research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N,N-di­ethyl­di­thio­carbamato-κ2S,S′)(3-hy­dr­oxy­pyridine-κN)zinc and bis­­[N-(2-hy­dr­oxy­eth­yl)-N-methyldi­thio­carbamato-κ2S,S′](3-hy­dr­oxy­pyridine-κN)zinc: crystal structures and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, bDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, cChemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio, 43202, USA, and dResearch Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 October 2016; accepted 27 October 2016; online 1 November 2016)

The common feature of the mol­ecular structures of the title compounds, [Zn(C5H10NS2)2(C5H5NO)], (I), and [Zn(C4H8NOS2)2(C5H5NO)], (II), are NS4 donor sets derived from N-bound hy­droxy­pyridyl ligands and asymmetrically chelating di­thio­carbamate ligands. The resulting coordination geometries are highly distorted, being inter­mediate between square pyramidal and trigonal bipyramidal for both independent mol­ecules comprising the asymmetric unit of (I), and significantly closer towards square pyramidal in (II). The key feature of the mol­ecular packing in (I) is the formation of centrosymmetric, dimeric aggregates sustained by pairs of hy­droxy-O—H⋯S(di­thio­carbamate) hydrogen bonds. The aggregates are connected into a three-dimensional architecture by methyl­ene-C—H⋯O(hy­droxy) and methyl-C—H⋯π(chelate) inter­actions. With greater hydrogen-bonding potential, supra­molecular chains along the c axis are formed in the crystal of (II), sustained by hy­droxy-O—H⋯O(hy­droxy) hydrogen bonds, with ethyl­hydroxy and pyridyl­hydroxy groups as the donors, along with ethyl­hydroxy-O—H⋯S(di­thio­carbamate) hydrogen bonds. Chains are connected into layers in the ac plane by methyl­ene-C—H⋯π(chelate) inter­actions and these stack along the b axis, with no directional inter­actions between them. An analysis of the Hirshfeld surfaces clearly distinguished the independent mol­ecules of (I) and reveals the importance of the C—H⋯π(chelate) inter­actions in the packing of both (I) and (II).

1. Chemical context

The structures of binary zinc bis­(di­thio­carbamates) are always zero-dimensional (i.e. mol­ecular) (Heard, 2005[Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1-69.]) in contrast to their cadmium (Tan et al., 2016b[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016b). Z. Kristallogr. 231, 113-126.]) and mercury (Jotani et al., 2016[Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403-413.]) analogues; di­thio­carbamate is S2CNRR'. The zinc structures can be mononuclear, distorted tetra­hedral as in Zn(S2CNCy2)2 (Cox & Tiekink, 2009[Cox, M. J. & Tiekink, E. R. T. (2009). Z. Kristallogr. 214, 184-190.]) or, far more commonly, binuclear as in the archetypical compound [Zn(S2CNEt2)2]2, where heavily distorted five-coordinate geometries are found for zinc as two of the ligands are chelating and the others are μ2-tridentate (Bonamico et al., 1965[Bonamico, M., Mazzone, G., Vaciago, A. & Zambonelli, L. (1965). Acta Cryst. 19, 898-909.]; Tiekink, 2000[Tiekink, E. R. T. (2000). Z. Kristallogr. - New Cryst. Struct. 215, 445-446.]), with the adoption of one form over the other often being related to the steric bulk of the R/R′ groups (Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]). However, there is no clear-cut delineation between the adoption of one structural motif over the other depending on steric bulk. This is nicely illustrated in the structure of Zn[S2CN(i-Bu)2]2 which has equal numbers of both motifs (Ivanov et al., 2005[Ivanov, A. V., Korneeva, E. V., Gerasimenko, A. V. & Forsling, W. (2005). Russ. J. Coord. Chem. 31, 695-707.]). A popular process by which structures of greater dimensionality might be formed is by the addition of neutral, potentially bridging ligands. However, in the case of zinc di­thio­carbamates, complexation with bidentate ligands usually results in the isolation of zero-dimensional, binuclear mol­ecules, e.g. {Zn[S2CN(Me)i-Pr)]2}2(Me2NCH2CH2NMe2) (Malik et al., 1997[Malik, M. A., Motevalli, M., O'Brien, P. & Walsh, J. R. (1997). Inorg. Chem. 36, 1263-1264.]); [Zn(S2CNMe2)2]2(4,4′-bipyrid­yl) (Zha et al., 2010[Zha, M.-Q., Li, X., Bing, Y. & Lu, Y. (2010). Acta Cryst. E66, m1465.]) and [Zn(S2CNEt2)2]2(Ph2PCH2CH2PPh2) (Zeng et al., 1994[Zeng, D., Hampden-Smith, M. J. & Larson, E. M. (1994). Acta Cryst. C50, 1000-1002.]). Even when excess base is included in the reaction, e.g. trans-1,2-bis­(4-pyrid­yl)ethyl­ene (bpe), only the zero-dimensional binuclear compound is isolated with non-coordinating bpe solvate, i.e. Zn(S2CNEt2)2]2(bpe)·bpe (Lai & Tiekink, 2003[Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251-252.]). That this reluctance to form coordination polymers is related directly to the nature of the di­thio­carbamate ligand is seen in the adoption of zigzag chains in analogous xanthate complexes, e.g. {[Zn(S2COR)2]2(bpe)}n, for R = Et and n-Bu (Kang et al., 2010[Kang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). Cryst. Growth Des. 10, 1247-1256.]). Steric effects come into play when R = Cy whereby a binuclear species is isolated, i.e. [Zn(S2COCy)2]2(bpe) (Kang et al., 2010[Kang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). Cryst. Growth Des. 10, 1247-1256.]). This difference in chemistry arises to the significant (40%) contribution of the canonical structure (2-)S2CN(+)RR′, with two formally negatively charged sulfur atoms, which makes di­thio­carbamate a very effective chelating agent, thereby decreasing the Lewis acidity of the zinc atom.

[Scheme 1]

An approach to increase the supra­molecular aggregation in the crystal structures of zinc di­thio­carbamates has been to introduce hydrogen bonding functionality into the ligands, i.e using di­thio­carbamate anions of the type S2CN(R)CH2CH2OH. This influence is seen in the recent report of the structures of Zn[S2CN(R)CH2CH2OH]2(2,2′-bipyrid­yl) for R = i-Pr and CH2CH2OH (Safbri et al., 2016[Safbri, S. A. M., Halim, S. N. A. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 203-208.]). The common feature of these structures along with those of related species with no hydrogen bonding potential, e.g. Zn(S2CNMe2)2(2,2′-bipyrid­yl) (Manohar et al., 1998[Manohar, A., Venkatachalam, V., Ramalingam, K., Thirumaran, S., Bocelli, G. & Cantoni, A. (1998). J. Chem. Crystallogr. 28, 861-866.]), is the presence of a distorted octa­hedral N2S4 donor set about the zinc atom. The O—H⋯O hydrogen bonding in Zn[S2CN(R)CH2CH2OH]2(2,2′-bipyrid­yl), in the case when R = CH2CH2OH, isolated as a 1:1 hydrate, leads to supra­molecular ladders and these extend in two dimensions via water-O—H⋯S(di­thio­carbamate) hydrogen bonds. When R = i-Pr, layers are sustained by hy­droxy-O—H⋯S hydrogen bonds (Safbri et al., 2016[Safbri, S. A. M., Halim, S. N. A. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 203-208.]). As an extension of these studies, in the present report, Zn(S2CNRR′)2 has been complexed with 3-hy­droxy­pyridine (pyOH) to yield two 1:1 complexes. Quite different aggregation patterns are observed when R = R′ = Et (I)[link], and R = i-Pr and R′ = CH2CH2OH (II)[link]. The crystal and mol­ecular structures of (I)[link] and (II)[link] are described herein along with an analysis of their Hirshfeld surfaces.

2. Structural commentary

Two independent mol­ecules of Zn(S2CNEt2)2(pyOH) comprise the asymmetric unit of (I)[link], Fig. 1[link]; pyOH is 3-hy­droxy­pyridine. For the Zn1-containing mol­ecule, Fig. 1[link]a, the ZnII atom is chelated by two di­thio­carbamate ligands and one nitro­gen atom derived from the monodentate pyOH ligand. The S1-di­thio­carbamate ligand chelates the zinc atom forming quite different Zn—S bond lengths compared with the S3-di­thio­carbamate ligand. This is qu­anti­fied in the values of Δ(Zn—S), being the difference between the Zn—Slong and Zn—Sshort bond lengths, Table 1[link], i.e. 0.43 and 0.15 Å, respectively. The Zn1—N3 bond length is significantly shorter than the Zn—S bonds. The NS4 coordination geometry is highly distorted as seen in the value of τ of 0.48 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). This value is almost exactly inter­mediate between the ideal square pyramidal geometry with τ = 0.0 and ideal trigonal pyramidal with τ = 1.0. The acute S—Zn—S chelate angles contribute to this distortion, Table 1[link]. The widest angles in the coordination geometry are subtended by Ss—Zn—Ss (s = short) and, especially, the Sl—Zn—Sl (l = long) bond angles, Table 1[link]. The coordination geometry for the Zn2 atom, Fig. 1[link]b, is quite similar to that just described for the Zn1 atom. The values of Δ(Zn—S) of 0.21 and 0.25 Å are inter­mediate to those for the Zn1-mol­ecule. Even so, the differences in the Zn—S bond lengths in both mol­ecules are not that great with this observation reflected in the closeness of the C—S bond lengths, Table 1[link]. The value of τ for the Zn2-mol­ecule is 0.53, indicating an inclination towards trigonal bipyramidal cf. the Zn1-mol­ecule.

Table 1
Geometric data (Å, °) for (I)[link] and (II)

Parameter Zn1-mol­ecule in (I) Zn2-mol­ecule in (I) (II)
Zn—S1 2.3201 (8) 2.3319 (6)
Zn—S2 2.7461 (8) 2.7514 (8)
Zn—S3 2.3417 (8) 2.3437 (7)
Zn—S4 2.4932 (8) 2.5275 (6)
Zn—S5 2.3399 (8)
Zn—S6 2.5453 (8)
Zn—S7 2.3517 (8)
Zn—S8 2.6051 (8)
Zn—N3 2.069 (2) 2.0375 (16)
Zn—N6 2.070 (2)
C—S1, S2 1.736 (3), 1.721 (3) 1.733 (2), 1.7119 (19)
C—S3, S4 1.741 (3), 1.720 (3) 1.7364 (19), 1.7140 (19)
C—S5, S6 1.743 (3), 1.720 (3)
C—S7, S8 1.734 (3), 1.730 (3)
S1—Zn—S2 70.99 (3) 70.825 (18)
S3—Zn—S4 75.54 (3) 74.41 (2)
S1—Zn—S3 136.44 (3) 139.04 (2)
S2—Zn—S4 165.17 (2) 148.839 (18)
S5—Zn—S6 74.34 (3)
S7—Zn—S8 73.08 (3)
S5—Zn—S7 137.08 (3)
S6—Zn—S8 168.91 (2)
S1,S2,C1/S3,S4,C 19.30 (12) 63.81 (15)
S5,S6,C1/S7,S8,C 38.87 (22)
[Figure 1]
Figure 1
The mol­ecular structures of the two independent mol­ecules comprising the asymmetric unit in (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The mol­ecular structure of (II)[link], Zn[S2CN(Me)CH2CH2OH]2(pyOH), is shown in Fig. 2[link] and selected geometric parameters are included in Table 1[link]. The coordination modes of the di­thio­carbamate ligands in (II)[link] are close to those observed for the Zn1-mol­ecule in (I)[link] with Δ(Zn—S) values of 0.42 and 0.19 Å. The difference between (I)[link] and (II)[link] is found in the coordination geometry which is close to square pyramidal in (II)[link], as seen in the value of τ = 0.16. In this description, the S1–S4 atoms define the basal plane with the r.m.s. deviation being 0.0501 Å. The Zn atom lies 0.7514 (4) Å above the plane in the direction of the N3 atom. The dihedral angle between the chelate rings is 63.81 (15)°, an angle significantly greater than for the comparable angles in (I)[link], Table 1[link].

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Overlay diagrams of the three mol­ecules in (I)[link] and (II)[link] are shown in Fig. 3[link]. The mol­ecules have been overlapped so that the pyOH rings are coincident. The differences in the conformations of the mol­ecules comprising (I)[link] are clearly seen, and especially between these and the conformation in (II)[link]. Such variability in structure reflects the flexibility in the binding modes of the di­thio­carbamate ligands leading to quite distinctive coordination geometries.

[Figure 3]
Figure 3
Overlay diagrams for the Zn1- and Zn2-mol­ecules in (I)[link] and the mol­ecule in (II)[link] shown as red, green and blue images, respectively: (a) approximately side-on to the pyOH ring and (b) along the N—Zn bond. The mol­ecules are overlapped so that the pyOH rings are coincident.

3. Supra­molecular features

The key feature of the mol­ecular packing of (I)[link] is the formation of hy­droxy-O—H⋯S(di­thio­carbamate) hydrogen bonds that sustain centrosymmetric, dimeric aggregates, via a 14-membered {⋯HOC2NZnS}2 synthon, Fig. 4[link]a and Table 2[link]. Additional stabilization to the dimer is provided by an intra-dimer ππ inter­action between the pyOH rings. The inter-centroid distance is 3.5484 (18) Å and the angle of inclination is 3.91 (14)° for symmetry operation 1 − x, [{1\over 2}] + y, [{1\over 2}] − z. The aggregates are further stabilized by pyOH-C—H⋯π inter­actions where the π-system is a chelate ring. Such C—H⋯π(chelate) inter­actions are increasingly being recognized as being important in the supra­molecular chemistry of metal 1,1-di­thiol­ates (Tiekink & Zukerman-Schpector, 2011[Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.]; Tan et al., 2016a[Tan, Y. S., Halim, S. N. A., Molloy, K. C., Sudlow, A. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016a). CrystEngComm, 18, 1105-1117.]) and, it should be noted, routinely appear in the output from PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Connections between aggregates leading to supra­molecular layers in the ab plane are also of the type C—H⋯π(chelate) but with methyl-H atoms as the donors, Fig. 4[link]b. The connections between layers along the c direction are of the type methyl­ene-C—H⋯O(hy­droxy), Fig. 4[link]c.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the (Zn1,S1,S2,C1) and (Zn2,S7,S8,C21) chelate rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯S8i 0.84 (2) 2.45 (1) 3.289 (2) 173 (4)
O2—H2O⋯S2ii 0.84 (2) 2.31 (1) 3.143 (2) 170 (4)
C8—H8ACg2 0.98 2.98 3.855 (3) 150
C13—H13⋯Cg2i 0.95 2.79 3.631 (3) 148
C20—H20CCg1iii 0.98 2.97 3.850 (3) 150
C28—H28⋯Cg1ii 0.95 2.96 3.738 (3) 140
C19—H19A⋯O2iv 0.99 2.56 3.321 (3) 134
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
The mol­ecular packing in (I)[link], showing (a) detail of the hy­droxy-O—H⋯S(di­thio­carbamate) hydrogen bonding, shown as orange dashed lines, leading to dimeric aggregates, (b) supra­molecular layer where the aggregates in (a) are linked by C—H⋯π(chelate) inter­actions, shown as purple dashed lines and (c) view of the unit-cell contents shown in projection down the a axis, with links between layers being of the type C—H⋯O, shown as blue dashed lines.

The addition of greater hydrogen-bonding potential in (II)[link] results in an infinite chain, Table 3[link]. There is an hy­droxy-O—H⋯O(hy­droxy) hydrogen bond involving the O2 and O1 atoms as the donor and acceptor, respectively. The O1-hydroxy group forms a hydrogen bond with a di­thio­carbamate-S2 atom. As shown by the `1' in Fig. 5[link]a, these hydrogen bonds lead to a centrosymmetric 22-membered {⋯SZnSCNC2OH⋯OH}2 synthon. On either side of these synthons, the pyOH hy­droxy group hydrogen bonds to the O2-hy­droxy atom and through symmetry, a centrosymmetric 24-membered {⋯OC2NCSZnNC2OH}2 synthon is formed, highlighted as `2' in Fig. 5[link]a. Alternating synthons generate a supra­molecular chain aligned along the c axis. Methyl­ene-C—H⋯π(chelate) inter­actions link mol­ecules into dimeric units, Fig. 5[link]b. The combination of the aforementioned inter­actions lead to supra­molecular layers that stack along the b axis with no directional inter­actions between them, Fig. 5[link]c.

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the (Zn,S3,S4,C5) chelate ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯S2 0.84 (2) 2.61 (2) 3.371 (2) 152 (3)
O2—H2O⋯O1i 0.83 (3) 1.94 (3) 2.734 (2) 161 (3)
O3—H3O⋯O2ii 0.84 (3) 1.79 (2) 2.619 (2) 170 (3)
C2—H2BCg1iii 0.99 2.76 3.689 (2) 156
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y+1, -z.
[Figure 5]
Figure 5
The mol­ecular packing in (II)[link], (a) supra­molecular chain mediated by hy­droxy-O—H⋯O(hy­droxyl), S(dithiocarbamate) hydrogen bonding, shown as orange and blue dashed lines, respectively, and non-acidic H atoms omitted, (b) detail of methyl­ene-C—H⋯π(chelate) inter­actions shown as purple dashed lines and (c) view of the unit-cell contents shown in projection down the a axis, with one layer shown in space-filling mode.

4. Hirshfeld surface analysis

The Hirshfeld surface analysis for (I)[link] and (II)[link] was performed as described recently (Cardoso et al., 2016[Cardoso, L. N. F., Nogueira, T. C. M., Wardell, J. L., Wardell, S. M. S. V., Souza, M. V. N. de, Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1025-1031.]). From the views of the Hirshfeld surface mapped over dnorm in the range −0.2 to + 1.3 au for the Zn1- and Zn2-containing mol­ecules of (I)[link], Fig. 6[link], the presence of bright-red spots near the hy­droxy-H1O and -H2O, and di­thio­carbamate-S2 and S8 atoms represent the donors and acceptors of the O—H⋯S hydrogen bonds; these are viewed as blue and red regions on the Hirshfeld surfaces mapped over electrostatic potential (mapped over the range −0.07 to +0.10 au), Fig. 7[link], corresponding to positive and negative potentials, respectively. The faint-red spots appearing near the hy­droxy-O2 and methyl-C19 atoms in Fig. 6[link]b and 6c are due to comparatively weaker inter­molecular C—H⋯O inter­actions. The intra-dimer ππ stacking inter­action between the pyOH rings, Fig. 4[link]a, is evident through the appearance of faint-red spots near the arene-C13 and C26 atoms of the rings, Fig. 6[link]a and 6b, forming a close inter­atomic C⋯C contact, Table 4[link]. The diminutive-red spots near the pyOH-H13 and -H28 and di­thio­carbamate-C21 atoms, Fig. 6[link]ac, characterize the influence of the C—H⋯π(chelate) inter­actions; in Fig. 7[link], the light-blue and red regions represent the respective donors and acceptors for these inter­actions. The immediate environments around reference mol­ecules showing above inter­molecular inter­actions are illustrated in Fig. 8[link].

Table 4
Summary of short inter­atomic contacts (Å) in (I)[link] and (II)

Contact Distance Symmetry operation
(I)    
C13⋯C26 3.314 (4) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
H5⋯H7B 2.36 x, 1 − y, −z
O1⋯H18B 2.61 2 − x, 1 − y, 1 − z
S2⋯H20B 2.96 1 − x, 1 − y, −z
S4⋯H11 2.98 1 − x, 1 − y, 1 − z
S5⋯H7A 2.97 x, y, z
S5⋯H14 2.94 1 − x, 1 − y, −z
C1⋯H28 2.75 1 − x, [{1\over 2}] + y, [{1\over 2}] − z
C21⋯H13 2.65 1 − x, −[{1\over 2}] + y, [{1\over 2}] − z
C29⋯H24A 2.84 1 + x, y, z
(II)    
S4⋯S4 3.4765 (11) 2 − x, 1 − y, 1 − z
C8⋯C8 3.308 (3) 2 − x, −y, 1 − z
C1⋯H6A 2.87 x, 1 + y, z
C9⋯H7B 2.57 x, 1 + y, z
C10⋯H10B 2.88 x, 1 + y, z
H1O⋯H2O 2.37 (4) 1 − x, 1 − y, −z
H2O⋯H3O 2.18 (3) 1 − x, 1 − y, 1 − z
S3⋯H1O 2.91 (3) 1 − x, 1 − y, −z
S3⋯H7A 2.99 1 − x, 1 − y, −z
Zn⋯H2B 3.06 2 − x, 1 − y, −z
O1⋯H6A 2.68 x, 1 + y, z
[Figure 6]
Figure 6
Views of the Hirshfeld surfaces for (I)[link] mapped over dnorm for the (a) Zn1-mol­ecule and, (b) and (c) Zn2-mol­ecule.
[Figure 7]
Figure 7
Views of the Hirshfeld surfaces mapped over electrostatic potential for (I)[link]: (a) Zn1-mol­ecule and (b) Zn2-mol­ecule.
[Figure 8]
Figure 8
(a) View of the Hirshfeld surface mapped over dnorm for (I)[link] showing O—H⋯S hydrogen bonds and short inter­atomic C⋯C and C⋯H/H⋯C contacts, indicated by black, white and red dashed lines, respectively, about the reference mol­ecule. (b) and (c) Views of Hirshfeld surface mapped with shape-index property about the Zn1 and Zn2-containing mol­ecules, respectively. The dotted blue lines labelled with 1-4 indicates C—H⋯π(chelate) inter­actions and the red dotted line shows the ππ stacking inter­action.

The presence of peripheral hy­droxy groups participating in the O—H⋯O hydrogen bonds in the structure of (II)[link] result in the distinct bright-red spots near the respective donors and acceptor atoms on the Hirshfeld surface mapped over dnorm, Fig. 9[link]a and 9b, and result in the blue and red regions corres­ponding to positive and negative potential on the Hirshfeld surface mapped over electrostatic potential (mapped over the range −0.12 to +0.18 au), Fig. 9[link]c. The faint-red spots near the S4, C8, C9 and H2B atoms in Fig. 9[link]a and 9b indicate their involvement in short inter­atomic S⋯S, C⋯C and C⋯H/H⋯C contacts, Table 4[link]. Fig. 10[link]a illustrates the immediate environment about a reference mol­ecule within Hirshfeld surfaces mapped over electrostatic potential and highlights the O—H⋯O hydrogen bonds. The C—H⋯π(chelate) and its reciprocal contact, i.e. π—H⋯C, and short inter­atomic S⋯S, C⋯C and C⋯H/H⋯C contacts, with labels 3–6, are shown in Fig. 10[link]b.

[Figure 9]
Figure 9
Views of the Hirshfeld surfaces for (II)[link] mapped over (a) and (b) dnorm and (c) electrostatic potential.
[Figure 10]
Figure 10
(a) and (b) Views of the Hirshfeld surface mapped over electrostatic potential for (II)[link] showing O—H⋯S hydrogen bonds about the reference mol­ecule. The hydrogen bonds are indicated with black dashed lines and labelled as `1' and `2' in (a). In (b), the inter­molecular C—H⋯O (labelled with a `6' and shown as red-dashed lines) and C—H⋯π/π⋯H—C (`3', red and blue) inter­actions, and short inter­atomic S⋯S (`4', black) and C⋯H (`5', white) contacts are indicated by arrows.

The overall two-dimensional fingerprint plot for individual Zn1- and Zn2-containing mol­ecules, overall (I)[link] and (II)[link] are illustrated in Fig. 11[link]a. The respective plots delineated into H⋯H, O⋯H/H⋯O, S⋯H/H⋯S, C⋯H/H⋯C, C⋯C and S⋯S contacts (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are shown in Fig. 11[link]bg, respectively; the relative contributions from different contacts to the Hirshfeld surfaces of (I)[link] and (II)[link] are summarized in Table 5[link].

Table 5
Percentage contribution to inter­atomic contacts from the Hirshfeld surface for (I)[link] and (II)

Contact Zn1-mol­ecule in (I) Zn2-mol­ecule in (I) (I) (II)
H⋯H 55.3 52.9 55.3 42.1
O⋯H/H⋯O 4.1 5.5 5.3 15.0
S⋯H/H⋯S 23.8 25.3 22.7 22.2
C⋯H/H⋯C 9.9 10.0 10.0 12.3
N⋯H/H⋯N 2.6 2.5 2.7 2.9
S⋯S 1.2 0.7 1.1 3.8
C⋯C 1.6 1.6 1.8 0.8
Zn⋯H/H⋯Zn 0.8 0.8 0.4 0.7
C⋯O/O⋯C 0.4 0.4 0.4 0.0
C⋯N/N⋯C 0.2 0.2 0.3 0.1
S⋯O/O⋯S 0.1 0.1 0.0 0.0
S⋯C/C⋯S 0.0 0.0 0.0 0.1
[Figure 11]
Figure 11
(a) The overall two-dimensional fingerprint plots for the Zn1-mol­ecule in (I)[link], Zn2-mol­ecule in (I)[link], (I)[link] and (II)[link], respectively, and those delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) S⋯H/H⋯S, (e) C⋯H/H⋯C, (f) C⋯C and (g) S⋯S contacts.

The fingerprint plots delineated into H⋯H contacts for (I)[link], Fig. 11[link]b, show different distributions of points in the individ­ual plots for Zn1- and Zn2-mol­ecules. This, as well as their different percentage contributions to the Hirshfeld surface, Table 5[link], confirm their distinct chemical environments. The overall plot is the superimposition of these individual plots with a pair of small peaks, at (de, di) distances shorter than their van der Waals separations, corresponding to short inter­atomic H⋯H contacts, Table 4[link], between the hydrogen atoms of the Zn1-mol­ecule.

The fingerprint plots delineated into O⋯H/H⋯O contacts, Fig. 11[link]c, also exhibit slightly different profiles for the independent mol­ecules. The respective peaks at de + di ∼ 2.7 Å and ∼ 2.6 Å correspond to donors (upper region) and the acceptors (lower region) for the Zn1-mol­ecule, whereas these appear as a pair of peaks at the same de + di ∼ 2.6 Å distance for the Zn2-mol­ecule. This is likely due to the inter­acting oxygen and hydrogen atoms for the Zn1-mol­ecule being at their van der Waals separation in the donor region, i.e. at 2.72 Å, while in the acceptor region the peak corresponds to a short inter­atomic O⋯H contact, Table 4[link]. In the plot for the Zn2-mol­ecule, this contact gives rise to the pair of peaks at de + di ∼ 2.6 Å.

The pair of spikes with their tips at different de + di distances in the fingerprint plots delineated into S⋯H/H⋯S contacts, Fig. 11[link]d, for the Zn1- and Zn2-mol­ecules result from different hy­droxy-O—H⋯S(di­thio­carbamate) hydrogen bonds. The tips at de + di ∼ 2.4 Å in the donor region of the plot for the Zn1-mol­ecule and in the acceptor region for the Zn2-mol­ecule are due to the formation of O—H⋯S hydrogen bonds between the hy­droxy-O1 and di­thio­carbamate-S8 atoms; the other hydrogen bond, involving the O2 and S2 atoms, gives rise to tips at de + di ∼ 2.3 Å in the respective donor and acceptor regions of the plots, Fig. 11[link]d. The plot for the overall structure results from the superimposition of individual plots and shows the symmetric distribution of points as a pair of long spikes having tips at de + di ∼ 2.3 Å. The short inter­atomic S⋯H/H⋯S contacts in the crystal of (I)[link], Table 4[link], appear as a pair of aligned green points beginning at de + di ∼ 3.0 Å in the respective plots.

Almost the same percentage contribution from C⋯H/H⋯C contacts to the overall surface is made by the Zn1- and Zn2-mol­ecules, Table 5[link], and the respective fingerprint plots, Fig. 11[link]e, have the same shape with tips at de + di ∼ 2.7 Å which are due to the short inter­atomic C⋯H/H⋯C contacts, Table 4[link], involving the atoms forming the C—H⋯π(chelate) inter­actions; the points corresponding to the other short C⋯H/H⋯C contacts are within the plot. The C⋯C contacts assigned to intra-dimer ππ stacking inter­actions between pyOH-rings have a small, i.e. 1.8%, but recognizable contribution to the Hirshfeld surface and appear as an arrow-like distribution of points around de = di = 1.8 Å in Fig. 11[link]f. As indicated in Fig. 11[link]g, S⋯S contacts do not figure prominently in the mol­ecular packing of (I)[link].

The corresponding two-dimensional fingerprint plots for (II)[link] are also given in Fig. 11[link]. In the fingerprint plots delineated into H⋯H contacts, Fig. 11[link]b, a pair of very thin spikes having their tips at de + di ∼ 2.3 Å indicate the presence of short inter­atomic H⋯H contacts between hy­droxy-H1O and -H2O atoms, Table 4[link]. Also, the inter­molecular O—H⋯O hydrogen bond between the pyOH-O3 and hy­droxy-O2 atoms results in a short inter­atomic H⋯H contact between the H2O and H3O atoms, Table 4[link]. The increase in the percentage contribution from O⋯H/H⋯O contacts to the Hirshfeld surface and the corresponding decrease in the contribution from H⋯H contacts in (II)[link], cf. (I)[link], Table 5[link], is due to the presence of dominating O—H⋯O hydrogen bonds in the crystal of (II)[link] and is characterized as a pair of long spikes terminating at de + di ∼ 1.8 Å, Fig. 11[link]c. The tips corresponding to the O1⋯H6A contact, Table 4[link], are diminished within the long spikes corresponding to dominant O—H⋯O hydrogen bonds.

The S⋯H/H⋯S contacts with the nearly same contribution to the surface of (II)[link] as for (I)[link], i.e. 22.2 and 22.7%, respectively, reflect the O—H⋯S hydrogen bonds and additional S⋯H contacts resulting in tips at de + di ∼ 2.9 Å in Fig. 11[link]d and Table 4[link]. The 12.3% contribution from C⋯H/H⋯C contacts to the surface with the tips at de + di ∼ 2.6 Å in the plot, Fig. 11[link]e, results from the C—H⋯π(chelate) and short inter­atomic C⋯H/H⋯C contacts, Table 4[link]. The presence of C—H⋯π(chelate) inter­actions is also indicated by the short inter­atomic Zn⋯H/H⋯Zn contacts summarized in Table 4[link]. The presence of short inter­atomic C⋯C contacts between symmetry-related methyl-C8 atoms is identified in the respective plot, Fig. 11[link]f, as the pair of tips at de + di ∼1.7 Å. Finally, a cone-shaped distribution of points with a 3.8% contribution to the surface from S⋯S contacts having a vertex at de = di ∼ 1.7 Å in the fingerprint plot, Fig. 11[link]g, results from short inter­atomic contacts between S4 atoms, Table 4[link]; the absence of analogous contacts in (I)[link] results in a very low percentage contribution to its surface (see above).

5. Database survey

As alluded to in the Chemical context, the presence of hydroxy­ethyl groups in zinc di­thio­carbamates leads to a higher degree of recognizable supra­molecular aggregation owing to hydrogen bonding, usually of the type hy­droxy-O—H⋯O(hy­droxy) but, sometimes also of the type hy­droxy-O—H⋯S(di­thio­carbamate) (Tan et al., 2013[Tan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046-3056.]; Jamaludin et al., 2016[Jamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341-349.]). The following is a brief overview of some previous structures with ethyl­hydroxy­dithio­carbamate ligands highlighting the important role of hydrogen bonding in the supra­molecular aggregation. In the what might be termed the parent binary compound, i.e. {Zn[S2CN(CH2CH2OH)2]2}2, the usual dimeric motif is evident but these self-assemble via strong hydrogen bonding into three-dimensional architectures in both of the polymorphs characterized thus far, with the difference between the structures being the topology of supra­molecular layers, i.e. flattened (Manohar et al., 1998[Manohar, A., Venkatachalam, V., Ramalingam, K., Thirumaran, S., Bocelli, G. & Cantoni, A. (1998). J. Chem. Crystallogr. 28, 861-866.]) and undulating (Benson et al., 2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-941.]). When one ethyl­hydroxy group is replaced by an ethyl group, as in {Zn[S2CN(Et)CH2CH2OH]2}2, the reduced hydrogen bonding leads to supra­molecular chains (Benson et al., 2007[Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930-941.]). Bridging ligands lead to zero-dimensional aggregates, e.g. in {Zn[S2CN(Me)CH2CH2OH)2]2}2L, where L is (3-pyrid­yl)CH2N(H)C(=O)C(=O)N(H)CH2(3-pyrid­yl). However, hydrogen bonding of the type hy­droxy-O—H⋯O(hy­droxy) links the mol­ecules into inter-woven double chains (Poplaukhin & Tiekink, 2008[Poplaukhin, P. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1176.]). The inter­esting structural chemistry is complimented by observations that some of these compounds exhibit exciting, cell-specific, anti-cancer potential (Tan et al., 2015[Tan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48-62.]). The foregoing suggests this is a fertile area of research, well deserving of continuing attention.

6. Synthesis and crystallization

Synthesis of (I)[link]: In a 2:1:0.5 molar ratio, Zn(S2CNEt2)2, N,N′-bis­(pyridin-3-ylmeth­yl)ethane­dithiodi­amide (Zukerman-Schpector et al., 2015[Zukerman-Schpector, J., Sousa Madureira, L., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2015). Z. Kristallogr. 230, 531-541.]) and 3-hy­droxy pyridine were dissolved in chloro­form. Solvent diffusion of hexane into this solution produced pink crystals. FT–IR (cm−1): ν(C=N) 1482 (s, br); ν(C—S) 987 (s). 1H NMR (d6-DMSO, 300 MHz): δ 9.91 (s, 1H, OH), 8.20–8.00 (m, 2H, aromatic-H), 7.30–7.10 (m, 2H, aromatic-H), 3.82 (8H, q, NCH2, J = 7.00 Hz); 1.22 (12H, t, CH3, J = 7.20 Hz).

Synthesis of (II)[link]: In a 1:1 molar ratio, Zn[S2N(Me)CH2CH2OH]2 and 3-hy­droxy pyridine were dissolved in a MeOH/EtOH (1:1 v/v) solution. Solvent diffusion of hexane into this solution led to the formation of colourless crystals. FT–IR (cm−1): ν(C=N) 1480 (s); ν(C—S) 1002 (s). 1H NMR (d6-DMSO, 300 MHz): δ 9.91 (s, 1H, aromatic-OH), 8.20–8.00 (m, 2H, aromatic-H), 7.30–7.10 (m, 2H, aromatic-H), 4.91 (2H, t, OH, J = 5.50 Hz); 3.90 (4H, t, NCH2, J = 6.25 Hz); 3.70 (4H, dt, CH2O, J = 5.50, 5.50 Hz); 3.41 (6H, s, CH3).

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The oxygen-bound H-atoms were located in difference Fourier maps but were refined with a distance restraint of O—H = 0.84±0.01 Å, and with Uiso(H) set to 1.5Ueq(O).

Table 6
Experimental details

  (I) (II)
Crystal data
Chemical formula [Zn(C5H10NS2)2(C5H5NO)] [Zn(C4H8NOS2)2(C5H5NO)]
Mr 456.99 460.94
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 98 98
a, b, c (Å) 10.032 (2), 31.955 (7), 13.233 (3) 8.8645 (19), 9.956 (2), 11.473 (3)
α, β, γ (°) 90, 105.920 (2), 90 102.154 (4), 106.989 (4), 93.466 (3)
V3) 4079.4 (15) 938.6 (4)
Z 8 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.62 1.77
Crystal size (mm) 0.50 × 0.40 × 0.15 0.37 × 0.25 × 0.25
 
Data collection
Diffractometer Rigaku AFC12κ/SATURN724 Rigaku AFC12κ/SATURN724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.687, 1.000 0.860, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 25139, 9202, 8401 6836, 4249, 4133
Rint 0.037 0.026
(sin θ/λ)max−1) 0.650 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.06 0.032, 0.080, 1.06
No. of reflections 9202 4249
No. of parameters 447 228
No. of restraints 2 3
Δρmax, Δρmin (e Å−3) 0.73, −0.45 0.43, −0.60
Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557-559.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015). Molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans & Shalloway, 2001), DIAMOND (Brandenburg, 2006) for (I); ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006) for (II). For both compounds, software used to prepare material for publication: publCIF (Westrip, 2010).

(I) Bis(N,N-diethyldithiocarbamato-κ2S,S')(3-hydroxypyridine-κN)zinc top
Crystal data top
[Zn(C5H10NS2)2(C5H5NO)]F(000) = 1904
Mr = 456.99Dx = 1.488 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.032 (2) ÅCell parameters from 16430 reflections
b = 31.955 (7) Åθ = 2.5–40.7°
c = 13.233 (3) ŵ = 1.62 mm1
β = 105.920 (2)°T = 98 K
V = 4079.4 (15) Å3Slab, pink
Z = 80.50 × 0.40 × 0.15 mm
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
9202 independent reflections
Radiation source: fine-focus sealed tube8401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1013
Tmin = 0.687, Tmax = 1.000k = 4141
25139 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0477P)2 + 4.2267P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
9202 reflectionsΔρmax = 0.73 e Å3
447 parametersΔρmin = 0.45 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.22939 (3)0.51145 (2)0.27529 (3)0.02233 (8)
S10.06711 (7)0.51485 (2)0.37067 (5)0.02470 (14)
S20.01500 (6)0.54220 (2)0.14827 (5)0.02127 (13)
S30.27656 (6)0.46663 (2)0.14937 (5)0.02206 (13)
S40.42106 (7)0.46582 (2)0.37705 (5)0.02349 (14)
O10.5087 (2)0.64627 (6)0.45759 (17)0.0305 (4)
H1O0.524 (4)0.6717 (4)0.449 (3)0.046*
N10.1829 (2)0.54510 (7)0.27436 (17)0.0206 (4)
N20.4941 (2)0.41780 (7)0.23507 (18)0.0218 (4)
N30.3333 (2)0.56740 (7)0.27551 (18)0.0209 (4)
C10.0580 (3)0.53538 (8)0.2645 (2)0.0194 (5)
C20.2190 (3)0.54050 (9)0.3748 (2)0.0257 (5)
H2A0.16310.51760.41620.031*
H2B0.31800.53270.36020.031*
C30.1933 (3)0.58063 (10)0.4389 (2)0.0339 (7)
H3A0.09330.58560.46490.051*
H3B0.23300.57800.49850.051*
H3C0.23710.60410.39460.051*
C40.2961 (3)0.55989 (9)0.1855 (2)0.0265 (5)
H4A0.25670.57500.13500.032*
H4B0.35530.57960.21140.032*
C50.3837 (3)0.52333 (10)0.1301 (2)0.0334 (6)
H5A0.32750.50540.09780.050*
H5B0.46340.53400.07560.050*
H5C0.41660.50710.18130.050*
C60.4075 (3)0.44668 (8)0.2532 (2)0.0203 (5)
C70.4939 (3)0.40561 (9)0.1276 (2)0.0268 (6)
H7A0.58970.39830.12720.032*
H7B0.46440.42990.08040.032*
C80.3997 (3)0.36900 (10)0.0850 (3)0.0353 (7)
H8A0.42180.34570.13500.053*
H8B0.41340.36020.01770.053*
H8C0.30300.37740.07480.053*
C90.6003 (3)0.39774 (8)0.3208 (2)0.0261 (5)
H9A0.61820.36910.29920.031*
H9B0.56510.39540.38360.031*
C100.7353 (3)0.42242 (10)0.3491 (2)0.0313 (6)
H10A0.76670.42660.28600.047*
H10B0.80600.40690.40150.047*
H10C0.72010.44970.37820.047*
C110.3950 (3)0.58787 (8)0.3647 (2)0.0236 (5)
H110.40040.57490.43030.028*
C120.4514 (3)0.62776 (8)0.3636 (2)0.0236 (5)
C130.4457 (3)0.64633 (8)0.2680 (2)0.0242 (5)
H130.48340.67340.26530.029*
C140.3839 (3)0.62468 (9)0.1761 (2)0.0266 (5)
H140.37980.63660.10960.032*
C150.3287 (3)0.58556 (9)0.1827 (2)0.0233 (5)
H150.28590.57090.11970.028*
Zn20.68820 (3)0.27217 (2)0.19561 (3)0.02217 (8)
S50.75317 (6)0.32449 (2)0.09483 (5)0.02196 (13)
S60.89261 (7)0.30961 (2)0.31945 (5)0.02480 (14)
S70.52971 (7)0.26483 (2)0.29651 (5)0.02464 (14)
S80.45448 (6)0.24765 (2)0.06815 (5)0.02173 (13)
O20.9810 (2)0.13960 (6)0.36656 (16)0.0293 (4)
H2O0.997 (4)0.1141 (4)0.358 (3)0.044*
N40.9764 (2)0.36702 (7)0.20279 (18)0.0214 (4)
N50.2806 (2)0.23709 (7)0.18746 (18)0.0218 (4)
N60.7917 (2)0.21685 (7)0.18654 (18)0.0214 (4)
C160.8854 (3)0.33725 (8)0.2066 (2)0.0196 (5)
C171.0857 (3)0.37985 (9)0.2973 (2)0.0270 (6)
H17A1.05120.37640.36010.032*
H17B1.10750.40980.29140.032*
C181.2165 (3)0.35417 (10)0.3110 (3)0.0358 (7)
H18A1.19640.32470.32110.054*
H18B1.28800.36420.37250.054*
H18C1.24970.35700.24820.054*
C190.9748 (3)0.38995 (8)0.1058 (2)0.0246 (5)
H19A0.93190.37220.04420.030*
H19B1.07130.39590.10500.030*
C200.8951 (3)0.43075 (9)0.0970 (2)0.0284 (6)
H20A0.79680.42480.08810.043*
H20B0.90560.44660.03620.043*
H20C0.93150.44730.16100.043*
C210.4063 (3)0.24864 (8)0.1840 (2)0.0206 (5)
C220.2413 (3)0.23388 (9)0.2868 (2)0.0247 (5)
H22A0.14160.24050.27360.030*
H22B0.29480.25460.33770.030*
C230.2691 (3)0.19034 (10)0.3332 (2)0.0310 (6)
H23A0.22490.16960.28000.047*
H23B0.23110.18790.39370.047*
H23C0.36930.18530.35590.047*
C240.1702 (3)0.22577 (9)0.0921 (2)0.0262 (6)
H24A0.11350.20280.10860.031*
H24B0.21250.21580.03710.031*
C250.0776 (3)0.26349 (11)0.0511 (3)0.0371 (7)
H25A0.03530.27320.10530.056*
H25B0.00470.25540.01180.056*
H25C0.13350.28600.03330.056*
C260.8547 (3)0.19591 (8)0.2743 (2)0.0225 (5)
H260.85520.20780.34020.027*
C270.9194 (3)0.15755 (8)0.2729 (2)0.0223 (5)
C280.9185 (3)0.14053 (8)0.1761 (2)0.0249 (5)
H280.96120.11430.17200.030*
C290.8541 (3)0.16261 (9)0.0855 (2)0.0261 (5)
H290.85330.15170.01850.031*
C300.7912 (3)0.20054 (9)0.0932 (2)0.0242 (5)
H300.74660.21540.03080.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02198 (15)0.01845 (15)0.02877 (17)0.00025 (11)0.01071 (12)0.00238 (12)
S10.0212 (3)0.0328 (3)0.0206 (3)0.0046 (2)0.0065 (2)0.0053 (3)
S20.0235 (3)0.0222 (3)0.0186 (3)0.0006 (2)0.0066 (2)0.0003 (2)
S30.0209 (3)0.0226 (3)0.0217 (3)0.0009 (2)0.0042 (2)0.0024 (2)
S40.0270 (3)0.0237 (3)0.0202 (3)0.0043 (2)0.0073 (2)0.0009 (2)
O10.0391 (11)0.0230 (10)0.0248 (10)0.0026 (8)0.0011 (9)0.0029 (8)
N10.0190 (10)0.0225 (10)0.0192 (11)0.0006 (8)0.0032 (8)0.0007 (8)
N20.0232 (10)0.0208 (10)0.0222 (11)0.0011 (8)0.0074 (9)0.0022 (8)
N30.0192 (10)0.0210 (10)0.0222 (11)0.0010 (8)0.0052 (8)0.0012 (8)
C10.0226 (12)0.0163 (11)0.0192 (12)0.0006 (9)0.0054 (9)0.0002 (9)
C20.0212 (12)0.0324 (14)0.0251 (14)0.0000 (10)0.0090 (10)0.0014 (11)
C30.0349 (15)0.0411 (17)0.0294 (15)0.0047 (13)0.0148 (13)0.0096 (13)
C40.0208 (12)0.0296 (14)0.0270 (14)0.0024 (10)0.0031 (10)0.0054 (11)
C50.0261 (13)0.0419 (17)0.0280 (15)0.0048 (12)0.0002 (11)0.0000 (13)
C60.0201 (11)0.0168 (11)0.0256 (13)0.0016 (9)0.0088 (10)0.0004 (10)
C70.0258 (13)0.0278 (13)0.0286 (14)0.0034 (10)0.0108 (11)0.0057 (11)
C80.0338 (15)0.0347 (16)0.0362 (17)0.0002 (12)0.0075 (13)0.0166 (13)
C90.0273 (13)0.0213 (12)0.0293 (14)0.0061 (10)0.0069 (11)0.0023 (11)
C100.0265 (13)0.0316 (15)0.0326 (16)0.0047 (11)0.0028 (12)0.0020 (12)
C110.0240 (12)0.0229 (12)0.0226 (13)0.0019 (10)0.0040 (10)0.0006 (10)
C120.0181 (11)0.0239 (13)0.0263 (14)0.0028 (9)0.0020 (10)0.0041 (10)
C130.0223 (12)0.0202 (12)0.0312 (15)0.0001 (9)0.0090 (11)0.0007 (10)
C140.0278 (13)0.0280 (14)0.0250 (14)0.0036 (10)0.0087 (11)0.0039 (11)
C150.0218 (12)0.0263 (13)0.0211 (13)0.0003 (10)0.0045 (10)0.0001 (10)
Zn20.02096 (15)0.01850 (15)0.02802 (17)0.00040 (10)0.00836 (12)0.00219 (11)
S50.0212 (3)0.0211 (3)0.0224 (3)0.0027 (2)0.0039 (2)0.0019 (2)
S60.0299 (3)0.0234 (3)0.0208 (3)0.0021 (2)0.0064 (3)0.0019 (2)
S70.0225 (3)0.0297 (3)0.0209 (3)0.0035 (2)0.0046 (2)0.0031 (3)
S80.0221 (3)0.0229 (3)0.0200 (3)0.0008 (2)0.0055 (2)0.0026 (2)
O20.0397 (11)0.0231 (10)0.0245 (10)0.0017 (8)0.0078 (9)0.0027 (8)
N40.0217 (10)0.0207 (10)0.0210 (11)0.0033 (8)0.0043 (8)0.0025 (8)
N50.0224 (10)0.0221 (10)0.0209 (11)0.0000 (8)0.0059 (9)0.0010 (9)
N60.0186 (10)0.0204 (10)0.0247 (11)0.0032 (8)0.0053 (8)0.0005 (9)
C160.0222 (11)0.0186 (11)0.0195 (12)0.0002 (9)0.0083 (9)0.0007 (9)
C170.0295 (13)0.0257 (13)0.0222 (13)0.0072 (10)0.0010 (11)0.0053 (10)
C180.0297 (14)0.0371 (16)0.0357 (17)0.0021 (12)0.0008 (13)0.0001 (13)
C190.0286 (13)0.0251 (13)0.0223 (13)0.0056 (10)0.0104 (11)0.0005 (10)
C200.0348 (14)0.0229 (13)0.0280 (15)0.0049 (11)0.0094 (12)0.0033 (11)
C210.0228 (12)0.0173 (11)0.0203 (12)0.0024 (9)0.0038 (10)0.0031 (9)
C220.0224 (12)0.0294 (13)0.0241 (14)0.0006 (10)0.0097 (10)0.0002 (11)
C230.0300 (14)0.0353 (15)0.0291 (15)0.0021 (12)0.0102 (12)0.0061 (12)
C240.0191 (12)0.0310 (14)0.0252 (14)0.0042 (10)0.0006 (10)0.0010 (11)
C250.0282 (14)0.0408 (17)0.0348 (17)0.0039 (12)0.0037 (13)0.0059 (14)
C260.0235 (12)0.0221 (12)0.0214 (13)0.0022 (9)0.0052 (10)0.0016 (10)
C270.0241 (12)0.0186 (12)0.0242 (13)0.0030 (9)0.0068 (10)0.0014 (10)
C280.0284 (13)0.0197 (12)0.0288 (14)0.0000 (10)0.0113 (11)0.0013 (10)
C290.0335 (14)0.0259 (13)0.0200 (13)0.0018 (11)0.0091 (11)0.0006 (10)
C300.0244 (12)0.0252 (13)0.0227 (13)0.0014 (10)0.0063 (10)0.0038 (10)
Geometric parameters (Å, º) top
Zn1—N32.069 (2)Zn2—N62.070 (2)
Zn1—S12.3201 (8)Zn2—S52.3399 (8)
Zn1—S32.3417 (8)Zn2—S72.3517 (8)
Zn1—S42.4932 (8)Zn2—S62.5453 (8)
Zn1—S22.7461 (8)Zn2—S82.6051 (8)
S1—C11.736 (3)S5—C161.743 (3)
S2—C11.721 (3)S6—C161.720 (3)
S3—C61.741 (3)S7—C211.734 (3)
S4—C61.720 (3)S8—C211.730 (3)
O1—C121.355 (3)O2—C271.352 (3)
O1—H1O0.842 (10)O2—H2O0.844 (10)
N1—C11.332 (3)N4—C161.328 (3)
N1—C41.470 (3)N4—C191.474 (3)
N1—C21.477 (3)N4—C171.478 (3)
N2—C61.333 (3)N5—C211.326 (3)
N2—C91.473 (3)N5—C221.476 (3)
N2—C71.474 (3)N5—C241.478 (3)
N3—C111.343 (3)N6—C261.339 (3)
N3—C151.347 (3)N6—C301.340 (4)
C2—C31.520 (4)C17—C181.515 (4)
C2—H2A0.9900C17—H17A0.9900
C2—H2B0.9900C17—H17B0.9900
C3—H3A0.9800C18—H18A0.9800
C3—H3B0.9800C18—H18B0.9800
C3—H3C0.9800C18—H18C0.9800
C4—C51.524 (4)C19—C201.517 (4)
C4—H4A0.9900C19—H19A0.9900
C4—H4B0.9900C19—H19B0.9900
C5—H5A0.9800C20—H20A0.9800
C5—H5B0.9800C20—H20B0.9800
C5—H5C0.9800C20—H20C0.9800
C7—C81.512 (4)C22—C231.515 (4)
C7—H7A0.9900C22—H22A0.9900
C7—H7B0.9900C22—H22B0.9900
C8—H8A0.9800C23—H23A0.9800
C8—H8B0.9800C23—H23B0.9800
C8—H8C0.9800C23—H23C0.9800
C9—C101.523 (4)C24—C251.528 (4)
C9—H9A0.9900C24—H24A0.9900
C9—H9B0.9900C24—H24B0.9900
C10—H10A0.9800C25—H25A0.9800
C10—H10B0.9800C25—H25B0.9800
C10—H10C0.9800C25—H25C0.9800
C11—C121.397 (4)C26—C271.390 (4)
C11—H110.9500C26—H260.9500
C12—C131.384 (4)C27—C281.389 (4)
C13—C141.388 (4)C28—C291.389 (4)
C13—H130.9500C28—H280.9500
C14—C151.380 (4)C29—C301.383 (4)
C14—H140.9500C29—H290.9500
C15—H150.9500C30—H300.9500
N3—Zn1—S1112.77 (6)N6—Zn2—S5110.78 (6)
N3—Zn1—S3109.24 (6)N6—Zn2—S7112.06 (6)
S1—Zn1—S3136.44 (3)S5—Zn2—S7137.08 (3)
N3—Zn1—S4101.02 (6)N6—Zn2—S696.34 (6)
S1—Zn1—S4106.61 (3)S5—Zn2—S674.34 (3)
S3—Zn1—S475.54 (3)S7—Zn2—S6103.42 (3)
N3—Zn1—S293.23 (6)N6—Zn2—S894.71 (6)
S1—Zn1—S270.99 (3)S5—Zn2—S8100.83 (3)
S3—Zn1—S295.97 (3)S7—Zn2—S873.08 (3)
S4—Zn1—S2165.17 (2)S6—Zn2—S8168.91 (2)
C1—S1—Zn192.11 (9)C16—S5—Zn287.12 (9)
C1—S2—Zn178.96 (9)C16—S6—Zn281.24 (9)
C6—S3—Zn185.32 (9)C21—S7—Zn288.69 (9)
C6—S4—Zn181.11 (9)C21—S8—Zn280.88 (9)
C12—O1—H1O110 (3)C27—O2—H2O110 (3)
C1—N1—C4122.5 (2)C16—N4—C19123.1 (2)
C1—N1—C2122.3 (2)C16—N4—C17121.7 (2)
C4—N1—C2115.2 (2)C19—N4—C17115.3 (2)
C6—N2—C9122.1 (2)C21—N5—C22122.6 (2)
C6—N2—C7121.9 (2)C21—N5—C24122.4 (2)
C9—N2—C7116.0 (2)C22—N5—C24115.0 (2)
C11—N3—C15118.9 (2)C26—N6—C30119.1 (2)
C11—N3—Zn1122.19 (18)C26—N6—Zn2120.10 (18)
C15—N3—Zn1118.67 (18)C30—N6—Zn2120.70 (18)
N1—C1—S2122.1 (2)N4—C16—S6122.3 (2)
N1—C1—S1119.98 (19)N4—C16—S5120.4 (2)
S2—C1—S1117.91 (14)S6—C16—S5117.23 (14)
N1—C2—C3111.8 (2)N4—C17—C18111.6 (2)
N1—C2—H2A109.2N4—C17—H17A109.3
C3—C2—H2A109.2C18—C17—H17A109.3
N1—C2—H2B109.2N4—C17—H17B109.3
C3—C2—H2B109.2C18—C17—H17B109.3
H2A—C2—H2B107.9H17A—C17—H17B108.0
C2—C3—H3A109.5C17—C18—H18A109.5
C2—C3—H3B109.5C17—C18—H18B109.5
H3A—C3—H3B109.5H18A—C18—H18B109.5
C2—C3—H3C109.5C17—C18—H18C109.5
H3A—C3—H3C109.5H18A—C18—H18C109.5
H3B—C3—H3C109.5H18B—C18—H18C109.5
N1—C4—C5110.8 (2)N4—C19—C20111.9 (2)
N1—C4—H4A109.5N4—C19—H19A109.2
C5—C4—H4A109.5C20—C19—H19A109.2
N1—C4—H4B109.5N4—C19—H19B109.2
C5—C4—H4B109.5C20—C19—H19B109.2
H4A—C4—H4B108.1H19A—C19—H19B107.9
C4—C5—H5A109.5C19—C20—H20A109.5
C4—C5—H5B109.5C19—C20—H20B109.5
H5A—C5—H5B109.5H20A—C20—H20B109.5
C4—C5—H5C109.5C19—C20—H20C109.5
H5A—C5—H5C109.5H20A—C20—H20C109.5
H5B—C5—H5C109.5H20B—C20—H20C109.5
N2—C6—S4122.2 (2)N5—C21—S8121.7 (2)
N2—C6—S3120.0 (2)N5—C21—S7121.0 (2)
S4—C6—S3117.86 (14)S8—C21—S7117.32 (15)
N2—C7—C8113.5 (2)N5—C22—C23111.1 (2)
N2—C7—H7A108.9N5—C22—H22A109.4
C8—C7—H7A108.9C23—C22—H22A109.4
N2—C7—H7B108.9N5—C22—H22B109.4
C8—C7—H7B108.9C23—C22—H22B109.4
H7A—C7—H7B107.7H22A—C22—H22B108.0
C7—C8—H8A109.5C22—C23—H23A109.5
C7—C8—H8B109.5C22—C23—H23B109.5
H8A—C8—H8B109.5H23A—C23—H23B109.5
C7—C8—H8C109.5C22—C23—H23C109.5
H8A—C8—H8C109.5H23A—C23—H23C109.5
H8B—C8—H8C109.5H23B—C23—H23C109.5
N2—C9—C10111.8 (2)N5—C24—C25110.5 (2)
N2—C9—H9A109.3N5—C24—H24A109.5
C10—C9—H9A109.3C25—C24—H24A109.5
N2—C9—H9B109.3N5—C24—H24B109.5
C10—C9—H9B109.3C25—C24—H24B109.5
H9A—C9—H9B107.9H24A—C24—H24B108.1
C9—C10—H10A109.5C24—C25—H25A109.5
C9—C10—H10B109.5C24—C25—H25B109.5
H10A—C10—H10B109.5H25A—C25—H25B109.5
C9—C10—H10C109.5C24—C25—H25C109.5
H10A—C10—H10C109.5H25A—C25—H25C109.5
H10B—C10—H10C109.5H25B—C25—H25C109.5
N3—C11—C12121.7 (3)N6—C26—C27122.7 (3)
N3—C11—H11119.2N6—C26—H26118.7
C12—C11—H11119.2C27—C26—H26118.7
O1—C12—C13123.6 (3)O2—C27—C28124.4 (2)
O1—C12—C11117.4 (3)O2—C27—C26117.3 (2)
C13—C12—C11119.1 (3)C28—C27—C26118.3 (3)
C12—C13—C14118.9 (3)C27—C28—C29118.7 (3)
C12—C13—H13120.5C27—C28—H28120.6
C14—C13—H13120.5C29—C28—H28120.6
C15—C14—C13119.1 (3)C30—C29—C28119.7 (3)
C15—C14—H14120.5C30—C29—H29120.2
C13—C14—H14120.5C28—C29—H29120.2
N3—C15—C14122.3 (3)N6—C30—C29121.5 (3)
N3—C15—H15118.8N6—C30—H30119.3
C14—C15—H15118.8C29—C30—H30119.3
C4—N1—C1—S23.9 (3)C19—N4—C16—S6177.68 (19)
C2—N1—C1—S2178.13 (19)C17—N4—C16—S63.3 (3)
C4—N1—C1—S1175.75 (19)C19—N4—C16—S51.8 (3)
C2—N1—C1—S12.2 (3)C17—N4—C16—S5177.20 (19)
Zn1—S2—C1—N1179.1 (2)Zn2—S6—C16—N4177.2 (2)
Zn1—S2—C1—S11.28 (12)Zn2—S6—C16—S52.33 (12)
Zn1—S1—C1—N1178.9 (2)Zn2—S5—C16—N4177.0 (2)
Zn1—S1—C1—S21.49 (14)Zn2—S5—C16—S62.51 (13)
C1—N1—C2—C392.4 (3)C16—N4—C17—C1889.7 (3)
C4—N1—C2—C389.5 (3)C19—N4—C17—C1891.2 (3)
C1—N1—C4—C591.2 (3)C16—N4—C19—C2094.5 (3)
C2—N1—C4—C586.9 (3)C17—N4—C19—C2084.6 (3)
C9—N2—C6—S45.1 (3)C22—N5—C21—S8174.11 (19)
C7—N2—C6—S4171.71 (19)C24—N5—C21—S84.8 (3)
C9—N2—C6—S3175.58 (19)C22—N5—C21—S75.2 (3)
C7—N2—C6—S37.6 (3)C24—N5—C21—S7175.93 (19)
Zn1—S4—C6—N2175.6 (2)Zn2—S8—C21—N5177.8 (2)
Zn1—S4—C6—S33.74 (12)Zn2—S8—C21—S71.50 (12)
Zn1—S3—C6—N2175.4 (2)Zn2—S7—C21—N5177.7 (2)
Zn1—S3—C6—S43.94 (13)Zn2—S7—C21—S81.64 (14)
C6—N2—C7—C891.5 (3)C21—N5—C22—C2390.3 (3)
C9—N2—C7—C891.5 (3)C24—N5—C22—C2388.7 (3)
C6—N2—C9—C1088.5 (3)C21—N5—C24—C2595.2 (3)
C7—N2—C9—C1088.5 (3)C22—N5—C24—C2585.8 (3)
C15—N3—C11—C121.5 (4)C30—N6—C26—C270.4 (4)
Zn1—N3—C11—C12172.77 (19)Zn2—N6—C26—C27176.51 (19)
N3—C11—C12—O1178.6 (2)N6—C26—C27—O2179.3 (2)
N3—C11—C12—C131.2 (4)N6—C26—C27—C280.2 (4)
O1—C12—C13—C14179.7 (2)O2—C27—C28—C29178.6 (2)
C11—C12—C13—C140.0 (4)C26—C27—C28—C290.4 (4)
C12—C13—C14—C150.8 (4)C27—C28—C29—C300.8 (4)
C11—N3—C15—C140.7 (4)C26—N6—C30—C290.1 (4)
Zn1—N3—C15—C14173.8 (2)Zn2—N6—C30—C29176.88 (19)
C13—C14—C15—N30.4 (4)C28—C29—C30—N60.6 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the (Zn1,S1,S2,C1) and (Zn2,S7,S8,C21) chelate rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···S8i0.84 (2)2.45 (1)3.289 (2)173 (4)
O2—H2O···S2ii0.84 (2)2.31 (1)3.143 (2)170 (4)
C8—H8A···Cg20.982.983.855 (3)150
C13—H13···Cg2i0.952.793.631 (3)148
C20—H20C···Cg1iii0.982.973.850 (3)150
C28—H28···Cg1ii0.952.963.738 (3)140
C19—H19A···O2iv0.992.563.321 (3)134
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x, y+1/2, z1/2.
(II) Bis[N-(2-hydroxyethyl)-N-methyldithiocarbamato-κ2S,S'](3-hydroxypyridine-κN)zinc top
Crystal data top
[Zn(C4H8NOS2)2(C5H5NO)]Z = 2
Mr = 460.94F(000) = 476
Triclinic, P1Dx = 1.631 Mg m3
a = 8.8645 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.956 (2) ÅCell parameters from 4145 reflections
c = 11.473 (3) Åθ = 2.5–40.6°
α = 102.154 (4)°µ = 1.77 mm1
β = 106.989 (4)°T = 98 K
γ = 93.466 (3)°Slab, colourless
V = 938.6 (4) Å30.37 × 0.25 × 0.25 mm
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
4249 independent reflections
Radiation source: fine-focus sealed tube4133 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.860, Tmax = 1.000k = 1212
6836 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.037P)2 + 0.6872P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4249 reflectionsΔρmax = 0.43 e Å3
228 parametersΔρmin = 0.60 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.76357 (3)0.49975 (2)0.25271 (2)0.01863 (8)
S10.97385 (5)0.65936 (5)0.26357 (4)0.01674 (11)
S20.69910 (6)0.58080 (5)0.03011 (5)0.01835 (11)
S30.64889 (6)0.27205 (5)0.14638 (4)0.01739 (11)
S40.90377 (6)0.34805 (5)0.38990 (4)0.01782 (11)
O10.74043 (18)0.85049 (17)0.09808 (15)0.0260 (3)
H1O0.695 (3)0.783 (2)0.083 (3)0.039*
O20.45844 (17)0.01078 (16)0.24736 (13)0.0218 (3)
H2O0.413 (3)0.051 (3)0.193 (2)0.033*
O30.67339 (19)0.91603 (16)0.57620 (15)0.0285 (3)
H3O0.624 (3)0.945 (3)0.627 (2)0.043*
N10.98304 (19)0.70602 (17)0.04700 (15)0.0176 (3)
N20.78664 (19)0.08741 (16)0.26777 (15)0.0161 (3)
N30.62518 (19)0.59446 (17)0.35049 (15)0.0169 (3)
C10.8924 (2)0.65371 (18)0.10539 (18)0.0149 (3)
C20.9350 (2)0.6846 (2)0.09003 (18)0.0191 (4)
H2A0.85020.60460.12850.023*
H2B1.02710.66120.11900.023*
C30.8749 (2)0.8097 (2)0.1355 (2)0.0221 (4)
H3A0.96190.88820.10170.027*
H3B0.84500.78810.22820.027*
C41.1446 (2)0.7770 (2)0.1154 (2)0.0252 (4)
H4A1.14540.83720.19510.038*
H4B1.17890.83300.06470.038*
H4C1.21750.70810.13210.038*
C50.7800 (2)0.22057 (19)0.26907 (17)0.0143 (3)
C60.6826 (2)0.02451 (19)0.16625 (18)0.0181 (4)
H6A0.74680.09710.14210.022*
H6B0.63530.01260.09200.022*
C70.5502 (2)0.0887 (2)0.20439 (18)0.0193 (4)
H7A0.47960.15950.13160.023*
H7B0.59720.13590.27180.023*
C80.8976 (2)0.0451 (2)0.3718 (2)0.0232 (4)
H8A1.00690.07970.37960.035*
H8B0.88520.05620.35540.035*
H8C0.87510.08370.44990.035*
C90.6861 (2)0.7161 (2)0.43240 (18)0.0175 (4)
H90.79210.75300.44360.021*
C100.6007 (2)0.7911 (2)0.50204 (18)0.0194 (4)
C110.4471 (2)0.7342 (2)0.48828 (19)0.0226 (4)
H110.38550.78180.53470.027*
C120.3863 (2)0.6063 (2)0.4053 (2)0.0249 (4)
H120.28260.56460.39530.030*
C130.4768 (2)0.5400 (2)0.33723 (19)0.0221 (4)
H130.43310.45340.27940.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02010 (13)0.01232 (12)0.02810 (14)0.00449 (9)0.01447 (10)0.00421 (9)
S10.0155 (2)0.0171 (2)0.0178 (2)0.00248 (17)0.00462 (17)0.00523 (17)
S20.0154 (2)0.0194 (2)0.0201 (2)0.00046 (17)0.00437 (18)0.00651 (18)
S30.0217 (2)0.0157 (2)0.0149 (2)0.00533 (17)0.00362 (18)0.00587 (17)
S40.0180 (2)0.0143 (2)0.0184 (2)0.00276 (16)0.00247 (18)0.00227 (17)
O10.0257 (8)0.0311 (8)0.0317 (8)0.0137 (6)0.0166 (7)0.0160 (7)
O20.0232 (7)0.0268 (8)0.0184 (7)0.0090 (6)0.0094 (6)0.0064 (6)
O30.0326 (8)0.0227 (8)0.0321 (8)0.0011 (6)0.0208 (7)0.0037 (6)
N10.0157 (7)0.0191 (8)0.0198 (8)0.0025 (6)0.0077 (6)0.0058 (6)
N20.0165 (7)0.0140 (7)0.0165 (7)0.0040 (6)0.0024 (6)0.0043 (6)
N30.0157 (7)0.0179 (8)0.0192 (7)0.0071 (6)0.0063 (6)0.0062 (6)
C10.0160 (8)0.0107 (8)0.0193 (8)0.0053 (6)0.0071 (7)0.0037 (7)
C20.0236 (10)0.0199 (9)0.0181 (9)0.0071 (7)0.0114 (8)0.0058 (7)
C30.0250 (10)0.0261 (10)0.0232 (9)0.0091 (8)0.0140 (8)0.0118 (8)
C40.0167 (9)0.0301 (11)0.0295 (11)0.0018 (8)0.0078 (8)0.0093 (9)
C50.0151 (8)0.0149 (8)0.0154 (8)0.0046 (6)0.0076 (7)0.0038 (7)
C60.0217 (9)0.0125 (8)0.0177 (8)0.0037 (7)0.0053 (7)0.0004 (7)
C70.0215 (9)0.0157 (9)0.0195 (9)0.0036 (7)0.0047 (7)0.0038 (7)
C80.0228 (10)0.0181 (9)0.0257 (10)0.0065 (8)0.0005 (8)0.0091 (8)
C90.0176 (9)0.0180 (9)0.0195 (9)0.0059 (7)0.0077 (7)0.0066 (7)
C100.0221 (9)0.0212 (10)0.0173 (9)0.0065 (8)0.0080 (8)0.0060 (7)
C110.0204 (9)0.0311 (11)0.0196 (9)0.0094 (8)0.0101 (8)0.0058 (8)
C120.0139 (9)0.0333 (12)0.0256 (10)0.0040 (8)0.0061 (8)0.0026 (9)
C130.0177 (9)0.0264 (10)0.0201 (9)0.0037 (8)0.0053 (8)0.0016 (8)
Geometric parameters (Å, º) top
Zn—N32.0375 (16)C2—H2A0.9900
Zn—S12.3319 (6)C2—H2B0.9900
Zn—S32.3437 (7)C3—H3A0.9900
Zn—S42.5275 (6)C3—H3B0.9900
Zn—S22.7514 (8)C4—H4A0.9800
S1—C11.733 (2)C4—H4B0.9800
S2—C11.7119 (19)C4—H4C0.9800
S3—C51.7364 (19)C6—C71.518 (3)
S4—C51.7140 (19)C6—H6A0.9900
O1—C31.433 (2)C6—H6B0.9900
O1—H1O0.833 (10)C7—H7A0.9900
O2—C71.418 (2)C7—H7B0.9900
O2—H2O0.833 (10)C8—H8A0.9800
O3—C101.350 (2)C8—H8B0.9800
O3—H3O0.834 (10)C8—H8C0.9800
N1—C11.333 (2)C9—C101.393 (3)
N1—C41.468 (2)C9—H90.9500
N1—C21.468 (2)C10—C111.394 (3)
N2—C51.328 (2)C11—C121.387 (3)
N2—C81.464 (2)C11—H110.9500
N2—C61.466 (2)C12—C131.379 (3)
N3—C91.337 (3)C12—H120.9500
N3—C131.345 (3)C13—H130.9500
C2—C31.516 (3)
N3—Zn—S1109.72 (5)N1—C4—H4B109.5
N3—Zn—S3110.80 (5)H4A—C4—H4B109.5
S1—Zn—S3139.04 (2)N1—C4—H4C109.5
N3—Zn—S4103.07 (5)H4A—C4—H4C109.5
S1—Zn—S4102.00 (2)H4B—C4—H4C109.5
S3—Zn—S474.41 (2)N2—C5—S4121.34 (14)
N3—Zn—S2107.89 (5)N2—C5—S3121.19 (14)
S1—Zn—S270.825 (18)S4—C5—S3117.46 (11)
S3—Zn—S291.20 (2)N2—C6—C7112.02 (16)
S4—Zn—S2148.839 (18)N2—C6—H6A109.2
C1—S1—Zn90.54 (6)C7—C6—H6A109.2
C1—S2—Zn77.85 (7)N2—C6—H6B109.2
C5—S3—Zn86.67 (6)C7—C6—H6B109.2
C5—S4—Zn81.43 (7)H6A—C6—H6B107.9
C3—O1—H1O109 (2)O2—C7—C6112.50 (16)
C7—O2—H2O113 (2)O2—C7—H7A109.1
C10—O3—H3O110 (2)C6—C7—H7A109.1
C1—N1—C4121.53 (17)O2—C7—H7B109.1
C1—N1—C2122.52 (16)C6—C7—H7B109.1
C4—N1—C2115.68 (16)H7A—C7—H7B107.8
C5—N2—C8120.74 (16)N2—C8—H8A109.5
C5—N2—C6122.91 (16)N2—C8—H8B109.5
C8—N2—C6116.33 (15)H8A—C8—H8B109.5
C9—N3—C13118.73 (17)N2—C8—H8C109.5
C9—N3—Zn118.04 (13)H8A—C8—H8C109.5
C13—N3—Zn123.22 (14)H8B—C8—H8C109.5
N1—C1—S2122.54 (15)N3—C9—C10122.79 (18)
N1—C1—S1118.66 (14)N3—C9—H9118.6
S2—C1—S1118.79 (11)C10—C9—H9118.6
N1—C2—C3113.44 (16)O3—C10—C9116.64 (18)
N1—C2—H2A108.9O3—C10—C11125.07 (18)
C3—C2—H2A108.9C9—C10—C11118.27 (19)
N1—C2—H2B108.9C12—C11—C10118.52 (19)
C3—C2—H2B108.9C12—C11—H11120.7
H2A—C2—H2B107.7C10—C11—H11120.7
O1—C3—C2112.64 (16)C13—C12—C11119.77 (19)
O1—C3—H3A109.1C13—C12—H12120.1
C2—C3—H3A109.1C11—C12—H12120.1
O1—C3—H3B109.1N3—C13—C12121.87 (19)
C2—C3—H3B109.1N3—C13—H13119.1
H3A—C3—H3B107.8C12—C13—H13119.1
N1—C4—H4A109.5
C4—N1—C1—S2175.51 (15)Zn—S4—C5—S31.66 (9)
C2—N1—C1—S210.8 (2)Zn—S3—C5—N2176.68 (15)
C4—N1—C1—S14.7 (2)Zn—S3—C5—S41.77 (10)
C2—N1—C1—S1169.02 (14)C5—N2—C6—C7103.9 (2)
Zn—S2—C1—N1167.26 (16)C8—N2—C6—C774.4 (2)
Zn—S2—C1—S112.55 (9)N2—C6—C7—O255.4 (2)
Zn—S1—C1—N1165.30 (14)C13—N3—C9—C102.0 (3)
Zn—S1—C1—S214.52 (10)Zn—N3—C9—C10178.55 (14)
C1—N1—C2—C3102.8 (2)N3—C9—C10—O3176.43 (17)
C4—N1—C2—C383.2 (2)N3—C9—C10—C112.1 (3)
N1—C2—C3—O158.9 (2)O3—C10—C11—C12177.9 (2)
C8—N2—C5—S41.6 (3)C9—C10—C11—C120.5 (3)
C6—N2—C5—S4179.87 (14)C10—C11—C12—C131.1 (3)
C8—N2—C5—S3179.97 (15)C9—N3—C13—C120.2 (3)
C6—N2—C5—S31.7 (3)Zn—N3—C13—C12179.67 (16)
Zn—S4—C5—N2176.79 (16)C11—C12—C13—N31.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (Zn,S3,S4,C5) chelate ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O···S20.84 (2)2.61 (2)3.371 (2)152 (3)
O2—H2O···O1i0.83 (3)1.94 (3)2.734 (2)161 (3)
O3—H3O···O2ii0.84 (3)1.79 (2)2.619 (2)170 (3)
C2—H2B···Cg1iii0.992.763.689 (2)156
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z.
Geometric data (Å, °) for (I), unsolvated (I) and for (II) top
ParameterZn1-molecule in (I)Zn2-molecule in (I)(II)
Zn—S12.3201 (8)2.3319 (6)
Zn—S22.7461 (8)2.7514 (8)
Zn—S32.3417 (8)2.3437 (7)
Zn—S42.4932 (8)2.5275 (6)
Zn—S52.3399 (8)
Zn—S62.5453 (8)
Zn—S72.3517 (8)
Zn—S82.6051 (8)
Zn—N32.069 (2)2.0375 (16)
Zn—N62.070 (2)
C—S1, S21.736 (3), 1.721 (3)1.733 (2), 1.7119 (19)
C—S3, S41.741 (3), 1.720 (3)1.7364 (19), 1.7140 (19)
C—S5, S61.743 (3), 1.720 (3)
C—S7, S81.734 (3), 1.730 (3)
S1—Zn—S270.99 (3)70.825 (18)
S3—Zn—S475.54 (3)74.41 (2)
S1—Zn—S3136.44 (3)139.04 (2)
S2—Zn—S4165.17 (2)148.839 (18)
S5—Zn—S674.34 (3)
S7—Zn—S873.08 (3)
S5—Zn—S7137.08 (3)
S6—Zn—S8168.91 (2)
S1,S2,C1/S3,S4,C19.30 (12)63.81 (15)
S5,S6,C1/S7,S8,C38.87 (22)
Summary of short interatomic contacts (Å) in (I) and (II) top
ContactDistanceSymmetry operation
(I)
C13···C263.314 (4)1 - x, 1/2 + y, 1/2 - z
H5···H7B2.36-x, 1 - y, -z
O1···H18B2.612 - x, 1 - y, 1 - z
S2···H20B2.961 - x, 1 - y, -z
S4···H112.981 - x, 1 - y, 1 - z
S5···H7A2.97x, y, z
S5···H142.941 - x, 1 - y, -z
C1···H282.751 - x, 1/2 + y, 1/2 - z
C21···H132.651 - x, -1/2 + y, 1/2 - z
C29···H24A2.841 + x, y, z
(II)
S4···S43.4765 (11)2 - x, 1 - y, 1 - z
C8···C83.308 (3)2 - x, -y, 1 - z
C1···H6A2.87x, 1 + y, z
C9···H7B2.57x, 1 + y, z
C10···H10B2.88x, 1+y, z
H1O···H2O2.37 (4)1 - x, 1 - y, -z
H2O···H3O2.18 (3)1 - x, 1 - y, 1 - z
S3···H1O2.91 (3)1 - x, 1 - y, -z
S3···H7A2.991 - x, 1 - y, -z
Zn···H2B3.062 - x, 1 - y, -z
O1···H6A2.68x, 1 + y, z
Percentage contribution to interatomic contacts from the Hirshfeld surface for (I) and (II) top
ContactZn1-molecule in (I)Zn2-molecule in (I)(I)(II)
H···H55.352.955.342.1
O···H/H···O4.15.55.315.0
S···H/H···S23.825.322.722.2
C···H/H···C9.910.010.012.3
N···H/H···N2.62.52.72.9
S···S1.20.71.13.8
C···C1.61.61.80.8
Zn···H/H···Zn0.80.80.40.7
C···O/O···C0.40.40.40.0
C···N/N···C0.20.20.30.1
S···O/O···S0.10.10.00.0
S···C/C···S0.00.00.00.1
 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

Acknowledgements

We thank Sunway University for support of biological and crystal engineering studies of metal di­thio­carbamates.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBenson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–941.  Web of Science CSD CrossRef CAS Google Scholar
First citationBonamico, M., Mazzone, G., Vaciago, A. & Zambonelli, L. (1965). Acta Cryst. 19, 898–909.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCardoso, L. N. F., Nogueira, T. C. M., Wardell, J. L., Wardell, S. M. S. V., Souza, M. V. N. de, Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1025–1031.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCox, M. J. & Tiekink, E. R. T. (2009). Z. Kristallogr. 214, 184–190.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graphics Modell. 19, 557–559.  Web of Science CrossRef CAS Google Scholar
First citationHeard, P. J. (2005). Prog. Inorg. Chem. 53, 1–69.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIvanov, A. V., Korneeva, E. V., Gerasimenko, A. V. & Forsling, W. (2005). Russ. J. Coord. Chem. 31, 695–707.  Web of Science CrossRef CAS Google Scholar
First citationJamaludin, N. S., Halim, S. N. A., Khoo, C.-H., Chen, B.-J., See, T.-H., Sim, J.-H., Cheah, Y.-K., Seng, H.-L. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 341–349.  CAS Google Scholar
First citationJotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413.  CAS Google Scholar
First citationKang, J.-G., Shin, J.-S., Cho, D.-H., Jeong, Y.-K., Park, C., Soh, S. F., Lai, C. S. & Tiekink, E. R. T. (2010). Cryst. Growth Des. 10, 1247–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem. 17, 251–252.  Web of Science CSD CrossRef CAS Google Scholar
First citationMalik, M. A., Motevalli, M., O'Brien, P. & Walsh, J. R. (1997). Inorg. Chem. 36, 1263–1264.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationManohar, A., Venkatachalam, V., Ramalingam, K., Thirumaran, S., Bocelli, G. & Cantoni, A. (1998). J. Chem. Crystallogr. 28, 861–866.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPoplaukhin, P. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m1176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSafbri, S. A. M., Halim, S. N. A. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 203–208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, Y. S., Halim, S. N. A., Molloy, K. C., Sudlow, A. L., Otero-de-la-Roza, A. & Tiekink, E. R. T. (2016a). CrystEngComm, 18, 1105–1117.  Web of Science CSD CrossRef CAS Google Scholar
First citationTan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016b). Z. Kristallogr. 231, 113–126.  CAS Google Scholar
First citationTan, Y. S., Ooi, K. K., Ang, K. P., Akim, A. M., Cheah, Y.-K., Halim, S. N. A., Seng, H.-L. & Tiekink, E. R. T. (2015). J. Inorg. Biochem. 150, 48–62.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTan, Y. S., Sudlow, A. L., Molloy, K. C., Morishima, Y., Fujisawa, K., Jackson, W. J., Henderson, W., Halim, S. N. B. A., Ng, S. W. & Tiekink, E. R. T. (2013). Cryst. Growth Des. 13, 3046–3056.  Web of Science CSD CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2000). Z. Kristallogr. - New Cryst. Struct. 215, 445–446.  CAS Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, D., Hampden-Smith, M. J. & Larson, E. M. (1994). Acta Cryst. C50, 1000–1002.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationZha, M.-Q., Li, X., Bing, Y. & Lu, Y. (2010). Acta Cryst. E66, m1465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Sousa Madureira, L., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2015). Z. Kristallogr. 230, 531–541.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds