.45 (4)
O5—C8—C7108.89 (15)O9—K—O381.74 (4)
O5—C8—H8A109.9O1—K—O3116.00 (4)
C7—C8—H8A109.9O9—K—O5140.23 (4)
O5—C8—H8B109.9O1—K—O5117.15 (4)
C7—C8—H8B109.9O3—K—O5113.43 (4)
H8A—C8—H8B108.3O9—K—O6126.82 (4)
O5—C9—C10109.42 (15)O1—K—O658.76 (4)
O5—C9—H9A109.8O3—K—O6146.14 (4)
C10—C9—H9A109.8O5—K—O658.48 (4)
O5—C9—H9B109.8O9—K—O875.08 (4)
C10—C9—H9B109.8O1—K—O894.65 (4)
H9A—C9—H9B108.2O3—K—O8138.97 (4)
O6—C10—C9108.94 (15)O5—K—O869.91 (4)
O6—C10—H10A109.9O6—K—O872.63 (4)
C9—C10—H10A109.9O9—K—O273.02 (4)
O6—C10—H10B109.9O1—K—O257.81 (4)
C9—C10—H10B109.9O3—K—O258.28 (3)
H10A—C10—H10B108.3O5—K—O2146.61 (4)
O6—C11—C12109.49 (14)O6—K—O2108.51 (4)
O6—C11—H11A109.8O8—K—O2139.62 (4)
C12—C11—H11A109.8O9—K—O757.03 (5)
O6—C11—H11B109.8O1—K—O7124.80 (5)
C12—C11—H11B109.8O3—K—O796.28 (4)
H11A—C11—H11B108.2O5—K—O784.11 (4)
O1—C12—C11109.04 (15)O6—K—O7114.05 (4)
O1—C12—H12A109.9O8—K—O742.69 (5)
C11—C12—H12A109.9O2—K—O7127.27 (4)
O1—C12—H12B109.9O9—K—O4121.61 (4)
C11—C12—H12B109.9O1—K—O4149.21 (4)
H12A—C12—H12B108.3O3—K—O457.44 (3)
O8—C13—O7122.60 (19)O5—K—O456.23 (3)
O8—C13—C14120.3 (2)O6—K—O4108.18 (4)
O7—C13—C14117.1 (2)O8—K—O4108.28 (4)
O8—C13—K66.57 (11)O2—K—O4109.28 (4)
O7—C13—K69.97 (12)O7—K—O485.72 (4)
C14—C13—K139.36 (15)
O1—C1—C2—O261.89 (19)C3—C4—O3—K29.99 (18)
O2—C3—C4—O367.56 (18)C8—C7—O4—C6177.77 (15)
O3—C5—C6—O467.82 (18)C8—C7—O4—K66.31 (15)
O4—C7—C8—O565.00 (19)C5—C6—O4—C7179.99 (15)
O5—C9—C10—O667.21 (19)C5—C6—O4—K63.62 (15)
O6—C11—C12—O163.41 (19)C7—C8—O5—C9175.98 (15)
C2—C1—O1—C12175.70 (15)C7—C8—O5—K28.8 (2)
C2—C1—O1—K25.89 (19)C10—C9—O5—C8174.05 (15)
C11—C12—O1—C1178.99 (15)C10—C9—O5—K37.31 (18)
C11—C12—O1—K21.96 (18)C12—C11—O6—C10175.38 (15)
C1—C2—O2—C3175.23 (15)C12—C11—O6—K67.88 (14)
C1—C2—O2—K63.21 (15)C9—C10—O6—C11174.01 (15)
C4—C3—O2—C2178.92 (14)C9—C10—O6—K61.18 (16)
C4—C3—O2—K66.11 (14)O8—C13—O7—K42.6 (2)
C6—C5—O3—C4175.13 (15)C14—C13—O7—K136.11 (18)
C6—C5—O3—K34.54 (18)O7—C13—O8—K43.9 (2)
C3—C4—O3—C5179.29 (14)C14—C13—O8—K134.79 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H1···O70.94 (1)1.93 (2)2.785 (7)151 (9)
O9—H2···O8i0.94 (1)1.89 (2)2.786 (7)160 (9)
O11—H3···O71.08 (5)1.43 (5)2.513 (6)168 (5)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

Financial support of this work by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.

References

First citationAbaszadeh, M. & Seifi, M. (2015). Res. Chem. Intermed. 41, 7715–7723.  Web of Science CrossRef CAS Google Scholar
First citationBarnes, J. C. & Collard, J. (1988). Acta Cryst. C44, 565–566.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBarrow, M. J., Currie, M., Muir, K. W., Speakman, J. C. & White, D. N. J. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 15–18.  CSD CrossRef Web of Science Google Scholar
First citationBeheshti, A., Clegg, W., Dale, S. H. & Hyvadi, R. (2007). Inorg. Chim. Acta, 360, 2967–2972.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCurrie, M. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 832–835.  CSD CrossRef Web of Science Google Scholar
First citationDalley, N. K. (1978). Synth. Multident. Macrocyclic Compd, pp. 207–243.  Google Scholar
First citationDoheny, A. J. & Ganem, B. (1980). J. Chem. Educ. 57, 308.  CrossRef Google Scholar
First citationLi, Q., Li, Q., Shen, Y., Meng, X., Luan, F. & Xiang, A. (2010). J. Chem. Crystallogr. 40, 1155–1158.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiotta, C. L., Harris, H. P., McDermott, M., Gonzalez, T. & Smith, K. (1974). Tetrahedron Lett. 15, 2417–2420.  CrossRef Google Scholar
First citationMakarov, A. Y., Irtegova, I. G., Vasilieva, N. V., Bagryanskaya, I. Y., Borrmann, T., Gatilov, Y. V., Lork, E., Mews, R., Stohrer, W.-D. & Zibarev, A. V. (2005). Inorg. Chem. 44, 7194–7199.  Web of Science CSD CrossRef CAS Google Scholar
First citationMandai, T., Tsuzuki, S., Ueno, K., Dokko, K. & Watanabe, M. (2015). Phys. Chem. Chem. Phys. 17, 2838–2849.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeier, R., Trojanowski, C. & Mattes, R. (1995). J. Chem. Soc. Dalton Trans. pp. 2521–2528.  CSD CrossRef Web of Science Google Scholar
First citationSchulz, F., Pantenburg, I. & Naumann, D. (2003). Z. Anorg. Allg. Chem. 629, 2312–2316.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShono, T. (1994). Kagaku, 49, 701–703.  CAS Google Scholar
First citationSievert, M., Krenzel, V. & Bock, H. (1996). Z. Kristallogr. 211, 794–797.  CAS Google Scholar
First citationSong, Y., Jing, H., Li, B. & Bai, D. (2011). Chem. Eur. J. 17, 8731–8738.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds