research communications
of diethylammonium aniline-4-sulfonate anilinium-4-sulfonate
aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, 246 Nieuwland, Science Hall, Notre Dame, IN 46557-5670, USA
*Correspondence e-mail: dlibasse@gmail.com
The title compound, C4H12N+·C6H6NO3S−·C6H7NO3S, consists of an and a zwitterionic neutral molecule. The cation adopts an extended conformation [C—C—N—C torsion angles = 177.1 (3) and −178.4 (3)°]. In the crystal, the components are linked by N—H⋯O and N—H⋯N hydrogen bonds, generating a three-dimensional network, which is consolidated by weak C—H⋯O interactions.
Keywords: crystal structure; diethylammonium cation; anilinesulfonic zwitterion; anilinesulfonate; hydrogen bonds; three-dimensional structure.
CCDC reference: 1515845
1. Chemical context
Acids such as sulfuric, nitric, oxalic, phosphoric, substituted sulfonic, etc. when mixed in water with etc, which yield new adducts and complexes in which the conjugate anion of the acid behaves as a ligand, usually coordinating the metal ion (Najafi et al., 2011a,b; Ittyachan et al., 2016; Majeed & Wendt, 2016).
give acidic or neutral salts that may be soluble in organic solvents: this solubility allows for the study of their interactions with metal halides, acetates, nitrates, perchlorates,We report here the synthesis and structure of the product arising from the mixing of diethylamine and anilinesulfonic acid solutions, which contains a combination of ions and a zwitterion. In terms of other compounds containing both the anilinesulfonate anion and its zwitterionic form, aniliniumsulfonate, to date only the 4-aminopyridinium salt has been reported (Fun et al., 2008).
2. Structural commentary
There is one diethylammonium cation, one anilinesulfonate anion and one zwitterionic aniliniumsulfonate molecule in the ). The individual molecules are unremarkable with bond distances and angles typical of their type. The cation adopts an extended conformation [C1—C2—N1—C3 and C2—N1—C3—C4 torsion angles = 177.1 (3) and −178.4 (3)°, respectively].
(Fig. 13. Supramolecular features
The zwitterionic aniliniumsulfonate and the anilinesulfonate anion are connected through N2—H2NA⋯O4i, N2—H2NB⋯O5ii, N2—H2NC⋯N3iii, N3—H3NA⋯O1iv and N3—H3NB⋯O3v hydrogen bonds (Table 1) giving sheet-like bi-layers that lie parallel to the bc plane [symmetry codes: (i) −x + 1, y − , −z + 1; (ii) −x + 1, y + , −z + 1; (iii) x − 1, y, z − 1; (iv) −x + 1, y + , −z + 2; (v) −x + 1, y − , −z + 2]. The bi-layers are then linked through N1—H1NA⋯O2, N1—H1NB⋯O5 and N1—H1NB⋯O6 hydrogen bonds, yielding a three-dimensional network (Fig. 2). Some weak C—H⋯O (C3—H3A⋯O3vi, C6—H6⋯O3vi and C9—H9⋯O1vii) interactions consolidate the packing in the crystal [symmetry codes: (vi) x, y − 1, z; (vii) −x, y + , −z + 1]. Examination of the packing reveals layers of diethyl ammonium cation sandwiched between bi-layers of aniline sulfate moieties. The key hydrogen bonds establishing the three-dimensional array are the contacts to sulfonate oxygen atoms and the N2⋯N3 aniline interactions. All amine hydrogen atoms form good hydrogen-bond contacts to neighboring hydrogen-bond acceptor atoms.
4. Database survey
A search of the Cambridge Structural Database (Version 5.37 + one update; Groom et al., 2016) shows 46 hits concerning the anilinesulfonate anion, three containing aniliniumsulfonate and one hit with both (Fun et al., 2008), while 303 hits concern the diethylammonium ion.
5. Synthesis and crystallization
Dimethyl amine was mixed in water with aniline sulfonic acid in a 1:1 ratio. Colorless block-like crystals were obtained on allowing the water to evaporate at 333 K.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms bonded to carbon were included in geometrically calculated positions and allowed to ride on the parent atom. All amine hydrogen atoms were located in a difference Fourier map and refined freely.
details are summarized in Table 2
|
As the molecules are achiral, only the correct enantiomorph of the x parameter of 0.03 (6) (Parsons et al., 2013) and a Hooft y parameter of 0.04 (6) (Hooft et al., 2008).
was determined: this was determined by comparison of intensities of Friedel pairs of reflections yielding a FlackSupporting information
CCDC reference: 1515845
https://doi.org/10.1107/S2056989016018041/hb7622sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016018041/hb7622Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016018041/hb7622Isup3.cml
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C4H12N+·C6H6NO3S−·C6H7NO3S | F(000) = 444 |
Mr = 419.51 | Dx = 1.419 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 11.419 (3) Å | Cell parameters from 4341 reflections |
b = 5.6731 (16) Å | θ = 2.7–24.5° |
c = 15.226 (4) Å | µ = 0.31 mm−1 |
β = 95.530 (4)° | T = 120 K |
V = 981.8 (5) Å3 | Plate, colorless |
Z = 2 | 0.22 × 0.19 × 0.05 mm |
Bruker APEXII CCD diffractometer | 4911 independent reflections |
Radiation source: fine-focus sealed tube | 4228 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
Detector resolution: 8.33 pixels mm-1 | θmax = 28.4°, θmin = 1.3° |
combination of ω and φ–scans | h = −15→15 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −7→7 |
Tmin = 0.781, Tmax = 0.931 | l = −20→20 |
18906 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0303P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max = 0.001 |
4911 reflections | Δρmax = 0.29 e Å−3 |
274 parameters | Δρmin = −0.38 e Å−3 |
4 restraints | Absolute structure: Flack x determined using 1632 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: real-space vector search | Absolute structure parameter: 0.03 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.5053 (3) | 0.0636 (5) | 0.74539 (18) | 0.0247 (7) | |
H1NA | 0.437 (3) | 0.156 (6) | 0.727 (2) | 0.033 (10)* | |
H1NB | 0.566 (3) | 0.160 (6) | 0.761 (2) | 0.031 (11)* | |
C1 | 0.4529 (3) | 0.0950 (8) | 0.8976 (2) | 0.0461 (11) | |
H1A | 0.4323 | 0.0039 | 0.9486 | 0.069* | |
H1B | 0.3869 | 0.1973 | 0.8767 | 0.069* | |
H1C | 0.5224 | 0.1918 | 0.9148 | 0.069* | |
C2 | 0.4791 (3) | −0.0698 (7) | 0.8253 (2) | 0.0365 (10) | |
H2A | 0.5474 | −0.1696 | 0.8458 | 0.044* | |
H2B | 0.4106 | −0.1743 | 0.8104 | 0.044* | |
C3 | 0.5386 (3) | −0.0861 (7) | 0.6708 (2) | 0.0336 (9) | |
H3A | 0.4730 | −0.1938 | 0.6512 | 0.040* | |
H3B | 0.6083 | −0.1829 | 0.6907 | 0.040* | |
C4 | 0.5661 (3) | 0.0694 (8) | 0.5950 (2) | 0.0459 (11) | |
H4A | 0.5848 | −0.0291 | 0.5453 | 0.069* | |
H4B | 0.6337 | 0.1699 | 0.6138 | 0.069* | |
H4C | 0.4977 | 0.1683 | 0.5767 | 0.069* | |
S1 | 0.21877 (6) | 0.48653 (13) | 0.65278 (5) | 0.01702 (18) | |
O1 | 0.11341 (17) | 0.4576 (4) | 0.69828 (12) | 0.0192 (5) | |
O2 | 0.3108 (2) | 0.3205 (4) | 0.68312 (15) | 0.0281 (6) | |
O3 | 0.25973 (19) | 0.7296 (4) | 0.65346 (13) | 0.0221 (5) | |
N2 | 0.0854 (2) | 0.2713 (5) | 0.27136 (16) | 0.0166 (6) | |
H2NA | 0.088 (3) | 0.109 (4) | 0.2598 (18) | 0.017 (8)* | |
H2NB | 0.144 (2) | 0.338 (6) | 0.239 (2) | 0.027 (10)* | |
H2NC | 0.010 (2) | 0.341 (7) | 0.252 (2) | 0.051 (12)* | |
C5 | 0.1782 (3) | 0.4162 (6) | 0.54039 (19) | 0.0152 (7) | |
C6 | 0.2099 (3) | 0.2003 (5) | 0.50528 (19) | 0.0180 (7) | |
H6 | 0.2527 | 0.0874 | 0.5416 | 0.022* | |
C7 | 0.1781 (3) | 0.1530 (6) | 0.41663 (19) | 0.0181 (7) | |
H7 | 0.1995 | 0.0075 | 0.3917 | 0.022* | |
C8 | 0.1153 (3) | 0.3183 (5) | 0.36490 (19) | 0.0149 (7) | |
C9 | 0.0805 (3) | 0.5306 (5) | 0.39992 (19) | 0.0162 (6) | |
H9 | 0.0359 | 0.6415 | 0.3639 | 0.019* | |
C10 | 0.1122 (3) | 0.5774 (5) | 0.48805 (19) | 0.0161 (7) | |
H10 | 0.0886 | 0.7213 | 0.5130 | 0.019* | |
S2 | 0.78723 (7) | 0.26125 (13) | 0.83062 (5) | 0.01669 (18) | |
O4 | 0.89636 (19) | 0.3121 (4) | 0.79229 (13) | 0.0194 (5) | |
O5 | 0.75682 (17) | 0.0109 (4) | 0.82423 (12) | 0.0173 (5) | |
O6 | 0.68960 (19) | 0.4094 (4) | 0.79409 (14) | 0.0231 (5) | |
N3 | 0.8696 (3) | 0.4851 (6) | 1.21318 (17) | 0.0194 (6) | |
H3NA | 0.874 (3) | 0.630 (7) | 1.223 (2) | 0.028 (11)* | |
H3NB | 0.824 (3) | 0.430 (6) | 1.244 (2) | 0.020 (10)* | |
C11 | 0.8122 (3) | 0.3252 (5) | 0.94423 (19) | 0.0146 (7) | |
C12 | 0.7796 (3) | 0.1654 (5) | 1.00663 (19) | 0.0181 (7) | |
H12 | 0.7445 | 0.0197 | 0.9881 | 0.022* | |
C13 | 0.7982 (3) | 0.2179 (5) | 1.09560 (18) | 0.0178 (7) | |
H13 | 0.7767 | 0.1071 | 1.1380 | 0.021* | |
C14 | 0.8485 (3) | 0.4330 (5) | 1.12326 (19) | 0.0159 (7) | |
C15 | 0.8832 (3) | 0.5891 (5) | 1.06041 (19) | 0.0190 (7) | |
H15 | 0.9198 | 0.7337 | 1.0787 | 0.023* | |
C16 | 0.8650 (3) | 0.5360 (5) | 0.9717 (2) | 0.0201 (7) | |
H16 | 0.8889 | 0.6444 | 0.9293 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0186 (16) | 0.0267 (17) | 0.0282 (16) | 0.0017 (13) | −0.0008 (13) | 0.0020 (13) |
C1 | 0.033 (2) | 0.077 (3) | 0.029 (2) | −0.013 (2) | 0.0030 (18) | 0.004 (2) |
C2 | 0.0242 (19) | 0.043 (3) | 0.041 (2) | −0.0057 (18) | −0.0012 (17) | 0.0136 (19) |
C3 | 0.0192 (19) | 0.039 (2) | 0.042 (2) | 0.0001 (16) | −0.0021 (16) | −0.0131 (18) |
C4 | 0.034 (2) | 0.068 (3) | 0.036 (2) | 0.005 (2) | 0.0077 (19) | −0.006 (2) |
S1 | 0.0176 (4) | 0.0183 (4) | 0.0148 (4) | 0.0014 (3) | −0.0006 (3) | −0.0003 (3) |
O1 | 0.0206 (12) | 0.0203 (13) | 0.0174 (11) | −0.0024 (10) | 0.0057 (9) | −0.0005 (10) |
O2 | 0.0288 (14) | 0.0326 (15) | 0.0214 (12) | 0.0145 (11) | −0.0059 (10) | −0.0002 (10) |
O3 | 0.0275 (13) | 0.0213 (13) | 0.0176 (11) | −0.0072 (11) | 0.0022 (9) | −0.0037 (10) |
N2 | 0.0222 (15) | 0.0139 (14) | 0.0139 (13) | −0.0004 (13) | 0.0023 (11) | −0.0005 (12) |
C5 | 0.0141 (16) | 0.0172 (17) | 0.0147 (15) | −0.0027 (13) | 0.0027 (12) | 0.0000 (12) |
C6 | 0.0194 (17) | 0.0157 (16) | 0.0186 (15) | 0.0026 (13) | 0.0008 (13) | 0.0012 (12) |
C7 | 0.0203 (17) | 0.0145 (15) | 0.0198 (16) | 0.0004 (13) | 0.0030 (14) | −0.0026 (13) |
C8 | 0.0153 (16) | 0.0178 (17) | 0.0120 (15) | −0.0033 (12) | 0.0029 (12) | −0.0001 (12) |
C9 | 0.0169 (15) | 0.0143 (16) | 0.0172 (15) | 0.0007 (12) | 0.0000 (12) | 0.0037 (12) |
C10 | 0.0195 (17) | 0.0131 (15) | 0.0162 (15) | 0.0003 (12) | 0.0037 (13) | −0.0008 (12) |
S2 | 0.0195 (4) | 0.0154 (4) | 0.0149 (4) | 0.0007 (3) | 0.0008 (3) | −0.0002 (3) |
O4 | 0.0218 (12) | 0.0188 (13) | 0.0182 (11) | −0.0011 (10) | 0.0047 (9) | 0.0008 (9) |
O5 | 0.0218 (11) | 0.0144 (11) | 0.0161 (10) | −0.0019 (10) | 0.0027 (9) | −0.0019 (9) |
O6 | 0.0261 (13) | 0.0218 (13) | 0.0201 (12) | 0.0053 (10) | −0.0037 (10) | −0.0001 (9) |
N3 | 0.0260 (16) | 0.0171 (15) | 0.0152 (13) | −0.0031 (14) | 0.0023 (12) | −0.0007 (13) |
C11 | 0.0155 (16) | 0.0155 (17) | 0.0127 (15) | 0.0033 (12) | 0.0011 (12) | 0.0009 (12) |
C12 | 0.0189 (17) | 0.0142 (15) | 0.0213 (16) | −0.0004 (13) | 0.0020 (13) | −0.0005 (12) |
C13 | 0.0215 (17) | 0.0162 (16) | 0.0162 (15) | −0.0003 (13) | 0.0037 (13) | 0.0025 (12) |
C14 | 0.0170 (16) | 0.0167 (17) | 0.0141 (15) | 0.0053 (13) | 0.0022 (12) | −0.0019 (12) |
C15 | 0.0206 (17) | 0.0144 (16) | 0.0214 (16) | −0.0019 (13) | −0.0009 (14) | −0.0016 (13) |
C16 | 0.0228 (17) | 0.0183 (18) | 0.0191 (16) | −0.0019 (13) | 0.0019 (13) | 0.0034 (13) |
N1—C2 | 1.488 (4) | C6—C7 | 1.390 (4) |
N1—C3 | 1.497 (4) | C6—H6 | 0.9500 |
N1—H1NA | 0.96 (3) | C7—C8 | 1.380 (4) |
N1—H1NB | 0.90 (3) | C7—H7 | 0.9500 |
C1—C2 | 1.496 (5) | C8—C9 | 1.390 (4) |
C1—H1A | 0.9800 | C9—C10 | 1.381 (4) |
C1—H1B | 0.9800 | C9—H9 | 0.9500 |
C1—H1C | 0.9800 | C10—H10 | 0.9500 |
C2—H2A | 0.9900 | S2—O4 | 1.455 (2) |
C2—H2B | 0.9900 | S2—O6 | 1.462 (2) |
C3—C4 | 1.510 (5) | S2—O5 | 1.463 (2) |
C3—H3A | 0.9900 | S2—C11 | 1.763 (3) |
C3—H3B | 0.9900 | N3—C14 | 1.399 (4) |
C4—H4A | 0.9800 | N3—H3NA | 0.83 (4) |
C4—H4B | 0.9800 | N3—H3NB | 0.79 (3) |
C4—H4C | 0.9800 | C11—C16 | 1.386 (4) |
S1—O2 | 1.453 (2) | C11—C12 | 1.389 (4) |
S1—O1 | 1.454 (2) | C12—C13 | 1.383 (4) |
S1—O3 | 1.456 (2) | C12—H12 | 0.9500 |
S1—C5 | 1.775 (3) | C13—C14 | 1.397 (4) |
N2—C8 | 1.457 (4) | C13—H13 | 0.9500 |
N2—H2NA | 0.94 (2) | C14—C15 | 1.389 (4) |
N2—H2NB | 0.94 (2) | C15—C16 | 1.380 (4) |
N2—H2NC | 0.97 (2) | C15—H15 | 0.9500 |
C5—C10 | 1.387 (4) | C16—H16 | 0.9500 |
C5—C6 | 1.398 (4) | ||
C2—N1—C3 | 114.7 (3) | C6—C5—S1 | 120.8 (2) |
C2—N1—H1NA | 107 (2) | C7—C6—C5 | 119.2 (3) |
C3—N1—H1NA | 110 (2) | C7—C6—H6 | 120.4 |
C2—N1—H1NB | 108 (2) | C5—C6—H6 | 120.4 |
C3—N1—H1NB | 107 (2) | C8—C7—C6 | 119.7 (3) |
H1NA—N1—H1NB | 109 (3) | C8—C7—H7 | 120.1 |
C2—C1—H1A | 109.5 | C6—C7—H7 | 120.1 |
C2—C1—H1B | 109.5 | C7—C8—C9 | 121.4 (3) |
H1A—C1—H1B | 109.5 | C7—C8—N2 | 119.6 (3) |
C2—C1—H1C | 109.5 | C9—C8—N2 | 119.0 (3) |
H1A—C1—H1C | 109.5 | C10—C9—C8 | 118.8 (3) |
H1B—C1—H1C | 109.5 | C10—C9—H9 | 120.6 |
N1—C2—C1 | 110.7 (3) | C8—C9—H9 | 120.6 |
N1—C2—H2A | 109.5 | C9—C10—C5 | 120.5 (3) |
C1—C2—H2A | 109.5 | C9—C10—H10 | 119.7 |
N1—C2—H2B | 109.5 | C5—C10—H10 | 119.7 |
C1—C2—H2B | 109.5 | O4—S2—O6 | 112.61 (13) |
H2A—C2—H2B | 108.1 | O4—S2—O5 | 111.89 (13) |
N1—C3—C4 | 109.6 (3) | O6—S2—O5 | 111.41 (13) |
N1—C3—H3A | 109.7 | O4—S2—C11 | 106.81 (14) |
C4—C3—H3A | 109.7 | O6—S2—C11 | 107.45 (14) |
N1—C3—H3B | 109.7 | O5—S2—C11 | 106.25 (14) |
C4—C3—H3B | 109.7 | C14—N3—H3NA | 112 (2) |
H3A—C3—H3B | 108.2 | C14—N3—H3NB | 115 (2) |
C3—C4—H4A | 109.5 | H3NA—N3—H3NB | 109 (3) |
C3—C4—H4B | 109.5 | C16—C11—C12 | 119.6 (3) |
H4A—C4—H4B | 109.5 | C16—C11—S2 | 119.9 (2) |
C3—C4—H4C | 109.5 | C12—C11—S2 | 120.5 (2) |
H4A—C4—H4C | 109.5 | C13—C12—C11 | 120.2 (3) |
H4B—C4—H4C | 109.5 | C13—C12—H12 | 119.9 |
O2—S1—O1 | 112.42 (14) | C11—C12—H12 | 119.9 |
O2—S1—O3 | 112.94 (15) | C12—C13—C14 | 120.2 (3) |
O1—S1—O3 | 112.55 (13) | C12—C13—H13 | 119.9 |
O2—S1—C5 | 105.94 (14) | C14—C13—H13 | 119.9 |
O1—S1—C5 | 106.42 (13) | C15—C14—C13 | 119.1 (3) |
O3—S1—C5 | 105.88 (14) | C15—C14—N3 | 120.4 (3) |
C8—N2—H2NA | 110.7 (18) | C13—C14—N3 | 120.5 (3) |
C8—N2—H2NB | 109 (2) | C16—C15—C14 | 120.6 (3) |
H2NA—N2—H2NB | 105 (3) | C16—C15—H15 | 119.7 |
C8—N2—H2NC | 110 (2) | C14—C15—H15 | 119.7 |
H2NA—N2—H2NC | 113 (3) | C15—C16—C11 | 120.2 (3) |
H2NB—N2—H2NC | 109 (3) | C15—C16—H16 | 119.9 |
C10—C5—C6 | 120.3 (3) | C11—C16—H16 | 119.9 |
C10—C5—S1 | 118.9 (2) | ||
C3—N1—C2—C1 | 177.1 (3) | S1—C5—C10—C9 | 178.9 (2) |
C2—N1—C3—C4 | −178.4 (3) | O4—S2—C11—C16 | 47.7 (3) |
O2—S1—C5—C10 | −165.1 (2) | O6—S2—C11—C16 | −73.4 (3) |
O1—S1—C5—C10 | 75.1 (3) | O5—S2—C11—C16 | 167.2 (2) |
O3—S1—C5—C10 | −44.9 (3) | O4—S2—C11—C12 | −132.1 (3) |
O2—S1—C5—C6 | 16.1 (3) | O6—S2—C11—C12 | 106.9 (3) |
O1—S1—C5—C6 | −103.7 (3) | O5—S2—C11—C12 | −12.5 (3) |
O3—S1—C5—C6 | 136.3 (2) | C16—C11—C12—C13 | 1.0 (4) |
C10—C5—C6—C7 | 2.2 (4) | S2—C11—C12—C13 | −179.3 (2) |
S1—C5—C6—C7 | −179.0 (2) | C11—C12—C13—C14 | 0.8 (4) |
C5—C6—C7—C8 | −0.4 (4) | C12—C13—C14—C15 | −2.3 (4) |
C6—C7—C8—C9 | −1.4 (5) | C12—C13—C14—N3 | −178.8 (3) |
C6—C7—C8—N2 | 178.0 (3) | C13—C14—C15—C16 | 2.0 (4) |
C7—C8—C9—C10 | 1.4 (4) | N3—C14—C15—C16 | 178.5 (3) |
N2—C8—C9—C10 | −178.0 (3) | C14—C15—C16—C11 | −0.2 (5) |
C8—C9—C10—C5 | 0.5 (4) | C12—C11—C16—C15 | −1.3 (4) |
C6—C5—C10—C9 | −2.3 (4) | S2—C11—C16—C15 | 179.0 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1NA···O2 | 0.96 (3) | 1.79 (4) | 2.748 (4) | 175 (3) |
N1—H1NB···O5 | 0.90 (3) | 2.45 (3) | 3.019 (4) | 122 (3) |
N1—H1NB···O6 | 0.90 (3) | 2.03 (4) | 2.920 (4) | 173 (3) |
N2—H2NA···O4i | 0.94 (2) | 1.88 (2) | 2.794 (4) | 165 (3) |
N2—H2NB···O5ii | 0.94 (2) | 1.85 (2) | 2.778 (3) | 171 (3) |
N2—H2NC···N3iii | 0.97 (2) | 1.85 (2) | 2.812 (4) | 178 (4) |
N3—H3NA···O1iv | 0.83 (4) | 2.21 (4) | 2.998 (4) | 157 (3) |
N3—H3NB···O3v | 0.79 (3) | 2.23 (3) | 2.997 (4) | 164 (3) |
C3—H3A···O3vi | 0.99 | 2.48 | 3.338 (4) | 145 |
C6—H6···O3vi | 0.95 | 2.65 | 3.507 (4) | 151 |
C9—H9···O1vii | 0.95 | 2.59 | 3.517 (4) | 165 |
Symmetry codes: (i) −x+1, y−1/2, −z+1; (ii) −x+1, y+1/2, −z+1; (iii) x−1, y, z−1; (iv) −x+1, y+1/2, −z+2; (v) −x+1, y−1/2, −z+2; (vi) x, y−1, z; (vii) −x, y+1/2, −z+1. |
Acknowledgements
The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal) and the University of Notre Dame (USA) for financial support.
References
Bruker (2015). APEX3 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Jebas, S. R. & Sinthiya, A. (2008). Acta Cryst. E64, o697–o698. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ittyachan, R., Ahigna, M. S. & Jagan, R. (2016). Acta Cryst. E72, 530–533. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Majeed, M. H. & Wendt, O. F. (2016). Acta Cryst. E72, 534–537. CSD CrossRef IUCr Journals Google Scholar
Najafi, E., Amini, M. M. & Ng, S. W. (2011a). Acta Cryst. E67, m241. CSD CrossRef IUCr Journals Google Scholar
Najafi, E., Amini, M. M. & Ng, S. W. (2011b). Acta Cryst. E67, m239. CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.