research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a 2:1 piroxicam–gentisic acid co-crystal featuring neutral and zwitterionic piroxicam mol­ecules

CROSSMARK_Color_square_no_text.svg

aUniversity of Illinois, Department of Chemical and Biomolecular Engineering, 600 S. Mathews Ave, Urbana, IL 61801, USA, and bUniversity of Illinois, School of Chemical Sciences, Box 59-1, 505 South Mathews Avenue, Urbana, Illinois 61801, USA
*Correspondence e-mail: tobyw@illinois.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 21 October 2016; accepted 27 October 2016; online 4 November 2016)

A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hy­droxy-1,1-dioxo-N-(pyridin-2-yl)-2H-1λ6,2-benzo­thia­zine-3-carboxamide–2-(4-oxido-1,1-dioxo-2H-1λ6,2-benzo­thia­zine-3-amido)­pyridin-1-ium–2,5-di­hydroxy­benzoic acid, 2C15H13N3O4S·C7H6O4] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam mol­ecule is in its neutral form and an intra­molecular O—H⋯O hydrogen bond is observed. The other piroxicam mol­ecule is zwitterionic (proton transfer from the OH group to the pyridine N atom) and two intra­molecular N—H⋯O hydrogen bonds occur. The gentisic acid mol­ecule shows whole-mol­ecule disorder over two sets of sites in a 0.809 (2):0.191 (2) ratio. In the crystal, extensive hydrogen bonding between the components forms layers propagating in the ab plane.

1. Chemical context

Piroxicam is a non-steroidal anti-inflammatory drug classified as a BCS Class II drug due to its low aqueous solubility (Amidon et al., 1995[Amidon, G. L., Lennernäs, H., Shah, V. P. & Crison, J. R. (1995). Pharm. Res. 12, 413-420.]; Thayer, 2010[Thayer, A. M. (2010). Chem. Eng. News, 88, 13-18.]). Co-crystallization of an active pharmaceutical ingredient (API) and an FDA-approved counter-ion is a common technique employed to increase the solubility of the API (Trask et al., 2005[Trask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. Growth Des. 5, 1013-1021.]). In this work, we explored the co-crystallization of piroxicam and gentisic acid. In a previous study, piroxicam was co-crystallized with 23 carb­oxy­lic acids yielding 50 co-crystals. From this work, three co-crystals of piroxicam and gentisic acid were identified with Raman spectroscopy, but no crystal structures were reported (Childs & Hardcastle, 2007[Childs, S. L. & Hardcastle, K. I. (2007). Cryst. Growth Des. 7, 1291-1304.]). In our prior work, we reported the crystal structure of two co-crystals of piroxicam and gentisic acid, one was a 1:1 co-crystal and the second was a solvated co-crystal that incorporated acetone into the crystal in a 1:1:1 molar ratio (Horstman et al., 2015[Horstman, E. M., Bertke, J. A., Kim, E. H., Gonzalez, L. C., Zhang, G. G. Z., Gong, Y. & Kenis, P. J. A. (2015). CrystEngComm, 17, 5299-5306.]). In this work we describe the crystal structure of a 2:1 piroxicam:gentisic acid co-crystal.

2. Structural commentary

The asymmetric unit of this co-crystal consists of two piroxicam mol­ecules and one gentisic acid mol­ecule, with all atoms residing on general positions (Fig. 1[link]). One of the piroxicam mol­ecules is neutral and the other is a zwitterion: the two mol­ecules exhibit two different conformations in the crystal structure. In the neutral S2-containing mol­ecule, intra­molecular hydrogen bonding exists between the hydroxyl proton H8 [H⋯A = 1.79 (3) Å] and the amide oxygen atom O7. In the S2 mol­ecule, free rotation about the C—C bond (C1 and C10) allows a second zwitterionic conformation in which intra­molecular hydrogen bonds exist between the amine proton H2 and the enolate oxygen atom O4 [H⋯A = 1.85 (2) Å] and the pyridinium proton H3 and the amide oxygen atom O3 [H⋯A = 2.19 (2) Å]. Further details of the hydrogen bonding are provided in Table 1[link].

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.88 (2) 1.85 (2) 2.6169 (18) 145.2 (19)
N3—H3⋯O3 0.78 (2) 1.99 (2) 2.6027 (19) 135 (2)
N3—H3⋯O3i 0.78 (2) 2.19 (2) 2.8034 (19) 136 (2)
O8—H8⋯O7 0.88 (3) 1.79 (3) 2.5722 (19) 148 (2)
N5—H5⋯O9 0.84 (2) 2.25 (2) 3.074 (2) 167 (2)
O10—H10⋯N6 0.91 (3) 1.74 (3) 2.637 (3) 167 (3)
O11—H11⋯O9 0.81 (3) 1.89 (3) 2.614 (2) 148 (3)
O12—H12⋯O4ii 0.81 (3) 1.94 (3) 2.738 (3) 164 (4)
O10B—H10B⋯O4ii 0.84 1.67 2.508 (12) 172
O11B—H11B⋯O2i 0.84 2.57 3.061 (6) 118
O11B—H11B⋯O9B 0.84 1.89 2.614 (9) 143
O12B—H12B⋯N6 0.84 2.10 2.856 (12) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title co-crystal, showing 35% probability ellipsoids for non-H atoms and spheres of arbitrary size for H atoms. Only the major component of the disordered gentisic acid is shown.

The gentisic acid mol­ecule shows whole mol­ecule disorder over two orientations rotated by approximately 180° in the plane of the aromatic ring with site occupancies of 0.809 (2):0.191 (2). The major orientation participates in intra­molecular hydrogen bonding between the O11 hydroxide substituent of the benzene ring and the O9 oxygen atom of the carb­oxy­lic acid [H⋯A = 1.89 (3) Å]. The major orientation also participates in inter­molecular hydrogen bonding. The minor orientation of the gentisic acid mol­ecule also displays intra­molecular hydrogen bonding between the O11B hydroxide substituent and the O9B oxygen atom of the carb­oxy­lic acid (H⋯A = 1.89 Å) but does not participate in inter­molecular hydrogen bonding.

3. Supra­molecular features

In the crystal, hydrogen bonds (Table 1[link]) between the piroxicam and gentisic acid mol­ecules form hexa­meric units that propagate along the a-axis direction (Fig. 2[link]). These units pack into layers in the ab plane; the layers stack along the c-axis direction, Fig. 3[link].

[Figure 2]
Figure 2
Ball-and-stick model highlighting the hydrogen-bonding network in the title co-crystal. Only the major component of the disordered gentisic acid is shown. Color key: C gray, N blue, H green, O red, and S yellow. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3]
Figure 3
Ball-and-stick packing diagram of the co-crystal, as viewed approximately down the b axis, highlighting the layers formed by the packing of the hexa­meric units. Color key: C gray, N blue, O red, and S yellow. H atoms have been omitted for clarity.

The repeating motif of the hexa­meric unit is formed by one gentisic acid mol­ecule hydrogen bonded to two piroxicam mol­ecules, one of each conformation (i.e. neutral and zwitterion). The non-zwitterionic form of piroxicam accepts hydrogen bonds from the gentisic acid via O—H⋯N bonds between the carb­oxy­lic acid and the pyridine ring of piroxicam [H⋯A = 1.74 (3) Å] as well as N—H⋯O bonds between the carbonyl oxygen atom of gentisic acid and the amine nitro­gen atom of piroxicam [H⋯A = 2.25 (2) Å]. The zwitterionic form of piroxicam accepts hydrogen bonds from the gentisic acid via O—H⋯O bonds between the 5-hy­droxy substituent of gentisic acid and the enolate oxygen atom of piroxicam [H⋯A = 1.94 (3) Å]. The repeat units are linked together by N—H⋯O bonds between the pyridinium nitro­gen atoms and the amide oxygen atoms of the zwitterionic form of piroxicam [H⋯A = 2.19 (2) Å].

4. Synthesis and crystallization

Piroxicam (>=98.0%) and gentisic acid (>=98.0%) were used as purchased from Sigma–Aldrich (St. Louis, MO, USA). Aceto­nitrile (>=99.9%) was used as purchased from Fisher Scientific (Fair Lawn, NJ, USA). A 1:2 molar ratio of piroxicam:gentisic acid was dissolved in aceto­nitrile. The concentration of piroxicam in aceto­nitrile was near saturation (∼0.034 M). The resulting solution was introduced into a microfluidic platform. The microfluidic platform was a 6 × 6 array of single microwells (∼100 nl) (Horstman et al., 2015[Horstman, E. M., Bertke, J. A., Kim, E. H., Gonzalez, L. C., Zhang, G. G. Z., Gong, Y. & Kenis, P. J. A. (2015). CrystEngComm, 17, 5299-5306.]). After being filled, the microfluidic platform was placed inside a petri dish and then the petri dish was sealed with parafilm to slow the rate of solvent evaporation. The crystallization solution evaporated over the course of one day, after which crystals were observed via optical microscopy. Specifics of the microfluidic platform fabrication and operation have been previously reported (Horstman et al., 2015[Horstman, E. M., Bertke, J. A., Kim, E. H., Gonzalez, L. C., Zhang, G. G. Z., Gong, Y. & Kenis, P. J. A. (2015). CrystEngComm, 17, 5299-5306.]). Once crystals were observed, Raman spectroscopy was used to distinguish between crystals. Within one microfluidic chip, three different co-crystals of piroxicam and gentisic acid were observed, two of which had been previously reported (Horstman et al., 2015[Horstman, E. M., Bertke, J. A., Kim, E. H., Gonzalez, L. C., Zhang, G. G. Z., Gong, Y. & Kenis, P. J. A. (2015). CrystEngComm, 17, 5299-5306.]) and one new solid form, reported here. Once the new co-crystals had been identified, we removed the crystals from the microfluidic platform.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The gentisic acid mol­ecule shows whole mol­ecule disorder over two sets of sites: the like C—O and C—C distances were restrained to be similar (s.u. 0.01 Å). Similar displacement amplitudes (s.u. 0.01) were imposed on disordered sites overlapping by less than the sum of van der Waals radii.

Table 2
Experimental details

Crystal data
Chemical formula 2C15H13N3O4S·C7H6O4
Mr 816.80
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 105
a, b, c (Å) 8.8764 (3), 13.4060 (5), 15.2678 (6)
α, β, γ (°) 80.4660 (15), 85.4332 (15), 78.4602 (15)
V3) 1753.48 (11)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.05
Crystal size (mm) 0.15 × 0.15 × 0.03
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100
Absorption correction Integration (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, XPREP, XCIF and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.867, 0.965
No. of measured, independent and observed [I > 2σ(I)] reflections 49307, 6416, 5801
Rint 0.037
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.11
No. of reflections 6416
No. of parameters 637
No. of restraints 374
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.40
Computer programs: APEX2, SAINT, XPREP, and XCIF (Bruker, 2014[Bruker (2014). APEX2, SAINT, XPREP, XCIF and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014-4 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014-6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CrystalMaker (CrystalMaker, 1994[CrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England. www.CrystalMaker.com.]).

All O—H and N—H hydrogen atoms were located in the difference map except for those on the minor-disordered component of the gentisic acid. The H atoms located in the difference map were allowed to refine the O—H/N—H bond distances. These H atoms refined to good hydrogen-bonding positions (Hamilton & Ibers, 1968[Hamilton, W. C. & Ibers, J. A. (1968). In Hydrogen Bonding in Solids. New York: W. A. Benjamin Inc.]). The hydroxyl H atoms on the minor-disordered component of gentisic acid were optimized by rotation about R—O bonds with idealized O—H and R—H distances. These H atoms are also in good hydrogen-bonding locations. Methyl H-atom positions, R—CH3, were optimized by rotation about R—C bonds with idealized C—H, R⋯H and H⋯H distances. The remaining H atoms were included as riding idealized contributors. Methyl, hydroxyl and amine H atom Uiso values were assigned as 1.5Ueq of the carrier atom; remaining H-atom Uiso were assigned as 1.2 × carrier Ueq.

The ([\overline{1}][\overline{1}]2) reflection was omitted from the final refinement because it was partially obscured by the shadow of the beamstop in some orientations.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014) and XPREP (Bruker, 2014); program(s) used to solve structure: SHELXS2014-4 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014-6 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008), CrystalMaker (CrystalMaker, 1994); software used to prepare material for publication: XCIF (Bruker, 2014).

4-Hydroxy-1,1-dioxo-N-(pyridin-2-yl)-2H-1λ6,2-benzothiazine-3-carboxamide–2-(4-oxido-1,1-dioxo-2H-1λ6,2-benzothiazine-3-amido)pyridin-1-ium–2,5-dihydroxybenzoic acid top
Crystal data top
2C15H13N3O4S·C7H6O4Z = 2
Mr = 816.80F(000) = 848
Triclinic, P1Dx = 1.547 Mg m3
a = 8.8764 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 13.4060 (5) ÅCell parameters from 9375 reflections
c = 15.2678 (6) Åθ = 2.9–68.1°
α = 80.4660 (15)°µ = 2.05 mm1
β = 85.4332 (15)°T = 105 K
γ = 78.4602 (15)°Plate, colourless
V = 1753.48 (11) Å30.15 × 0.15 × 0.03 mm
Data collection top
Bruker D8 Venture/Photon 100
diffractometer
6416 independent reflections
Radiation source: microfocus sealed tube5801 reflections with I > 2σ(I)
Multilayer mirrors monochromatorRint = 0.037
profile data from φ and ω scansθmax = 68.3°, θmin = 2.9°
Absorption correction: integration
(SADABS; Bruker, 2014)
h = 1010
Tmin = 0.867, Tmax = 0.965k = 1615
49307 measured reflectionsl = 1818
Refinement top
Refinement on F2374 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.2991P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
6416 reflectionsΔρmax = 0.24 e Å3
637 parametersΔρmin = 0.40 e Å3
Special details top

Experimental. One distinct cell was identified using APEX2 (Bruker, 2014). Thirty frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2013) then corrected for absorption by integration using SAINT/SADABS v2014/2 (Bruker, 2014) to sort, merge, and scale the combined data. No decay correction was applied.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Structure was phased by direct methods (Sheldrick, 2014). Systematic conditions suggested the ambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The final map had no significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.90408 (4)0.14390 (3)0.54955 (3)0.01390 (10)
O10.82965 (14)0.05638 (9)0.56665 (8)0.0187 (3)
O20.94543 (13)0.18072 (9)0.45902 (8)0.0171 (3)
O30.63926 (13)0.43288 (9)0.53570 (8)0.0190 (3)
O41.07869 (13)0.38775 (9)0.63196 (8)0.0179 (3)
N10.79315 (16)0.23889 (11)0.59094 (9)0.0146 (3)
N20.82451 (16)0.51014 (11)0.57712 (10)0.0153 (3)
H20.918 (3)0.4941 (16)0.5974 (14)0.023*
N30.60509 (16)0.63109 (12)0.53091 (10)0.0154 (3)
H30.571 (3)0.5850 (18)0.5199 (14)0.023*
C10.86562 (19)0.32602 (13)0.59352 (11)0.0146 (3)
C21.01351 (19)0.31258 (13)0.62393 (11)0.0146 (3)
C31.10283 (19)0.20511 (13)0.64669 (11)0.0145 (3)
C41.22916 (19)0.18627 (14)0.70002 (11)0.0170 (4)
H4A1.25840.24180.72150.020*
C51.3123 (2)0.08704 (14)0.72188 (12)0.0208 (4)
H5A1.39760.07540.75860.025*
C61.2726 (2)0.00480 (14)0.69087 (12)0.0214 (4)
H6A1.33070.06270.70620.026*
C71.1480 (2)0.02107 (14)0.63738 (12)0.0186 (4)
H7A1.11990.03490.61580.022*
C81.06514 (19)0.12048 (13)0.61587 (11)0.0148 (3)
C90.6952 (2)0.21086 (14)0.67045 (12)0.0203 (4)
H9A0.64420.15550.66070.030*
H9B0.61740.27110.68120.030*
H9C0.75910.18740.72210.030*
C100.76774 (19)0.42370 (13)0.56612 (11)0.0143 (3)
C110.74705 (19)0.60956 (13)0.56233 (11)0.0138 (3)
C120.5198 (2)0.72695 (13)0.51690 (11)0.0176 (4)
H12A0.41890.73750.49610.021*
C130.5776 (2)0.80883 (13)0.53244 (11)0.0179 (4)
H13A0.51870.87680.52220.022*
C140.7258 (2)0.79029 (13)0.56383 (11)0.0165 (3)
H14A0.76890.84640.57440.020*
C150.81005 (19)0.69159 (13)0.57964 (11)0.0159 (3)
H15A0.91000.67930.60210.019*
S20.69631 (5)0.91958 (3)0.90830 (3)0.01758 (11)
O50.55243 (14)0.92712 (10)0.86939 (9)0.0249 (3)
O60.71653 (14)0.87123 (10)0.99842 (8)0.0221 (3)
O71.23078 (14)0.76608 (10)0.90420 (8)0.0239 (3)
O81.15980 (15)0.96135 (11)0.90637 (8)0.0224 (3)
H81.218 (3)0.900 (2)0.9064 (15)0.034*
N40.83342 (17)0.85905 (11)0.84673 (9)0.0177 (3)
N51.04254 (18)0.67834 (12)0.88379 (10)0.0197 (3)
H50.950 (3)0.6828 (18)0.8715 (15)0.030*
N61.06042 (17)0.50686 (12)0.87478 (11)0.0243 (4)
C160.9849 (2)0.86239 (14)0.87249 (11)0.0179 (4)
C171.0193 (2)0.95255 (14)0.88695 (11)0.0190 (4)
C180.9022 (2)1.04731 (14)0.88701 (11)0.0186 (4)
C190.9434 (2)1.14325 (15)0.88329 (12)0.0223 (4)
H19A1.04891.14880.87810.027*
C200.8303 (2)1.23013 (15)0.88712 (13)0.0251 (4)
H20A0.85901.29530.88390.030*
C210.6755 (2)1.22358 (15)0.89559 (12)0.0236 (4)
H21A0.59931.28400.89830.028*
C220.6316 (2)1.12915 (14)0.90012 (12)0.0205 (4)
H22A0.52591.12410.90590.025*
C230.7451 (2)1.04244 (14)0.89609 (11)0.0177 (4)
C240.8156 (2)0.88255 (15)0.74935 (12)0.0234 (4)
H24A0.71160.87700.73620.035*
H24B0.89140.83350.71980.035*
H24C0.83220.95270.72760.035*
C251.0965 (2)0.76629 (14)0.88733 (11)0.0195 (4)
C261.1243 (2)0.57710 (14)0.90290 (12)0.0190 (4)
C271.1306 (2)0.40771 (16)0.89178 (16)0.0338 (5)
H27A1.08650.35760.87080.041*
C281.2628 (2)0.37473 (16)0.93788 (16)0.0339 (5)
H28A1.30880.30380.94900.041*
C291.3263 (2)0.44807 (16)0.96739 (14)0.0304 (5)
H29A1.41720.42780.99990.036*
C301.2588 (2)0.55046 (16)0.94990 (13)0.0254 (4)
H30A1.30250.60170.96930.031*
O90.72760 (18)0.66660 (12)0.81992 (11)0.0214 (4)0.809 (2)
O100.8016 (3)0.5013 (2)0.8038 (3)0.0235 (7)0.809 (2)
H100.888 (4)0.514 (2)0.8249 (19)0.035*0.809 (2)
O110.47005 (19)0.77049 (14)0.75304 (11)0.0209 (4)0.809 (2)
H110.546 (4)0.758 (2)0.782 (2)0.031*0.809 (2)
O120.3599 (3)0.3988 (2)0.6873 (2)0.0234 (6)0.809 (2)
H120.272 (4)0.407 (3)0.672 (2)0.035*0.809 (2)
C310.5536 (2)0.58575 (16)0.75879 (14)0.0152 (5)0.809 (2)
C320.4463 (3)0.67789 (19)0.73843 (19)0.0152 (6)0.809 (2)
C330.3109 (3)0.67561 (19)0.69899 (15)0.0185 (5)0.809 (2)
H33A0.23870.73770.68400.022*0.809 (2)
C340.2805 (3)0.5836 (2)0.68143 (17)0.0186 (5)0.809 (2)
H34A0.18770.58300.65460.022*0.809 (2)
C350.3854 (3)0.49164 (17)0.70295 (14)0.0172 (5)0.809 (2)
C360.5210 (5)0.4934 (2)0.7409 (4)0.0163 (7)0.809 (2)
H36A0.59310.43100.75510.020*0.809 (2)
C370.6998 (3)0.5882 (2)0.79668 (14)0.0167 (5)0.809 (2)
O9B0.1664 (7)0.5901 (5)0.6578 (4)0.0206 (16)0.191 (2)
O10B0.3138 (14)0.4318 (6)0.6853 (10)0.021 (2)0.191 (2)
H10B0.24020.41570.66310.032*0.191 (2)
O11B0.2617 (7)0.7479 (5)0.6992 (4)0.0197 (15)0.191 (2)
H11B0.20060.71930.67750.030*0.191 (2)
O12B0.7796 (13)0.4710 (8)0.8181 (12)0.023 (3)0.191 (2)
H12B0.83810.50040.84110.035*0.191 (2)
C31B0.4054 (8)0.5709 (5)0.7243 (5)0.0140 (14)0.191 (2)
C32B0.3839 (10)0.6760 (6)0.7300 (8)0.011 (2)0.191 (2)
C33B0.4961 (9)0.7113 (8)0.7689 (7)0.0185 (18)0.191 (2)
H33B0.48170.78220.77430.022*0.191 (2)
C34B0.6284 (10)0.6449 (6)0.7999 (6)0.0200 (17)0.191 (2)
H34B0.70370.67010.82630.024*0.191 (2)
C35B0.6496 (9)0.5409 (6)0.7919 (6)0.0181 (17)0.191 (2)
C36B0.5395 (19)0.5046 (9)0.7541 (17)0.016 (3)0.191 (2)
H36B0.55500.43380.74840.019*0.191 (2)
C37B0.2857 (10)0.5323 (6)0.6866 (7)0.017 (2)0.191 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01315 (19)0.0118 (2)0.0172 (2)0.00249 (15)0.00408 (15)0.00194 (15)
O10.0190 (6)0.0134 (6)0.0248 (6)0.0051 (5)0.0039 (5)0.0020 (5)
O20.0183 (6)0.0175 (6)0.0166 (6)0.0050 (5)0.0041 (5)0.0019 (5)
O30.0139 (6)0.0157 (6)0.0277 (7)0.0021 (5)0.0080 (5)0.0021 (5)
O40.0145 (6)0.0142 (6)0.0259 (6)0.0031 (5)0.0062 (5)0.0029 (5)
N10.0128 (7)0.0118 (7)0.0193 (7)0.0025 (5)0.0020 (6)0.0015 (6)
N20.0112 (7)0.0134 (7)0.0212 (7)0.0022 (6)0.0049 (6)0.0010 (6)
N30.0146 (7)0.0135 (7)0.0193 (7)0.0040 (6)0.0042 (6)0.0025 (6)
C10.0148 (8)0.0126 (8)0.0170 (8)0.0037 (7)0.0024 (6)0.0020 (6)
C20.0155 (8)0.0143 (9)0.0136 (8)0.0025 (7)0.0016 (6)0.0015 (6)
C30.0130 (8)0.0151 (9)0.0147 (8)0.0021 (7)0.0016 (6)0.0007 (6)
C40.0160 (8)0.0166 (9)0.0191 (9)0.0042 (7)0.0039 (7)0.0019 (7)
C50.0167 (9)0.0211 (10)0.0231 (9)0.0019 (7)0.0081 (7)0.0022 (7)
C60.0183 (9)0.0156 (9)0.0275 (10)0.0019 (7)0.0046 (7)0.0003 (7)
C70.0202 (9)0.0153 (9)0.0202 (9)0.0028 (7)0.0028 (7)0.0024 (7)
C80.0124 (8)0.0167 (9)0.0148 (8)0.0019 (7)0.0022 (6)0.0014 (7)
C90.0193 (9)0.0186 (9)0.0228 (9)0.0055 (7)0.0025 (7)0.0023 (7)
C100.0148 (8)0.0141 (9)0.0147 (8)0.0038 (7)0.0013 (6)0.0024 (6)
C110.0129 (8)0.0150 (8)0.0128 (8)0.0021 (6)0.0002 (6)0.0008 (6)
C120.0155 (8)0.0162 (9)0.0197 (9)0.0007 (7)0.0047 (7)0.0002 (7)
C130.0181 (9)0.0138 (9)0.0205 (9)0.0003 (7)0.0018 (7)0.0024 (7)
C140.0183 (8)0.0158 (9)0.0162 (8)0.0050 (7)0.0007 (7)0.0038 (7)
C150.0126 (8)0.0185 (9)0.0175 (8)0.0041 (7)0.0022 (6)0.0031 (7)
S20.0170 (2)0.0154 (2)0.0212 (2)0.00564 (16)0.00270 (16)0.00123 (16)
O50.0197 (7)0.0201 (7)0.0361 (8)0.0052 (5)0.0079 (6)0.0028 (6)
O60.0242 (7)0.0200 (7)0.0218 (7)0.0076 (5)0.0007 (5)0.0004 (5)
O70.0175 (6)0.0289 (7)0.0258 (7)0.0037 (5)0.0018 (5)0.0063 (6)
O80.0186 (6)0.0261 (7)0.0245 (7)0.0079 (5)0.0030 (5)0.0043 (6)
N40.0197 (8)0.0170 (8)0.0179 (7)0.0054 (6)0.0051 (6)0.0023 (6)
N50.0157 (7)0.0179 (8)0.0245 (8)0.0002 (6)0.0042 (6)0.0022 (6)
N60.0168 (8)0.0185 (8)0.0365 (9)0.0050 (6)0.0032 (7)0.0021 (7)
C160.0182 (9)0.0206 (9)0.0157 (8)0.0052 (7)0.0021 (7)0.0027 (7)
C170.0196 (9)0.0249 (10)0.0139 (8)0.0088 (7)0.0003 (7)0.0019 (7)
C180.0228 (9)0.0205 (9)0.0140 (8)0.0073 (7)0.0004 (7)0.0031 (7)
C190.0256 (10)0.0252 (10)0.0192 (9)0.0121 (8)0.0015 (7)0.0049 (7)
C200.0345 (11)0.0198 (10)0.0243 (10)0.0126 (8)0.0030 (8)0.0058 (8)
C210.0297 (10)0.0196 (10)0.0218 (9)0.0046 (8)0.0026 (8)0.0056 (7)
C220.0225 (9)0.0206 (10)0.0188 (9)0.0055 (7)0.0019 (7)0.0034 (7)
C230.0228 (9)0.0179 (9)0.0139 (8)0.0076 (7)0.0015 (7)0.0015 (7)
C240.0281 (10)0.0251 (10)0.0183 (9)0.0062 (8)0.0067 (7)0.0031 (7)
C250.0195 (9)0.0253 (10)0.0137 (8)0.0043 (7)0.0004 (7)0.0034 (7)
C260.0154 (8)0.0204 (9)0.0190 (9)0.0015 (7)0.0015 (7)0.0001 (7)
C270.0214 (10)0.0198 (10)0.0591 (14)0.0076 (8)0.0027 (9)0.0023 (9)
C280.0195 (10)0.0210 (11)0.0543 (14)0.0003 (8)0.0019 (9)0.0087 (9)
C290.0178 (9)0.0333 (12)0.0338 (11)0.0011 (8)0.0035 (8)0.0069 (9)
C300.0217 (9)0.0272 (11)0.0255 (10)0.0006 (8)0.0045 (8)0.0020 (8)
O90.0207 (9)0.0158 (8)0.0298 (9)0.0042 (6)0.0090 (7)0.0047 (6)
O100.0165 (11)0.0150 (14)0.0404 (16)0.0010 (10)0.0108 (10)0.0061 (12)
O110.0210 (9)0.0140 (9)0.0291 (9)0.0034 (7)0.0057 (7)0.0047 (7)
O120.0183 (14)0.0172 (14)0.0385 (11)0.0057 (10)0.0092 (11)0.0085 (12)
C310.0151 (10)0.0154 (11)0.0150 (10)0.0035 (8)0.0011 (8)0.0010 (8)
C320.0178 (14)0.0120 (11)0.0167 (12)0.0052 (11)0.0006 (12)0.0022 (9)
C330.0155 (12)0.0170 (13)0.0212 (12)0.0009 (10)0.0034 (9)0.0014 (9)
C340.0144 (12)0.0208 (14)0.0200 (11)0.0009 (11)0.0030 (9)0.0035 (12)
C350.0168 (11)0.0168 (11)0.0188 (10)0.0049 (9)0.0001 (8)0.0034 (9)
C360.0169 (14)0.0128 (13)0.019 (2)0.0031 (10)0.0016 (10)0.0014 (10)
C370.0178 (12)0.0158 (13)0.0164 (11)0.0036 (11)0.0018 (9)0.0013 (9)
O9B0.017 (3)0.017 (3)0.029 (4)0.004 (3)0.012 (3)0.002 (3)
O10B0.021 (6)0.013 (5)0.031 (4)0.006 (4)0.006 (4)0.005 (4)
O11B0.012 (3)0.017 (4)0.030 (4)0.001 (3)0.015 (3)0.002 (3)
O12B0.018 (5)0.015 (6)0.039 (6)0.004 (4)0.014 (4)0.002 (5)
C31B0.014 (3)0.013 (3)0.015 (3)0.001 (2)0.002 (2)0.005 (2)
C32B0.011 (4)0.008 (3)0.016 (3)0.003 (3)0.006 (4)0.004 (3)
C33B0.019 (4)0.013 (4)0.024 (4)0.006 (4)0.002 (3)0.003 (4)
C34B0.017 (4)0.017 (4)0.024 (3)0.003 (3)0.000 (3)0.003 (3)
C35B0.013 (3)0.021 (4)0.021 (3)0.004 (3)0.006 (3)0.000 (3)
C36B0.012 (4)0.018 (4)0.017 (4)0.000 (4)0.003 (3)0.001 (4)
C37B0.019 (4)0.014 (4)0.018 (4)0.002 (4)0.001 (3)0.005 (4)
Geometric parameters (Å, º) top
S1—O21.4333 (12)C18—C191.397 (3)
S1—O11.4361 (12)C18—C231.404 (3)
S1—N11.6299 (14)C19—C201.383 (3)
S1—C81.7646 (17)C19—H19A0.9500
O3—C101.241 (2)C20—C211.389 (3)
O4—C21.285 (2)C20—H20A0.9500
N1—C11.449 (2)C21—C221.387 (3)
N1—C91.477 (2)C21—H21A0.9500
N2—C111.363 (2)C22—C231.384 (3)
N2—C101.392 (2)C22—H22A0.9500
N2—H20.88 (2)C24—H24A0.9800
N3—C111.344 (2)C24—H24B0.9800
N3—C121.348 (2)C24—H24C0.9800
N3—H30.78 (2)C26—C301.396 (3)
C1—C21.395 (2)C27—C281.374 (3)
C1—C101.437 (2)C27—H27A0.9500
C2—C31.499 (2)C28—C291.377 (3)
C3—C41.396 (2)C28—H28A0.9500
C3—C81.405 (2)C29—C301.375 (3)
C4—C51.388 (2)C29—H29A0.9500
C4—H4A0.9500C30—H30A0.9500
C5—C61.385 (3)O9—C371.238 (3)
C5—H5A0.9500O10—C371.318 (4)
C6—C71.388 (3)O10—H100.91 (3)
C6—H6A0.9500O11—C321.356 (3)
C7—C81.388 (2)O11—H110.81 (3)
C7—H7A0.9500O12—C351.370 (4)
C9—H9A0.9800O12—H120.81 (3)
C9—H9B0.9800C31—C361.400 (4)
C9—H9C0.9800C31—C321.407 (3)
C11—C151.399 (2)C31—C371.471 (3)
C12—C131.362 (3)C32—C331.395 (4)
C12—H12A0.9500C33—C341.386 (4)
C13—C141.397 (2)C33—H33A0.9500
C13—H13A0.9500C34—C351.396 (3)
C14—C151.377 (2)C34—H34A0.9500
C14—H14A0.9500C35—C361.383 (5)
C15—H15A0.9500C36—H36A0.9500
S2—O61.4293 (13)O9B—C37B1.245 (8)
S2—O51.4295 (13)O10B—C37B1.323 (9)
S2—N41.6428 (15)O10B—H10B0.8400
S2—C231.7624 (18)O11B—C32B1.356 (8)
O7—C251.238 (2)O11B—H11B0.8400
O8—C171.337 (2)O12B—C35B1.373 (9)
O8—H80.88 (3)O12B—H12B0.8400
N4—C161.441 (2)C31B—C36B1.394 (9)
N4—C241.482 (2)C31B—C32B1.400 (8)
N5—C251.369 (2)C31B—C37B1.464 (8)
N5—C261.401 (2)C32B—C33B1.394 (9)
N5—H50.84 (2)C33B—C34B1.388 (9)
N6—C261.334 (2)C33B—H33B0.9500
N6—C271.343 (3)C34B—C35B1.393 (8)
C16—C171.360 (3)C34B—H34B0.9500
C16—C251.457 (3)C35B—C36B1.378 (10)
C17—C181.471 (3)C36B—H36B0.9500
O2—S1—O1117.92 (7)C20—C19—H19A120.1
O2—S1—N1108.03 (7)C18—C19—H19A120.1
O1—S1—N1108.36 (7)C19—C20—C21121.01 (18)
O2—S1—C8110.48 (7)C19—C20—H20A119.5
O1—S1—C8109.35 (8)C21—C20—H20A119.5
N1—S1—C8101.39 (8)C22—C21—C20120.24 (18)
C1—N1—C9115.16 (13)C22—C21—H21A119.9
C1—N1—S1114.32 (11)C20—C21—H21A119.9
C9—N1—S1116.52 (11)C23—C22—C21118.57 (17)
C11—N2—C10125.83 (15)C23—C22—H22A120.7
C11—N2—H2121.7 (14)C21—C22—H22A120.7
C10—N2—H2112.4 (14)C22—C23—C18122.17 (17)
C11—N3—C12123.43 (16)C22—C23—S2120.38 (14)
C11—N3—H3117.4 (16)C18—C23—S2117.37 (14)
C12—N3—H3119.1 (16)N4—C24—H24A109.5
C2—C1—C10125.28 (15)N4—C24—H24B109.5
C2—C1—N1121.38 (15)H24A—C24—H24B109.5
C10—C1—N1113.28 (14)N4—C24—H24C109.5
O4—C2—C1123.40 (15)H24A—C24—H24C109.5
O4—C2—C3118.03 (14)H24B—C24—H24C109.5
C1—C2—C3118.55 (15)O7—C25—N5123.18 (17)
C4—C3—C8117.53 (15)O7—C25—C16120.74 (17)
C4—C3—C2120.01 (15)N5—C25—C16116.05 (16)
C8—C3—C2122.46 (15)N6—C26—C30122.23 (17)
C5—C4—C3120.54 (16)N6—C26—N5114.40 (16)
C5—C4—H4A119.7C30—C26—N5123.35 (17)
C3—C4—H4A119.7N6—C27—C28123.5 (2)
C6—C5—C4120.85 (16)N6—C27—H27A118.2
C6—C5—H5A119.6C28—C27—H27A118.2
C4—C5—H5A119.6C27—C28—C29117.72 (19)
C5—C6—C7120.00 (16)C27—C28—H28A121.1
C5—C6—H6A120.0C29—C28—H28A121.1
C7—C6—H6A120.0C30—C29—C28120.25 (19)
C8—C7—C6118.87 (16)C30—C29—H29A119.9
C8—C7—H7A120.6C28—C29—H29A119.9
C6—C7—H7A120.6C29—C30—C26118.22 (19)
C7—C8—C3122.22 (15)C29—C30—H30A120.9
C7—C8—S1120.18 (13)C26—C30—H30A120.9
C3—C8—S1117.59 (13)C37—O10—H10107.2 (19)
N1—C9—H9A109.5C32—O11—H11106 (2)
N1—C9—H9B109.5C35—O12—H12108 (3)
H9A—C9—H9B109.5C36—C31—C32119.5 (2)
N1—C9—H9C109.5C36—C31—C37120.9 (2)
H9A—C9—H9C109.5C32—C31—C37119.6 (2)
H9B—C9—H9C109.5O11—C32—C33117.8 (2)
O3—C10—N2120.69 (15)O11—C32—C31123.0 (2)
O3—C10—C1123.59 (15)C33—C32—C31119.2 (2)
N2—C10—C1115.71 (14)C34—C33—C32120.6 (2)
N3—C11—N2119.99 (15)C34—C33—H33A119.7
N3—C11—C15117.96 (15)C32—C33—H33A119.7
N2—C11—C15122.04 (15)C33—C34—C35120.4 (2)
N3—C12—C13120.29 (16)C33—C34—H34A119.8
N3—C12—H12A119.9C35—C34—H34A119.8
C13—C12—H12A119.9O12—C35—C36118.2 (2)
C12—C13—C14118.25 (16)O12—C35—C34122.4 (2)
C12—C13—H13A120.9C36—C35—C34119.4 (2)
C14—C13—H13A120.9C35—C36—C31120.9 (2)
C15—C14—C13120.70 (16)C35—C36—H36A119.6
C15—C14—H14A119.7C31—C36—H36A119.6
C13—C14—H14A119.7O9—C37—O10121.5 (2)
C14—C15—C11119.34 (15)O9—C37—C31122.7 (2)
C14—C15—H15A120.3O10—C37—C31115.8 (2)
C11—C15—H15A120.3C37B—O10B—H10B109.5
O6—S2—O5119.45 (8)C32B—O11B—H11B109.5
O6—S2—N4107.35 (8)C35B—O12B—H12B109.5
O5—S2—N4108.47 (8)C36B—C31B—C32B120.0 (7)
O6—S2—C23108.59 (8)C36B—C31B—C37B120.9 (7)
O5—S2—C23109.83 (8)C32B—C31B—C37B119.1 (6)
N4—S2—C23101.66 (8)O11B—C32B—C33B116.5 (7)
C17—O8—H8106.5 (16)O11B—C32B—C31B124.8 (7)
C16—N4—C24113.57 (14)C33B—C32B—C31B118.6 (7)
C16—N4—S2112.35 (11)C34B—C33B—C32B121.3 (8)
C24—N4—S2116.08 (12)C34B—C33B—H33B119.4
C25—N5—C26126.35 (16)C32B—C33B—H33B119.4
C25—N5—H5119.4 (16)C33B—C34B—C35B119.4 (8)
C26—N5—H5114.2 (16)C33B—C34B—H34B120.3
C26—N6—C27118.03 (17)C35B—C34B—H34B120.3
C17—C16—N4120.42 (16)O12B—C35B—C36B117.0 (9)
C17—C16—C25121.07 (16)O12B—C35B—C34B122.9 (9)
N4—C16—C25118.42 (15)C36B—C35B—C34B120.1 (7)
O8—C17—C16123.01 (17)C35B—C36B—C31B120.6 (9)
O8—C17—C18114.49 (16)C35B—C36B—H36B119.7
C16—C17—C18122.43 (16)C31B—C36B—H36B119.7
C19—C18—C23118.14 (17)O9B—C37B—O10B122.6 (8)
C19—C18—C17121.45 (16)O9B—C37B—C31B122.2 (7)
C23—C18—C17120.31 (16)O10B—C37B—C31B115.2 (8)
C20—C19—C18119.86 (18)
O2—S1—N1—C162.23 (13)C16—C17—C18—C2317.4 (3)
O1—S1—N1—C1168.95 (11)C23—C18—C19—C201.0 (3)
C8—S1—N1—C153.93 (13)C17—C18—C19—C20177.36 (16)
O2—S1—N1—C9159.44 (12)C18—C19—C20—C210.7 (3)
O1—S1—N1—C930.63 (14)C19—C20—C21—C220.2 (3)
C8—S1—N1—C984.39 (13)C20—C21—C22—C230.1 (3)
C9—N1—C1—C293.30 (19)C21—C22—C23—C180.4 (3)
S1—N1—C1—C245.60 (19)C21—C22—C23—S2176.15 (13)
C9—N1—C1—C1084.02 (18)C19—C18—C23—C220.9 (3)
S1—N1—C1—C10137.08 (13)C17—C18—C23—C22177.31 (16)
C10—C1—C2—O41.0 (3)C19—C18—C23—S2175.77 (13)
N1—C1—C2—O4176.02 (15)C17—C18—C23—S20.6 (2)
C10—C1—C2—C3177.70 (15)O6—S2—C23—C2297.44 (15)
N1—C1—C2—C35.3 (2)O5—S2—C23—C2234.84 (17)
O4—C2—C3—C419.5 (2)N4—S2—C23—C22149.56 (14)
C1—C2—C3—C4161.71 (16)O6—S2—C23—C1879.31 (15)
O4—C2—C3—C8160.13 (15)O5—S2—C23—C18148.41 (13)
C1—C2—C3—C818.6 (2)N4—S2—C23—C1833.69 (15)
C8—C3—C4—C50.6 (2)C26—N5—C25—O73.8 (3)
C2—C3—C4—C5179.71 (16)C26—N5—C25—C16174.46 (16)
C3—C4—C5—C60.4 (3)C17—C16—C25—O77.8 (3)
C4—C5—C6—C70.1 (3)N4—C16—C25—O7175.54 (15)
C5—C6—C7—C80.0 (3)C17—C16—C25—N5170.47 (16)
C6—C7—C8—C30.2 (3)N4—C16—C25—N56.2 (2)
C6—C7—C8—S1178.95 (14)C27—N6—C26—C300.9 (3)
C4—C3—C8—C70.5 (2)C27—N6—C26—N5178.99 (17)
C2—C3—C8—C7179.81 (15)C25—N5—C26—N6164.95 (16)
C4—C3—C8—S1179.26 (13)C25—N5—C26—C3017.0 (3)
C2—C3—C8—S11.1 (2)C26—N6—C27—C281.2 (3)
O2—S1—C8—C799.16 (15)N6—C27—C28—C290.5 (3)
O1—S1—C8—C732.21 (16)C27—C28—C29—C300.6 (3)
N1—S1—C8—C7146.49 (14)C28—C29—C30—C260.8 (3)
O2—S1—C8—C382.06 (14)N6—C26—C30—C290.1 (3)
O1—S1—C8—C3146.57 (13)N5—C26—C30—C29177.80 (17)
N1—S1—C8—C332.29 (15)C36—C31—C32—O11179.4 (3)
C11—N2—C10—O34.3 (3)C37—C31—C32—O110.8 (4)
C11—N2—C10—C1174.59 (15)C36—C31—C32—C331.4 (4)
C2—C1—C10—O3176.72 (16)C37—C31—C32—C33177.3 (2)
N1—C1—C10—O36.1 (2)O11—C32—C33—C34179.3 (2)
C2—C1—C10—N24.4 (2)C31—C32—C33—C341.2 (4)
N1—C1—C10—N2172.79 (14)C32—C33—C34—C350.1 (4)
C12—N3—C11—N2178.15 (16)C33—C34—C35—O12179.6 (3)
C12—N3—C11—C151.3 (2)C33—C34—C35—C360.8 (4)
C10—N2—C11—N32.9 (3)O12—C35—C36—C31179.8 (4)
C10—N2—C11—C15176.52 (15)C34—C35—C36—C310.6 (6)
C11—N3—C12—C131.7 (3)C32—C31—C36—C350.5 (6)
N3—C12—C13—C140.6 (3)C37—C31—C36—C35178.1 (3)
C12—C13—C14—C150.8 (3)C36—C31—C37—O9174.1 (3)
C13—C14—C15—C111.2 (3)C32—C31—C37—O97.3 (3)
N3—C11—C15—C140.2 (2)C36—C31—C37—O106.5 (4)
N2—C11—C15—C14179.62 (15)C32—C31—C37—O10172.1 (3)
O6—S2—N4—C1659.05 (13)C36B—C31B—C32B—O11B176.7 (16)
O5—S2—N4—C16170.60 (12)C37B—C31B—C32B—O11B3.3 (16)
C23—S2—N4—C1654.87 (13)C36B—C31B—C32B—C33B2 (2)
O6—S2—N4—C24167.90 (12)C37B—C31B—C32B—C33B177.7 (10)
O5—S2—N4—C2437.55 (15)O11B—C32B—C33B—C34B177.8 (9)
C23—S2—N4—C2478.18 (14)C31B—C32B—C33B—C34B1.3 (17)
C24—N4—C16—C1787.5 (2)C32B—C33B—C34B—C35B0.1 (16)
S2—N4—C16—C1746.7 (2)C33B—C34B—C35B—O12B177.7 (12)
C24—N4—C16—C2595.81 (18)C33B—C34B—C35B—C36B0 (2)
S2—N4—C16—C25129.92 (14)O12B—C35B—C36B—C31B178.8 (17)
N4—C16—C17—O8176.38 (15)C34B—C35B—C36B—C31B1 (3)
C25—C16—C17—O87.1 (3)C32B—C31B—C36B—C35B2 (3)
N4—C16—C17—C186.9 (3)C37B—C31B—C36B—C35B178.1 (16)
C25—C16—C17—C18169.68 (16)C36B—C31B—C37B—O9B178.4 (16)
O8—C17—C18—C1916.6 (2)C32B—C31B—C37B—O9B1.5 (15)
C16—C17—C18—C19166.38 (17)C36B—C31B—C37B—O10B1 (2)
O8—C17—C18—C23159.65 (16)C32B—C31B—C37B—O10B178.7 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.88 (2)1.85 (2)2.6169 (18)145.2 (19)
N3—H3···O30.78 (2)1.99 (2)2.6027 (19)135 (2)
N3—H3···O3i0.78 (2)2.19 (2)2.8034 (19)136 (2)
O8—H8···O70.88 (3)1.79 (3)2.5722 (19)148 (2)
N5—H5···O90.84 (2)2.25 (2)3.074 (2)167 (2)
O10—H10···N60.91 (3)1.74 (3)2.637 (3)167 (3)
O11—H11···O90.81 (3)1.89 (3)2.614 (2)148 (3)
O12—H12···O4ii0.81 (3)1.94 (3)2.738 (3)164 (4)
O10B—H10B···O4ii0.841.672.508 (12)172
O11B—H11B···O2i0.842.573.061 (6)118
O11B—H11B···O9B0.841.892.614 (9)143
O12B—H12B···N60.842.102.856 (12)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

The Materials Chemistry Laboratory at the University of Illinois was supported in part by grants NSF CHE 95–03145 and NSF CHE 03–43032 from the National Science Foundation.

References

First citationAmidon, G. L., Lennernäs, H., Shah, V. P. & Crison, J. R. (1995). Pharm. Res. 12, 413–420.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2014). APEX2, SAINT, XPREP, XCIF and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChilds, S. L. & Hardcastle, K. I. (2007). Cryst. Growth Des. 7, 1291–1304.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystalMaker (1994). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England. www.CrystalMaker.com.  Google Scholar
First citationHamilton, W. C. & Ibers, J. A. (1968). In Hydrogen Bonding in Solids. New York: W. A. Benjamin Inc.  Google Scholar
First citationHorstman, E. M., Bertke, J. A., Kim, E. H., Gonzalez, L. C., Zhang, G. G. Z., Gong, Y. & Kenis, P. J. A. (2015). CrystEngComm, 17, 5299–5306.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThayer, A. M. (2010). Chem. Eng. News, 88, 13–18.  CrossRef Google Scholar
First citationTrask, A. V., Motherwell, W. D. S. & Jones, W. (2005). Cryst. Growth Des. 5, 1013–1021.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds