research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,3-bis­­[(E)-4-meth­­oxy­benzyl­­idene­amino]­propan-2-ol

CROSSMARK_Color_square_no_text.svg

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No. 45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: ariverau@unal.edu.co

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 October 2016; accepted 22 October 2016; online 4 November 2016)

The title Schiff base, C19H22N2O3, was synthesized via the condensation reaction of 1,3-di­amino­propan-2-ol with 4-meth­oxy­benzaldehyde using water as solvent. The mol­ecule exists in an E,E conformation with respect to the C=N imine bonds and the dihedral angle between the aromatic rings is 37.25 (15)°. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules into infinite C(5) chains propagating along the a-axis direction. The packing of these chains is consolidated by C—H⋯O inter­actions and C—H⋯π short contacts, forming a three-dimensional network.

1. Chemical context

Compounds containing the –C=N– (azomethine group) structure are known as Schiff bases, usually synthesized from the condensation of primary amines and active carbonyl groups (Bekdemir & Efil, 2014[Bekdemir, Y. & Efil, K. (2014). Org. Chem. Int. article ID 816487.]). Imines are one class of the most important and fundamental unsaturated organic compounds with a C=N double bond as their characteristic chemical bond and are extensively present in natural products and many drugs (Zhu et al., 2010[Zhu, X.-Q., Liu, Q.-Y., Chen, Q. & Mei, L.-R. (2010). J. Org. Chem. 75, 789-808.]). The formation of imines underlies a discipline known as dynamic covalent chemistry (DCC), which is now used widely in the construction of exotic mol­ecules and extended structures such as rotaxanes, caten­anes, and so on (Patil & Adimurthy, 2013[Patil, R. D. & Adimurthy, S. (2013). Asia. J. Org. Chem. 2, 726-744.]). Schiff base compounds derived from 1,n-di­amines play an important role in coordination chemistry and have been studied extensively for their broad range of biological activities (Sahu et al. 2012[Sahu, R., Thakur, D. S. & Kashyap, P. (2012). Int. J. Pharm. Sci. Nanotech. 5, 1757-1764.]; da Silva et al., 2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B., de Fátima, Â. & Ângelo, (2011). J. Adv. Res. 2, 1-8.]; Przybylski et al. 2009[Przybylski, P., Huczyński, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124-148.]; Dhar & Taploo, 1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501-506.]). The common structural feature of these compounds is the presence of two azomethine groups linked by an n-methyl­ene bridge, which can act as hydrogen-bond acceptors.

[Scheme 1]

The title compound is inter­esting in that the presence of an OH group in the 1,3-di­amine mol­ecule is situated in a favorable position towards the azomethine groups to form an intra­molecular hydrogen bond. Thus, one may expect that the charge distribution around the azomethine nitro­gen atoms may be visibly perturbed by the presence of this type of inter­action. Hence, 1,3-di­amine­propan-2ol was chosen with the expectation that the presence of an OH group would result in an intra­molecular hydrogen bond. The title compound was synthesized quickly and efficiently by condensation of 1,3-di­amine-2-propanol and p-meth­oxy­benzaldehyde using a simple water-mediated procedure that requires neither a catalyst nor any additive (Rivera, et al., 2016[Rivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016). Int. J. Chem. 8, 62-68.]). To the best of our knowledge, no X-ray crystal structure of either the uncoord­inated or the coordinated title compound has been reported previously.

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The title compound exists in an E,E conformation with respect to the N1=C1 and N2=C5 azomethine bonds and the C2—N1=C1—C11 and C4—N2=C5—C21 torsion angles are 175.6 (3) and −178.3 (3)° respectively. The N1=C1 and N2=C5 distances of 1.265 (4) and 1.271 (4) Å, respectively, are consistent with C=N double bonding. The bond angles of 117.0 (3) and 117.7 (3)° around the N1 and N2 atoms confirm their sp2 character. The slight differences between N=C distances and C—N=C angles are due to the significant effect of the hydrogen bond on the geometric parameters of the nitro­gen atom (N2) involved in the inter­molecular hydrogen bond (see below).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, Displacement ellipsoids are drawn at the 50% probability level.

The N1—C2—C3—C4 torsion angle is −64.4 (4)° and the C2—C3—C4—N2 torsion angle is 175.0 (3)°. The O1—C3—C4—N2 torsion angle is −65.3 (3)°, which has a significant role to play in the hydrogen-bonding pattern in the crystal of the title compound (see below). The two meth­oxy substituents are essentially coplanar with their bound benzene rings with torsion angles C17—O2—C14—C13 = 169.3 (3)° and C27—O3—C24—C23 = −172.2 (3)°.

3. Supra­molecular features

Rather than the proposed intra­molecular O—H⋯N hydrogen bond, adjacent mol­ecules in the crystal of the title compound are linked by inter­molecular O—H⋯N hydrogen bonds (Table 1[link], Fig. 2[link]), forming an infinite zigzag C(5) chains extending along the a-axis direction. The chains are further linked to neighbouring chains through a pair of weak C—H⋯O hydrogen bonds (Table 1[link]). Furthermore, C12—H12 and C22—H22 form weaker C—H⋯Cg (π–ring) inter­actions (Table 1[link]), which connect the chains of consecutive layers, thus forming a three-dimensional supra­molecular network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.96 (5) 1.80 (5) 2.761 (4) 175 (4)
C17—H17B⋯O3ii 0.98 2.63 3.447 (5) 142
C27—H27B⋯O2iii 0.98 2.65 3.415 (4) 135
C12—H12⋯Cg1iv 0.95 2.99 3.658 (4) 129
C22—H22⋯Cg2iv 0.95 2.92 3.628 (3) 132
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x, -y+1, z-{\script{1\over 2}}]; (iii) [-x, -y+1, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Partial packing diagram of the title compound, showing an extended hydrogen-bonded network. H atoms not involved in hydrogen bonds have been omitted for clarity.

4. Database survey

No comparable structure of either the uncoordinated or the coordinated title compound has been found in the Cambridge Crystallographic Database.

5. Synthesis and crystallization

The title compound was prepared according to our published method (Rivera et al., 2016[Rivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016). Int. J. Chem. 8, 62-68.]). The crude product was dissolved in benzene and aceto­nitrile was added to the solution: upon slow evaporation of the solvent, colorless plates of the title compound arose. M.p. 403 K, yield 88%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydroxyl H atom was refined freely; however, the remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.95 Å for aromatic and azomethine atoms, d(C—H) = 0.99 Å for methyl­ene, d(C—H) = 1.00 Å for C3—H3 and 0.98 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The absolute structure of the crystal chosen for data collection was indeterminate in the present refinement.

Table 2
Experimental details

Crystal data
Chemical formula C19H22N2O3
Mr 326.38
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 173
a, b, c (Å) 7.9081 (3), 5.8434 (3), 37.4435 (16)
V3) 1730.27 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.28 × 0.19 × 0.08
 
Data collection
Diffractometer Stoe IPDS II two-circle
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.625, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12316, 3084, 2786
Rint 0.038
(sin θ/λ)max−1) 0.608
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.01
No. of reflections 3084
No. of parameters 224
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

1,3-Bis[(E)-4-methoxybenzylideneamino]propan-2-ol top
Crystal data top
C19H22N2O3Dx = 1.253 Mg m3
Mr = 326.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 12316 reflections
a = 7.9081 (3) Åθ = 2.2–26.0°
b = 5.8434 (3) ŵ = 0.09 mm1
c = 37.4435 (16) ÅT = 173 K
V = 1730.27 (13) Å3Plate, colourless
Z = 40.28 × 0.19 × 0.08 mm
F(000) = 696
Data collection top
Stoe IPDS II two-circle
diffractometer
2786 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.038
ω scansθmax = 25.6°, θmin = 2.2°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 99
Tmin = 0.625, Tmax = 1.000k = 77
12316 measured reflectionsl = 4145
3084 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0961P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.15 e Å3
3084 reflectionsΔρmin = 0.16 e Å3
224 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.046 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5510 (4)0.4188 (4)0.44173 (8)0.0467 (6)
N20.3474 (4)0.4764 (4)0.54792 (8)0.0453 (6)
O10.7066 (3)0.4483 (4)0.53519 (7)0.0513 (6)
H10.754 (7)0.302 (9)0.5410 (13)0.073 (13)*
O20.1888 (4)0.4687 (4)0.28786 (6)0.0547 (6)
O30.0967 (3)0.4509 (4)0.71286 (7)0.0542 (6)
C10.5258 (4)0.5772 (6)0.41931 (9)0.0463 (7)
H1A0.57380.72340.42380.056*
C20.6638 (5)0.4706 (6)0.47176 (9)0.0518 (8)
H2A0.69060.63610.47160.062*
H2B0.77110.38560.46870.062*
C30.5858 (4)0.4072 (5)0.50766 (9)0.0461 (7)
H30.55400.24160.50760.055*
C40.4306 (4)0.5507 (5)0.51505 (9)0.0491 (8)
H4A0.46370.71340.51730.059*
H4B0.35070.53710.49480.059*
C50.3529 (4)0.6102 (5)0.57466 (9)0.0448 (7)
H50.40820.75330.57170.054*
C110.4253 (4)0.5452 (5)0.38653 (9)0.0414 (7)
C120.4251 (5)0.7189 (5)0.36069 (10)0.0477 (7)
H120.48060.85970.36550.057*
C130.3447 (4)0.6874 (6)0.32820 (9)0.0484 (8)
H130.34640.80570.31080.058*
C140.2617 (4)0.4832 (5)0.32098 (9)0.0442 (7)
C150.2578 (4)0.3105 (5)0.34676 (9)0.0436 (7)
H150.19940.17160.34210.052*
C160.3392 (4)0.3430 (5)0.37899 (8)0.0437 (7)
H160.33650.22470.39640.052*
C170.1278 (5)0.2506 (6)0.27655 (10)0.0553 (8)
H17A0.22190.14150.27580.083*
H17B0.07780.26450.25270.083*
H17C0.04200.19610.29340.083*
C210.2798 (4)0.5588 (5)0.60975 (9)0.0435 (7)
C220.3029 (4)0.7163 (5)0.63743 (9)0.0472 (7)
H220.36280.85400.63280.057*
C230.2409 (5)0.6766 (5)0.67121 (9)0.0499 (8)
H230.25810.78650.68960.060*
C240.1526 (4)0.4751 (5)0.67851 (9)0.0445 (7)
C250.1277 (4)0.3152 (5)0.65135 (9)0.0445 (7)
H250.06770.17760.65610.053*
C260.1910 (4)0.3579 (5)0.61733 (9)0.0455 (7)
H260.17340.24850.59890.055*
C270.0252 (5)0.2384 (6)0.72315 (10)0.0582 (9)
H27A0.07470.20690.70850.087*
H27B0.00790.24500.74840.087*
H27C0.10860.11630.71970.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0514 (14)0.0482 (13)0.0404 (13)0.0007 (12)0.0008 (12)0.0031 (12)
N20.0506 (15)0.0425 (13)0.0429 (14)0.0044 (11)0.0030 (12)0.0012 (11)
O10.0585 (14)0.0457 (12)0.0498 (13)0.0004 (11)0.0133 (11)0.0031 (10)
O20.0675 (16)0.0507 (13)0.0459 (14)0.0031 (11)0.0074 (11)0.0050 (10)
O30.0623 (15)0.0522 (13)0.0479 (13)0.0001 (11)0.0034 (12)0.0082 (10)
C10.0470 (17)0.0461 (16)0.0459 (18)0.0049 (14)0.0055 (14)0.0027 (13)
C20.0499 (18)0.056 (2)0.049 (2)0.0019 (14)0.0035 (15)0.0018 (14)
C30.0507 (17)0.0425 (15)0.0451 (17)0.0028 (13)0.0076 (14)0.0013 (13)
C40.0588 (18)0.0434 (16)0.0451 (18)0.0032 (14)0.0021 (14)0.0040 (14)
C50.0472 (17)0.0373 (15)0.0501 (18)0.0021 (12)0.0068 (14)0.0020 (13)
C110.0440 (16)0.0396 (16)0.0405 (16)0.0009 (12)0.0048 (13)0.0003 (12)
C120.0526 (18)0.0377 (15)0.0529 (18)0.0008 (14)0.0095 (14)0.0011 (13)
C130.0595 (19)0.0396 (16)0.0462 (19)0.0048 (13)0.0062 (14)0.0082 (13)
C140.0446 (16)0.0453 (16)0.0428 (17)0.0074 (12)0.0050 (14)0.0021 (13)
C150.0464 (16)0.0381 (16)0.0464 (17)0.0004 (13)0.0050 (13)0.0016 (12)
C160.0482 (17)0.0396 (15)0.0432 (17)0.0010 (13)0.0043 (13)0.0059 (13)
C170.0550 (19)0.061 (2)0.0503 (19)0.0044 (16)0.0028 (15)0.0035 (15)
C210.0439 (16)0.0383 (15)0.0482 (18)0.0037 (12)0.0056 (13)0.0018 (12)
C220.0511 (18)0.0375 (16)0.0530 (18)0.0005 (13)0.0054 (15)0.0027 (13)
C230.0587 (19)0.0419 (15)0.0491 (19)0.0014 (15)0.0078 (15)0.0095 (13)
C240.0453 (16)0.0438 (16)0.0444 (17)0.0066 (13)0.0016 (13)0.0049 (13)
C250.0459 (16)0.0398 (16)0.0478 (17)0.0018 (13)0.0018 (14)0.0040 (13)
C260.0486 (17)0.0400 (15)0.0478 (17)0.0019 (13)0.0026 (14)0.0082 (13)
C270.060 (2)0.062 (2)0.0529 (19)0.0114 (17)0.0086 (17)0.0079 (15)
Geometric parameters (Å, º) top
N1—C11.265 (4)C12—H120.9500
N1—C21.467 (5)C13—C141.388 (5)
N2—C51.271 (4)C13—H130.9500
N2—C41.461 (4)C14—C151.397 (5)
O1—C31.426 (4)C15—C161.381 (5)
O1—H10.96 (5)C15—H150.9500
O2—C141.370 (4)C16—H160.9500
O2—C171.427 (4)C17—H17A0.9800
O3—C241.367 (4)C17—H17B0.9800
O3—C271.418 (4)C17—H17C0.9800
C1—C111.474 (5)C21—C261.397 (5)
C1—H1A0.9500C21—C221.398 (5)
C2—C31.525 (5)C22—C231.376 (5)
C2—H2A0.9900C22—H220.9500
C2—H2B0.9900C23—C241.396 (5)
C3—C41.511 (5)C23—H230.9500
C3—H31.0000C24—C251.395 (4)
C4—H4A0.9900C25—C261.391 (5)
C4—H4B0.9900C25—H250.9500
C5—C211.466 (5)C26—H260.9500
C5—H50.9500C27—H27A0.9800
C11—C161.393 (4)C27—H27B0.9800
C11—C121.402 (5)C27—H27C0.9800
C12—C131.385 (5)
C1—N1—C2117.0 (3)O2—C14—C15124.8 (3)
C5—N2—C4117.7 (3)C13—C14—C15119.8 (3)
C3—O1—H1106 (3)C16—C15—C14119.6 (3)
C14—O2—C17117.8 (3)C16—C15—H15120.2
C24—O3—C27118.4 (3)C14—C15—H15120.2
N1—C1—C11123.0 (3)C15—C16—C11121.4 (3)
N1—C1—H1A118.5C15—C16—H16119.3
C11—C1—H1A118.5C11—C16—H16119.3
N1—C2—C3112.3 (3)O2—C17—H17A109.5
N1—C2—H2A109.1O2—C17—H17B109.5
C3—C2—H2A109.1H17A—C17—H17B109.5
N1—C2—H2B109.1O2—C17—H17C109.5
C3—C2—H2B109.1H17A—C17—H17C109.5
H2A—C2—H2B107.9H17B—C17—H17C109.5
O1—C3—C4108.6 (3)C26—C21—C22117.9 (3)
O1—C3—C2109.0 (3)C26—C21—C5123.5 (3)
C4—C3—C2110.8 (3)C22—C21—C5118.5 (3)
O1—C3—H3109.5C23—C22—C21121.6 (3)
C4—C3—H3109.5C23—C22—H22119.2
C2—C3—H3109.5C21—C22—H22119.2
N2—C4—C3110.8 (3)C22—C23—C24120.0 (3)
N2—C4—H4A109.5C22—C23—H23120.0
C3—C4—H4A109.5C24—C23—H23120.0
N2—C4—H4B109.5O3—C24—C25124.8 (3)
C3—C4—H4B109.5O3—C24—C23115.7 (3)
H4A—C4—H4B108.1C25—C24—C23119.5 (3)
N2—C5—C21124.5 (3)C26—C25—C24119.8 (3)
N2—C5—H5117.8C26—C25—H25120.1
C21—C5—H5117.8C24—C25—H25120.1
C16—C11—C12118.3 (3)C25—C26—C21121.2 (3)
C16—C11—C1122.7 (3)C25—C26—H26119.4
C12—C11—C1118.9 (3)C21—C26—H26119.4
C13—C12—C11120.7 (3)O3—C27—H27A109.5
C13—C12—H12119.7O3—C27—H27B109.5
C11—C12—H12119.7H27A—C27—H27B109.5
C12—C13—C14120.2 (3)O3—C27—H27C109.5
C12—C13—H13119.9H27A—C27—H27C109.5
C14—C13—H13119.9H27B—C27—H27C109.5
O2—C14—C13115.4 (3)
C2—N1—C1—C11175.6 (3)C13—C14—C15—C161.2 (4)
C1—N1—C2—C3129.7 (3)C14—C15—C16—C110.2 (5)
N1—C2—C3—O1176.2 (3)C12—C11—C16—C151.1 (5)
N1—C2—C3—C464.4 (4)C1—C11—C16—C15174.5 (3)
C5—N2—C4—C3110.7 (3)N2—C5—C21—C262.0 (5)
O1—C3—C4—N265.3 (3)N2—C5—C21—C22176.6 (3)
C2—C3—C4—N2175.0 (3)C26—C21—C22—C230.1 (5)
C4—N2—C5—C21178.3 (3)C5—C21—C22—C23178.6 (3)
N1—C1—C11—C165.1 (5)C21—C22—C23—C240.1 (5)
N1—C1—C11—C12170.5 (3)C27—O3—C24—C257.6 (5)
C16—C11—C12—C131.6 (5)C27—O3—C24—C23172.2 (3)
C1—C11—C12—C13174.3 (3)C22—C23—C24—O3179.7 (3)
C11—C12—C13—C140.6 (5)C22—C23—C24—C250.1 (5)
C17—O2—C14—C13169.3 (3)O3—C24—C25—C26179.8 (3)
C17—O2—C14—C1510.5 (5)C23—C24—C25—C260.1 (5)
C12—C13—C14—O2179.0 (3)C24—C25—C26—C210.1 (5)
C12—C13—C14—C150.8 (5)C22—C21—C26—C250.2 (5)
O2—C14—C15—C16178.6 (3)C5—C21—C26—C25178.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.96 (5)1.80 (5)2.761 (4)175 (4)
C17—H17B···O3ii0.982.633.447 (5)142
C27—H27B···O2iii0.982.653.415 (4)135
C12—H12···Cg1iv0.952.993.658 (4)129
C22—H22···Cg2iv0.952.923.628 (3)132
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z1/2; (iii) x, y+1, z+1/2; (iv) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia for financial support of this work (research project No. 28427). IMC is also grateful to COLCIENCIAS for her doctoral scholarship

References

First citationBekdemir, Y. & Efil, K. (2014). Org. Chem. Int. article ID 816487.  Google Scholar
First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.  CAS Google Scholar
First citationPatil, R. D. & Adimurthy, S. (2013). Asia. J. Org. Chem. 2, 726–744.  Web of Science CrossRef CAS Google Scholar
First citationPrzybylski, P., Huczyński, A., Pyta, K., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 124–148.  CrossRef CAS Google Scholar
First citationRivera, A., Miranda-Carvajal, I. & Ríos-Motta, J. (2016). Int. J. Chem. 8, 62–68.  CrossRef Google Scholar
First citationSahu, R., Thakur, D. S. & Kashyap, P. (2012). Int. J. Pharm. Sci. Nanotech. 5, 1757–1764.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A., Martins, C. V. B., de Fátima, Â. & Ângelo, (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZhu, X.-Q., Liu, Q.-Y., Chen, Q. & Mei, L.-R. (2010). J. Org. Chem. 75, 789–808.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds