research communications
Bis(N,N-diethyldithiocarbamato-κ2S,S′)(3-hydroxypyridine-κN)zinc and bis[N-(2-hydroxyethyl)-N-methyldithiocarbamato-κ2S,S′](3-hydroxypyridine-κN)zinc: crystal structures and Hirshfeld surface analysis
aDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, bDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, cChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio, 43202, USA, and dResearch Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my
The common feature of the molecular structures of the title compounds, [Zn(C5H10NS2)2(C5H5NO)], (I), and [Zn(C4H8NOS2)2(C5H5NO)], (II), are NS4 donor sets derived from N-bound hydroxypyridyl ligands and asymmetrically chelating dithiocarbamate ligands. The resulting coordination geometries are highly distorted, being intermediate between square pyramidal and trigonal bipyramidal for both independent molecules comprising the of (I), and significantly closer towards square pyramidal in (II). The key feature of the molecular packing in (I) is the formation of centrosymmetric, dimeric aggregates sustained by pairs of hydroxy-O—H⋯S(dithiocarbamate) hydrogen bonds. The aggregates are connected into a three-dimensional architecture by methylene-C—H⋯O(hydroxy) and methyl-C—H⋯π(chelate) interactions. With greater hydrogen-bonding potential, supramolecular chains along the c axis are formed in the crystal of (II), sustained by hydroxy-O—H⋯O(hydroxy) hydrogen bonds, with ethylhydroxy and pyridylhydroxy groups as the donors, along with ethylhydroxy-O—H⋯S(dithiocarbamate) hydrogen bonds. Chains are connected into layers in the ac plane by methylene-C—H⋯π(chelate) interactions and these stack along the b axis, with no directional interactions between them. An analysis of the Hirshfeld surfaces clearly distinguished the independent molecules of (I) and reveals the importance of the C—H⋯π(chelate) interactions in the packing of both (I) and (II).
1. Chemical context
The structures of binary zinc bis(dithiocarbamates) are always zero-dimensional (i.e. molecular) (Heard, 2005) in contrast to their cadmium (Tan et al., 2016b) and mercury (Jotani et al., 2016) analogues; dithiocarbamate is −S2CNRR'. The zinc structures can be mononuclear, distorted tetrahedral as in Zn(S2CNCy2)2 (Cox & Tiekink, 2009) or, far more commonly, binuclear as in the archetypical compound [Zn(S2CNEt2)2]2, where heavily distorted five-coordinate geometries are found for zinc as two of the ligands are chelating and the others are μ2-tridentate (Bonamico et al., 1965; Tiekink, 2000), with the adoption of one form over the other often being related to the steric bulk of the R/R′ groups (Tiekink, 2003). However, there is no clear-cut delineation between the adoption of one structural motif over the other depending on steric bulk. This is nicely illustrated in the structure of Zn[S2CN(i-Bu)2]2 which has equal numbers of both motifs (Ivanov et al., 2005). A popular process by which structures of greater dimensionality might be formed is by the addition of neutral, potentially bridging ligands. However, in the case of zinc dithiocarbamates, complexation with bidentate ligands usually results in the isolation of zero-dimensional, binuclear molecules, e.g. {Zn[S2CN(Me)i-Pr)]2}2(Me2NCH2CH2NMe2) (Malik et al., 1997); [Zn(S2CNMe2)2]2(4,4′-bipyridyl) (Zha et al., 2010) and [Zn(S2CNEt2)2]2(Ph2PCH2CH2PPh2) (Zeng et al., 1994). Even when excess base is included in the reaction, e.g. trans-1,2-bis(4-pyridyl)ethylene (bpe), only the zero-dimensional binuclear compound is isolated with non-coordinating bpe solvate, i.e. Zn(S2CNEt2)2]2(bpe)·bpe (Lai & Tiekink, 2003). That this reluctance to form coordination polymers is related directly to the nature of the dithiocarbamate ligand is seen in the adoption of zigzag chains in analogous xanthate complexes, e.g. {[Zn(S2COR)2]2(bpe)}n, for R = Et and n-Bu (Kang et al., 2010). Steric effects come into play when R = Cy whereby a binuclear species is isolated, i.e. [Zn(S2COCy)2]2(bpe) (Kang et al., 2010). This difference in chemistry arises to the significant (40%) contribution of the canonical structure (2-)S2CN(+)RR′, with two formally negatively charged sulfur atoms, which makes dithiocarbamate a very effective chelating agent, thereby decreasing the of the zinc atom.
An approach to increase the supramolecular aggregation in the crystal structures of zinc dithiocarbamates has been to introduce hydrogen bonding functionality into the ligands, i.e using dithiocarbamate anions of the type −S2CN(R)CH2CH2OH. This influence is seen in the recent report of the structures of Zn[S2CN(R)CH2CH2OH]2(2,2′-bipyridyl) for R = i-Pr and CH2CH2OH (Safbri et al., 2016). The common feature of these structures along with those of related species with no hydrogen bonding potential, e.g. Zn(S2CNMe2)2(2,2′-bipyridyl) (Manohar et al., 1998), is the presence of a distorted octahedral N2S4 donor set about the zinc atom. The O—H⋯O hydrogen bonding in Zn[S2CN(R)CH2CH2OH]2(2,2′-bipyridyl), in the case when R = CH2CH2OH, isolated as a 1:1 hydrate, leads to supramolecular ladders and these extend in two dimensions via water-O—H⋯S(dithiocarbamate) hydrogen bonds. When R = i-Pr, layers are sustained by hydroxy-O—H⋯S hydrogen bonds (Safbri et al., 2016). As an extension of these studies, in the present report, Zn(S2CNRR′)2 has been complexed with 3-hydroxypyridine (pyOH) to yield two 1:1 complexes. Quite different aggregation patterns are observed when R = R′ = Et (I), and R = i-Pr and R′ = CH2CH2OH (II). The crystal and molecular structures of (I) and (II) are described herein along with an analysis of their Hirshfeld surfaces.
2. Structural commentary
Two independent molecules of Zn(S2CNEt2)2(pyOH) comprise the of (I), Fig. 1; pyOH is 3-hydroxypyridine. For the Zn1-containing molecule, Fig. 1a, the ZnII atom is chelated by two dithiocarbamate ligands and one nitrogen atom derived from the monodentate pyOH ligand. The S1-dithiocarbamate ligand chelates the zinc atom forming quite different Zn—S bond lengths compared with the S3-dithiocarbamate ligand. This is quantified in the values of Δ(Zn—S), being the difference between the Zn—Slong and Zn—Sshort bond lengths, Table 1, i.e. 0.43 and 0.15 Å, respectively. The Zn1—N3 bond length is significantly shorter than the Zn—S bonds. The NS4 coordination geometry is highly distorted as seen in the value of τ of 0.48 (Addison et al., 1984). This value is almost exactly intermediate between the ideal square pyramidal geometry with τ = 0.0 and ideal trigonal pyramidal with τ = 1.0. The acute S—Zn—S chelate angles contribute to this distortion, Table 1. The widest angles in the coordination geometry are subtended by Ss—Zn—Ss (s = short) and, especially, the Sl—Zn—Sl (l = long) bond angles, Table 1. The coordination geometry for the Zn2 atom, Fig. 1b, is quite similar to that just described for the Zn1 atom. The values of Δ(Zn—S) of 0.21 and 0.25 Å are intermediate to those for the Zn1-molecule. Even so, the differences in the Zn—S bond lengths in both molecules are not that great with this observation reflected in the closeness of the C—S bond lengths, Table 1. The value of τ for the Zn2-molecule is 0.53, indicating an inclination towards trigonal bipyramidal cf. the Zn1-molecule.
|
The molecular structure of (II), Zn[S2CN(Me)CH2CH2OH]2(pyOH), is shown in Fig. 2 and selected geometric parameters are included in Table 1. The coordination modes of the dithiocarbamate ligands in (II) are close to those observed for the Zn1-molecule in (I) with Δ(Zn—S) values of 0.42 and 0.19 Å. The difference between (I) and (II) is found in the coordination geometry which is close to square pyramidal in (II), as seen in the value of τ = 0.16. In this description, the S1–S4 atoms define the basal plane with the r.m.s. deviation being 0.0501 Å. The Zn atom lies 0.7514 (4) Å above the plane in the direction of the N3 atom. The dihedral angle between the chelate rings is 63.81 (15)°, an angle significantly greater than for the comparable angles in (I), Table 1.
Overlay diagrams of the three molecules in (I) and (II) are shown in Fig. 3. The molecules have been overlapped so that the pyOH rings are coincident. The differences in the conformations of the molecules comprising (I) are clearly seen, and especially between these and the conformation in (II). Such variability in structure reflects the flexibility in the binding modes of the dithiocarbamate ligands leading to quite distinctive coordination geometries.
3. Supramolecular features
The key feature of the molecular packing of (I) is the formation of hydroxy-O—H⋯S(dithiocarbamate) hydrogen bonds that sustain centrosymmetric, dimeric aggregates, via a 14-membered {⋯HOC2NZnS}2 synthon, Fig. 4a and Table 2. Additional stabilization to the dimer is provided by an intra-dimer π–π interaction between the pyOH rings. The inter-centroid distance is 3.5484 (18) Å and the angle of inclination is 3.91 (14)° for 1 − x, + y, − z. The aggregates are further stabilized by pyOH-C—H⋯π interactions where the π-system is a chelate ring. Such C—H⋯π(chelate) interactions are increasingly being recognized as being important in the supramolecular chemistry of metal 1,1-dithiolates (Tiekink & Zukerman-Schpector, 2011; Tan et al., 2016a) and, it should be noted, routinely appear in the output from PLATON (Spek, 2009). Connections between aggregates leading to supramolecular layers in the ab plane are also of the type C—H⋯π(chelate) but with methyl-H atoms as the donors, Fig. 4b. The connections between layers along the c direction are of the type methylene-C—H⋯O(hydroxy), Fig. 4c.
The addition of greater hydrogen-bonding potential in (II) results in an infinite chain, Table 3. There is an hydroxy-O—H⋯O(hydroxy) hydrogen bond involving the O2 and O1 atoms as the donor and acceptor, respectively. The O1-hydroxy group forms a hydrogen bond with a dithiocarbamate-S2 atom. As shown by the `1' in Fig. 5a, these hydrogen bonds lead to a centrosymmetric 22-membered {⋯SZnSCNC2OH⋯OH}2 synthon. On either side of these synthons, the pyOH hydroxy group hydrogen bonds to the O2-hydroxy atom and through symmetry, a centrosymmetric 24-membered {⋯OC2NCSZnNC2OH}2 synthon is formed, highlighted as `2' in Fig. 5a. Alternating synthons generate a supramolecular chain aligned along the c axis. Methylene-C—H⋯π(chelate) interactions link molecules into dimeric units, Fig. 5b. The combination of the aforementioned interactions lead to supramolecular layers that stack along the b axis with no directional interactions between them, Fig. 5c.
|
4. Hirshfeld surface analysis
The Hirshfeld surface analysis for (I) and (II) was performed as described recently (Cardoso et al., 2016). From the views of the Hirshfeld surface mapped over dnorm in the range −0.2 to + 1.3 au for the Zn1- and Zn2-containing molecules of (I), Fig. 6, the presence of bright-red spots near the hydroxy-H1O and -H2O, and dithiocarbamate-S2 and S8 atoms represent the donors and acceptors of the O—H⋯S hydrogen bonds; these are viewed as blue and red regions on the Hirshfeld surfaces mapped over electrostatic potential (mapped over the range −0.07 to +0.10 au), Fig. 7, corresponding to positive and negative potentials, respectively. The faint-red spots appearing near the hydroxy-O2 and methyl-C19 atoms in Fig. 6b and 6c are due to comparatively weaker intermolecular C—H⋯O interactions. The intra-dimer π–π stacking interaction between the pyOH rings, Fig. 4a, is evident through the appearance of faint-red spots near the arene-C13 and C26 atoms of the rings, Fig. 6a and 6b, forming a close interatomic C⋯C contact, Table 4. The diminutive-red spots near the pyOH-H13 and -H28 and dithiocarbamate-C21 atoms, Fig. 6a–c, characterize the influence of the C—H⋯π(chelate) interactions; in Fig. 7, the light-blue and red regions represent the respective donors and acceptors for these interactions. The immediate environments around reference molecules showing above intermolecular interactions are illustrated in Fig. 8.
|
The presence of peripheral hydroxy groups participating in the O—H⋯O hydrogen bonds in the structure of (II) result in the distinct bright-red spots near the respective donors and acceptor atoms on the Hirshfeld surface mapped over dnorm, Fig. 9a and 9b, and result in the blue and red regions corresponding to positive and negative potential on the Hirshfeld surface mapped over electrostatic potential (mapped over the range −0.12 to +0.18 au), Fig. 9c. The faint-red spots near the S4, C8, C9 and H2B atoms in Fig. 9a and 9b indicate their involvement in short interatomic S⋯S, C⋯C and C⋯H/H⋯C contacts, Table 4. Fig. 10a illustrates the immediate environment about a reference molecule within Hirshfeld surfaces mapped over electrostatic potential and highlights the O—H⋯O hydrogen bonds. The C—H⋯π(chelate) and its reciprocal contact, i.e. π—H⋯C, and short interatomic S⋯S, C⋯C and C⋯H/H⋯C contacts, with labels 3–6, are shown in Fig. 10b.
The overall two-dimensional fingerprint plot for individual Zn1- and Zn2-containing molecules, overall (I) and (II) are illustrated in Fig. 11a. The respective plots delineated into H⋯H, O⋯H/H⋯O, S⋯H/H⋯S, C⋯H/H⋯C, C⋯C and S⋯S contacts (McKinnon et al., 2007) are shown in Fig. 11b–g, respectively; the relative contributions from different contacts to the Hirshfeld surfaces of (I) and (II) are summarized in Table 5.
|
The fingerprint plots delineated into H⋯H contacts for (I), Fig. 11b, show different distributions of points in the individual plots for Zn1- and Zn2-molecules. This, as well as their different percentage contributions to the Hirshfeld surface, Table 5, confirm their distinct chemical environments. The overall plot is the superimposition of these individual plots with a pair of small peaks, at (de, di) distances shorter than their van der Waals separations, corresponding to short interatomic H⋯H contacts, Table 4, between the hydrogen atoms of the Zn1-molecule.
The fingerprint plots delineated into O⋯H/H⋯O contacts, Fig. 11c, also exhibit slightly different profiles for the independent molecules. The respective peaks at de + di ∼ 2.7 Å and ∼ 2.6 Å correspond to donors (upper region) and the acceptors (lower region) for the Zn1-molecule, whereas these appear as a pair of peaks at the same de + di ∼ 2.6 Å distance for the Zn2-molecule. This is likely due to the interacting oxygen and hydrogen atoms for the Zn1-molecule being at their van der Waals separation in the donor region, i.e. at 2.72 Å, while in the acceptor region the peak corresponds to a short interatomic O⋯H contact, Table 4. In the plot for the Zn2-molecule, this contact gives rise to the pair of peaks at de + di ∼ 2.6 Å.
The pair of spikes with their tips at different de + di distances in the fingerprint plots delineated into S⋯H/H⋯S contacts, Fig. 11d, for the Zn1- and Zn2-molecules result from different hydroxy-O—H⋯S(dithiocarbamate) hydrogen bonds. The tips at de + di ∼ 2.4 Å in the donor region of the plot for the Zn1-molecule and in the acceptor region for the Zn2-molecule are due to the formation of O—H⋯S hydrogen bonds between the hydroxy-O1 and dithiocarbamate-S8 atoms; the other hydrogen bond, involving the O2 and S2 atoms, gives rise to tips at de + di ∼ 2.3 Å in the respective donor and acceptor regions of the plots, Fig. 11d. The plot for the overall structure results from the superimposition of individual plots and shows the symmetric distribution of points as a pair of long spikes having tips at de + di ∼ 2.3 Å. The short interatomic S⋯H/H⋯S contacts in the crystal of (I), Table 4, appear as a pair of aligned green points beginning at de + di ∼ 3.0 Å in the respective plots.
Almost the same percentage contribution from C⋯H/H⋯C contacts to the overall surface is made by the Zn1- and Zn2-molecules, Table 5, and the respective fingerprint plots, Fig. 11e, have the same shape with tips at de + di ∼ 2.7 Å which are due to the short interatomic C⋯H/H⋯C contacts, Table 4, involving the atoms forming the C—H⋯π(chelate) interactions; the points corresponding to the other short C⋯H/H⋯C contacts are within the plot. The C⋯C contacts assigned to intra-dimer π–π stacking interactions between pyOH-rings have a small, i.e. 1.8%, but recognizable contribution to the Hirshfeld surface and appear as an arrow-like distribution of points around de = di = 1.8 Å in Fig. 11f. As indicated in Fig. 11g, S⋯S contacts do not figure prominently in the molecular packing of (I).
The corresponding two-dimensional fingerprint plots for (II) are also given in Fig. 11. In the fingerprint plots delineated into H⋯H contacts, Fig. 11b, a pair of very thin spikes having their tips at de + di ∼ 2.3 Å indicate the presence of short interatomic H⋯H contacts between hydroxy-H1O and -H2O atoms, Table 4. Also, the intermolecular O—H⋯O hydrogen bond between the pyOH-O3 and hydroxy-O2 atoms results in a short interatomic H⋯H contact between the H2O and H3O atoms, Table 4. The increase in the percentage contribution from O⋯H/H⋯O contacts to the Hirshfeld surface and the corresponding decrease in the contribution from H⋯H contacts in (II), cf. (I), Table 5, is due to the presence of dominating O—H⋯O hydrogen bonds in the crystal of (II) and is characterized as a pair of long spikes terminating at de + di ∼ 1.8 Å, Fig. 11c. The tips corresponding to the O1⋯H6A contact, Table 4, are diminished within the long spikes corresponding to dominant O—H⋯O hydrogen bonds.
The S⋯H/H⋯S contacts with the nearly same contribution to the surface of (II) as for (I), i.e. 22.2 and 22.7%, respectively, reflect the O—H⋯S hydrogen bonds and additional S⋯H contacts resulting in tips at de + di ∼ 2.9 Å in Fig. 11d and Table 4. The 12.3% contribution from C⋯H/H⋯C contacts to the surface with the tips at de + di ∼ 2.6 Å in the plot, Fig. 11e, results from the C—H⋯π(chelate) and short interatomic C⋯H/H⋯C contacts, Table 4. The presence of C—H⋯π(chelate) interactions is also indicated by the short interatomic Zn⋯H/H⋯Zn contacts summarized in Table 4. The presence of short interatomic C⋯C contacts between symmetry-related methyl-C8 atoms is identified in the respective plot, Fig. 11f, as the pair of tips at de + di ∼1.7 Å. Finally, a cone-shaped distribution of points with a 3.8% contribution to the surface from S⋯S contacts having a vertex at de = di ∼ 1.7 Å in the fingerprint plot, Fig. 11g, results from short interatomic contacts between S4 atoms, Table 4; the absence of analogous contacts in (I) results in a very low percentage contribution to its surface (see above).
5. Database survey
As alluded to in the Chemical context, the presence of hydroxyethyl groups in zinc dithiocarbamates leads to a higher degree of recognizable supramolecular aggregation owing to hydrogen bonding, usually of the type hydroxy-O—H⋯O(hydroxy) but, sometimes also of the type hydroxy-O—H⋯S(dithiocarbamate) (Tan et al., 2013; Jamaludin et al., 2016). The following is a brief overview of some previous structures with ethylhydroxydithiocarbamate ligands highlighting the important role of hydrogen bonding in the supramolecular aggregation. In the what might be termed the parent binary compound, i.e. {Zn[S2CN(CH2CH2OH)2]2}2, the usual dimeric motif is evident but these self-assemble via strong hydrogen bonding into three-dimensional architectures in both of the polymorphs characterized thus far, with the difference between the structures being the topology of supramolecular layers, i.e. flattened (Manohar et al., 1998) and undulating (Benson et al., 2007). When one ethylhydroxy group is replaced by an ethyl group, as in {Zn[S2CN(Et)CH2CH2OH]2}2, the reduced hydrogen bonding leads to supramolecular chains (Benson et al., 2007). Bridging ligands lead to zero-dimensional aggregates, e.g. in {Zn[S2CN(Me)CH2CH2OH)2]2}2L, where L is (3-pyridyl)CH2N(H)C(=O)C(=O)N(H)CH2(3-pyridyl). However, hydrogen bonding of the type hydroxy-O—H⋯O(hydroxy) links the molecules into inter-woven double chains (Poplaukhin & Tiekink, 2008). The interesting structural chemistry is complimented by observations that some of these compounds exhibit exciting, cell-specific, anti-cancer potential (Tan et al., 2015). The foregoing suggests this is a fertile area of research, well deserving of continuing attention.
6. Synthesis and crystallization
Synthesis of (I): In a 2:1:0.5 molar ratio, Zn(S2CNEt2)2, N,N′-bis(pyridin-3-ylmethyl)ethanedithiodiamide (Zukerman-Schpector et al., 2015) and 3-hydroxy pyridine were dissolved in chloroform. Solvent diffusion of hexane into this solution produced pink crystals. FT–IR (cm−1): ν(C=N) 1482 (s, br); ν(C—S) 987 (s). 1H NMR (d6-DMSO, 300 MHz): δ 9.91 (s, 1H, OH), 8.20–8.00 (m, 2H, aromatic-H), 7.30–7.10 (m, 2H, aromatic-H), 3.82 (8H, q, NCH2, J = 7.00 Hz); 1.22 (12H, t, CH3, J = 7.20 Hz).
Synthesis of (II): In a 1:1 molar ratio, Zn[S2N(Me)CH2CH2OH]2 and 3-hydroxy pyridine were dissolved in a MeOH/EtOH (1:1 v/v) solution. Solvent diffusion of hexane into this solution led to the formation of colourless crystals. FT–IR (cm−1): ν(C=N) 1480 (s); ν(C—S) 1002 (s). 1H NMR (d6-DMSO, 300 MHz): δ 9.91 (s, 1H, aromatic-OH), 8.20–8.00 (m, 2H, aromatic-H), 7.30–7.10 (m, 2H, aromatic-H), 4.91 (2H, t, OH, J = 5.50 Hz); 3.90 (4H, t, NCH2, J = 6.25 Hz); 3.70 (4H, dt, CH2O, J = 5.50, 5.50 Hz); 3.41 (6H, s, CH3).
7. details
Crystal data, data collection and structure . The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The oxygen-bound H-atoms were located in difference Fourier maps but were refined with a distance restraint of O—H = 0.84±0.01 Å, and with Uiso(H) set to 1.5Ueq(O).
details are summarized in Table 6
|
Supporting information
https://doi.org/10.1107/S205698901601728X/hb7628sup1.cif
contains datablock . DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901601728X/hb7628Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S205698901601728X/hb7628IIsup3.hkl
For both compounds, data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell
CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) for (I); ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006) for (II). For both compounds, software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(C5H10NS2)2(C5H5NO)] | F(000) = 1904 |
Mr = 456.99 | Dx = 1.488 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.032 (2) Å | Cell parameters from 16430 reflections |
b = 31.955 (7) Å | θ = 2.5–40.7° |
c = 13.233 (3) Å | µ = 1.62 mm−1 |
β = 105.920 (2)° | T = 98 K |
V = 4079.4 (15) Å3 | Slab, pink |
Z = 8 | 0.50 × 0.40 × 0.15 mm |
Rigaku AFC12κ/SATURN724 diffractometer | 9202 independent reflections |
Radiation source: fine-focus sealed tube | 8401 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 27.5°, θmin = 2.5° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −10→13 |
Tmin = 0.687, Tmax = 1.000 | k = −41→41 |
25139 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: mixed |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0477P)2 + 4.2267P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.002 |
9202 reflections | Δρmax = 0.73 e Å−3 |
447 parameters | Δρmin = −0.45 e Å−3 |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.22939 (3) | 0.51145 (2) | 0.27529 (3) | 0.02233 (8) | |
S1 | 0.06711 (7) | 0.51485 (2) | 0.37067 (5) | 0.02470 (14) | |
S2 | −0.01500 (6) | 0.54220 (2) | 0.14827 (5) | 0.02127 (13) | |
S3 | 0.27656 (6) | 0.46663 (2) | 0.14937 (5) | 0.02206 (13) | |
S4 | 0.42106 (7) | 0.46582 (2) | 0.37705 (5) | 0.02349 (14) | |
O1 | 0.5087 (2) | 0.64627 (6) | 0.45759 (17) | 0.0305 (4) | |
H1O | 0.524 (4) | 0.6717 (4) | 0.449 (3) | 0.046* | |
N1 | −0.1829 (2) | 0.54510 (7) | 0.27436 (17) | 0.0206 (4) | |
N2 | 0.4941 (2) | 0.41780 (7) | 0.23507 (18) | 0.0218 (4) | |
N3 | 0.3333 (2) | 0.56740 (7) | 0.27551 (18) | 0.0209 (4) | |
C1 | −0.0580 (3) | 0.53538 (8) | 0.2645 (2) | 0.0194 (5) | |
C2 | −0.2190 (3) | 0.54050 (9) | 0.3748 (2) | 0.0257 (5) | |
H2A | −0.1631 | 0.5176 | 0.4162 | 0.031* | |
H2B | −0.3180 | 0.5327 | 0.3602 | 0.031* | |
C3 | −0.1933 (3) | 0.58063 (10) | 0.4389 (2) | 0.0339 (7) | |
H3A | −0.0933 | 0.5856 | 0.4649 | 0.051* | |
H3B | −0.2330 | 0.5780 | 0.4985 | 0.051* | |
H3C | −0.2371 | 0.6041 | 0.3946 | 0.051* | |
C4 | −0.2961 (3) | 0.55989 (9) | 0.1855 (2) | 0.0265 (5) | |
H4A | −0.2567 | 0.5750 | 0.1350 | 0.032* | |
H4B | −0.3553 | 0.5796 | 0.2114 | 0.032* | |
C5 | −0.3837 (3) | 0.52333 (10) | 0.1301 (2) | 0.0334 (6) | |
H5A | −0.3275 | 0.5054 | 0.0978 | 0.050* | |
H5B | −0.4634 | 0.5340 | 0.0756 | 0.050* | |
H5C | −0.4166 | 0.5071 | 0.1813 | 0.050* | |
C6 | 0.4075 (3) | 0.44668 (8) | 0.2532 (2) | 0.0203 (5) | |
C7 | 0.4939 (3) | 0.40561 (9) | 0.1276 (2) | 0.0268 (6) | |
H7A | 0.5897 | 0.3983 | 0.1272 | 0.032* | |
H7B | 0.4644 | 0.4299 | 0.0804 | 0.032* | |
C8 | 0.3997 (3) | 0.36900 (10) | 0.0850 (3) | 0.0353 (7) | |
H8A | 0.4218 | 0.3457 | 0.1350 | 0.053* | |
H8B | 0.4134 | 0.3602 | 0.0177 | 0.053* | |
H8C | 0.3030 | 0.3774 | 0.0748 | 0.053* | |
C9 | 0.6003 (3) | 0.39774 (8) | 0.3208 (2) | 0.0261 (5) | |
H9A | 0.6182 | 0.3691 | 0.2992 | 0.031* | |
H9B | 0.5651 | 0.3954 | 0.3836 | 0.031* | |
C10 | 0.7353 (3) | 0.42242 (10) | 0.3491 (2) | 0.0313 (6) | |
H10A | 0.7667 | 0.4266 | 0.2860 | 0.047* | |
H10B | 0.8060 | 0.4069 | 0.4015 | 0.047* | |
H10C | 0.7201 | 0.4497 | 0.3782 | 0.047* | |
C11 | 0.3950 (3) | 0.58787 (8) | 0.3647 (2) | 0.0236 (5) | |
H11 | 0.4004 | 0.5749 | 0.4303 | 0.028* | |
C12 | 0.4514 (3) | 0.62776 (8) | 0.3636 (2) | 0.0236 (5) | |
C13 | 0.4457 (3) | 0.64633 (8) | 0.2680 (2) | 0.0242 (5) | |
H13 | 0.4834 | 0.6734 | 0.2653 | 0.029* | |
C14 | 0.3839 (3) | 0.62468 (9) | 0.1761 (2) | 0.0266 (5) | |
H14 | 0.3798 | 0.6366 | 0.1096 | 0.032* | |
C15 | 0.3287 (3) | 0.58556 (9) | 0.1827 (2) | 0.0233 (5) | |
H15 | 0.2859 | 0.5709 | 0.1197 | 0.028* | |
Zn2 | 0.68820 (3) | 0.27217 (2) | 0.19561 (3) | 0.02217 (8) | |
S5 | 0.75317 (6) | 0.32449 (2) | 0.09483 (5) | 0.02196 (13) | |
S6 | 0.89261 (7) | 0.30961 (2) | 0.31945 (5) | 0.02480 (14) | |
S7 | 0.52971 (7) | 0.26483 (2) | 0.29651 (5) | 0.02464 (14) | |
S8 | 0.45448 (6) | 0.24765 (2) | 0.06815 (5) | 0.02173 (13) | |
O2 | 0.9810 (2) | 0.13960 (6) | 0.36656 (16) | 0.0293 (4) | |
H2O | 0.997 (4) | 0.1141 (4) | 0.358 (3) | 0.044* | |
N4 | 0.9764 (2) | 0.36702 (7) | 0.20279 (18) | 0.0214 (4) | |
N5 | 0.2806 (2) | 0.23709 (7) | 0.18746 (18) | 0.0218 (4) | |
N6 | 0.7917 (2) | 0.21685 (7) | 0.18654 (18) | 0.0214 (4) | |
C16 | 0.8854 (3) | 0.33725 (8) | 0.2066 (2) | 0.0196 (5) | |
C17 | 1.0857 (3) | 0.37985 (9) | 0.2973 (2) | 0.0270 (6) | |
H17A | 1.0512 | 0.3764 | 0.3601 | 0.032* | |
H17B | 1.1075 | 0.4098 | 0.2914 | 0.032* | |
C18 | 1.2165 (3) | 0.35417 (10) | 0.3110 (3) | 0.0358 (7) | |
H18A | 1.1964 | 0.3247 | 0.3211 | 0.054* | |
H18B | 1.2880 | 0.3642 | 0.3725 | 0.054* | |
H18C | 1.2497 | 0.3570 | 0.2482 | 0.054* | |
C19 | 0.9748 (3) | 0.38995 (8) | 0.1058 (2) | 0.0246 (5) | |
H19A | 0.9319 | 0.3722 | 0.0442 | 0.030* | |
H19B | 1.0713 | 0.3959 | 0.1050 | 0.030* | |
C20 | 0.8951 (3) | 0.43075 (9) | 0.0970 (2) | 0.0284 (6) | |
H20A | 0.7968 | 0.4248 | 0.0881 | 0.043* | |
H20B | 0.9056 | 0.4466 | 0.0362 | 0.043* | |
H20C | 0.9315 | 0.4473 | 0.1610 | 0.043* | |
C21 | 0.4063 (3) | 0.24864 (8) | 0.1840 (2) | 0.0206 (5) | |
C22 | 0.2413 (3) | 0.23388 (9) | 0.2868 (2) | 0.0247 (5) | |
H22A | 0.1416 | 0.2405 | 0.2736 | 0.030* | |
H22B | 0.2948 | 0.2546 | 0.3377 | 0.030* | |
C23 | 0.2691 (3) | 0.19034 (10) | 0.3332 (2) | 0.0310 (6) | |
H23A | 0.2249 | 0.1696 | 0.2800 | 0.047* | |
H23B | 0.2311 | 0.1879 | 0.3937 | 0.047* | |
H23C | 0.3693 | 0.1853 | 0.3559 | 0.047* | |
C24 | 0.1702 (3) | 0.22577 (9) | 0.0921 (2) | 0.0262 (6) | |
H24A | 0.1135 | 0.2028 | 0.1086 | 0.031* | |
H24B | 0.2125 | 0.2158 | 0.0371 | 0.031* | |
C25 | 0.0776 (3) | 0.26349 (11) | 0.0511 (3) | 0.0371 (7) | |
H25A | 0.0353 | 0.2732 | 0.1053 | 0.056* | |
H25B | 0.0047 | 0.2554 | −0.0118 | 0.056* | |
H25C | 0.1335 | 0.2860 | 0.0333 | 0.056* | |
C26 | 0.8547 (3) | 0.19591 (8) | 0.2743 (2) | 0.0225 (5) | |
H26 | 0.8552 | 0.2078 | 0.3402 | 0.027* | |
C27 | 0.9194 (3) | 0.15755 (8) | 0.2729 (2) | 0.0223 (5) | |
C28 | 0.9185 (3) | 0.14053 (8) | 0.1761 (2) | 0.0249 (5) | |
H28 | 0.9612 | 0.1143 | 0.1720 | 0.030* | |
C29 | 0.8541 (3) | 0.16261 (9) | 0.0855 (2) | 0.0261 (5) | |
H29 | 0.8533 | 0.1517 | 0.0185 | 0.031* | |
C30 | 0.7912 (3) | 0.20054 (9) | 0.0932 (2) | 0.0242 (5) | |
H30 | 0.7466 | 0.2154 | 0.0308 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02198 (15) | 0.01845 (15) | 0.02877 (17) | −0.00025 (11) | 0.01071 (12) | −0.00238 (12) |
S1 | 0.0212 (3) | 0.0328 (3) | 0.0206 (3) | 0.0046 (2) | 0.0065 (2) | 0.0053 (3) |
S2 | 0.0235 (3) | 0.0222 (3) | 0.0186 (3) | −0.0006 (2) | 0.0066 (2) | −0.0003 (2) |
S3 | 0.0209 (3) | 0.0226 (3) | 0.0217 (3) | 0.0009 (2) | 0.0042 (2) | −0.0024 (2) |
S4 | 0.0270 (3) | 0.0237 (3) | 0.0202 (3) | 0.0043 (2) | 0.0073 (2) | −0.0009 (2) |
O1 | 0.0391 (11) | 0.0230 (10) | 0.0248 (10) | −0.0026 (8) | 0.0011 (9) | −0.0029 (8) |
N1 | 0.0190 (10) | 0.0225 (10) | 0.0192 (11) | 0.0006 (8) | 0.0032 (8) | 0.0007 (8) |
N2 | 0.0232 (10) | 0.0208 (10) | 0.0222 (11) | 0.0011 (8) | 0.0074 (9) | −0.0022 (8) |
N3 | 0.0192 (10) | 0.0210 (10) | 0.0222 (11) | 0.0010 (8) | 0.0052 (8) | 0.0012 (8) |
C1 | 0.0226 (12) | 0.0163 (11) | 0.0192 (12) | −0.0006 (9) | 0.0054 (9) | −0.0002 (9) |
C2 | 0.0212 (12) | 0.0324 (14) | 0.0251 (14) | 0.0000 (10) | 0.0090 (10) | 0.0014 (11) |
C3 | 0.0349 (15) | 0.0411 (17) | 0.0294 (15) | −0.0047 (13) | 0.0148 (13) | −0.0096 (13) |
C4 | 0.0208 (12) | 0.0296 (14) | 0.0270 (14) | 0.0024 (10) | 0.0031 (10) | 0.0054 (11) |
C5 | 0.0261 (13) | 0.0419 (17) | 0.0280 (15) | −0.0048 (12) | 0.0002 (11) | 0.0000 (13) |
C6 | 0.0201 (11) | 0.0168 (11) | 0.0256 (13) | −0.0016 (9) | 0.0088 (10) | 0.0004 (10) |
C7 | 0.0258 (13) | 0.0278 (13) | 0.0286 (14) | 0.0034 (10) | 0.0108 (11) | −0.0057 (11) |
C8 | 0.0338 (15) | 0.0347 (16) | 0.0362 (17) | −0.0002 (12) | 0.0075 (13) | −0.0166 (13) |
C9 | 0.0273 (13) | 0.0213 (12) | 0.0293 (14) | 0.0061 (10) | 0.0069 (11) | 0.0023 (11) |
C10 | 0.0265 (13) | 0.0316 (15) | 0.0326 (16) | 0.0047 (11) | 0.0028 (12) | 0.0020 (12) |
C11 | 0.0240 (12) | 0.0229 (12) | 0.0226 (13) | 0.0019 (10) | 0.0040 (10) | 0.0006 (10) |
C12 | 0.0181 (11) | 0.0239 (13) | 0.0263 (14) | 0.0028 (9) | 0.0020 (10) | −0.0041 (10) |
C13 | 0.0223 (12) | 0.0202 (12) | 0.0312 (15) | −0.0001 (9) | 0.0090 (11) | 0.0007 (10) |
C14 | 0.0278 (13) | 0.0280 (14) | 0.0250 (14) | 0.0036 (10) | 0.0087 (11) | 0.0039 (11) |
C15 | 0.0218 (12) | 0.0263 (13) | 0.0211 (13) | 0.0003 (10) | 0.0045 (10) | −0.0001 (10) |
Zn2 | 0.02096 (15) | 0.01850 (15) | 0.02802 (17) | −0.00040 (10) | 0.00836 (12) | 0.00219 (11) |
S5 | 0.0212 (3) | 0.0211 (3) | 0.0224 (3) | −0.0027 (2) | 0.0039 (2) | 0.0019 (2) |
S6 | 0.0299 (3) | 0.0234 (3) | 0.0208 (3) | −0.0021 (2) | 0.0064 (3) | 0.0019 (2) |
S7 | 0.0225 (3) | 0.0297 (3) | 0.0209 (3) | −0.0035 (2) | 0.0046 (2) | −0.0031 (3) |
S8 | 0.0221 (3) | 0.0229 (3) | 0.0200 (3) | −0.0008 (2) | 0.0055 (2) | 0.0026 (2) |
O2 | 0.0397 (11) | 0.0231 (10) | 0.0245 (10) | 0.0017 (8) | 0.0078 (9) | 0.0027 (8) |
N4 | 0.0217 (10) | 0.0207 (10) | 0.0210 (11) | −0.0033 (8) | 0.0043 (8) | −0.0025 (8) |
N5 | 0.0224 (10) | 0.0221 (10) | 0.0209 (11) | 0.0000 (8) | 0.0059 (9) | 0.0010 (9) |
N6 | 0.0186 (10) | 0.0204 (10) | 0.0247 (11) | −0.0032 (8) | 0.0053 (8) | 0.0005 (9) |
C16 | 0.0222 (11) | 0.0186 (11) | 0.0195 (12) | 0.0002 (9) | 0.0083 (9) | −0.0007 (9) |
C17 | 0.0295 (13) | 0.0257 (13) | 0.0222 (13) | −0.0072 (10) | 0.0010 (11) | −0.0053 (10) |
C18 | 0.0297 (14) | 0.0371 (16) | 0.0357 (17) | −0.0021 (12) | 0.0008 (13) | −0.0001 (13) |
C19 | 0.0286 (13) | 0.0251 (13) | 0.0223 (13) | −0.0056 (10) | 0.0104 (11) | 0.0005 (10) |
C20 | 0.0348 (14) | 0.0229 (13) | 0.0280 (15) | −0.0049 (11) | 0.0094 (12) | 0.0033 (11) |
C21 | 0.0228 (12) | 0.0173 (11) | 0.0203 (12) | 0.0024 (9) | 0.0038 (10) | 0.0031 (9) |
C22 | 0.0224 (12) | 0.0294 (13) | 0.0241 (14) | 0.0006 (10) | 0.0097 (10) | 0.0002 (11) |
C23 | 0.0300 (14) | 0.0353 (15) | 0.0291 (15) | 0.0021 (12) | 0.0102 (12) | 0.0061 (12) |
C24 | 0.0191 (12) | 0.0310 (14) | 0.0252 (14) | −0.0042 (10) | 0.0006 (10) | −0.0010 (11) |
C25 | 0.0282 (14) | 0.0408 (17) | 0.0348 (17) | 0.0039 (12) | −0.0037 (13) | 0.0059 (14) |
C26 | 0.0235 (12) | 0.0221 (12) | 0.0214 (13) | −0.0022 (9) | 0.0052 (10) | −0.0016 (10) |
C27 | 0.0241 (12) | 0.0186 (12) | 0.0242 (13) | −0.0030 (9) | 0.0068 (10) | 0.0014 (10) |
C28 | 0.0284 (13) | 0.0197 (12) | 0.0288 (14) | 0.0000 (10) | 0.0113 (11) | −0.0013 (10) |
C29 | 0.0335 (14) | 0.0259 (13) | 0.0200 (13) | −0.0018 (11) | 0.0091 (11) | −0.0006 (10) |
C30 | 0.0244 (12) | 0.0252 (13) | 0.0227 (13) | −0.0014 (10) | 0.0063 (10) | 0.0038 (10) |
Zn1—N3 | 2.069 (2) | Zn2—N6 | 2.070 (2) |
Zn1—S1 | 2.3201 (8) | Zn2—S5 | 2.3399 (8) |
Zn1—S3 | 2.3417 (8) | Zn2—S7 | 2.3517 (8) |
Zn1—S4 | 2.4932 (8) | Zn2—S6 | 2.5453 (8) |
Zn1—S2 | 2.7461 (8) | Zn2—S8 | 2.6051 (8) |
S1—C1 | 1.736 (3) | S5—C16 | 1.743 (3) |
S2—C1 | 1.721 (3) | S6—C16 | 1.720 (3) |
S3—C6 | 1.741 (3) | S7—C21 | 1.734 (3) |
S4—C6 | 1.720 (3) | S8—C21 | 1.730 (3) |
O1—C12 | 1.355 (3) | O2—C27 | 1.352 (3) |
O1—H1O | 0.842 (10) | O2—H2O | 0.844 (10) |
N1—C1 | 1.332 (3) | N4—C16 | 1.328 (3) |
N1—C4 | 1.470 (3) | N4—C19 | 1.474 (3) |
N1—C2 | 1.477 (3) | N4—C17 | 1.478 (3) |
N2—C6 | 1.333 (3) | N5—C21 | 1.326 (3) |
N2—C9 | 1.473 (3) | N5—C22 | 1.476 (3) |
N2—C7 | 1.474 (3) | N5—C24 | 1.478 (3) |
N3—C11 | 1.343 (3) | N6—C26 | 1.339 (3) |
N3—C15 | 1.347 (3) | N6—C30 | 1.340 (4) |
C2—C3 | 1.520 (4) | C17—C18 | 1.515 (4) |
C2—H2A | 0.9900 | C17—H17A | 0.9900 |
C2—H2B | 0.9900 | C17—H17B | 0.9900 |
C3—H3A | 0.9800 | C18—H18A | 0.9800 |
C3—H3B | 0.9800 | C18—H18B | 0.9800 |
C3—H3C | 0.9800 | C18—H18C | 0.9800 |
C4—C5 | 1.524 (4) | C19—C20 | 1.517 (4) |
C4—H4A | 0.9900 | C19—H19A | 0.9900 |
C4—H4B | 0.9900 | C19—H19B | 0.9900 |
C5—H5A | 0.9800 | C20—H20A | 0.9800 |
C5—H5B | 0.9800 | C20—H20B | 0.9800 |
C5—H5C | 0.9800 | C20—H20C | 0.9800 |
C7—C8 | 1.512 (4) | C22—C23 | 1.515 (4) |
C7—H7A | 0.9900 | C22—H22A | 0.9900 |
C7—H7B | 0.9900 | C22—H22B | 0.9900 |
C8—H8A | 0.9800 | C23—H23A | 0.9800 |
C8—H8B | 0.9800 | C23—H23B | 0.9800 |
C8—H8C | 0.9800 | C23—H23C | 0.9800 |
C9—C10 | 1.523 (4) | C24—C25 | 1.528 (4) |
C9—H9A | 0.9900 | C24—H24A | 0.9900 |
C9—H9B | 0.9900 | C24—H24B | 0.9900 |
C10—H10A | 0.9800 | C25—H25A | 0.9800 |
C10—H10B | 0.9800 | C25—H25B | 0.9800 |
C10—H10C | 0.9800 | C25—H25C | 0.9800 |
C11—C12 | 1.397 (4) | C26—C27 | 1.390 (4) |
C11—H11 | 0.9500 | C26—H26 | 0.9500 |
C12—C13 | 1.384 (4) | C27—C28 | 1.389 (4) |
C13—C14 | 1.388 (4) | C28—C29 | 1.389 (4) |
C13—H13 | 0.9500 | C28—H28 | 0.9500 |
C14—C15 | 1.380 (4) | C29—C30 | 1.383 (4) |
C14—H14 | 0.9500 | C29—H29 | 0.9500 |
C15—H15 | 0.9500 | C30—H30 | 0.9500 |
N3—Zn1—S1 | 112.77 (6) | N6—Zn2—S5 | 110.78 (6) |
N3—Zn1—S3 | 109.24 (6) | N6—Zn2—S7 | 112.06 (6) |
S1—Zn1—S3 | 136.44 (3) | S5—Zn2—S7 | 137.08 (3) |
N3—Zn1—S4 | 101.02 (6) | N6—Zn2—S6 | 96.34 (6) |
S1—Zn1—S4 | 106.61 (3) | S5—Zn2—S6 | 74.34 (3) |
S3—Zn1—S4 | 75.54 (3) | S7—Zn2—S6 | 103.42 (3) |
N3—Zn1—S2 | 93.23 (6) | N6—Zn2—S8 | 94.71 (6) |
S1—Zn1—S2 | 70.99 (3) | S5—Zn2—S8 | 100.83 (3) |
S3—Zn1—S2 | 95.97 (3) | S7—Zn2—S8 | 73.08 (3) |
S4—Zn1—S2 | 165.17 (2) | S6—Zn2—S8 | 168.91 (2) |
C1—S1—Zn1 | 92.11 (9) | C16—S5—Zn2 | 87.12 (9) |
C1—S2—Zn1 | 78.96 (9) | C16—S6—Zn2 | 81.24 (9) |
C6—S3—Zn1 | 85.32 (9) | C21—S7—Zn2 | 88.69 (9) |
C6—S4—Zn1 | 81.11 (9) | C21—S8—Zn2 | 80.88 (9) |
C12—O1—H1O | 110 (3) | C27—O2—H2O | 110 (3) |
C1—N1—C4 | 122.5 (2) | C16—N4—C19 | 123.1 (2) |
C1—N1—C2 | 122.3 (2) | C16—N4—C17 | 121.7 (2) |
C4—N1—C2 | 115.2 (2) | C19—N4—C17 | 115.3 (2) |
C6—N2—C9 | 122.1 (2) | C21—N5—C22 | 122.6 (2) |
C6—N2—C7 | 121.9 (2) | C21—N5—C24 | 122.4 (2) |
C9—N2—C7 | 116.0 (2) | C22—N5—C24 | 115.0 (2) |
C11—N3—C15 | 118.9 (2) | C26—N6—C30 | 119.1 (2) |
C11—N3—Zn1 | 122.19 (18) | C26—N6—Zn2 | 120.10 (18) |
C15—N3—Zn1 | 118.67 (18) | C30—N6—Zn2 | 120.70 (18) |
N1—C1—S2 | 122.1 (2) | N4—C16—S6 | 122.3 (2) |
N1—C1—S1 | 119.98 (19) | N4—C16—S5 | 120.4 (2) |
S2—C1—S1 | 117.91 (14) | S6—C16—S5 | 117.23 (14) |
N1—C2—C3 | 111.8 (2) | N4—C17—C18 | 111.6 (2) |
N1—C2—H2A | 109.2 | N4—C17—H17A | 109.3 |
C3—C2—H2A | 109.2 | C18—C17—H17A | 109.3 |
N1—C2—H2B | 109.2 | N4—C17—H17B | 109.3 |
C3—C2—H2B | 109.2 | C18—C17—H17B | 109.3 |
H2A—C2—H2B | 107.9 | H17A—C17—H17B | 108.0 |
C2—C3—H3A | 109.5 | C17—C18—H18A | 109.5 |
C2—C3—H3B | 109.5 | C17—C18—H18B | 109.5 |
H3A—C3—H3B | 109.5 | H18A—C18—H18B | 109.5 |
C2—C3—H3C | 109.5 | C17—C18—H18C | 109.5 |
H3A—C3—H3C | 109.5 | H18A—C18—H18C | 109.5 |
H3B—C3—H3C | 109.5 | H18B—C18—H18C | 109.5 |
N1—C4—C5 | 110.8 (2) | N4—C19—C20 | 111.9 (2) |
N1—C4—H4A | 109.5 | N4—C19—H19A | 109.2 |
C5—C4—H4A | 109.5 | C20—C19—H19A | 109.2 |
N1—C4—H4B | 109.5 | N4—C19—H19B | 109.2 |
C5—C4—H4B | 109.5 | C20—C19—H19B | 109.2 |
H4A—C4—H4B | 108.1 | H19A—C19—H19B | 107.9 |
C4—C5—H5A | 109.5 | C19—C20—H20A | 109.5 |
C4—C5—H5B | 109.5 | C19—C20—H20B | 109.5 |
H5A—C5—H5B | 109.5 | H20A—C20—H20B | 109.5 |
C4—C5—H5C | 109.5 | C19—C20—H20C | 109.5 |
H5A—C5—H5C | 109.5 | H20A—C20—H20C | 109.5 |
H5B—C5—H5C | 109.5 | H20B—C20—H20C | 109.5 |
N2—C6—S4 | 122.2 (2) | N5—C21—S8 | 121.7 (2) |
N2—C6—S3 | 120.0 (2) | N5—C21—S7 | 121.0 (2) |
S4—C6—S3 | 117.86 (14) | S8—C21—S7 | 117.32 (15) |
N2—C7—C8 | 113.5 (2) | N5—C22—C23 | 111.1 (2) |
N2—C7—H7A | 108.9 | N5—C22—H22A | 109.4 |
C8—C7—H7A | 108.9 | C23—C22—H22A | 109.4 |
N2—C7—H7B | 108.9 | N5—C22—H22B | 109.4 |
C8—C7—H7B | 108.9 | C23—C22—H22B | 109.4 |
H7A—C7—H7B | 107.7 | H22A—C22—H22B | 108.0 |
C7—C8—H8A | 109.5 | C22—C23—H23A | 109.5 |
C7—C8—H8B | 109.5 | C22—C23—H23B | 109.5 |
H8A—C8—H8B | 109.5 | H23A—C23—H23B | 109.5 |
C7—C8—H8C | 109.5 | C22—C23—H23C | 109.5 |
H8A—C8—H8C | 109.5 | H23A—C23—H23C | 109.5 |
H8B—C8—H8C | 109.5 | H23B—C23—H23C | 109.5 |
N2—C9—C10 | 111.8 (2) | N5—C24—C25 | 110.5 (2) |
N2—C9—H9A | 109.3 | N5—C24—H24A | 109.5 |
C10—C9—H9A | 109.3 | C25—C24—H24A | 109.5 |
N2—C9—H9B | 109.3 | N5—C24—H24B | 109.5 |
C10—C9—H9B | 109.3 | C25—C24—H24B | 109.5 |
H9A—C9—H9B | 107.9 | H24A—C24—H24B | 108.1 |
C9—C10—H10A | 109.5 | C24—C25—H25A | 109.5 |
C9—C10—H10B | 109.5 | C24—C25—H25B | 109.5 |
H10A—C10—H10B | 109.5 | H25A—C25—H25B | 109.5 |
C9—C10—H10C | 109.5 | C24—C25—H25C | 109.5 |
H10A—C10—H10C | 109.5 | H25A—C25—H25C | 109.5 |
H10B—C10—H10C | 109.5 | H25B—C25—H25C | 109.5 |
N3—C11—C12 | 121.7 (3) | N6—C26—C27 | 122.7 (3) |
N3—C11—H11 | 119.2 | N6—C26—H26 | 118.7 |
C12—C11—H11 | 119.2 | C27—C26—H26 | 118.7 |
O1—C12—C13 | 123.6 (3) | O2—C27—C28 | 124.4 (2) |
O1—C12—C11 | 117.4 (3) | O2—C27—C26 | 117.3 (2) |
C13—C12—C11 | 119.1 (3) | C28—C27—C26 | 118.3 (3) |
C12—C13—C14 | 118.9 (3) | C27—C28—C29 | 118.7 (3) |
C12—C13—H13 | 120.5 | C27—C28—H28 | 120.6 |
C14—C13—H13 | 120.5 | C29—C28—H28 | 120.6 |
C15—C14—C13 | 119.1 (3) | C30—C29—C28 | 119.7 (3) |
C15—C14—H14 | 120.5 | C30—C29—H29 | 120.2 |
C13—C14—H14 | 120.5 | C28—C29—H29 | 120.2 |
N3—C15—C14 | 122.3 (3) | N6—C30—C29 | 121.5 (3) |
N3—C15—H15 | 118.8 | N6—C30—H30 | 119.3 |
C14—C15—H15 | 118.8 | C29—C30—H30 | 119.3 |
C4—N1—C1—S2 | 3.9 (3) | C19—N4—C16—S6 | 177.68 (19) |
C2—N1—C1—S2 | −178.13 (19) | C17—N4—C16—S6 | −3.3 (3) |
C4—N1—C1—S1 | −175.75 (19) | C19—N4—C16—S5 | −1.8 (3) |
C2—N1—C1—S1 | 2.2 (3) | C17—N4—C16—S5 | 177.20 (19) |
Zn1—S2—C1—N1 | 179.1 (2) | Zn2—S6—C16—N4 | −177.2 (2) |
Zn1—S2—C1—S1 | −1.28 (12) | Zn2—S6—C16—S5 | 2.33 (12) |
Zn1—S1—C1—N1 | −178.9 (2) | Zn2—S5—C16—N4 | 177.0 (2) |
Zn1—S1—C1—S2 | 1.49 (14) | Zn2—S5—C16—S6 | −2.51 (13) |
C1—N1—C2—C3 | 92.4 (3) | C16—N4—C17—C18 | 89.7 (3) |
C4—N1—C2—C3 | −89.5 (3) | C19—N4—C17—C18 | −91.2 (3) |
C1—N1—C4—C5 | 91.2 (3) | C16—N4—C19—C20 | 94.5 (3) |
C2—N1—C4—C5 | −86.9 (3) | C17—N4—C19—C20 | −84.6 (3) |
C9—N2—C6—S4 | 5.1 (3) | C22—N5—C21—S8 | 174.11 (19) |
C7—N2—C6—S4 | −171.71 (19) | C24—N5—C21—S8 | −4.8 (3) |
C9—N2—C6—S3 | −175.58 (19) | C22—N5—C21—S7 | −5.2 (3) |
C7—N2—C6—S3 | 7.6 (3) | C24—N5—C21—S7 | 175.93 (19) |
Zn1—S4—C6—N2 | 175.6 (2) | Zn2—S8—C21—N5 | −177.8 (2) |
Zn1—S4—C6—S3 | −3.74 (12) | Zn2—S8—C21—S7 | 1.50 (12) |
Zn1—S3—C6—N2 | −175.4 (2) | Zn2—S7—C21—N5 | 177.7 (2) |
Zn1—S3—C6—S4 | 3.94 (13) | Zn2—S7—C21—S8 | −1.64 (14) |
C6—N2—C7—C8 | −91.5 (3) | C21—N5—C22—C23 | −90.3 (3) |
C9—N2—C7—C8 | 91.5 (3) | C24—N5—C22—C23 | 88.7 (3) |
C6—N2—C9—C10 | −88.5 (3) | C21—N5—C24—C25 | −95.2 (3) |
C7—N2—C9—C10 | 88.5 (3) | C22—N5—C24—C25 | 85.8 (3) |
C15—N3—C11—C12 | 1.5 (4) | C30—N6—C26—C27 | −0.4 (4) |
Zn1—N3—C11—C12 | −172.77 (19) | Zn2—N6—C26—C27 | 176.51 (19) |
N3—C11—C12—O1 | 178.6 (2) | N6—C26—C27—O2 | 179.3 (2) |
N3—C11—C12—C13 | −1.2 (4) | N6—C26—C27—C28 | 0.2 (4) |
O1—C12—C13—C14 | −179.7 (2) | O2—C27—C28—C29 | −178.6 (2) |
C11—C12—C13—C14 | 0.0 (4) | C26—C27—C28—C29 | 0.4 (4) |
C12—C13—C14—C15 | 0.8 (4) | C27—C28—C29—C30 | −0.8 (4) |
C11—N3—C15—C14 | −0.7 (4) | C26—N6—C30—C29 | 0.1 (4) |
Zn1—N3—C15—C14 | 173.8 (2) | Zn2—N6—C30—C29 | −176.88 (19) |
C13—C14—C15—N3 | −0.4 (4) | C28—C29—C30—N6 | 0.6 (4) |
Cg1 and Cg2 are the centroids of the (Zn1,S1,S2,C1) and (Zn2,S7,S8,C21) chelate rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···S8i | 0.84 (2) | 2.45 (1) | 3.289 (2) | 173 (4) |
O2—H2O···S2ii | 0.84 (2) | 2.31 (1) | 3.143 (2) | 170 (4) |
C8—H8A···Cg2 | 0.98 | 2.98 | 3.855 (3) | 150 |
C13—H13···Cg2i | 0.95 | 2.79 | 3.631 (3) | 148 |
C20—H20C···Cg1iii | 0.98 | 2.97 | 3.850 (3) | 150 |
C28—H28···Cg1ii | 0.95 | 2.96 | 3.738 (3) | 140 |
C19—H19A···O2iv | 0.99 | 2.56 | 3.321 (3) | 134 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x+1, y, z; (iv) x, −y+1/2, z−1/2. |
[Zn(C4H8NOS2)2(C5H5NO)] | Z = 2 |
Mr = 460.94 | F(000) = 476 |
Triclinic, P1 | Dx = 1.631 Mg m−3 |
a = 8.8645 (19) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.956 (2) Å | Cell parameters from 4145 reflections |
c = 11.473 (3) Å | θ = 2.5–40.6° |
α = 102.154 (4)° | µ = 1.77 mm−1 |
β = 106.989 (4)° | T = 98 K |
γ = 93.466 (3)° | Slab, colourless |
V = 938.6 (4) Å3 | 0.37 × 0.25 × 0.25 mm |
Rigaku AFC12κ/SATURN724 diffractometer | 4249 independent reflections |
Radiation source: fine-focus sealed tube | 4133 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 27.5°, θmin = 2.4° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −11→11 |
Tmin = 0.860, Tmax = 1.000 | k = −12→12 |
6836 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: mixed |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.037P)2 + 0.6872P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4249 reflections | Δρmax = 0.43 e Å−3 |
228 parameters | Δρmin = −0.60 e Å−3 |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.76357 (3) | 0.49975 (2) | 0.25271 (2) | 0.01863 (8) | |
S1 | 0.97385 (5) | 0.65936 (5) | 0.26357 (4) | 0.01674 (11) | |
S2 | 0.69910 (6) | 0.58080 (5) | 0.03011 (5) | 0.01835 (11) | |
S3 | 0.64889 (6) | 0.27205 (5) | 0.14638 (4) | 0.01739 (11) | |
S4 | 0.90377 (6) | 0.34805 (5) | 0.38990 (4) | 0.01782 (11) | |
O1 | 0.74043 (18) | 0.85049 (17) | −0.09808 (15) | 0.0260 (3) | |
H1O | 0.695 (3) | 0.783 (2) | −0.083 (3) | 0.039* | |
O2 | 0.45844 (17) | 0.01078 (16) | 0.24736 (13) | 0.0218 (3) | |
H2O | 0.413 (3) | 0.051 (3) | 0.193 (2) | 0.033* | |
O3 | 0.67339 (19) | 0.91603 (16) | 0.57620 (15) | 0.0285 (3) | |
H3O | 0.624 (3) | 0.945 (3) | 0.627 (2) | 0.043* | |
N1 | 0.98304 (19) | 0.70602 (17) | 0.04700 (15) | 0.0176 (3) | |
N2 | 0.78664 (19) | 0.08741 (16) | 0.26777 (15) | 0.0161 (3) | |
N3 | 0.62518 (19) | 0.59446 (17) | 0.35049 (15) | 0.0169 (3) | |
C1 | 0.8924 (2) | 0.65371 (18) | 0.10539 (18) | 0.0149 (3) | |
C2 | 0.9350 (2) | 0.6846 (2) | −0.09003 (18) | 0.0191 (4) | |
H2A | 0.8502 | 0.6046 | −0.1285 | 0.023* | |
H2B | 1.0271 | 0.6612 | −0.1190 | 0.023* | |
C3 | 0.8749 (2) | 0.8097 (2) | −0.1355 (2) | 0.0221 (4) | |
H3A | 0.9619 | 0.8882 | −0.1017 | 0.027* | |
H3B | 0.8450 | 0.7881 | −0.2282 | 0.027* | |
C4 | 1.1446 (2) | 0.7770 (2) | 0.1154 (2) | 0.0252 (4) | |
H4A | 1.1454 | 0.8372 | 0.1951 | 0.038* | |
H4B | 1.1789 | 0.8330 | 0.0647 | 0.038* | |
H4C | 1.2175 | 0.7081 | 0.1321 | 0.038* | |
C5 | 0.7800 (2) | 0.22057 (19) | 0.26907 (17) | 0.0143 (3) | |
C6 | 0.6826 (2) | −0.02451 (19) | 0.16625 (18) | 0.0181 (4) | |
H6A | 0.7468 | −0.0971 | 0.1421 | 0.022* | |
H6B | 0.6353 | 0.0126 | 0.0920 | 0.022* | |
C7 | 0.5502 (2) | −0.0887 (2) | 0.20439 (18) | 0.0193 (4) | |
H7A | 0.4796 | −0.1595 | 0.1316 | 0.023* | |
H7B | 0.5972 | −0.1359 | 0.2718 | 0.023* | |
C8 | 0.8976 (2) | 0.0451 (2) | 0.3718 (2) | 0.0232 (4) | |
H8A | 1.0069 | 0.0797 | 0.3796 | 0.035* | |
H8B | 0.8852 | −0.0562 | 0.3554 | 0.035* | |
H8C | 0.8751 | 0.0837 | 0.4499 | 0.035* | |
C9 | 0.6861 (2) | 0.7161 (2) | 0.43240 (18) | 0.0175 (4) | |
H9 | 0.7921 | 0.7530 | 0.4436 | 0.021* | |
C10 | 0.6007 (2) | 0.7911 (2) | 0.50204 (18) | 0.0194 (4) | |
C11 | 0.4471 (2) | 0.7342 (2) | 0.48828 (19) | 0.0226 (4) | |
H11 | 0.3855 | 0.7818 | 0.5347 | 0.027* | |
C12 | 0.3863 (2) | 0.6063 (2) | 0.4053 (2) | 0.0249 (4) | |
H12 | 0.2826 | 0.5646 | 0.3953 | 0.030* | |
C13 | 0.4768 (2) | 0.5400 (2) | 0.33723 (19) | 0.0221 (4) | |
H13 | 0.4331 | 0.4534 | 0.2794 | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.02010 (13) | 0.01232 (12) | 0.02810 (14) | 0.00449 (9) | 0.01447 (10) | 0.00421 (9) |
S1 | 0.0155 (2) | 0.0171 (2) | 0.0178 (2) | 0.00248 (17) | 0.00462 (17) | 0.00523 (17) |
S2 | 0.0154 (2) | 0.0194 (2) | 0.0201 (2) | 0.00046 (17) | 0.00437 (18) | 0.00651 (18) |
S3 | 0.0217 (2) | 0.0157 (2) | 0.0149 (2) | 0.00533 (17) | 0.00362 (18) | 0.00587 (17) |
S4 | 0.0180 (2) | 0.0143 (2) | 0.0184 (2) | 0.00276 (16) | 0.00247 (18) | 0.00227 (17) |
O1 | 0.0257 (8) | 0.0311 (8) | 0.0317 (8) | 0.0137 (6) | 0.0166 (7) | 0.0160 (7) |
O2 | 0.0232 (7) | 0.0268 (8) | 0.0184 (7) | 0.0090 (6) | 0.0094 (6) | 0.0064 (6) |
O3 | 0.0326 (8) | 0.0227 (8) | 0.0321 (8) | 0.0011 (6) | 0.0208 (7) | −0.0037 (6) |
N1 | 0.0157 (7) | 0.0191 (8) | 0.0198 (8) | 0.0025 (6) | 0.0077 (6) | 0.0058 (6) |
N2 | 0.0165 (7) | 0.0140 (7) | 0.0165 (7) | 0.0040 (6) | 0.0024 (6) | 0.0043 (6) |
N3 | 0.0157 (7) | 0.0179 (8) | 0.0192 (7) | 0.0071 (6) | 0.0063 (6) | 0.0062 (6) |
C1 | 0.0160 (8) | 0.0107 (8) | 0.0193 (8) | 0.0053 (6) | 0.0071 (7) | 0.0037 (7) |
C2 | 0.0236 (10) | 0.0199 (9) | 0.0181 (9) | 0.0071 (7) | 0.0114 (8) | 0.0058 (7) |
C3 | 0.0250 (10) | 0.0261 (10) | 0.0232 (9) | 0.0091 (8) | 0.0140 (8) | 0.0118 (8) |
C4 | 0.0167 (9) | 0.0301 (11) | 0.0295 (11) | −0.0018 (8) | 0.0078 (8) | 0.0093 (9) |
C5 | 0.0151 (8) | 0.0149 (8) | 0.0154 (8) | 0.0046 (6) | 0.0076 (7) | 0.0038 (7) |
C6 | 0.0217 (9) | 0.0125 (8) | 0.0177 (8) | 0.0037 (7) | 0.0053 (7) | −0.0004 (7) |
C7 | 0.0215 (9) | 0.0157 (9) | 0.0195 (9) | 0.0036 (7) | 0.0047 (7) | 0.0038 (7) |
C8 | 0.0228 (10) | 0.0181 (9) | 0.0257 (10) | 0.0065 (8) | −0.0005 (8) | 0.0091 (8) |
C9 | 0.0176 (9) | 0.0180 (9) | 0.0195 (9) | 0.0059 (7) | 0.0077 (7) | 0.0066 (7) |
C10 | 0.0221 (9) | 0.0212 (10) | 0.0173 (9) | 0.0065 (8) | 0.0080 (8) | 0.0060 (7) |
C11 | 0.0204 (9) | 0.0311 (11) | 0.0196 (9) | 0.0094 (8) | 0.0101 (8) | 0.0058 (8) |
C12 | 0.0139 (9) | 0.0333 (12) | 0.0256 (10) | 0.0040 (8) | 0.0061 (8) | 0.0026 (9) |
C13 | 0.0177 (9) | 0.0264 (10) | 0.0201 (9) | 0.0037 (8) | 0.0053 (8) | 0.0016 (8) |
Zn—N3 | 2.0375 (16) | C2—H2A | 0.9900 |
Zn—S1 | 2.3319 (6) | C2—H2B | 0.9900 |
Zn—S3 | 2.3437 (7) | C3—H3A | 0.9900 |
Zn—S4 | 2.5275 (6) | C3—H3B | 0.9900 |
Zn—S2 | 2.7514 (8) | C4—H4A | 0.9800 |
S1—C1 | 1.733 (2) | C4—H4B | 0.9800 |
S2—C1 | 1.7119 (19) | C4—H4C | 0.9800 |
S3—C5 | 1.7364 (19) | C6—C7 | 1.518 (3) |
S4—C5 | 1.7140 (19) | C6—H6A | 0.9900 |
O1—C3 | 1.433 (2) | C6—H6B | 0.9900 |
O1—H1O | 0.833 (10) | C7—H7A | 0.9900 |
O2—C7 | 1.418 (2) | C7—H7B | 0.9900 |
O2—H2O | 0.833 (10) | C8—H8A | 0.9800 |
O3—C10 | 1.350 (2) | C8—H8B | 0.9800 |
O3—H3O | 0.834 (10) | C8—H8C | 0.9800 |
N1—C1 | 1.333 (2) | C9—C10 | 1.393 (3) |
N1—C4 | 1.468 (2) | C9—H9 | 0.9500 |
N1—C2 | 1.468 (2) | C10—C11 | 1.394 (3) |
N2—C5 | 1.328 (2) | C11—C12 | 1.387 (3) |
N2—C8 | 1.464 (2) | C11—H11 | 0.9500 |
N2—C6 | 1.466 (2) | C12—C13 | 1.379 (3) |
N3—C9 | 1.337 (3) | C12—H12 | 0.9500 |
N3—C13 | 1.345 (3) | C13—H13 | 0.9500 |
C2—C3 | 1.516 (3) | ||
N3—Zn—S1 | 109.72 (5) | N1—C4—H4B | 109.5 |
N3—Zn—S3 | 110.80 (5) | H4A—C4—H4B | 109.5 |
S1—Zn—S3 | 139.04 (2) | N1—C4—H4C | 109.5 |
N3—Zn—S4 | 103.07 (5) | H4A—C4—H4C | 109.5 |
S1—Zn—S4 | 102.00 (2) | H4B—C4—H4C | 109.5 |
S3—Zn—S4 | 74.41 (2) | N2—C5—S4 | 121.34 (14) |
N3—Zn—S2 | 107.89 (5) | N2—C5—S3 | 121.19 (14) |
S1—Zn—S2 | 70.825 (18) | S4—C5—S3 | 117.46 (11) |
S3—Zn—S2 | 91.20 (2) | N2—C6—C7 | 112.02 (16) |
S4—Zn—S2 | 148.839 (18) | N2—C6—H6A | 109.2 |
C1—S1—Zn | 90.54 (6) | C7—C6—H6A | 109.2 |
C1—S2—Zn | 77.85 (7) | N2—C6—H6B | 109.2 |
C5—S3—Zn | 86.67 (6) | C7—C6—H6B | 109.2 |
C5—S4—Zn | 81.43 (7) | H6A—C6—H6B | 107.9 |
C3—O1—H1O | 109 (2) | O2—C7—C6 | 112.50 (16) |
C7—O2—H2O | 113 (2) | O2—C7—H7A | 109.1 |
C10—O3—H3O | 110 (2) | C6—C7—H7A | 109.1 |
C1—N1—C4 | 121.53 (17) | O2—C7—H7B | 109.1 |
C1—N1—C2 | 122.52 (16) | C6—C7—H7B | 109.1 |
C4—N1—C2 | 115.68 (16) | H7A—C7—H7B | 107.8 |
C5—N2—C8 | 120.74 (16) | N2—C8—H8A | 109.5 |
C5—N2—C6 | 122.91 (16) | N2—C8—H8B | 109.5 |
C8—N2—C6 | 116.33 (15) | H8A—C8—H8B | 109.5 |
C9—N3—C13 | 118.73 (17) | N2—C8—H8C | 109.5 |
C9—N3—Zn | 118.04 (13) | H8A—C8—H8C | 109.5 |
C13—N3—Zn | 123.22 (14) | H8B—C8—H8C | 109.5 |
N1—C1—S2 | 122.54 (15) | N3—C9—C10 | 122.79 (18) |
N1—C1—S1 | 118.66 (14) | N3—C9—H9 | 118.6 |
S2—C1—S1 | 118.79 (11) | C10—C9—H9 | 118.6 |
N1—C2—C3 | 113.44 (16) | O3—C10—C9 | 116.64 (18) |
N1—C2—H2A | 108.9 | O3—C10—C11 | 125.07 (18) |
C3—C2—H2A | 108.9 | C9—C10—C11 | 118.27 (19) |
N1—C2—H2B | 108.9 | C12—C11—C10 | 118.52 (19) |
C3—C2—H2B | 108.9 | C12—C11—H11 | 120.7 |
H2A—C2—H2B | 107.7 | C10—C11—H11 | 120.7 |
O1—C3—C2 | 112.64 (16) | C13—C12—C11 | 119.77 (19) |
O1—C3—H3A | 109.1 | C13—C12—H12 | 120.1 |
C2—C3—H3A | 109.1 | C11—C12—H12 | 120.1 |
O1—C3—H3B | 109.1 | N3—C13—C12 | 121.87 (19) |
C2—C3—H3B | 109.1 | N3—C13—H13 | 119.1 |
H3A—C3—H3B | 107.8 | C12—C13—H13 | 119.1 |
N1—C4—H4A | 109.5 | ||
C4—N1—C1—S2 | 175.51 (15) | Zn—S4—C5—S3 | −1.66 (9) |
C2—N1—C1—S2 | −10.8 (2) | Zn—S3—C5—N2 | −176.68 (15) |
C4—N1—C1—S1 | −4.7 (2) | Zn—S3—C5—S4 | 1.77 (10) |
C2—N1—C1—S1 | 169.02 (14) | C5—N2—C6—C7 | −103.9 (2) |
Zn—S2—C1—N1 | 167.26 (16) | C8—N2—C6—C7 | 74.4 (2) |
Zn—S2—C1—S1 | −12.55 (9) | N2—C6—C7—O2 | 55.4 (2) |
Zn—S1—C1—N1 | −165.30 (14) | C13—N3—C9—C10 | −2.0 (3) |
Zn—S1—C1—S2 | 14.52 (10) | Zn—N3—C9—C10 | 178.55 (14) |
C1—N1—C2—C3 | 102.8 (2) | N3—C9—C10—O3 | −176.43 (17) |
C4—N1—C2—C3 | −83.2 (2) | N3—C9—C10—C11 | 2.1 (3) |
N1—C2—C3—O1 | −58.9 (2) | O3—C10—C11—C12 | 177.9 (2) |
C8—N2—C5—S4 | 1.6 (3) | C9—C10—C11—C12 | −0.5 (3) |
C6—N2—C5—S4 | 179.87 (14) | C10—C11—C12—C13 | −1.1 (3) |
C8—N2—C5—S3 | −179.97 (15) | C9—N3—C13—C12 | 0.2 (3) |
C6—N2—C5—S3 | −1.7 (3) | Zn—N3—C13—C12 | 179.67 (16) |
Zn—S4—C5—N2 | 176.79 (16) | C11—C12—C13—N3 | 1.3 (3) |
Cg1 is the centroid of the (Zn,S3,S4,C5) chelate ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···S2 | 0.84 (2) | 2.61 (2) | 3.371 (2) | 152 (3) |
O2—H2O···O1i | 0.83 (3) | 1.94 (3) | 2.734 (2) | 161 (3) |
O3—H3O···O2ii | 0.84 (3) | 1.79 (2) | 2.619 (2) | 170 (3) |
C2—H2B···Cg1iii | 0.99 | 2.76 | 3.689 (2) | 156 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+2, −y+1, −z. |
Parameter | Zn1-molecule in (I) | Zn2-molecule in (I) | (II) |
Zn—S1 | 2.3201 (8) | – | 2.3319 (6) |
Zn—S2 | 2.7461 (8) | – | 2.7514 (8) |
Zn—S3 | 2.3417 (8) | – | 2.3437 (7) |
Zn—S4 | 2.4932 (8) | – | 2.5275 (6) |
Zn—S5 | – | 2.3399 (8) | – |
Zn—S6 | – | 2.5453 (8) | – |
Zn—S7 | – | 2.3517 (8) | – |
Zn—S8 | – | 2.6051 (8) | – |
Zn—N3 | 2.069 (2) | – | 2.0375 (16) |
Zn—N6 | – | 2.070 (2) | – |
C—S1, S2 | 1.736 (3), 1.721 (3) | – | 1.733 (2), 1.7119 (19) |
C—S3, S4 | 1.741 (3), 1.720 (3) | – | 1.7364 (19), 1.7140 (19) |
C—S5, S6 | – | 1.743 (3), 1.720 (3) | – |
C—S7, S8 | – | 1.734 (3), 1.730 (3) | – |
S1—Zn—S2 | 70.99 (3) | – | 70.825 (18) |
S3—Zn—S4 | 75.54 (3) | – | 74.41 (2) |
S1—Zn—S3 | 136.44 (3) | – | 139.04 (2) |
S2—Zn—S4 | 165.17 (2) | – | 148.839 (18) |
S5—Zn—S6 | – | 74.34 (3) | – |
S7—Zn—S8 | – | 73.08 (3) | – |
S5—Zn—S7 | – | 137.08 (3) | – |
S6—Zn—S8 | – | 168.91 (2) | – |
S1,S2,C1/S3,S4,C | 19.30 (12) | – | 63.81 (15) |
S5,S6,C1/S7,S8,C | – | 38.87 (22) | – |
Contact | Distance | Symmetry operation |
(I) | ||
C13···C26 | 3.314 (4) | 1 - x, 1/2 + y, 1/2 - z |
H5···H7B | 2.36 | -x, 1 - y, -z |
O1···H18B | 2.61 | 2 - x, 1 - y, 1 - z |
S2···H20B | 2.96 | 1 - x, 1 - y, -z |
S4···H11 | 2.98 | 1 - x, 1 - y, 1 - z |
S5···H7A | 2.97 | x, y, z |
S5···H14 | 2.94 | 1 - x, 1 - y, -z |
C1···H28 | 2.75 | 1 - x, 1/2 + y, 1/2 - z |
C21···H13 | 2.65 | 1 - x, -1/2 + y, 1/2 - z |
C29···H24A | 2.84 | 1 + x, y, z |
(II) | ||
S4···S4 | 3.4765 (11) | 2 - x, 1 - y, 1 - z |
C8···C8 | 3.308 (3) | 2 - x, -y, 1 - z |
C1···H6A | 2.87 | x, 1 + y, z |
C9···H7B | 2.57 | x, 1 + y, z |
C10···H10B | 2.88 | x, 1+y, z |
H1O···H2O | 2.37 (4) | 1 - x, 1 - y, -z |
H2O···H3O | 2.18 (3) | 1 - x, 1 - y, 1 - z |
S3···H1O | 2.91 (3) | 1 - x, 1 - y, -z |
S3···H7A | 2.99 | 1 - x, 1 - y, -z |
Zn···H2B | 3.06 | 2 - x, 1 - y, -z |
O1···H6A | 2.68 | x, 1 + y, z |
Contact | Zn1-molecule in (I) | Zn2-molecule in (I) | (I) | (II) |
H···H | 55.3 | 52.9 | 55.3 | 42.1 |
O···H/H···O | 4.1 | 5.5 | 5.3 | 15.0 |
S···H/H···S | 23.8 | 25.3 | 22.7 | 22.2 |
C···H/H···C | 9.9 | 10.0 | 10.0 | 12.3 |
N···H/H···N | 2.6 | 2.5 | 2.7 | 2.9 |
S···S | 1.2 | 0.7 | 1.1 | 3.8 |
C···C | 1.6 | 1.6 | 1.8 | 0.8 |
Zn···H/H···Zn | 0.8 | 0.8 | 0.4 | 0.7 |
C···O/O···C | 0.4 | 0.4 | 0.4 | 0.0 |
C···N/N···C | 0.2 | 0.2 | 0.3 | 0.1 |
S···O/O···S | 0.1 | 0.1 | 0.0 | 0.0 |
S···C/C···S | 0.0 | 0.0 | 0.0 | 0.1 |
Footnotes
‡Additional correspondence author, e-mail: mmjotani@rediffmail.com.
Acknowledgements
We thank Sunway University for support of biological and crystal engineering studies of metal dithiocarbamates.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–941. Web of Science CSD CrossRef CAS Google Scholar
Bonamico, M., Mazzone, G., Vaciago, A. & Zambonelli, L. (1965). Acta Cryst. 19, 898–909. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Cardoso, L. N. F., Nogueira, T. C. M., Wardell, J. L., Wardell, S. M. S. V., Souza, M. V. N. de, Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1025–1031. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cox, M. J. & Tiekink, E. R. T. (2009). Z. Kristallogr. 214, 184–190. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559. Web of Science CrossRef CAS Google Scholar
Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1–69. Web of Science CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ivanov, A. V., Korneeva, E. V., Gerasimenko, A. V. & Forsling, W. (2005). Russ. J. Coord. Chem. 31, 695–707. Web of Science CrossRef CAS Google Scholar
Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341–349. CAS Google Scholar
Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413. CAS Google Scholar
Kang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). Cryst. Growth Des. 10, 1247–1256. Web of Science CSD CrossRef CAS Google Scholar
Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252. Web of Science CSD CrossRef CAS Google Scholar
Malik, M. A., Motevalli, M., O'Brien, P. & Walsh, J. R. (1997). Inorg. Chem. 36, 1263–1264. CSD CrossRef PubMed CAS Web of Science Google Scholar
Manohar, A., Venkatachalam, V., Ramalingam, K., Thirumaran, S., Bocelli, G. & Cantoni, A. (1998). J. Chem. Crystallogr. 28, 861–866. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Poplaukhin, P. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1176. Web of Science CSD CrossRef IUCr Journals Google Scholar
Safbri, S. A. M., Halim, S. N. A. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 203–208. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, Y. S., Halim, S. N. A., Molloy, K. C., Sudlow, A. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016a). CrystEngComm, 18, 1105–1117. Web of Science CSD CrossRef CAS Google Scholar
Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016b). Z. Kristallogr. 231, 113–126. CAS Google Scholar
Tan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48–62. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056. Web of Science CSD CrossRef CAS Google Scholar
Tiekink, E. R. T. (2000). Z. Kristallogr. - New Cryst. Struct. 215, 445–446. CAS Google Scholar
Tiekink, E. R. T. (2003). CrystEngComm, 5, 101–113. Web of Science CrossRef CAS Google Scholar
Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zeng, D., Hampden-Smith, M. J. & Larson, E. M. (1994). Acta Cryst. C50, 1000–1002. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Zha, M.-Q., Li, X., Bing, Y. & Lu, Y. (2010). Acta Cryst. E66, m1465. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zukerman-Schpector, J., Sousa Madureira, L., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2015). Z. Kristallogr. 230, 531–541. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.