research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­ethyl­ammonium aniline-4-sulfonate anilinium-4-sulfonate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, 246 Nieuwland, Science Hall, Notre Dame, IN 46557-5670, USA
*Correspondence e-mail: dlibasse@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 14 October 2016; accepted 9 November 2016; online 18 November 2016)

The title compound, C4H12N+·C6H6NO3S·C6H7NO3S, consists of an ion pair and a zwitterionic neutral mol­ecule. The cation adopts an extended conformation [C—C—N—C torsion angles = 177.1 (3) and −178.4 (3)°]. In the crystal, the components are linked by N—H⋯O and N—H⋯N hydrogen bonds, generating a three-dimensional network, which is consolidated by weak C—H⋯O inter­actions.

1. Chemical context

Acids such as sulfuric, nitric, oxalic, phospho­ric, substituted sulfonic, etc. when mixed in water with amines give acidic or neutral salts that may be soluble in organic solvents: this solubility allows for the study of their inter­actions with metal halides, acetates, nitrates, perchlorates, etc, which yield new adducts and complexes in which the conjugate anion of the acid behaves as a ligand, usually coordinating the metal ion (Najafi et al., 2011a[Najafi, E., Amini, M. M. & Ng, S. W. (2011a). Acta Cryst. E67, m241.],b[Najafi, E., Amini, M. M. & Ng, S. W. (2011b). Acta Cryst. E67, m239.]; Ittyachan et al., 2016[Ittyachan, R., Ahigna, M. S. & Jagan, R. (2016). Acta Cryst. E72, 530-533.]; Majeed & Wendt, 2016[Majeed, M. H. & Wendt, O. F. (2016). Acta Cryst. E72, 534-537.]).

[Scheme 1]

We report here the synthesis and structure of the product arising from the mixing of di­ethyl­amine and aniline­sulfonic acid solutions, which contains a combination of ions and a zwitterion. In terms of other compounds containing both the aniline­sulfonate anion and its zwitterionic form, anilinium­sulfonate, to date only the 4-amino­pyridinium salt has been reported (Fun et al., 2008[Fun, H.-K., Jebas, S. R. & Sinthiya, A. (2008). Acta Cryst. E64, o697-o698.]).

2. Structural commentary

There is one di­ethyl­ammonium cation, one aniline­sulfonate anion and one zwitterionic aniliniumsulfonate mol­ecule in the asymmetric unit (Fig. 1[link]). The individual mol­ecules are unremarkable with bond distances and angles typical of their type. The cation adopts an extended conformation [C1—C2—N1—C3 and C2—N1—C3—C4 torsion angles = 177.1 (3) and −178.4 (3)°, respectively].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids depicted at the 50% probability level and H atoms as spheres of an arbitrary radius. Hydrogen bonds are represented by light-blue dashed lines.

3. Supra­molecular features

The zwitterionic aniliniumsulfonate and the aniline­sulfonate anion are connected through N2—H2NA⋯O4i, N2—H2NB⋯O5ii, N2—H2NC⋯N3iii, N3—H3NA⋯O1iv and N3—H3NB⋯O3v hydrogen bonds (Table 1[link]) giving sheet-like bi-layers that lie parallel to the bc plane [symmetry codes: (i) −x + 1, y − [{1\over 2}], −z + 1; (ii) −x + 1, y + [{1\over 2}], −z + 1; (iii) x − 1, y, z − 1; (iv) −x + 1, y + [{1\over 2}], −z + 2; (v) −x + 1, y − [{1\over 2}], −z + 2]. The bi-layers are then linked through N1—H1NA⋯O2, N1—H1NB⋯O5 and N1—H1NB⋯O6 hydrogen bonds, yielding a three-dimensional network (Fig. 2[link]). Some weak C—H⋯O (C3—H3A⋯O3vi, C6—H6⋯O3vi and C9—H9⋯O1vii) inter­actions consolidate the packing in the crystal [symmetry codes: (vi) x, y − 1, z; (vii) −x, y + [{1\over 2}], −z + 1]. Examination of the packing reveals layers of diethyl ammonium cation sandwiched between bi-layers of aniline sulfate moieties. The key hydrogen bonds establishing the three-dimensional array are the contacts to sulfonate oxygen atoms and the N2⋯N3 aniline inter­actions. All amine hydrogen atoms form good hydrogen-bond contacts to neighboring hydrogen-bond acceptor atoms.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O2 0.96 (3) 1.79 (4) 2.748 (4) 175 (3)
N1—H1NB⋯O5 0.90 (3) 2.45 (3) 3.019 (4) 122 (3)
N1—H1NB⋯O6 0.90 (3) 2.03 (4) 2.920 (4) 173 (3)
N2—H2NA⋯O4i 0.94 (2) 1.88 (2) 2.794 (4) 165 (3)
N2—H2NB⋯O5ii 0.94 (2) 1.85 (2) 2.778 (3) 171 (3)
N2—H2NC⋯N3iii 0.97 (2) 1.85 (2) 2.812 (4) 178 (4)
N3—H3NA⋯O1iv 0.83 (4) 2.21 (4) 2.998 (4) 157 (3)
N3—H3NB⋯O3v 0.79 (3) 2.23 (3) 2.997 (4) 164 (3)
C3—H3A⋯O3vi 0.99 2.48 3.338 (4) 145
C6—H6⋯O3vi 0.95 2.65 3.507 (4) 151
C9—H9⋯O1vii 0.95 2.59 3.517 (4) 165
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) x-1, y, z-1; (iv) [-x+1, y+{\script{1\over 2}}, -z+2]; (v) [-x+1, y-{\script{1\over 2}}, -z+2]; (vi) x, y-1, z; (vii) [-x, y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Packing diagram, viewed along the b axis. Hydrogen bonds are represented by light-blue dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37 + one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows 46 hits concerning the aniline­sulfonate anion, three containing aniliniumsulfonate and one hit with both (Fun et al., 2008[Fun, H.-K., Jebas, S. R. & Sinthiya, A. (2008). Acta Cryst. E64, o697-o698.]), while 303 hits concern the di­ethyl­ammonium ion.

5. Synthesis and crystallization

Dimethyl amine was mixed in water with aniline sulfonic acid in a 1:1 ratio. Colorless block-like crystals were obtained on allowing the water to evaporate at 333 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bonded to carbon were included in geometrically calculated positions and allowed to ride on the parent atom. All amine hydrogen atoms were located in a difference Fourier map and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C4H12N+·C6H6NO3S·C6H7NO3S
Mr 419.51
Crystal system, space group Monoclinic, P21
Temperature (K) 120
a, b, c (Å) 11.419 (3), 5.6731 (16), 15.226 (4)
β (°) 95.530 (4)
V3) 981.8 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.22 × 0.19 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.781, 0.931
No. of measured, independent and observed [I > 2σ(I)] reflections 18906, 4911, 4228
Rint 0.056
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.077, 0.98
No. of reflections 4911
No. of parameters 274
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.38
Absolute structure Flack x determined using 1632 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.03 (6)
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

As the mol­ecules are achiral, only the correct enanti­omorph of the space group was determined: this was determined by comparison of intensities of Friedel pairs of reflections yielding a Flack x parameter of 0.03 (6) (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) and a Hooft y parameter of 0.04 (6) (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Diethylammonium aniline-4-sulfonate anilinium-4-sulfonate top
Crystal data top
C4H12N+·C6H6NO3S·C6H7NO3SF(000) = 444
Mr = 419.51Dx = 1.419 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.419 (3) ÅCell parameters from 4341 reflections
b = 5.6731 (16) Åθ = 2.7–24.5°
c = 15.226 (4) ŵ = 0.31 mm1
β = 95.530 (4)°T = 120 K
V = 981.8 (5) Å3Plate, colorless
Z = 20.22 × 0.19 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
4911 independent reflections
Radiation source: fine-focus sealed tube4228 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 8.33 pixels mm-1θmax = 28.4°, θmin = 1.3°
combination of ω and φ–scansh = 1515
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 77
Tmin = 0.781, Tmax = 0.931l = 2020
18906 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0303P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
4911 reflectionsΔρmax = 0.29 e Å3
274 parametersΔρmin = 0.38 e Å3
4 restraintsAbsolute structure: Flack x determined using 1632 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: real-space vector searchAbsolute structure parameter: 0.03 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5053 (3)0.0636 (5)0.74539 (18)0.0247 (7)
H1NA0.437 (3)0.156 (6)0.727 (2)0.033 (10)*
H1NB0.566 (3)0.160 (6)0.761 (2)0.031 (11)*
C10.4529 (3)0.0950 (8)0.8976 (2)0.0461 (11)
H1A0.43230.00390.94860.069*
H1B0.38690.19730.87670.069*
H1C0.52240.19180.91480.069*
C20.4791 (3)0.0698 (7)0.8253 (2)0.0365 (10)
H2A0.54740.16960.84580.044*
H2B0.41060.17430.81040.044*
C30.5386 (3)0.0861 (7)0.6708 (2)0.0336 (9)
H3A0.47300.19380.65120.040*
H3B0.60830.18290.69070.040*
C40.5661 (3)0.0694 (8)0.5950 (2)0.0459 (11)
H4A0.58480.02910.54530.069*
H4B0.63370.16990.61380.069*
H4C0.49770.16830.57670.069*
S10.21877 (6)0.48653 (13)0.65278 (5)0.01702 (18)
O10.11341 (17)0.4576 (4)0.69828 (12)0.0192 (5)
O20.3108 (2)0.3205 (4)0.68312 (15)0.0281 (6)
O30.25973 (19)0.7296 (4)0.65346 (13)0.0221 (5)
N20.0854 (2)0.2713 (5)0.27136 (16)0.0166 (6)
H2NA0.088 (3)0.109 (4)0.2598 (18)0.017 (8)*
H2NB0.144 (2)0.338 (6)0.239 (2)0.027 (10)*
H2NC0.010 (2)0.341 (7)0.252 (2)0.051 (12)*
C50.1782 (3)0.4162 (6)0.54039 (19)0.0152 (7)
C60.2099 (3)0.2003 (5)0.50528 (19)0.0180 (7)
H60.25270.08740.54160.022*
C70.1781 (3)0.1530 (6)0.41663 (19)0.0181 (7)
H70.19950.00750.39170.022*
C80.1153 (3)0.3183 (5)0.36490 (19)0.0149 (7)
C90.0805 (3)0.5306 (5)0.39992 (19)0.0162 (6)
H90.03590.64150.36390.019*
C100.1122 (3)0.5774 (5)0.48805 (19)0.0161 (7)
H100.08860.72130.51300.019*
S20.78723 (7)0.26125 (13)0.83062 (5)0.01669 (18)
O40.89636 (19)0.3121 (4)0.79229 (13)0.0194 (5)
O50.75682 (17)0.0109 (4)0.82423 (12)0.0173 (5)
O60.68960 (19)0.4094 (4)0.79409 (14)0.0231 (5)
N30.8696 (3)0.4851 (6)1.21318 (17)0.0194 (6)
H3NA0.874 (3)0.630 (7)1.223 (2)0.028 (11)*
H3NB0.824 (3)0.430 (6)1.244 (2)0.020 (10)*
C110.8122 (3)0.3252 (5)0.94423 (19)0.0146 (7)
C120.7796 (3)0.1654 (5)1.00663 (19)0.0181 (7)
H120.74450.01970.98810.022*
C130.7982 (3)0.2179 (5)1.09560 (18)0.0178 (7)
H130.77670.10711.13800.021*
C140.8485 (3)0.4330 (5)1.12326 (19)0.0159 (7)
C150.8832 (3)0.5891 (5)1.06041 (19)0.0190 (7)
H150.91980.73371.07870.023*
C160.8650 (3)0.5360 (5)0.9717 (2)0.0201 (7)
H160.88890.64440.92930.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0186 (16)0.0267 (17)0.0282 (16)0.0017 (13)0.0008 (13)0.0020 (13)
C10.033 (2)0.077 (3)0.029 (2)0.013 (2)0.0030 (18)0.004 (2)
C20.0242 (19)0.043 (3)0.041 (2)0.0057 (18)0.0012 (17)0.0136 (19)
C30.0192 (19)0.039 (2)0.042 (2)0.0001 (16)0.0021 (16)0.0131 (18)
C40.034 (2)0.068 (3)0.036 (2)0.005 (2)0.0077 (19)0.006 (2)
S10.0176 (4)0.0183 (4)0.0148 (4)0.0014 (3)0.0006 (3)0.0003 (3)
O10.0206 (12)0.0203 (13)0.0174 (11)0.0024 (10)0.0057 (9)0.0005 (10)
O20.0288 (14)0.0326 (15)0.0214 (12)0.0145 (11)0.0059 (10)0.0002 (10)
O30.0275 (13)0.0213 (13)0.0176 (11)0.0072 (11)0.0022 (9)0.0037 (10)
N20.0222 (15)0.0139 (14)0.0139 (13)0.0004 (13)0.0023 (11)0.0005 (12)
C50.0141 (16)0.0172 (17)0.0147 (15)0.0027 (13)0.0027 (12)0.0000 (12)
C60.0194 (17)0.0157 (16)0.0186 (15)0.0026 (13)0.0008 (13)0.0012 (12)
C70.0203 (17)0.0145 (15)0.0198 (16)0.0004 (13)0.0030 (14)0.0026 (13)
C80.0153 (16)0.0178 (17)0.0120 (15)0.0033 (12)0.0029 (12)0.0001 (12)
C90.0169 (15)0.0143 (16)0.0172 (15)0.0007 (12)0.0000 (12)0.0037 (12)
C100.0195 (17)0.0131 (15)0.0162 (15)0.0003 (12)0.0037 (13)0.0008 (12)
S20.0195 (4)0.0154 (4)0.0149 (4)0.0007 (3)0.0008 (3)0.0002 (3)
O40.0218 (12)0.0188 (13)0.0182 (11)0.0011 (10)0.0047 (9)0.0008 (9)
O50.0218 (11)0.0144 (11)0.0161 (10)0.0019 (10)0.0027 (9)0.0019 (9)
O60.0261 (13)0.0218 (13)0.0201 (12)0.0053 (10)0.0037 (10)0.0001 (9)
N30.0260 (16)0.0171 (15)0.0152 (13)0.0031 (14)0.0023 (12)0.0007 (13)
C110.0155 (16)0.0155 (17)0.0127 (15)0.0033 (12)0.0011 (12)0.0009 (12)
C120.0189 (17)0.0142 (15)0.0213 (16)0.0004 (13)0.0020 (13)0.0005 (12)
C130.0215 (17)0.0162 (16)0.0162 (15)0.0003 (13)0.0037 (13)0.0025 (12)
C140.0170 (16)0.0167 (17)0.0141 (15)0.0053 (13)0.0022 (12)0.0019 (12)
C150.0206 (17)0.0144 (16)0.0214 (16)0.0019 (13)0.0009 (14)0.0016 (13)
C160.0228 (17)0.0183 (18)0.0191 (16)0.0019 (13)0.0019 (13)0.0034 (13)
Geometric parameters (Å, º) top
N1—C21.488 (4)C6—C71.390 (4)
N1—C31.497 (4)C6—H60.9500
N1—H1NA0.96 (3)C7—C81.380 (4)
N1—H1NB0.90 (3)C7—H70.9500
C1—C21.496 (5)C8—C91.390 (4)
C1—H1A0.9800C9—C101.381 (4)
C1—H1B0.9800C9—H90.9500
C1—H1C0.9800C10—H100.9500
C2—H2A0.9900S2—O41.455 (2)
C2—H2B0.9900S2—O61.462 (2)
C3—C41.510 (5)S2—O51.463 (2)
C3—H3A0.9900S2—C111.763 (3)
C3—H3B0.9900N3—C141.399 (4)
C4—H4A0.9800N3—H3NA0.83 (4)
C4—H4B0.9800N3—H3NB0.79 (3)
C4—H4C0.9800C11—C161.386 (4)
S1—O21.453 (2)C11—C121.389 (4)
S1—O11.454 (2)C12—C131.383 (4)
S1—O31.456 (2)C12—H120.9500
S1—C51.775 (3)C13—C141.397 (4)
N2—C81.457 (4)C13—H130.9500
N2—H2NA0.94 (2)C14—C151.389 (4)
N2—H2NB0.94 (2)C15—C161.380 (4)
N2—H2NC0.97 (2)C15—H150.9500
C5—C101.387 (4)C16—H160.9500
C5—C61.398 (4)
C2—N1—C3114.7 (3)C6—C5—S1120.8 (2)
C2—N1—H1NA107 (2)C7—C6—C5119.2 (3)
C3—N1—H1NA110 (2)C7—C6—H6120.4
C2—N1—H1NB108 (2)C5—C6—H6120.4
C3—N1—H1NB107 (2)C8—C7—C6119.7 (3)
H1NA—N1—H1NB109 (3)C8—C7—H7120.1
C2—C1—H1A109.5C6—C7—H7120.1
C2—C1—H1B109.5C7—C8—C9121.4 (3)
H1A—C1—H1B109.5C7—C8—N2119.6 (3)
C2—C1—H1C109.5C9—C8—N2119.0 (3)
H1A—C1—H1C109.5C10—C9—C8118.8 (3)
H1B—C1—H1C109.5C10—C9—H9120.6
N1—C2—C1110.7 (3)C8—C9—H9120.6
N1—C2—H2A109.5C9—C10—C5120.5 (3)
C1—C2—H2A109.5C9—C10—H10119.7
N1—C2—H2B109.5C5—C10—H10119.7
C1—C2—H2B109.5O4—S2—O6112.61 (13)
H2A—C2—H2B108.1O4—S2—O5111.89 (13)
N1—C3—C4109.6 (3)O6—S2—O5111.41 (13)
N1—C3—H3A109.7O4—S2—C11106.81 (14)
C4—C3—H3A109.7O6—S2—C11107.45 (14)
N1—C3—H3B109.7O5—S2—C11106.25 (14)
C4—C3—H3B109.7C14—N3—H3NA112 (2)
H3A—C3—H3B108.2C14—N3—H3NB115 (2)
C3—C4—H4A109.5H3NA—N3—H3NB109 (3)
C3—C4—H4B109.5C16—C11—C12119.6 (3)
H4A—C4—H4B109.5C16—C11—S2119.9 (2)
C3—C4—H4C109.5C12—C11—S2120.5 (2)
H4A—C4—H4C109.5C13—C12—C11120.2 (3)
H4B—C4—H4C109.5C13—C12—H12119.9
O2—S1—O1112.42 (14)C11—C12—H12119.9
O2—S1—O3112.94 (15)C12—C13—C14120.2 (3)
O1—S1—O3112.55 (13)C12—C13—H13119.9
O2—S1—C5105.94 (14)C14—C13—H13119.9
O1—S1—C5106.42 (13)C15—C14—C13119.1 (3)
O3—S1—C5105.88 (14)C15—C14—N3120.4 (3)
C8—N2—H2NA110.7 (18)C13—C14—N3120.5 (3)
C8—N2—H2NB109 (2)C16—C15—C14120.6 (3)
H2NA—N2—H2NB105 (3)C16—C15—H15119.7
C8—N2—H2NC110 (2)C14—C15—H15119.7
H2NA—N2—H2NC113 (3)C15—C16—C11120.2 (3)
H2NB—N2—H2NC109 (3)C15—C16—H16119.9
C10—C5—C6120.3 (3)C11—C16—H16119.9
C10—C5—S1118.9 (2)
C3—N1—C2—C1177.1 (3)S1—C5—C10—C9178.9 (2)
C2—N1—C3—C4178.4 (3)O4—S2—C11—C1647.7 (3)
O2—S1—C5—C10165.1 (2)O6—S2—C11—C1673.4 (3)
O1—S1—C5—C1075.1 (3)O5—S2—C11—C16167.2 (2)
O3—S1—C5—C1044.9 (3)O4—S2—C11—C12132.1 (3)
O2—S1—C5—C616.1 (3)O6—S2—C11—C12106.9 (3)
O1—S1—C5—C6103.7 (3)O5—S2—C11—C1212.5 (3)
O3—S1—C5—C6136.3 (2)C16—C11—C12—C131.0 (4)
C10—C5—C6—C72.2 (4)S2—C11—C12—C13179.3 (2)
S1—C5—C6—C7179.0 (2)C11—C12—C13—C140.8 (4)
C5—C6—C7—C80.4 (4)C12—C13—C14—C152.3 (4)
C6—C7—C8—C91.4 (5)C12—C13—C14—N3178.8 (3)
C6—C7—C8—N2178.0 (3)C13—C14—C15—C162.0 (4)
C7—C8—C9—C101.4 (4)N3—C14—C15—C16178.5 (3)
N2—C8—C9—C10178.0 (3)C14—C15—C16—C110.2 (5)
C8—C9—C10—C50.5 (4)C12—C11—C16—C151.3 (4)
C6—C5—C10—C92.3 (4)S2—C11—C16—C15179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O20.96 (3)1.79 (4)2.748 (4)175 (3)
N1—H1NB···O50.90 (3)2.45 (3)3.019 (4)122 (3)
N1—H1NB···O60.90 (3)2.03 (4)2.920 (4)173 (3)
N2—H2NA···O4i0.94 (2)1.88 (2)2.794 (4)165 (3)
N2—H2NB···O5ii0.94 (2)1.85 (2)2.778 (3)171 (3)
N2—H2NC···N3iii0.97 (2)1.85 (2)2.812 (4)178 (4)
N3—H3NA···O1iv0.83 (4)2.21 (4)2.998 (4)157 (3)
N3—H3NB···O3v0.79 (3)2.23 (3)2.997 (4)164 (3)
C3—H3A···O3vi0.992.483.338 (4)145
C6—H6···O3vi0.952.653.507 (4)151
C9—H9···O1vii0.952.593.517 (4)165
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1; (iii) x1, y, z1; (iv) x+1, y+1/2, z+2; (v) x+1, y1/2, z+2; (vi) x, y1, z; (vii) x, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal) and the University of Notre Dame (USA) for financial support.

References

First citationBruker (2015). APEX3 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R. & Sinthiya, A. (2008). Acta Cryst. E64, o697–o698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIttyachan, R., Ahigna, M. S. & Jagan, R. (2016). Acta Cryst. E72, 530–533.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMajeed, M. H. & Wendt, O. F. (2016). Acta Cryst. E72, 534–537.  CSD CrossRef IUCr Journals Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011a). Acta Cryst. E67, m241.  CSD CrossRef IUCr Journals Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011b). Acta Cryst. E67, m239.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds