research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of hydrogen-bonded co-crystals as liquid crystal precursors: 4-(n-pent­yl­oxy)benzoic acid–(E)-1,2-bis­­(pyridin-4-yl)ethene (2/1) and 4-(n-hex­yl­oxy)benzoic acid–(E)-1,2-bis­­(pyridin-4-yl)ethene (2/1)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan
*Correspondence e-mail: ishidah@cc.okayama-u.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 October 2016; accepted 5 November 2016; online 8 November 2016)

The crystal structures of title hydrogen-bonded co-crystals, 2C12H16O3·C12H10N2, (I), and 2C13H18O3·C12H10N2, (II), have been determined at 93 K. In (I), the asymmetric unit consists of one 4-(n-pent­yloxy)benzoic acid mol­ecule and one half-mol­ecule of (E)-1,2-bis­(pyridin-4-yl)ethene, which lies about an inversion centre. The asymmetric unit of (II) comprises two crystallographically independent 4-(n-hex­yloxy)benzoic acid mol­ecules and one 1,2-bis­(pyridin-4-yl)ethene mol­ecule. In each crystal, the acid and base components are linked by O—H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1 unit of the acid and the base. The 2:1 units are linked via C—H⋯π and ππ inter­actions [centroid–centroid distances of 3.661 (2) and 3.909 (2) Å for (I), and 3.546 (2)–3.725 (4) Å for (II)], forming column structures. In (II), the base mol­ecule is orientationally disordered over two sets of sites approximately around the N⋯N mol­ecular axis, with an occupancy ratio of 0.647 (4):0.353 (4), and the average structure of the 2:1 unit adopts nearly pseudo-C2 symmetry. Both compounds show liquid-crystal behaviour.

1. Chemical context

Co-crystals of 4-alk­oxy­benzoic acid [CH3(CH2)nOC6H4CO2H, n = 0–9]–4,4′-bipyridyl (2/1), 4-alk­oxy­benzoic acid [CH3(CH2)nOC6H4CO2H, n = 0–9]–(E)-1,2-bis­(pyridin-4-yl)ethene [common name: trans-1,2-bis­(4-pyrid­yl)ethyl­ene] (2/1) and 4-alkyl­benzoic acid [CH3(CH2)nC6H4CO2H, n = 3, 4, 7]–(E)-1,2-bis­(pyridin-4-yl)ethene (2/1), in which the two acid mol­ecules and the base mol­ecule are held together through inter­molecular hydrogen bonds, show thermotropic liquid crystallinity (Kato et al., 1990[Kato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. 19, 2003-2006.], 1993[Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094-1100.]). Of these co-crystals, crystal structures of 4,4′-bipyridyl with 4-meth­oxy­benzoic acid (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]; Ramon et al., 2014[Ramon, G., Davies, K. & Nassimbeni, L. R. (2014). CrystEngComm, 16, 5802-5810.]), 4-eth­oxy-, 4-n-prop­oxy- and 4-n-but­oxy­benzoic acid (Tabuchi et al., 2015a[Tabuchi, Y., Gotoh, K. & Ishida, H. (2015a). Acta Cryst. E71, 1290-1295.]) have been reported. Recently, the structures of (E)-1,2-bis­(pyridin-4-yl)ethene with 4-meth­oxy- 4-eth­oxy-, 4-n-prop­oxy- and 4-n-but­oxy­benzoic acid were also reported (Tabuchi et al., 2016[Tabuchi, Y., Gotoh, K. & Ishida, H. (2016). Acta Cryst. E72, 1666-1671.]). As an expansion of our work on the structural characterization of the hydrogen-bonded co-crystals which exhibit liquid-crystal behaviour, we have prepared the title compounds and analysed their crystal structures.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of compounds (I)[link] and (II)[link] are shown in Figs. 1[link] and 2[link], respectively. The asymmetric unit of (I)[link] consists of one 4-pentyl­oxybenzoic acid mol­ecule and one half-mol­ecule of (E)-1,2-bis­(pyridin-4-yl)ethene, which lies about an inversion centre. The two acid mol­ecules and the base mol­ecule are linked via O—H⋯N hydrogen bonds (Table 1[link]) to afford a centrosymmetric linear 2:1 unit. The hydrogen-bonded asymmetric unit is essentially planar with dihedral angles of 1.98 (10), 2.00 (10) and 3.69 (4)°, respectively, between the pyridine N1/C13–C17 and carboxyl O1/C7/O2 planes, the carboxyl and benzene C1–C6 planes, and the pyridine and benzene rings, respectively. On the other hand, the terminal alkyl C9–C12 chain deviates from the benzoic acid plane and adopts a gauche conformation with a C9—C10—C11—C12 torsion angle of −65.22 (10)°.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the benzene C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.016 (19) 1.580 (19) 2.5936 (17) 175 (2)
C12—H12ACg1i 0.98 2.64 3.592 (2) 151
Symmetry code: (i) x, y+1, z.
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size. O—H⋯N hydrogen bonds are indicated by dashed lines. [Symmetry code: (ii) −x + 2, −y − 1, −z.]
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level and H atoms are shown as circles of arbitrary size. O—H⋯N hydrogen bonds are indicated by dashed lines. For the disordered base mol­ecule, only the major component is shown.

The asymmetric unit of (II)[link] is composed of two crystallographically independent 4-hexyl­oxybenzoic acid mol­ecules and one (E)-1,2-bis­(pyridin-4-yl)ethene mol­ecule, and the two acids and the base are linked by O—H⋯N hydrogen bonds (Table 2[link]), forming a linear hydrogen-bonded 2:1 aggregate with trans-zigzag alkyl chains. The base mol­ecule is orientationally disordered over two sets of sites approximately around the N⋯N long axis of the mol­ecule (Fig. 3[link]), as also observed in the co-crystal of 4,4′-sulfonyl­diphenol–(E)-1,2-bis­(pyridin-4-yl)ethene (1/1) (Ferguson et al., 1999[Ferguson, G., Glidewell, C., Gregson, R. M. & Lavender, E. S. (1999). Acta Cryst. B55, 573-590.]). Similar orientational disorder has been observed in the crystals of stilbene and azo­benzene (Harada & Ogawa, 2004[Harada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539-3544.]). The occupancy of the two components was refined to 0.647 (4) and 0.353 (4). Both the major and minor components of the base mol­ecule are approximately planar with dihedral angles of 8.0 (2) and 7.0 (5)°, respectively, between the two pyridine rings in each component. The two independent acid mol­ecules are also approximately planar. The maximum deviation from the mean plane of O1–O3/C1–C13 is 0.1530 (9) Å at atom O2, and that from the plane of O4–O6/C14–C26 is 0.1336 (9) Å at atom O4. The dihedral angles between the O1/C7/O2 and C1–C6 planes and between the O4/C20/O5 and C14–C19 planes are 8.57 (14) and 3.66 (14)°, respectively. The benzene C1–C6 ring is essentially coplanar with the adjacent hydrogen-bonded pyridine N1A/C27A–C31A (N1B/C27B–C31B) ring and makes dihedral angles of 0.14 (16) and 0.8 (3)° with the major and minor components, respectively. On the other hand, the benzene C14–C19 ring and the pyridine N2A/C32A–C36A (N2B/C32B–C36B) ring are inclined slightly to one another by 9.60 (17) and 10.1 (3)° for the major and minor components, respectively.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg2 are the centroids of the benzene C1–C6 and C14–C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1A 0.99 (2) 1.65 (2) 2.635 (5) 176.5 (15)
O1—H1⋯N1B 0.99 (2) 1.63 (2) 2.616 (14) 176.3 (19)
O4—H4⋯N2A 1.08 (3) 1.51 (3) 2.584 (6) 172.8 (18)
O4—H4⋯N2B 1.08 (3) 1.54 (3) 2.618 (15) 172.5 (18)
C12—H12ACg1i 0.99 2.99 3.720 (2) 132
C24—H24ACg2ii 0.99 2.93 3.838 (2) 154
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.
[Figure 3]
Figure 3
The disordered structure of the (E)-1,2-bis­(pyridin-4-yl)ethene mol­ecule in compound (I)[link]. The major and minor components are shown as solid and open bonds, respectively.

The 2:1 unit of the acid and the base of (I)[link] adopts inversion symmetry, as observed for those in 4-meth­oxy­benzoic acid–(E)-1,2-bis­(pyridin-4-yl)ethene (2/1) and 4-n-but­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethene (2/1) (Tabuchi et al., 2016[Tabuchi, Y., Gotoh, K. & Ishida, H. (2016). Acta Cryst. E72, 1666-1671.]), while the average structure of the 2:1 unit of (II)[link] shows nearly pseudo-C2 symmetry around an axis passing through the midpoint of the N⋯N mol­ecular axis of 1,2-bis­(pyridin-4-yl)ethene.

3. Supra­molecular features

In the crystal of (I)[link], the 2:1 units are stacked into a column along the b axis through a C—H⋯π inter­action between the methyl group and the benzene ring (Table 1[link]) and ππ inter­actions between the benzene and pyridine rings and between the pyridine rings (Fig. 4[link]) in a similar manner to the 2:1 units in 4-n-but­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethene (2/1) (Tabuchi et al., 2016[Tabuchi, Y., Gotoh, K. & Ishida, H. (2016). Acta Cryst. E72, 1666-1671.]). The centroid–centroid distances are 3.661 (2) and 3.909 (2) Å, respectively, between the benzene and pyridine rings and between the pyridine rings. Arrangements of the columns of the 2:1 units in (I)[link] and 4-n-but­oxy­benzoic acid–1,2-bis­(pyridin-4-yl)ethene (2/1) are also quite similar to each other.

[Figure 4]
Figure 4
A partial packing diagram of compound (I)[link], showing a column structure formed by C—H⋯π and ππ stacking inter­actions (dashed lines). H atoms except for the hy­droxy and methyl groups have been omitted. [Symmetry codes: (i) x, y + 1, z; (iii) x, y − 1, z.]

In the crystal of (II)[link], the 2:1 units are stacked into a column along the a axis through C—H⋯π inter­actions between the methyl­ene groups and the benzene rings (Table 1[link]) and ππ inter­actions between the benzene rings and the pyridine rings (Fig. 5[link]). The centroid–centroid distances are 3.546 (2), 3.662 (4), 3.652 (2) and 3.725 (4) Å, respectively, between the benzene C1–C6 and pyridine N1A/C27A–C31A rings, the benzene C1–C6 and pyridine N1B/C27B–C31B rings, the benzene C14–C19 and pyridine N2A/C32A–C36A rings, and the benzene C14–C19 and pyridine N2B/C32B–C36B rings.

[Figure 5]
Figure 5
A partial packing diagram of compound (II)[link], showing a column structure formed by C—H⋯π and ππ stacking inter­actions (dashed lines). H atoms except for the hy­droxy and methyl­ene groups involved in the inter­molecular inter­actions have been omitted. [Symmetry codes: (i) x + 1, y, z; (ii) x − 1, y, z.]

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for organic co-crystals of 1,2-bis­(pyridin-4-yl)ethene gave eight structures that exhibit orientational disorder of the 1,2-bis­(pyridin-4-yl)ethane mol­ecule around the long mol­ecular axis (Refcodes: APEDOP, AWEYAD, EWOGUM, IKUJED, LIPXAJ, MOBZIM, SEDYAC, OKIGOG). Crystal structures of similar co-crystals of 4-alk­oxy­benzoic acid–bipyridyl derivative (2/1), which show thermotropic liquid crystallinity, namely, (E)-1,2-bis­(pyridin-4-yl)ethane with 4-meth­oxy­benzoic acid (Mukherjee & Desiraju, 2014[Mukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375-1385.]), (E)-1,2-bis­(pyridin-4-yl)ethane with 4-eth­oxy-, 4-n-prop­oxy- and 4-n-but­oxy­benzoic acid (Tabuchi et al., 2015b[Tabuchi, Y., Gotoh, K. & Ishida, H. (2015b). Acta Cryst. E71, 1340-1344.]) have been reported.

5. Synthesis and crystallization

Single crystals of compounds (I)[link] and (II)[link] were obtained from ethanol solutions of (E)-1,2-bis­(pyridin-4-yl)ethene with 4-(n-pent­yloxy)benzoic acid and 4-(n-hex­yloxy)benzoic acid, respectively, at room temperature [ethanol solution (180 ml) of 1,2-bis­(pyridin-4-yl)ethene (57 mg) and 4-(n-pent­yloxy)benzoic acid (130 mg) for (I)[link], and ethanol solution (180 ml) of 1,2-bis­(pyridin-4-yl)ethene (53 mg) and 4-(n-hex­yloxy)benzoic acid (130 mg) for (II)].

6. Phase transitions

Phase transitions for compounds (I)[link] and (II)[link] were observed by DSC and the liquid crystal phases were confirmed by polarizing microscope. DSC measurements were performed by using a Perkin Elmer Pyris 1 in the temperature range from 110 K to the melting temperature at a heating rate of 10 K min−1. In addition, for compound (I)[link] DSC was carried out in the range of 420–450 K at a rate of 0.5 K min−1 to determine the transition temperatures and enthalpies of two successive phase transitions. Phase transition temperatures (K) and enthalpies (kJ mol−1) obtained by DSC are as follows:

(I) 384.8 (4) [21.7 (7)] K1 → K2, 401 (1) [31 (3)] K2→ SA, 445.3 (4) [3.7 (4)] SA → N, 446.4 (4) [4.5 (3)] N → I.

(II) 412.5 (8) [46 (3)] K → SA, 449.2 (4) [16.3 (7)] SA → I.

K, SA, N and I denote crystal, smectic A, nematic and isotropic phases, respectively. The observed transition temperatures and enthalpies are good agreement with the reported values (Kato et al., 1993[Kato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094-1100.]).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both compounds, C-bound H atoms were positioned geometrically with C—H = 0.95–0.99 Å and were refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The O-bound H atoms were located in a difference Fourier map and refined freely [refined O—H = 1.02 (2) Å for (I)[link], and 0.99 (2) and 1.09 (2) Å for (II)]. In (II)[link], the 1,2-bis­(pyridin-4-yl)ethene mol­ecule was found to be disordered over two sets of sites in the difference Fourier map and the occupancy of the two components was refined to 0.647 (4) and 0.353 (4). For the minor component, C and N atoms were refined isotropically to avoid undesirable displace­ment ellipsoids. The geometry of the pyridine rings of the minor component was restrained to be similar to that of the major one using a SAME instruction.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula 2C12H16O3·C12H10N2 2C13H18O3·C12H10N2
Mr 598.74 626.79
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 93 93
a, b, c (Å) 7.406 (4), 9.042 (4), 11.719 (5) 9.107 (3), 12.020 (5), 16.672 (6)
α, β, γ (°) 80.420 (17), 81.03 (2), 87.66 (3) 81.584 (16), 88.416 (15), 67.905 (15)
V3) 764.2 (6) 1672.2 (11)
Z 1 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.08
Crystal size (mm) 0.45 × 0.28 × 0.10 0.55 × 0.24 × 0.07
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.789, 0.991 0.819, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 9720, 3500, 3146 16796, 7635, 5611
Rint 0.022 0.031
(sin θ/λ)max−1) 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.08 0.043, 0.110, 1.01
No. of reflections 3500 7635
No. of parameters 204 482
No. of restraints 0 24
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.22, −0.49 0.25, −0.29
Computer programs: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) and PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]).

Supporting information


Computing details top

For both compounds, data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2015).

(I) 4-(n-Pentyloxy)benzoic acid–(E)-1,2-bis(pyridin-4-yl)ethene (2/1) top
Crystal data top
2C12H16O3·C12H10N2Z = 1
Mr = 598.74F(000) = 320.00
Triclinic, P1Dx = 1.301 Mg m3
a = 7.406 (4) ÅMo Kα radiation, λ = 0.71075 Å
b = 9.042 (4) ÅCell parameters from 10871 reflections
c = 11.719 (5) Åθ = 3.1–30.0°
α = 80.420 (17)°µ = 0.09 mm1
β = 81.03 (2)°T = 93 K
γ = 87.66 (3)°Block, colorless
V = 764.2 (6) Å30.45 × 0.28 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
3146 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.022
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.789, Tmax = 0.991k = 1111
9720 measured reflectionsl = 1515
3500 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.0761P]
where P = (Fo2 + 2Fc2)/3
3500 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63171 (10)0.22291 (7)0.13060 (6)0.02355 (18)
H10.689 (3)0.121 (2)0.1206 (19)0.092 (7)*
O20.74301 (10)0.19377 (7)0.30027 (6)0.02484 (18)
O30.35890 (9)0.84595 (7)0.25941 (5)0.01847 (16)
N10.77776 (10)0.03371 (8)0.09355 (7)0.01817 (18)
C10.58287 (11)0.42040 (9)0.23882 (7)0.01524 (19)
C20.48572 (12)0.49788 (9)0.15403 (7)0.01714 (19)
H20.46770.45190.08950.021*
C30.41522 (12)0.64028 (9)0.16208 (7)0.01730 (19)
H30.35150.69230.10280.021*
C40.43815 (11)0.70746 (9)0.25794 (7)0.01525 (19)
C50.53474 (11)0.63145 (9)0.34369 (7)0.01655 (19)
H50.55150.67690.40870.020*
C60.60648 (11)0.48861 (9)0.33337 (7)0.01627 (19)
H60.67240.43710.39170.020*
C70.66150 (11)0.26796 (9)0.22765 (7)0.01667 (19)
C80.37285 (12)0.91903 (9)0.35775 (7)0.01651 (19)
H8A0.49990.95150.35420.020*
H8B0.33890.84900.43190.020*
C90.24406 (12)1.05385 (9)0.35257 (7)0.01660 (19)
H9A0.11891.02150.35000.020*
H9B0.28331.12610.28050.020*
C100.24376 (12)1.12976 (9)0.45997 (7)0.01841 (19)
H10A0.23391.05160.53060.022*
H10B0.36211.18030.45270.022*
C110.08889 (12)1.24497 (10)0.47705 (7)0.0202 (2)
H11A0.02921.19530.48120.024*
H11B0.08971.27930.55290.024*
C120.10103 (12)1.38069 (10)0.38101 (8)0.0223 (2)
H12A0.21911.42910.37450.033*
H12B0.00191.45190.40000.033*
H12C0.08991.34890.30650.033*
C130.86824 (12)0.11635 (10)0.17238 (8)0.01939 (19)
H130.88160.07750.24110.023*
C140.94346 (12)0.25609 (10)0.15845 (7)0.01845 (19)
H141.00670.31130.21680.022*
C150.92594 (11)0.31554 (9)0.05815 (7)0.01598 (19)
C160.83293 (13)0.22774 (10)0.02441 (8)0.0201 (2)
H160.81890.26290.09450.024*
C170.76135 (13)0.08941 (10)0.00375 (8)0.0206 (2)
H170.69790.03130.06070.025*
C181.00375 (12)0.46469 (9)0.04498 (7)0.0182 (2)
H181.06490.51520.10610.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0347 (4)0.0172 (3)0.0210 (3)0.0088 (3)0.0082 (3)0.0081 (3)
O20.0320 (4)0.0177 (3)0.0273 (4)0.0074 (3)0.0124 (3)0.0053 (3)
O30.0253 (3)0.0128 (3)0.0193 (3)0.0061 (2)0.0075 (2)0.0059 (2)
N10.0201 (4)0.0134 (3)0.0208 (4)0.0013 (3)0.0010 (3)0.0044 (3)
C10.0156 (4)0.0131 (4)0.0162 (4)0.0001 (3)0.0001 (3)0.0025 (3)
C20.0220 (4)0.0160 (4)0.0133 (4)0.0007 (3)0.0012 (3)0.0040 (3)
C30.0213 (4)0.0156 (4)0.0148 (4)0.0026 (3)0.0039 (3)0.0017 (3)
C40.0158 (4)0.0121 (4)0.0173 (4)0.0005 (3)0.0007 (3)0.0026 (3)
C50.0175 (4)0.0162 (4)0.0175 (4)0.0003 (3)0.0041 (3)0.0057 (3)
C60.0157 (4)0.0156 (4)0.0177 (4)0.0008 (3)0.0039 (3)0.0021 (3)
C70.0173 (4)0.0146 (4)0.0175 (4)0.0000 (3)0.0006 (3)0.0031 (3)
C80.0193 (4)0.0139 (4)0.0177 (4)0.0024 (3)0.0051 (3)0.0050 (3)
C90.0196 (4)0.0128 (4)0.0185 (4)0.0037 (3)0.0057 (3)0.0043 (3)
C100.0238 (4)0.0150 (4)0.0174 (4)0.0047 (3)0.0056 (3)0.0043 (3)
C110.0230 (4)0.0175 (4)0.0191 (4)0.0039 (3)0.0001 (3)0.0043 (3)
C120.0210 (4)0.0166 (4)0.0274 (5)0.0045 (3)0.0010 (3)0.0023 (3)
C130.0225 (4)0.0178 (4)0.0190 (4)0.0012 (3)0.0018 (3)0.0077 (3)
C140.0209 (4)0.0173 (4)0.0178 (4)0.0032 (3)0.0047 (3)0.0037 (3)
C150.0168 (4)0.0133 (4)0.0176 (4)0.0007 (3)0.0008 (3)0.0036 (3)
C160.0274 (5)0.0153 (4)0.0192 (4)0.0038 (3)0.0065 (3)0.0058 (3)
C170.0260 (5)0.0148 (4)0.0215 (4)0.0042 (3)0.0057 (3)0.0035 (3)
C180.0224 (4)0.0135 (4)0.0193 (4)0.0044 (3)0.0052 (3)0.0031 (3)
Geometric parameters (Å, º) top
O1—C71.3220 (11)C9—H9A0.9900
O1—H11.02 (2)C9—H9B0.9900
O2—C71.2147 (12)C10—C111.5300 (13)
O3—C41.3626 (11)C10—H10A0.9900
O3—C81.4393 (10)C10—H10B0.9900
N1—C131.3353 (12)C11—C121.5160 (13)
N1—C171.3446 (12)C11—H11A0.9900
C1—C61.3912 (12)C11—H11B0.9900
C1—C21.3948 (13)C12—H12A0.9800
C1—C71.4922 (12)C12—H12B0.9800
C2—C31.3819 (12)C12—H12C0.9800
C2—H20.9500C13—C141.3843 (13)
C3—C41.3981 (12)C13—H130.9500
C3—H30.9500C14—C151.3967 (12)
C4—C51.3956 (13)C14—H140.9500
C5—C61.3932 (12)C15—C161.3957 (13)
C5—H50.9500C15—C181.4672 (13)
C6—H60.9500C16—C171.3822 (13)
C8—C91.5158 (12)C16—H160.9500
C8—H8A0.9900C17—H170.9500
C8—H8B0.9900C18—C18i1.3294 (17)
C9—C101.5302 (12)C18—H180.9500
C7—O1—H1113.0 (12)C11—C10—C9114.03 (7)
C4—O3—C8117.75 (7)C11—C10—H10A108.7
C13—N1—C17117.92 (8)C9—C10—H10A108.7
C6—C1—C2118.70 (8)C11—C10—H10B108.7
C6—C1—C7120.67 (8)C9—C10—H10B108.7
C2—C1—C7120.62 (8)H10A—C10—H10B107.6
C3—C2—C1121.24 (8)C12—C11—C10114.07 (8)
C3—C2—H2119.4C12—C11—H11A108.7
C1—C2—H2119.4C10—C11—H11A108.7
C2—C3—C4119.68 (8)C12—C11—H11B108.7
C2—C3—H3120.2C10—C11—H11B108.7
C4—C3—H3120.2H11A—C11—H11B107.6
O3—C4—C5125.07 (8)C11—C12—H12A109.5
O3—C4—C3115.09 (7)C11—C12—H12B109.5
C5—C4—C3119.84 (8)H12A—C12—H12B109.5
C6—C5—C4119.63 (8)C11—C12—H12C109.5
C6—C5—H5120.2H12A—C12—H12C109.5
C4—C5—H5120.2H12B—C12—H12C109.5
C1—C6—C5120.90 (8)N1—C13—C14122.91 (8)
C1—C6—H6119.5N1—C13—H13118.5
C5—C6—H6119.5C14—C13—H13118.5
O2—C7—O1124.03 (8)C13—C14—C15119.64 (8)
O2—C7—C1123.45 (8)C13—C14—H14120.2
O1—C7—C1112.52 (8)C15—C14—H14120.2
O3—C8—C9107.92 (7)C16—C15—C14117.09 (8)
O3—C8—H8A110.1C16—C15—C18123.67 (8)
C9—C8—H8A110.1C14—C15—C18119.25 (8)
O3—C8—H8B110.1C17—C16—C15119.71 (8)
C9—C8—H8B110.1C17—C16—H16120.1
H8A—C8—H8B108.4C15—C16—H16120.1
C8—C9—C10110.10 (7)N1—C17—C16122.73 (8)
C8—C9—H9A109.6N1—C17—H17118.6
C10—C9—H9A109.6C16—C17—H17118.6
C8—C9—H9B109.6C18i—C18—C15125.75 (10)
C10—C9—H9B109.6C18i—C18—H18117.1
H9A—C9—H9B108.2C15—C18—H18117.1
C6—C1—C2—C30.67 (13)C2—C1—C7—O11.72 (12)
C7—C1—C2—C3178.73 (7)C4—O3—C8—C9168.61 (7)
C1—C2—C3—C41.26 (13)O3—C8—C9—C10176.17 (6)
C8—O3—C4—C51.08 (12)C8—C9—C10—C11167.30 (7)
C8—O3—C4—C3178.12 (7)C9—C10—C11—C1265.22 (10)
C2—C3—C4—O3178.11 (7)C17—N1—C13—C140.60 (14)
C2—C3—C4—C51.13 (13)N1—C13—C14—C150.09 (14)
O3—C4—C5—C6178.72 (7)C13—C14—C15—C160.60 (13)
C3—C4—C5—C60.45 (13)C13—C14—C15—C18179.09 (8)
C2—C1—C6—C50.03 (13)C14—C15—C16—C170.78 (14)
C7—C1—C6—C5179.43 (7)C18—C15—C16—C17178.90 (8)
C4—C5—C6—C10.14 (13)C13—N1—C17—C160.40 (14)
C6—C1—C7—O22.64 (13)C15—C16—C17—N10.30 (15)
C2—C1—C7—O2177.97 (8)C16—C15—C18—C18i0.19 (18)
C6—C1—C7—O1177.67 (7)C14—C15—C18—C18i179.49 (11)
Symmetry code: (i) x+2, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the benzene C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.016 (19)1.580 (19)2.5936 (17)175 (2)
C12—H12A···Cg1ii0.982.643.592 (2)151
Symmetry code: (ii) x, y+1, z.
(II) 4-(n-Hexyloxy)benzoic acid–(E)-1,2-bis(pyridin-4-yl)ethene top
Crystal data top
2C13H18O3·C12H10N2Z = 2
Mr = 626.79F(000) = 672.00
Triclinic, P1Dx = 1.245 Mg m3
a = 9.107 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 12.020 (5) ÅCell parameters from 15048 reflections
c = 16.672 (6) Åθ = 3.3–30.0°
α = 81.584 (16)°µ = 0.08 mm1
β = 88.416 (15)°T = 93 K
γ = 67.905 (15)°Platelet, colorless
V = 1672.2 (11) Å30.55 × 0.24 × 0.07 mm
Data collection top
Rigaku R-AXIS RAPIDII
diffractometer
5611 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.031
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.819, Tmax = 0.994k = 1515
16796 measured reflectionsl = 2121
7635 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: mixed
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0639P)2]
where P = (Fo2 + 2Fc2)/3
7635 reflections(Δ/σ)max = 0.001
482 parametersΔρmax = 0.25 e Å3
24 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

_reflns_Friedel_fraction is defined as the number of unique Friedel pairs measured divided by the number that would be possible theoretically, ignoring centric projections and systematic absences.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.42505 (10)0.09185 (8)0.27424 (5)0.0333 (2)
O21.54109 (10)0.04491 (8)0.19145 (5)0.0330 (2)
O32.12484 (9)0.06159 (8)0.40308 (5)0.02806 (19)
O40.15865 (10)0.35829 (8)0.05256 (5)0.0309 (2)
O50.09887 (11)0.20320 (9)0.12240 (6)0.0434 (2)
O60.84790 (9)0.48165 (8)0.18372 (5)0.0302 (2)
C11.70210 (13)0.00882 (10)0.28693 (7)0.0238 (2)
C21.84421 (13)0.08040 (10)0.25625 (7)0.0241 (2)
H21.84230.11600.20920.029*
C31.98902 (13)0.10090 (10)0.29294 (7)0.0239 (2)
H32.08540.14970.27130.029*
C41.99056 (13)0.04879 (10)0.36184 (7)0.0237 (2)
C51.84909 (13)0.02307 (11)0.39347 (7)0.0279 (3)
H51.85080.05810.44080.033*
C61.70629 (13)0.04319 (11)0.35578 (7)0.0267 (2)
H61.61000.09300.37700.032*
C71.54990 (14)0.01020 (11)0.24567 (7)0.0257 (2)
C82.27479 (13)0.13955 (11)0.37704 (7)0.0251 (2)
H8A2.29630.10670.32190.030*
H8B2.27510.22170.37590.030*
C92.39862 (13)0.14475 (11)0.43723 (7)0.0278 (3)
H9A2.37210.17440.49210.033*
H9B2.39570.06160.43760.033*
C102.56564 (12)0.22644 (11)0.41889 (7)0.0246 (2)
H10A2.59260.19710.36400.029*
H10B2.56930.30980.41890.029*
C112.68871 (13)0.22971 (11)0.48033 (7)0.0275 (3)
H11A2.68100.14580.48220.033*
H11B2.66430.26260.53480.033*
C122.85704 (14)0.30597 (13)0.46084 (8)0.0363 (3)
H12A2.87920.27610.40510.044*
H12B2.86630.39100.46220.044*
C132.98061 (17)0.30353 (16)0.51899 (10)0.0512 (4)
H13A2.97070.21950.51900.077*
H13B3.08670.35110.50180.077*
H13C2.96430.33850.57380.077*
C140.36643 (13)0.34302 (10)0.12446 (6)0.0224 (2)
C150.47394 (13)0.44362 (10)0.09367 (6)0.0229 (2)
H150.43670.48300.05820.027*
C160.63337 (13)0.48683 (10)0.11394 (7)0.0242 (2)
H160.70560.55410.09140.029*
C170.68806 (13)0.43144 (10)0.16751 (7)0.0247 (2)
C180.58315 (14)0.33190 (11)0.19980 (7)0.0274 (3)
H180.62010.29450.23680.033*
C190.42317 (14)0.28783 (11)0.17712 (7)0.0265 (2)
H190.35140.21870.19800.032*
C200.19545 (13)0.29410 (11)0.10047 (7)0.0253 (2)
C210.91312 (14)0.43395 (12)0.24144 (7)0.0313 (3)
H21A0.89300.34730.22290.038*
H21B0.86470.44120.29490.038*
C221.08930 (14)0.50807 (11)0.24760 (7)0.0295 (3)
H22A1.10620.59510.26070.035*
H22B1.13580.49610.19420.035*
C231.17552 (14)0.47520 (11)0.31134 (7)0.0292 (3)
H23A1.15690.38780.29900.035*
H23B1.13100.48910.36500.035*
C241.35357 (13)0.54865 (11)0.31559 (7)0.0264 (2)
H24A1.39910.53080.26300.032*
H24B1.37200.63620.32440.032*
C251.43892 (15)0.52189 (12)0.38257 (8)0.0337 (3)
H25A1.41400.43340.37600.040*
H25B1.39870.54540.43550.040*
C261.61824 (15)0.58816 (13)0.38342 (9)0.0421 (3)
H26A1.64410.67590.38990.063*
H26B1.65980.56240.33220.063*
H26C1.66620.56880.42870.063*
N1A1.1522 (5)0.1162 (6)0.2093 (3)0.0228 (18)0.647 (4)
C27A1.0268 (6)0.1865 (5)0.2451 (4)0.0282 (11)0.647 (4)
H27A1.04600.21670.29170.034*0.647 (4)
C28A0.8723 (3)0.2193 (2)0.22069 (19)0.0263 (6)0.647 (4)
H28A0.78850.26970.24980.032*0.647 (4)
C29A0.8404 (2)0.1776 (2)0.15261 (17)0.0218 (5)0.647 (4)
C30A0.9699 (4)0.1041 (3)0.11322 (15)0.0288 (5)0.647 (4)
H30A0.95480.07330.06610.035*0.647 (4)
C31A1.1217 (5)0.0767 (5)0.1444 (3)0.0334 (10)0.647 (4)
H31A1.20890.02630.11720.040*0.647 (4)
N2A0.1367 (6)0.2855 (6)0.0092 (4)0.0205 (17)0.647 (4)
C32A0.2515 (5)0.2015 (4)0.0416 (2)0.0273 (9)0.647 (4)
H32A0.22400.16510.08260.033*0.647 (4)
C33A0.4095 (3)0.1635 (2)0.01891 (17)0.0253 (6)0.647 (4)
H33A0.48820.10450.04530.030*0.647 (4)
C34A0.4525 (3)0.2125 (2)0.04299 (18)0.0215 (5)0.647 (4)
C35A0.3292 (4)0.2986 (3)0.07937 (19)0.0267 (7)0.647 (4)
H35A0.35100.33380.12280.032*0.647 (4)
C36A0.1757 (6)0.3311 (7)0.0507 (4)0.0331 (14)0.647 (4)
H36A0.09310.38970.07550.040*0.647 (4)
C37A0.6747 (2)0.21132 (16)0.12689 (11)0.0247 (5)0.647 (4)
H37A0.59720.26560.15690.030*0.647 (4)
C38A0.6201 (2)0.17517 (17)0.06689 (11)0.0248 (5)0.647 (4)
H38A0.69600.12030.03670.030*0.647 (4)
N1B1.1539 (14)0.1182 (14)0.2089 (8)0.042 (5)*0.353 (4)
C27B1.0102 (12)0.1866 (12)0.2366 (7)0.039 (3)*0.353 (4)
H27B1.00500.22180.28450.046*0.353 (4)
C28B0.8728 (6)0.2044 (5)0.1947 (3)0.0230 (12)*0.353 (4)
H28B0.77440.25620.21280.028*0.353 (4)
C29B0.8731 (6)0.1498 (4)0.1278 (3)0.0188 (9)*0.353 (4)
C30B1.0202 (7)0.0778 (5)0.1017 (3)0.0300 (14)*0.353 (4)
H30B1.02640.03830.05570.036*0.353 (4)
C31B1.1545 (9)0.0643 (9)0.1422 (5)0.0271 (19)*0.353 (4)
H31B1.25360.01500.12320.033*0.353 (4)
N2B0.1398 (14)0.2833 (15)0.0068 (9)0.041 (5)*0.353 (4)
C32B0.2783 (10)0.2036 (8)0.0344 (5)0.027 (2)*0.353 (4)
H32B0.27330.16490.07950.033*0.353 (4)
C33B0.4231 (6)0.1788 (5)0.0018 (3)0.0224 (13)*0.353 (4)
H33B0.51600.12030.01630.027*0.353 (4)
C34B0.4330 (7)0.2395 (5)0.0649 (3)0.0199 (11)*0.353 (4)
C35B0.2947 (8)0.3223 (6)0.0889 (4)0.0282 (17)*0.353 (4)
H35B0.29820.36550.13170.034*0.353 (4)
C36B0.1546 (12)0.3436 (11)0.0531 (6)0.0187 (18)*0.353 (4)
H36B0.06210.40330.07060.022*0.353 (4)
C37B0.7297 (4)0.1622 (3)0.0844 (2)0.0252 (10)*0.353 (4)
H37B0.74250.12430.03710.030*0.353 (4)
C38B0.5823 (5)0.2222 (3)0.1058 (2)0.0248 (9)*0.353 (4)
H38B0.57240.25850.15360.030*0.353 (4)
H11.325 (2)0.0996 (18)0.2481 (12)0.079 (6)*
H40.033 (3)0.3226 (19)0.0371 (12)0.083 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0193 (4)0.0407 (5)0.0392 (5)0.0085 (4)0.0051 (4)0.0101 (4)
O20.0296 (5)0.0326 (5)0.0399 (5)0.0132 (4)0.0085 (4)0.0090 (4)
O30.0173 (4)0.0357 (5)0.0294 (4)0.0047 (4)0.0035 (3)0.0128 (3)
O40.0218 (4)0.0338 (5)0.0378 (5)0.0084 (4)0.0056 (3)0.0121 (4)
O50.0252 (5)0.0484 (6)0.0535 (6)0.0024 (4)0.0019 (4)0.0290 (5)
O60.0231 (4)0.0317 (5)0.0363 (4)0.0090 (4)0.0098 (3)0.0081 (4)
C10.0223 (6)0.0238 (6)0.0259 (5)0.0102 (5)0.0035 (4)0.0008 (4)
C20.0260 (6)0.0221 (6)0.0258 (5)0.0101 (5)0.0035 (4)0.0048 (4)
C30.0220 (6)0.0220 (6)0.0275 (5)0.0071 (5)0.0004 (4)0.0054 (4)
C40.0210 (5)0.0259 (6)0.0246 (5)0.0093 (5)0.0034 (4)0.0027 (4)
C50.0227 (6)0.0343 (6)0.0265 (5)0.0085 (5)0.0014 (5)0.0099 (5)
C60.0199 (5)0.0311 (6)0.0276 (6)0.0072 (5)0.0001 (4)0.0060 (5)
C70.0240 (6)0.0256 (6)0.0292 (6)0.0122 (5)0.0034 (5)0.0003 (5)
C80.0181 (5)0.0258 (6)0.0293 (6)0.0044 (5)0.0017 (4)0.0074 (5)
C90.0211 (6)0.0319 (6)0.0283 (6)0.0060 (5)0.0024 (5)0.0077 (5)
C100.0195 (5)0.0266 (6)0.0266 (5)0.0070 (5)0.0028 (4)0.0046 (4)
C110.0229 (6)0.0305 (6)0.0284 (6)0.0094 (5)0.0059 (5)0.0022 (5)
C120.0217 (6)0.0433 (8)0.0390 (7)0.0087 (6)0.0051 (5)0.0005 (6)
C130.0281 (7)0.0636 (10)0.0574 (9)0.0169 (7)0.0188 (7)0.0078 (8)
C140.0228 (6)0.0246 (6)0.0205 (5)0.0097 (5)0.0001 (4)0.0028 (4)
C150.0262 (6)0.0240 (6)0.0208 (5)0.0112 (5)0.0010 (4)0.0051 (4)
C160.0249 (6)0.0226 (6)0.0248 (5)0.0079 (5)0.0020 (4)0.0049 (4)
C170.0238 (6)0.0244 (6)0.0264 (5)0.0102 (5)0.0047 (4)0.0011 (4)
C180.0308 (6)0.0284 (6)0.0268 (5)0.0134 (5)0.0044 (5)0.0083 (5)
C190.0267 (6)0.0263 (6)0.0271 (6)0.0085 (5)0.0007 (5)0.0096 (5)
C200.0231 (6)0.0296 (6)0.0234 (5)0.0094 (5)0.0018 (4)0.0057 (5)
C210.0283 (6)0.0324 (7)0.0361 (6)0.0137 (6)0.0093 (5)0.0059 (5)
C220.0275 (6)0.0302 (6)0.0322 (6)0.0128 (5)0.0059 (5)0.0024 (5)
C230.0242 (6)0.0305 (6)0.0341 (6)0.0109 (5)0.0053 (5)0.0054 (5)
C240.0252 (6)0.0260 (6)0.0282 (6)0.0098 (5)0.0031 (5)0.0033 (5)
C250.0281 (6)0.0322 (7)0.0407 (7)0.0090 (5)0.0082 (5)0.0097 (5)
C260.0277 (7)0.0405 (8)0.0541 (8)0.0082 (6)0.0128 (6)0.0043 (6)
N1A0.0143 (16)0.0247 (19)0.029 (2)0.0100 (10)0.0083 (6)0.0066 (6)
C27A0.0216 (16)0.0215 (15)0.042 (2)0.0101 (11)0.0085 (12)0.0001 (10)
C28A0.0240 (12)0.0241 (11)0.0294 (12)0.0065 (8)0.0043 (9)0.0056 (10)
C29A0.0201 (10)0.0213 (10)0.0239 (11)0.0073 (8)0.0024 (9)0.0038 (9)
C30A0.0278 (15)0.0324 (13)0.0263 (11)0.0109 (13)0.0036 (11)0.0048 (10)
C31A0.0236 (17)0.0367 (18)0.0347 (15)0.0079 (16)0.0031 (15)0.0004 (11)
N2A0.0147 (16)0.0246 (19)0.0227 (18)0.0086 (9)0.0066 (6)0.0006 (6)
C32A0.0242 (17)0.0328 (15)0.0273 (15)0.0130 (13)0.0041 (11)0.0046 (9)
C33A0.0233 (13)0.0275 (12)0.0253 (12)0.0085 (9)0.0014 (9)0.0070 (10)
C34A0.0201 (11)0.0227 (11)0.0220 (11)0.0084 (9)0.0014 (9)0.0036 (10)
C35A0.0245 (16)0.0275 (15)0.0307 (13)0.0107 (14)0.0042 (11)0.0093 (11)
C36A0.026 (2)0.033 (2)0.0403 (18)0.0095 (18)0.0041 (15)0.0109 (14)
C37A0.0157 (9)0.0250 (9)0.0315 (10)0.0057 (7)0.0020 (7)0.0027 (7)
C38A0.0200 (10)0.0263 (10)0.0272 (9)0.0077 (7)0.0002 (7)0.0032 (7)
Geometric parameters (Å, º) top
O1—C71.3231 (16)C24—C251.5152 (17)
O1—H10.99 (2)C24—H24A0.9900
O2—C71.2172 (15)C24—H24B0.9900
O3—C41.3660 (14)C25—C261.5236 (18)
O3—C81.4336 (14)C25—H25A0.9900
O4—C201.3173 (15)C25—H25B0.9900
O4—H41.09 (2)C26—H26A0.9800
O5—C201.2155 (15)C26—H26B0.9800
O6—C171.3673 (14)C26—H26C0.9800
O6—C211.4342 (15)N1A—C31A1.319 (5)
C1—C21.3899 (17)N1A—C27A1.326 (5)
C1—C61.3929 (17)C27A—C28A1.367 (5)
C1—C71.4884 (16)C27A—H27A0.9500
C2—C31.3893 (16)C28A—C29A1.385 (3)
C2—H20.9500C28A—H28A0.9500
C3—C41.3893 (17)C29A—C30A1.395 (4)
C3—H30.9500C29A—C37A1.467 (3)
C4—C51.3939 (17)C30A—C31A1.391 (4)
C5—C61.3815 (17)C30A—H30A0.9500
C5—H50.9500C31A—H31A0.9500
C6—H60.9500N2A—C32A1.317 (5)
C8—C91.5079 (16)N2A—C36A1.324 (6)
C8—H8A0.9900C32A—C33A1.381 (5)
C8—H8B0.9900C32A—H32A0.9500
C9—C101.5198 (16)C33A—C34A1.392 (4)
C9—H9A0.9900C33A—H33A0.9500
C9—H9B0.9900C34A—C35A1.404 (4)
C10—C111.5250 (16)C34A—C38A1.468 (3)
C10—H10A0.9900C35A—C36A1.381 (6)
C10—H10B0.9900C35A—H35A0.9500
C11—C121.5161 (18)C36A—H36A0.9500
C11—H11A0.9900C37A—C38A1.324 (3)
C11—H11B0.9900C37A—H37A0.9500
C12—C131.517 (2)C38A—H38A0.9500
C12—H12A0.9900N1B—C31B1.367 (11)
C12—H12B0.9900N1B—C27B1.367 (12)
C13—H13A0.9800C27B—C28B1.379 (10)
C13—H13B0.9800C27B—H27B0.9500
C13—H13C0.9800C28B—C29B1.373 (6)
C14—C191.3897 (16)C28B—H28B0.9500
C14—C151.3956 (17)C29B—C30B1.393 (6)
C14—C201.4857 (16)C29B—C37B1.458 (6)
C15—C161.3786 (16)C30B—C31B1.358 (8)
C15—H150.9500C30B—H30B0.9500
C16—C171.3918 (16)C31B—H31B0.9500
C16—H160.9500N2B—C36B1.355 (12)
C17—C181.3908 (18)N2B—C32B1.381 (12)
C18—C191.3920 (17)C32B—C33B1.374 (8)
C18—H180.9500C32B—H32B0.9500
C19—H190.9500C33B—C34B1.389 (6)
C21—C221.5119 (18)C33B—H33B0.9500
C21—H21A0.9900C34B—C35B1.372 (6)
C21—H21B0.9900C34B—C38B1.467 (7)
C22—C231.5181 (17)C35B—C36B1.342 (10)
C22—H22A0.9900C35B—H35B0.9500
C22—H22B0.9900C36B—H36B0.9500
C23—C241.5249 (17)C37B—C38B1.331 (6)
C23—H23A0.9900C37B—H37B0.9500
C23—H23B0.9900C38B—H38B0.9500
C7—O1—H1112.0 (12)C24—C23—H23B109.0
C4—O3—C8118.44 (9)H23A—C23—H23B107.8
C20—O4—H4112.4 (12)C25—C24—C23113.04 (11)
C17—O6—C21118.60 (10)C25—C24—H24A109.0
C2—C1—C6118.87 (11)C23—C24—H24A109.0
C2—C1—C7119.36 (11)C25—C24—H24B109.0
C6—C1—C7121.77 (11)C23—C24—H24B109.0
C3—C2—C1121.32 (11)H24A—C24—H24B107.8
C3—C2—H2119.3C24—C25—C26113.35 (12)
C1—C2—H2119.3C24—C25—H25A108.9
C4—C3—C2118.90 (11)C26—C25—H25A108.9
C4—C3—H3120.5C24—C25—H25B108.9
C2—C3—H3120.5C26—C25—H25B108.9
O3—C4—C3124.47 (11)H25A—C25—H25B107.7
O3—C4—C5115.04 (11)C25—C26—H26A109.5
C3—C4—C5120.49 (11)C25—C26—H26B109.5
C6—C5—C4119.77 (11)H26A—C26—H26B109.5
C6—C5—H5120.1C25—C26—H26C109.5
C4—C5—H5120.1H26A—C26—H26C109.5
C5—C6—C1120.64 (11)H26B—C26—H26C109.5
C5—C6—H6119.7C31A—N1A—C27A115.7 (4)
C1—C6—H6119.7N1A—C27A—C28A125.5 (5)
O2—C7—O1123.31 (11)N1A—C27A—H27A117.2
O2—C7—C1123.23 (12)C28A—C27A—H27A117.2
O1—C7—C1113.45 (11)C27A—C28A—C29A118.6 (3)
O3—C8—C9106.79 (10)C27A—C28A—H28A120.7
O3—C8—H8A110.4C29A—C28A—H28A120.7
C9—C8—H8A110.4C28A—C29A—C30A117.20 (19)
O3—C8—H8B110.4C28A—C29A—C37A118.8 (2)
C9—C8—H8B110.4C30A—C29A—C37A124.0 (2)
H8A—C8—H8B108.6C31A—C30A—C29A118.6 (3)
C8—C9—C10113.37 (10)C31A—C30A—H30A120.7
C8—C9—H9A108.9C29A—C30A—H30A120.7
C10—C9—H9A108.9N1A—C31A—C30A124.2 (4)
C8—C9—H9B108.9N1A—C31A—H31A117.9
C10—C9—H9B108.9C30A—C31A—H31A117.9
H9A—C9—H9B107.7C32A—N2A—C36A117.6 (5)
C9—C10—C11112.37 (10)C32A—N2A—H4120.6 (9)
C9—C10—H10A109.1C36A—N2A—H4121.7 (9)
C11—C10—H10A109.1N2A—C32A—C33A123.5 (4)
C9—C10—H10B109.1N2A—C32A—H32A118.2
C11—C10—H10B109.1C33A—C32A—H32A118.2
H10A—C10—H10B107.9C32A—C33A—C34A119.4 (3)
C12—C11—C10113.19 (11)C32A—C33A—H33A120.3
C12—C11—H11A108.9C34A—C33A—H33A120.3
C10—C11—H11A108.9C33A—C34A—C35A116.8 (2)
C12—C11—H11B108.9C33A—C34A—C38A120.3 (2)
C10—C11—H11B108.9C35A—C34A—C38A122.9 (3)
H11A—C11—H11B107.8C36A—C35A—C34A118.6 (3)
C11—C12—C13113.36 (13)C36A—C35A—H35A120.7
C11—C12—H12A108.9C34A—C35A—H35A120.7
C13—C12—H12A108.9N2A—C36A—C35A123.9 (5)
C11—C12—H12B108.9N2A—C36A—H36A118.0
C13—C12—H12B108.9C35A—C36A—H36A118.0
H12A—C12—H12B107.7C38A—C37A—C29A127.8 (2)
C12—C13—H13A109.5C38A—C37A—H37A116.1
C12—C13—H13B109.5C29A—C37A—H37A116.1
H13A—C13—H13B109.5C37A—C38A—C34A125.7 (2)
C12—C13—H13C109.5C37A—C38A—H38A117.1
H13A—C13—H13C109.5C34A—C38A—H38A117.1
H13B—C13—H13C109.5C31B—N1B—C27B117.7 (10)
C19—C14—C15118.54 (11)N1B—C27B—C28B119.9 (10)
C19—C14—C20120.46 (11)N1B—C27B—H27B120.0
C15—C14—C20120.99 (11)C28B—C27B—H27B120.0
C16—C15—C14121.05 (11)C29B—C28B—C27B122.4 (6)
C16—C15—H15119.5C29B—C28B—H28B118.8
C14—C15—H15119.5C27B—C28B—H28B118.8
C15—C16—C17119.71 (11)C28B—C29B—C30B117.0 (4)
C15—C16—H16120.1C28B—C29B—C37B123.8 (5)
C17—C16—H16120.1C30B—C29B—C37B119.2 (5)
O6—C17—C18124.65 (11)C31B—C30B—C29B119.9 (5)
O6—C17—C16114.96 (11)C31B—C30B—H30B120.1
C18—C17—C16120.38 (11)C29B—C30B—H30B120.1
C17—C18—C19119.06 (11)C30B—C31B—N1B123.1 (8)
C17—C18—H18120.5C30B—C31B—H31B118.5
C19—C18—H18120.5N1B—C31B—H31B118.5
C14—C19—C18121.24 (11)C36B—N2B—C32B116.8 (10)
C14—C19—H19119.4C33B—C32B—N2B121.6 (8)
C18—C19—H19119.4C33B—C32B—H32B119.2
O5—C20—O4123.15 (11)N2B—C32B—H32B119.2
O5—C20—C14123.36 (11)C32B—C33B—C34B119.8 (6)
O4—C20—C14113.49 (10)C32B—C33B—H33B120.1
O6—C21—C22106.50 (11)C34B—C33B—H33B120.1
O6—C21—H21A110.4C35B—C34B—C33B117.5 (5)
C22—C21—H21A110.4C35B—C34B—C38B118.5 (5)
O6—C21—H21B110.4C33B—C34B—C38B123.9 (5)
C22—C21—H21B110.4C36B—C35B—C34B121.4 (7)
H21A—C21—H21B108.6C36B—C35B—H35B119.3
C21—C22—C23113.34 (11)C34B—C35B—H35B119.3
C21—C22—H22A108.9C35B—C36B—N2B122.6 (10)
C23—C22—H22A108.9C35B—C36B—H36B118.7
C21—C22—H22B108.9N2B—C36B—H36B118.7
C23—C22—H22B108.9C38B—C37B—C29B125.2 (4)
H22A—C22—H22B107.7C38B—C37B—H37B117.4
C22—C23—C24112.77 (11)C29B—C37B—H37B117.4
C22—C23—H23A109.0C37B—C38B—C34B128.2 (4)
C24—C23—H23A109.0C37B—C38B—H38B115.9
C22—C23—H23B109.0C34B—C38B—H38B115.9
C6—C1—C2—C30.13 (16)C31A—N1A—C27A—C28A0.6 (9)
C7—C1—C2—C3179.81 (9)N1A—C27A—C28A—C29A0.5 (7)
C1—C2—C3—C40.25 (16)C27A—C28A—C29A—C30A0.0 (4)
C8—O3—C4—C33.85 (15)C27A—C28A—C29A—C37A179.2 (3)
C8—O3—C4—C5176.62 (10)C28A—C29A—C30A—C31A0.3 (4)
C2—C3—C4—O3179.65 (9)C37A—C29A—C30A—C31A178.9 (3)
C2—C3—C4—C50.14 (16)C27A—N1A—C31A—C30A0.2 (9)
O3—C4—C5—C6179.21 (10)C29A—C30A—C31A—N1A0.2 (7)
C3—C4—C5—C60.35 (17)C36A—N2A—C32A—C33A3.3 (10)
C4—C5—C6—C10.74 (17)N2A—C32A—C33A—C34A2.1 (7)
C2—C1—C6—C50.63 (16)C32A—C33A—C34A—C35A0.4 (4)
C7—C1—C6—C5179.31 (10)C32A—C33A—C34A—C38A178.8 (3)
C2—C1—C7—O28.78 (16)C33A—C34A—C35A—C36A1.5 (5)
C6—C1—C7—O2171.16 (10)C38A—C34A—C35A—C36A177.7 (4)
C2—C1—C7—O1171.90 (9)C32A—N2A—C36A—C35A2.1 (11)
C6—C1—C7—O18.17 (15)C34A—C35A—C36A—N2A0.3 (10)
C4—O3—C8—C9175.16 (9)C28A—C29A—C37A—C38A175.75 (18)
O3—C8—C9—C10178.95 (9)C30A—C29A—C37A—C38A3.4 (3)
C8—C9—C10—C11179.73 (9)C29A—C37A—C38A—C34A179.43 (16)
C9—C10—C11—C12177.26 (10)C33A—C34A—C38A—C37A176.93 (18)
C10—C11—C12—C13176.62 (10)C35A—C34A—C38A—C37A4.0 (3)
C19—C14—C15—C160.84 (15)C31B—N1B—C27B—C28B3 (2)
C20—C14—C15—C16177.99 (9)N1B—C27B—C28B—C29B3.9 (17)
C14—C15—C16—C171.61 (15)C27B—C28B—C29B—C30B2.1 (10)
C21—O6—C17—C183.71 (15)C27B—C28B—C29B—C37B177.1 (8)
C21—O6—C17—C16176.94 (9)C28B—C29B—C30B—C31B0.1 (9)
C15—C16—C17—O6179.76 (9)C37B—C29B—C30B—C31B179.2 (6)
C15—C16—C17—C180.86 (15)C29B—C30B—C31B—N1B0.3 (14)
O6—C17—C18—C19178.68 (10)C27B—N1B—C31B—C30B1 (2)
C16—C17—C18—C190.64 (16)C36B—N2B—C32B—C33B5 (2)
C15—C14—C19—C180.70 (15)N2B—C32B—C33B—C34B3.4 (14)
C20—C14—C19—C18179.53 (10)C32B—C33B—C34B—C35B0.5 (8)
C17—C18—C19—C141.43 (16)C32B—C33B—C34B—C38B178.1 (5)
C19—C14—C20—O52.65 (16)C33B—C34B—C35B—C36B0.4 (10)
C15—C14—C20—O5176.15 (11)C38B—C34B—C35B—C36B179.0 (7)
C19—C14—C20—O4177.81 (9)C34B—C35B—C36B—N2B1.7 (17)
C15—C14—C20—O43.39 (14)C32B—N2B—C36B—C35B5 (2)
C17—O6—C21—C22179.01 (9)C28B—C29B—C37B—C38B3.2 (6)
O6—C21—C22—C23175.75 (9)C30B—C29B—C37B—C38B175.9 (4)
C21—C22—C23—C24178.72 (9)C29B—C37B—C38B—C34B179.3 (3)
C22—C23—C24—C25176.43 (9)C35B—C34B—C38B—C37B168.6 (4)
C23—C24—C25—C26175.91 (10)C33B—C34B—C38B—C37B10.0 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the benzene C1–C6 and C14–C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N1A0.99 (2)1.65 (2)2.635 (5)176.5 (15)
O1—H1···N1B0.99 (2)1.63 (2)2.616 (14)176.3 (19)
O4—H4···N2A1.08 (3)1.51 (3)2.584 (6)172.8 (18)
O4—H4···N2B1.08 (3)1.54 (3)2.618 (15)172.5 (18)
C12—H12A···Cg1i0.992.993.720 (2)132
C24—H24A···Cg2ii0.992.933.838 (2)154
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Lavender, E. S. (1999). Acta Cryst. B55, 573–590.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539–3544.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, T., Fréchet, J. M. J., Wilson, P. G., Saito, T., Uryu, T., Fujishima, A., Jin, C. & Kaneuchi, F. (1993). Chem. Mater. 5, 1094–1100.  CrossRef CAS Web of Science Google Scholar
First citationKato, T., Wilson, P. G., Fujishima, A. & Fréchet, J. M. J. (1990). Chem. Lett. 19, 2003–2006.  CrossRef Web of Science Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). Cryst. Growth Des. 14, 1375–1385.  Web of Science CSD CrossRef CAS Google Scholar
First citationRamon, G., Davies, K. & Nassimbeni, L. R. (2014). CrystEngComm, 16, 5802–5810.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTabuchi, Y., Gotoh, K. & Ishida, H. (2015a). Acta Cryst. E71, 1290–1295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTabuchi, Y., Gotoh, K. & Ishida, H. (2015b). Acta Cryst. E71, 1340–1344.  CSD CrossRef IUCr Journals Google Scholar
First citationTabuchi, Y., Gotoh, K. & Ishida, H. (2016). Acta Cryst. E72, 1666–1671.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds