research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Different weak inter­actions in the crystals of three isomeric (E)-N-methyl-N′-(nitro­benzyl­­idene)-2-(thio­phen-2-yl)acetohydrazides

CROSSMARK_Color_square_no_text.svg

aFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos–FarManguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, Brazil, bInstituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil, and cDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

Edited by P. C. Healy, Griffith University, Australia (Received 7 October 2016; accepted 20 October 2016; online 1 November 2016)

The crystal structures of three isomeric (E)-N-methyl-N′-(nitro­benzyl­idene)-2-(thio­phen-2-yl)acetohydrazides (formula C14H13N3O3S) are described, with the nitro group in ortho, meta and para positions in the benzene ring. In each crystal structure, mol­ecules are linked by various weak inter­actions (C—H⋯O and C—H⋯π bonds, and ππ stacking), leading to three-dimensional networks in each case, but with little similarity between them.

1. Chemical context

Our ongoing inter­est in the biological activities and structural chemistry of heterocyclic compounds have led us to investigate compounds containing a thio­phene ring system. We have reported the syntheses and anti-TB activities of acetamido derivatives, 2-(R,R′NCOCH2)-thio­phene (de Souza et al., 2008[Souza, M. V. N. de, Ferreira, M. L., Nogueira, T. C. M., Golçalves, R. S. B., Peralta, M. A., Lourenço, M. S. C. F. R. & Vicente, F. R. (2008). Lett. Drug Des. Discov. 5, 221-224.]) and more recently thienyl acetohydrazide derivatives, 2-(ArCH=N—NHCOCH2)-thio­phene (Cardoso et al., 2014[Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432-448.]). We have followed up this study with work on (E)-N-methyl-N′-aryl­idene-2-(thio­phen-2-yl)acetohydrazides. The anti-TB activities of these compounds will be reported elsewhere: here, we present the crystal structures of three isomeric derivatives in this family bearing a nitro group on the aromatic ring, viz. (E)-N-methyl-N′-(2-nitro­nitro­benzyl­idene)-2-(thio­phen-2-yl)acetohydrazide, (I)[link], (E)-N-methyl-N′-(3-nitro­nitro­benz­yl­idene)-2-(thio­phen-2-yl)acetohydrazide, (II)[link], and (E)-N-methyl-N′-(4-nitro­nitro­benzyl­idene)-2-(thio­phen-2-yl)acetohydrazide, (III)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link], which confirms that methyl­ation has occurred at N2. The thio­phene ring (S1/C11–C14) shows `flip' disorder (compare, for example, Sonar et al., 2005[Sonar, V. N., Parkin, S. & Crooks, P. A. (2005). Acta Cryst. E61, o933-o935.]; Wagner et al., 2006[Wagner, P., Officer, D. L. & Kubicki, M. (2006). Acta Cryst. E62, o5931-o5932.]) over two conformations rotated by ∼180° about the C10—C11 bond in a 0.671 (2):0.329 (2) ratio. The dihedral angle between the thio­phene ring and the C1–C6 benzene ring is 77.22 (6)°. The ortho-N3/O1/O2 nitro group deviates from the mean plane of its attached benzene ring by 43.61 (5)°: this substantial twist can in part be ascribed to steric reasons. The central CH=N—N(CH3)—C(=O)—CH2 fragment in (I)[link] is approximately planar (r.m.s. deviation = 0.032 Å) and subtends dihedral angles of 6.39 (5) and 83.61 (6)° with the benzene and thio­phene rings, respectively. Thus, the major twist in the molecule occurs about the C9—C10 bond [N2—C9—C10—C11 = −81.73 (18)°], giving the mol­ecule an approximate overall L-shape. The N1—N2 bond length of 1.3725 (18)° is shorter than the reference value of ∼1.41 Å for an N—N single bond and the C9—N2 amide bond of 1.377 (2) Å is somewhat lengthened: these distance data suggest significant delocalization of electrons over the methyl­idene—acetohydrazide grouping.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% displacement ellipsoids. Only the major orientation of the thio­phene ring is shown.

The mol­ecular structure of (II)[link] can be seen in Fig. 2[link]; again the methyl­ation of N2 has occurred as expected but this time the S1/C11–C14 thio­phene ring shows no detectable sign of disorder [C11—S1—C14 = 92.35 (6)°]. The dihedral angle between the thio­phene ring and the C1–C6 benzene ring is 60.17 (4)°. The meta-N3/O1/O2 nitro group is almost coplanar with its attached benzene ring [dihedral angle = 1.96 (2)°]. The almost planar central methyl­idene–acetohydrazide grouping in (II)[link] (r.m.s. deviation = 0.006 Å) subtends dihedral angles of 7.27 (7)° with the benzene ring and 61.67 (4)° with the thio­phene ring. As in (I)[link], the major twist occurs about C9—C10 [N2—C9—C10—C11 = 85.18 (14)°], again giving the mol­ecule an approximate overall L-shape. The N1—N2 and C9—N2 bond lengths in (II)[link] are 1.3747 (14) and 1.3776 (15) Å, respectively, which again can be ascribed to delocalization.

[Figure 2]
Figure 2
The mol­ecular structure of (II)[link], showing 50% displacement ellipsoids.

Compound (III)[link] crystallizes with two mol­ecules (methyl­ated at N2 and N5) in the asymmetric unit with different conformations (Fig. 3[link]); in both mol­ecules the thio­phene ring is rotationally disordered [major/minor disorder components = 0.673 (3):0.327 (3) for the S1 ring and 0.832 (3):0.168 (3) for the S2 ring. In the S1 mol­ecule, the dihedral angles between the benzene ring `A', thio­phene ring `B' and CH=N—N(CH3)—C(=O)—CH2 fragment `C' (r.m.s. deviation = 0.034 Å), are A/B = 79.36 (6), A/C = 12.75 (12) and B/C = 69.60 (6)°. Equivalent dihedral-angle data for the S2 mol­ecule are 88.23 (6), 15.51 (13) and 82.51 (6)°, respectively. The para-nitro group is twisted from its attached ring by 9.2 (3) (S1 mol­ecule) and 8.8 (3)° (S2 molecule). The dihedral angles are broadly similar but even so, the two mol­ecules have different conformations (Fig. 4[link]) as indicated by the N2—C9—C10—C11 and N5—C23—C24—C25 torsion angles of 91.7 (2) and 171.09 (17), respectively. Bond-length data [N1—N2 = 1.373 (2), C9—N2 = 1.380 (3), N4—N5 = 1.368 (2) and C23—N5 = 1.384 (2) Å] are consistent between the mol­ecules and with the equivalent data for (I)[link] and (II)[link].

[Figure 3]
Figure 3
The mol­ecular structure of (III)[link], showing 50% displacement ellipsoids. Only the major orientation of the thio­phene ring is shown.
[Figure 4]
Figure 4
Overlay plot of the N1 (red) and N4 (black) mol­ecules in (III)[link].

3. Supra­molecular features

The packing in (I)[link] can be decomposed into two different chains: in the first of these (Fig. 5[link]), inversion dimers (about the point 0, [1 \over 2], [1 \over 2] for the asymmetric mol­ecule) linked by pairs of C10—H10a⋯O3 hydrogen bonds (Table 1[link]) generate R22(20) loops. These dimers are complemented by inversion-related pairs of C5—H5⋯Cg1 (where Cg1 is the centroid of the thio­phene ring) bonds; this second inversion dimer (about [1 \over 2], [1 \over 2], [1 \over 2]) is reinforced by an aromatic ππ stacking inter­action involving the C1–C6 benzene rings [centroid separation = 3.7118 (9) Å; slippage = 1.27 Å]. Together, the C—H⋯O dimers and the C—H⋯π + ππ dimers alternate in [100] chains. In the second one-dimensional motif, the C8, C10—H10b and C12 bonds combine together to generate [001] chains (Fig. 6[link]) in which the carbonyl O1 atom accepts hydrogen bonds from two adjacent mol­ecules to generate R22(9) loops. The cohesion of the chain is reinforced by a C—H⋯π inter­action from one thio­phine ring to the next: the dihedral angle between two adjacent rings in the chain is 73.32 (4)°. Taken together, the [100] and [001] chains combine together to generate a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the thiophene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯O1i 0.98 2.49 3.293 (2) 139
C10—H10A⋯O3ii 0.99 2.55 3.386 (2) 142
C10—H10B⋯O1iii 0.99 2.52 3.439 (2) 154
C5—H5⋯Cg1iv 0.95 2.86 3.7212 (18) 151
C12—H12⋯Cg1i 0.95 2.85 3.5930 (13) 136
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.
[Figure 5]
Figure 5
Fragment of a [100] hydrogen-bonded chain in the crystal of (I)[link]. [Symmetry codes: (ii) −x, 1 − y, 1 − z; (v) 1 + x, y, z.] All H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 6]
Figure 6
Fragment of an [001] hydrogen-bonded chain in the crystal of (I)[link]. [Symmetry codes: (*) x, [{1\over 2}] − y, z − [{1\over 2}]; (#) x, [{1\over 2}] − y, [{1\over 2}] + z.] All H atoms not involved in hydrogen bonds have been omitted for clarity.

The packing in (II)[link] features four C—H⋯O inter­actions (Fig. 7[link], Table 2[link]); the C13 bond (Fig. 2[link]) generates R22(28) loops and the C7 bond leads to C(7) chains propagating in [010]. The two C8 (methyl-group) bonds lead to (101) sheets. Taken together, these inter­actions lead to a three-dimensional network of mol­ecules in the crystal. There are no C—H⋯π or ππ stacking inter­actions in (II)[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.95 2.39 3.2879 (16) 157
C8—H8B⋯O2ii 0.98 2.50 3.3468 (16) 144
C8—H8C⋯O3iii 0.98 2.52 3.4356 (17) 156
C13—H13⋯O3iv 0.95 2.52 3.1874 (16) 127
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1.
[Figure 7]
Figure 7
Inversion dimer in the crystal of (II)[link] linked by a pair of C—H⋯O hydrogen bonds. [Symmetry code: (i) 2 − x, 1 − y, 1 − z.] All H atoms not involved in hydrogen bonds have been omitted for clarity.

The packing for (III)[link] can be visualized in terms of two different chains. The first of these (Table 3[link], Figs. 8[link] and 9[link]), which involves the four C—H donor groups of the C1-mol­ecule, is built up from inversion dimers (about the point 1,0,0 for the asymmetric mol­ecule) of C1-mol­ecules linked by pairs of C5—H5⋯O2 hydrogen bonds, which generate R22(8) loops. The C6—H6 and C7—H7 groups link to the same acceptor atom (O6; part of the C15 mol­ecule), to generate an R21(6) loop. Finally, C14—H14 (part of the thio­phene ring) forms a bond to O4 in another nearby C15-mol­ecule. The C15 mol­ecules in turn link to further pairs of C1-mol­ecules and hence form [[\overline{1}]01] chains. The second chain in (III)[link] (Fig. 10) features the donor groups of the C15-mol­ecule; the C17—H17 (to O1) and C20—H20 (to O3) bonds arise from different sides of the benzene ring and both the acceptor atoms are parts of C1-mol­ecules: the end result is a [2[\overline{1}]0] chain of alternating C1- and C15-mol­ecules. Taken together, a complex three-dimensional network arises, which may be consolidated by a pair of weak C—H⋯π inter­actions arising from methyl groups, assuming that the H atoms in question have been reliably located.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg6 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.48 3.312 (3) 147
C6—H6⋯O6ii 0.95 2.56 3.412 (2) 149
C7—H7⋯O6ii 0.95 2.41 3.281 (3) 153
C14—H14⋯O4 0.95 2.55 3.464 (3) 160
C17—H17⋯O1iii 0.95 2.43 3.104 (2) 128
C20—H20⋯O3iv 0.95 2.33 3.176 (2) 147
C8—H8BCg6v 0.98 2.77 3.634 (2) 147
C24—H24ACg6vi 0.98 2.77 3.628 (2) 145
Symmetry codes: (i) -x+2, -y, -z; (ii) x+1, y, z-1; (iii) -x-1, -y+1, -z+1; (iv) -x+1, -y, -z+1; (v) -x, -y+1, -z+1; (vi) x+1, y, z.
[Figure 8]
Figure 8
Fragment of a [[\overline{1}]01] hydrogen-bonded chain in the crystal of (III)[link]. [Symmetry codes: (i) 2 − x, −y, −z; (ii) x + 1, y, z − 1.] All H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 9]
Figure 9
Fragment of a [[\overline{2}]10] hydrogen-bonded chain in the crystal of (III)[link]. [Symmetry codes: (iii) 1 − x, 1 − y, 1 − z; (iv) 1 − x, −y, 1 − z.] All H atoms not involved in hydrogen bonds have been omitted for clarity.

4. Database survey

A survey of the Cambridge Structural Database (V5.37, last update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the common central –CH=N—N(CH3)—C(=O)—CH2– fragment of the title compounds revealed just three matches, viz. FOTMUX (Ramirez et al., 2009a[Ramirez, J., Stadler, A.-M., Rogez, G., Drillon, M. & Lehn, J.-M. (2009a). Inorg. Chem. 48, 2456-2463.]), KULREP (Ramirez et al., 2009b[Ramirez, J., Brelot, L., Osinska, I. & Stadler, A.-M. (2009b). J. Mol. Struct. 931, 20-24.]) and OFEBIL (Cao et al., 2007[Cao, X.-Y., Harrowfield, J., Nitschke, J., Ramirez, J., Stadler, A.-M., Kyritsakas-Gruber, N., Madalan, A., Rissanen, K., Russo, L., Vaughan, G. & Lehn, J.-M. (2007). Eur. J. Inorg. Chem. pp. 2944-2965.]). FOTMUX is an inter­esting binuclear copper complex but none of these materials have a close relationship to the isomeric compounds reported here.

5. Synthesis and crystallization

The appropriate derivative (Cardoso et al., 2014[Cardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432-448.]) of (1) (0.2 g, 1.0 equivalent) was suspended in acetone (5.0 ml) and potassium carbonate (4.0 equivalents) was added. The reaction mixture was stirred at room temperature for 30 min and methyl iodide (4.0 equivalents) was added. The reaction mixture was maintained at 313 K, until thin-layer chromatography indicated that the reaction was complete. The reaction mixture was rotary evaporated to leave a residue, which was dissolved in water (20.0 ml) and extracted with ethyl acetate (3 × 10.0 ml). The organic phases were combined, dried with anhydrous MgSO4, filtered and then evaporated at reduced pressure. The crystals used for intensity data collection were recrystallized from ethanol solution.

(E)-N-Methyl-N′-(2-nitro­phenyl­methyl­idene)-2-(thio­phen-2-­yl)acetohydrazide, (I)[link]; yield: 57%; yellow solid; m.p. 366–367 K. 1H NMR (400 MHz, DMSO): δ 8.21 (1H; s; N=CH), 8.12 (1H; dd; JHH = 8.0 and 1.2 Hz; H-11′), 8.04 (1H; dd; JHH = 8.4 and 0.8 Hz; H-8′), 7.83–7.80 (1H; m; H-10′), 7.69–7.67 (1H; m; H-9′), 7.37 (1H; dd; JHH = 4.8 and 1.6 Hz; H-5) 6.96–6.94 (2H; m; H-3 and H-4), 4.34 (2H; s; CH2), 3.32 (3H; s; N—CH3). 13C NMR (125 MHz; DMSO): δ 171.0 (C=O), 148.3 (C-7′), 136.8 (N=CH), 136.1 (C-2), 133.4 (C-10′), 130.4 (C-9′), 128.8 (C-11′), 128.3 (C-6′), 126.8 (C-3), 126.5 (C-4), 125.2 (C-5), 124.5 (C-8′), 33.9 (N-CH3), 28.1 (CH2). MS/ESI: [M + Na]: 326. IR νmax (cm−1; KBr pellet): 1681 (C=O); 3088 (N-CH3).

(E)-N-Methyl-N′-(3-nitro­phenyl­methyl­idene)-2-(thio­phen-2-­yl)acetohydrazide, (II)[link]; yield: 73%; yellow solid; m.p. 378–383 K. 1H NMR (400 MHz, DMSO): δ 8.61 (1H; s; N=CH), 8.29–8.25 (2H; m; H-11′ and H-9′), 8.17 (1H; s; H-7′), 7.79–7.75 (1H; m; H-10′), 7.37–7.35 (1H; m; H-5), 7.00–6.99 (1H; m; H-4) 6.96–6.94 (1H; m; H-3), 4.40 (2H; s; CH2), 3.35 (3H; s; N-CH3). 13C NMR (125 MHz; DMSO) δ: 170.9 (C=O), 148.2 (C-8′), 138.6 (N=CH), 136.9 (C-2), 136.5 (C-6′), 132.8 (C-11′), 130.4 (C-10′), 126.7 (C-9′), 126.6 (C-3), 125.2 (C-4), 123.9 (C-5), 121.6 (C-7′), 34.3 (N-CH3), 28.2 (CH2). MS/ESI: [M + Na]: 326. IR νmax (cm−1; KBr pellet): 1668 (C=O); 2962 (N—CH3).

(E)-N-Methyl-N′-(4-nitro­phenyl­methyl­idene)-2-(thio­phen-2-­yl)acetohydrazide, (III)[link]; yield: 55%; yellow solid; m.p. 428–433 K. 1H NMR (400 MHz; DMSO) δ: 8.32 (2H; d; JHH = 8.8 Hz; H-8′ and H-10′), 8.13 (1H; s; N=CH), 8.07 (2H; d; JHH = 8.8 Hz; H-7′ and H-11′), 7.36 (1H; dd; JHH = 4.8 and 1.2 Hz H-5), 7.00-6.99 (1H; m; H-3), 6.96-6.94 (1H; m; H-4), 4.41 (2H; s; CH2), 3.36 (3H; s; N-CH3). 13C NMR (125 MHz; DMSO) δ: 171.0 (C=O), 147.6 (C-9′), 140.9 (N=CH), 138.4 (C-6′), 136.8 (C-2), 128.0 (C-3), 126.8 (C-4), 126.5 (C-5), 125.2 (C-7′ and C-11′), 124.0 (C-C-8′ and C-10′), 34.2 (N-CH3), 28.3 (CH2). MS/ESI: [M + Na]: 326. IR νmax (cm−1; KBr pellet): 1678 (C=O); 3101 (N-CH3).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms were placed geometrically (C—H = 0.95–1.00 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(meth­yl) was applied in all cases. The methyl group was allowed to rotate, but not to tip, to best fit the electron density (AFIX 137 instruction). In each case, this group rotated from its initial orientation to minimize steric inter­action with atom H7; the final orientation leads to a short C8—H⋯O1 intra­molecular contact but we do not regard this as a bond. The thio­phene rings in (I)[link] and (III)[link] show `flip' rotational disorder.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C14H13N3O3S C14H13N3O3S C14H13N3O3S
Mr 303.33 303.33 303.33
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 7.3989 (5), 24.4910 (17), 7.7126 (5) 5.6629 (4), 15.6864 (11), 15.2842 (11) 6.1893 (4), 12.9177 (9), 17.3828 (12)
α, β, γ (°) 90, 96.022 (2), 90 90, 93.3800 (18), 90 93.995 (7), 90.386 (6), 95.963 (7)
V3) 1389.86 (16) 1355.34 (17) 1378.77 (16)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.25 0.25 0.25
Crystal size (mm) 0.08 × 0.07 × 0.03 0.22 × 0.17 × 0.12 0.20 × 0.18 × 0.16
 
Data collection
Diffractometer Rigaku Mercury CCD Rigaku Mercury CCD Rigaku Mercury CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 9379, 3157, 2439 9365, 3110, 2757 18534, 6279, 4868
Rint 0.040 0.031 0.078
(sin θ/λ)max−1) 0.648 0.649 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.106, 1.05 0.034, 0.096, 1.08 0.058, 0.166, 1.10
No. of reflections 3157 3110 6279
No. of parameters 192 191 383
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.35 0.30, −0.28 0.67, −0.61
Computer programs: CrystalClear (Rigaku, 2012[Rigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all compounds, data collection: CrystalClear (Rigaku, 2012); cell refinement: CrystalClear (Rigaku, 2012); data reduction: CrystalClear (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) (E)-N-Methyl-N'-(2-nitrobenzylidene)-2-(thiophen-2-yl)acetohydrazide top
Crystal data top
C14H13N3O3SF(000) = 632
Mr = 303.33Dx = 1.450 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.3989 (5) ÅCell parameters from 9051 reflections
b = 24.4910 (17) Åθ = 2.5–27.5°
c = 7.7126 (5) ŵ = 0.25 mm1
β = 96.022 (2)°T = 100 K
V = 1389.86 (16) Å3Block, pale yellow
Z = 40.08 × 0.07 × 0.03 mm
Data collection top
Rigaku Mercury CCD
diffractometer
Rint = 0.040
ω scansθmax = 27.4°, θmin = 2.8°
9379 measured reflectionsh = 99
3157 independent reflectionsk = 3128
2439 reflections with I > 2σ(I)l = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.321P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3157 reflectionsΔρmax = 0.45 e Å3
192 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2369 (2)0.49283 (6)0.4509 (2)0.0194 (3)
C20.2812 (2)0.50348 (7)0.6291 (2)0.0217 (3)
H20.26680.47540.71160.026*
C30.3455 (2)0.55416 (7)0.6873 (2)0.0242 (4)
H30.37740.56010.80840.029*
C40.3637 (2)0.59635 (7)0.5702 (2)0.0244 (4)
H40.40780.63100.61110.029*
C50.3173 (2)0.58784 (7)0.3934 (2)0.0238 (4)
H50.32670.61660.31220.029*
C60.2570 (2)0.53656 (7)0.3373 (2)0.0208 (3)
C70.1640 (2)0.43927 (6)0.3917 (2)0.0203 (3)
H70.13460.43200.27100.024*
C80.0311 (2)0.34081 (7)0.2640 (2)0.0244 (4)
H8A0.14270.34400.20660.037*
H8B0.05980.36650.21080.037*
H8C0.01610.30350.25040.037*
C90.0357 (2)0.31573 (7)0.5737 (2)0.0205 (3)
C100.0923 (2)0.33017 (7)0.7629 (2)0.0218 (3)
H10A0.06810.36930.78220.026*
H10B0.01970.30860.83910.026*
C110.2913 (2)0.31855 (7)0.8097 (2)0.0235 (4)
C120.39380 (13)0.27005 (4)0.74418 (13)0.0357 (3)0.671 (2)
H120.34870.24210.66580.043*0.671 (2)
S1A0.39380 (13)0.27005 (4)0.74418 (13)0.0357 (3)0.329 (2)
C130.5816 (3)0.27681 (9)0.8322 (3)0.0432 (5)
H130.67950.25410.80690.052*
C140.6023 (3)0.31711 (10)0.9492 (3)0.0499 (7)
H140.71350.32381.01910.060*
N10.14114 (17)0.40276 (5)0.50578 (17)0.0191 (3)
N20.07069 (18)0.35331 (5)0.44877 (16)0.0194 (3)
N30.21802 (19)0.52965 (6)0.14698 (17)0.0239 (3)
O10.03469 (16)0.27167 (5)0.53215 (15)0.0262 (3)
O20.27226 (18)0.48824 (5)0.07864 (15)0.0309 (3)
O30.13598 (19)0.56675 (5)0.06483 (16)0.0341 (3)
S10.42291 (8)0.35327 (2)0.96161 (7)0.0275 (2)0.671 (2)
C12A0.42291 (8)0.35327 (2)0.96161 (7)0.0275 (2)0.329 (2)
H12A0.39950.38391.03140.033*0.329 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0174 (7)0.0205 (8)0.0205 (7)0.0011 (6)0.0027 (6)0.0006 (6)
C20.0215 (8)0.0229 (8)0.0207 (7)0.0004 (6)0.0023 (6)0.0018 (6)
C30.0229 (8)0.0279 (9)0.0217 (8)0.0008 (7)0.0021 (6)0.0041 (7)
C40.0238 (8)0.0198 (8)0.0301 (9)0.0013 (7)0.0047 (7)0.0038 (7)
C50.0243 (8)0.0202 (8)0.0276 (8)0.0011 (7)0.0070 (7)0.0026 (7)
C60.0203 (8)0.0228 (8)0.0197 (7)0.0021 (6)0.0034 (6)0.0004 (6)
C70.0218 (8)0.0208 (8)0.0182 (7)0.0009 (6)0.0014 (6)0.0006 (6)
C80.0296 (9)0.0220 (8)0.0207 (8)0.0020 (7)0.0018 (7)0.0023 (6)
C90.0162 (7)0.0198 (8)0.0251 (8)0.0014 (6)0.0005 (6)0.0014 (6)
C100.0233 (8)0.0217 (8)0.0205 (7)0.0009 (7)0.0026 (6)0.0032 (6)
C110.0251 (9)0.0235 (9)0.0210 (7)0.0045 (7)0.0016 (6)0.0060 (6)
C120.0237 (5)0.0446 (6)0.0375 (6)0.0074 (4)0.0027 (4)0.0100 (4)
S1A0.0237 (5)0.0446 (6)0.0375 (6)0.0074 (4)0.0027 (4)0.0100 (4)
C130.0219 (9)0.0369 (11)0.0710 (15)0.0058 (8)0.0058 (9)0.0196 (11)
C140.0382 (12)0.0756 (17)0.0322 (10)0.0314 (11)0.0139 (9)0.0259 (11)
N10.0174 (6)0.0181 (7)0.0214 (6)0.0002 (5)0.0005 (5)0.0007 (5)
N20.0210 (7)0.0176 (7)0.0188 (6)0.0009 (5)0.0020 (5)0.0007 (5)
N30.0268 (7)0.0231 (7)0.0227 (7)0.0008 (6)0.0060 (6)0.0027 (6)
O10.0269 (6)0.0213 (6)0.0295 (6)0.0040 (5)0.0008 (5)0.0013 (5)
O20.0457 (8)0.0252 (6)0.0228 (6)0.0053 (6)0.0083 (5)0.0007 (5)
O30.0435 (8)0.0325 (7)0.0259 (6)0.0114 (6)0.0014 (6)0.0069 (5)
S10.0298 (3)0.0282 (3)0.0251 (3)0.0060 (2)0.0056 (2)0.0042 (2)
C12A0.0298 (3)0.0282 (3)0.0251 (3)0.0060 (2)0.0056 (2)0.0042 (2)
Geometric parameters (Å, º) top
C1—C61.402 (2)C9—C101.517 (2)
C1—C21.404 (2)C10—C111.506 (2)
C1—C71.473 (2)C10—H10A0.9900
C2—C31.387 (2)C10—H10B0.9900
C2—H20.9500C11—S1A1.524 (2)
C3—C41.388 (2)C11—C121.524 (2)
C3—H30.9500C11—C12A1.6748 (17)
C4—C51.386 (2)C11—S11.6748 (17)
C4—H40.9500C12—C131.490 (2)
C5—C61.387 (2)C12—H120.9500
C5—H50.9500S1A—C131.490 (2)
C6—N31.476 (2)C13—C141.335 (3)
C7—N11.278 (2)C13—H130.9500
C7—H70.9500C14—C12A1.607 (3)
C8—N21.4568 (19)C14—S11.607 (3)
C8—H8A0.9800C14—H140.9500
C8—H8B0.9800N1—N21.3725 (18)
C8—H8C0.9800N3—O21.2294 (18)
C9—O11.2262 (19)N3—O31.2308 (18)
C9—N21.377 (2)C12A—H12A0.9500
C6—C1—C2116.18 (15)C11—C10—H10B109.5
C6—C1—C7123.10 (14)C9—C10—H10B109.5
C2—C1—C7120.63 (14)H10A—C10—H10B108.1
C3—C2—C1121.32 (15)C10—C11—S1A125.17 (13)
C3—C2—H2119.3C10—C11—C12125.17 (13)
C1—C2—H2119.3C10—C11—C12A123.64 (13)
C2—C3—C4120.62 (15)S1A—C11—C12A110.77 (11)
C2—C3—H3119.7C10—C11—S1123.64 (13)
C4—C3—H3119.7C12—C11—S1110.77 (11)
C5—C4—C3119.79 (15)C13—C12—C11103.59 (13)
C5—C4—H4120.1C13—C12—H12128.2
C3—C4—H4120.1C11—C12—H12128.2
C4—C5—C6118.79 (15)C13—S1A—C11103.59 (13)
C4—C5—H5120.6C14—C13—C12115.17 (18)
C6—C5—H5120.6C14—C13—S1A115.17 (18)
C5—C6—C1123.27 (15)C14—C13—H13122.4
C5—C6—N3115.94 (14)C12—C13—H13122.4
C1—C6—N3120.78 (14)C13—C14—C12A114.26 (16)
N1—C7—C1118.69 (14)C13—C14—S1114.26 (16)
N1—C7—H7120.7C13—C14—H14122.9
C1—C7—H7120.7S1—C14—H14122.9
N2—C8—H8A109.5C7—N1—N2118.03 (13)
N2—C8—H8B109.5N1—N2—C9117.30 (12)
H8A—C8—H8B109.5N1—N2—C8121.97 (13)
N2—C8—H8C109.5C9—N2—C8120.73 (13)
H8A—C8—H8C109.5O2—N3—O3123.62 (14)
H8B—C8—H8C109.5O2—N3—C6118.85 (13)
O1—C9—N2120.74 (14)O3—N3—C6117.50 (14)
O1—C9—C10121.57 (14)C14—S1—C1195.85 (10)
N2—C9—C10117.66 (14)C14—C12A—C1195.85 (10)
C11—C10—C9110.52 (13)C14—C12A—H12A132.1
C11—C10—H10A109.5C11—C12A—H12A132.1
C9—C10—H10A109.5
C6—C1—C2—C31.6 (2)C12A—C11—S1A—C135.65 (15)
C7—C1—C2—C3178.31 (15)C11—C12—C13—C146.2 (2)
C1—C2—C3—C41.6 (3)C11—S1A—C13—C146.2 (2)
C2—C3—C4—C50.0 (3)S1A—C13—C14—C12A4.3 (2)
C3—C4—C5—C61.4 (2)C12—C13—C14—S14.3 (2)
C4—C5—C6—C11.3 (2)C1—C7—N1—N2179.10 (13)
C4—C5—C6—N3177.29 (14)C7—N1—N2—C9175.84 (14)
C2—C1—C6—C50.2 (2)C7—N1—N2—C83.2 (2)
C7—C1—C6—C5176.78 (15)O1—C9—N2—N1176.75 (14)
C2—C1—C6—N3178.71 (14)C10—C9—N2—N15.0 (2)
C7—C1—C6—N34.7 (2)O1—C9—N2—C82.3 (2)
C6—C1—C7—N1176.15 (15)C10—C9—N2—C8175.95 (14)
C2—C1—C7—N10.3 (2)C5—C6—N3—O2135.41 (16)
O1—C9—C10—C1196.54 (18)C1—C6—N3—O243.2 (2)
N2—C9—C10—C1181.73 (18)C5—C6—N3—O342.9 (2)
C9—C10—C11—S1A37.7 (2)C1—C6—N3—O3138.50 (16)
C9—C10—C11—C1237.7 (2)C13—C14—S1—C110.41 (17)
C9—C10—C11—C12A150.50 (13)C10—C11—S1—C14176.26 (14)
C9—C10—C11—S1150.50 (13)C12—C11—S1—C143.38 (13)
C10—C11—C12—C13178.39 (15)C13—C14—C12A—C110.41 (17)
S1—C11—C12—C135.65 (15)C10—C11—C12A—C14176.26 (14)
C10—C11—S1A—C13178.39 (15)S1A—C11—C12A—C143.38 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/C11–C14 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8C···O1i0.982.493.293 (2)139
C10—H10A···O3ii0.992.553.386 (2)142
C10—H10B···O1iii0.992.523.439 (2)154
C5—H5···Cg1iv0.952.863.7212 (18)151
C12—H12···Cg1i0.952.853.5930 (13)136
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
(II) (E)-N-Methyl-N'-(3-nitrobenzylidene)-2-(thiophen-2-yl)acetohydrazide top
Crystal data top
C14H13N3O3SF(000) = 632
Mr = 303.33Dx = 1.487 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.6629 (4) ÅCell parameters from 9051 reflections
b = 15.6864 (11) Åθ = 2.6–27.5°
c = 15.2842 (11) ŵ = 0.25 mm1
β = 93.3800 (18)°T = 100 K
V = 1355.34 (17) Å3Block, yellow
Z = 40.22 × 0.17 × 0.12 mm
Data collection top
Rigaku Mercury CCD
diffractometer
Rint = 0.031
ω scansθmax = 27.5°, θmin = 2.6°
9365 measured reflectionsh = 77
3110 independent reflectionsk = 2019
2757 reflections with I > 2σ(I)l = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.4026P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3110 reflectionsΔρmax = 0.30 e Å3
191 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3945 (2)0.25348 (8)0.28563 (8)0.0187 (2)
C20.4786 (2)0.33560 (8)0.27161 (8)0.0188 (2)
H20.62560.35400.29830.023*
C30.3425 (2)0.38950 (8)0.21792 (8)0.0192 (3)
C40.1240 (2)0.36637 (9)0.17844 (8)0.0212 (3)
H40.03330.40550.14300.025*
C50.0432 (2)0.28453 (9)0.19246 (8)0.0225 (3)
H50.10450.26670.16590.027*
C60.1768 (2)0.22833 (8)0.24516 (8)0.0210 (3)
H60.12020.17210.25390.025*
C70.5216 (2)0.19343 (8)0.34489 (8)0.0198 (3)
H70.46680.13650.34940.024*
C80.7162 (2)0.07490 (8)0.45928 (9)0.0225 (3)
H8A0.55390.07950.47770.034*
H8B0.81340.04410.50400.034*
H8C0.71600.04390.40360.034*
C91.0134 (2)0.18638 (9)0.49611 (8)0.0199 (3)
C101.1004 (2)0.27656 (8)0.48044 (8)0.0211 (3)
H10A1.27310.27850.49470.025*
H10B1.07320.29010.41740.025*
C110.9841 (2)0.34407 (8)0.53279 (8)0.0195 (3)
C121.0854 (2)0.38920 (9)0.60202 (9)0.0239 (3)
H121.24090.37880.62650.029*
C130.9330 (2)0.45351 (9)0.63371 (9)0.0248 (3)
H130.97600.49070.68100.030*
C140.7188 (2)0.45511 (9)0.58811 (9)0.0253 (3)
H140.59500.49360.59980.030*
N10.70671 (18)0.21766 (7)0.39066 (7)0.0189 (2)
N20.81324 (18)0.15999 (7)0.44806 (7)0.0195 (2)
N30.43337 (19)0.47517 (7)0.20197 (7)0.0213 (2)
O11.11711 (16)0.13877 (6)0.54872 (6)0.0251 (2)
O20.31572 (17)0.52296 (6)0.15251 (6)0.0262 (2)
O30.62386 (17)0.49615 (7)0.23846 (7)0.0291 (2)
S10.69978 (5)0.37937 (2)0.50723 (2)0.02407 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0173 (5)0.0210 (6)0.0175 (5)0.0019 (5)0.0020 (4)0.0014 (5)
C20.0153 (5)0.0219 (6)0.0186 (6)0.0009 (5)0.0024 (4)0.0011 (5)
C30.0185 (6)0.0195 (6)0.0192 (6)0.0004 (5)0.0011 (5)0.0015 (5)
C40.0183 (6)0.0247 (6)0.0199 (6)0.0036 (5)0.0040 (5)0.0003 (5)
C50.0169 (6)0.0278 (7)0.0221 (6)0.0001 (5)0.0051 (5)0.0025 (5)
C60.0191 (6)0.0218 (6)0.0217 (6)0.0014 (5)0.0029 (5)0.0016 (5)
C70.0184 (5)0.0194 (6)0.0212 (6)0.0004 (5)0.0023 (5)0.0006 (5)
C80.0229 (6)0.0184 (6)0.0252 (6)0.0010 (5)0.0053 (5)0.0022 (5)
C90.0157 (5)0.0239 (6)0.0199 (6)0.0023 (5)0.0013 (4)0.0031 (5)
C100.0141 (5)0.0250 (6)0.0239 (6)0.0009 (5)0.0017 (4)0.0019 (5)
C110.0152 (5)0.0207 (6)0.0223 (6)0.0012 (5)0.0015 (4)0.0018 (5)
C120.0182 (6)0.0266 (7)0.0265 (7)0.0015 (5)0.0017 (5)0.0023 (5)
C130.0217 (6)0.0259 (7)0.0264 (6)0.0010 (5)0.0028 (5)0.0039 (5)
C140.0232 (6)0.0232 (7)0.0292 (7)0.0029 (5)0.0010 (5)0.0023 (5)
N10.0171 (5)0.0199 (5)0.0193 (5)0.0022 (4)0.0025 (4)0.0017 (4)
N20.0179 (5)0.0184 (5)0.0215 (5)0.0005 (4)0.0055 (4)0.0018 (4)
N30.0215 (5)0.0212 (5)0.0208 (5)0.0011 (4)0.0029 (4)0.0009 (4)
O10.0215 (4)0.0274 (5)0.0254 (5)0.0037 (4)0.0077 (4)0.0008 (4)
O20.0284 (5)0.0215 (5)0.0280 (5)0.0056 (4)0.0061 (4)0.0028 (4)
O30.0263 (5)0.0283 (5)0.0312 (5)0.0069 (4)0.0104 (4)0.0028 (4)
S10.01743 (17)0.02608 (19)0.02791 (19)0.00234 (12)0.00532 (13)0.00320 (13)
Geometric parameters (Å, º) top
C1—C21.3943 (18)C9—O11.2220 (16)
C1—C61.4027 (16)C9—N21.3776 (15)
C1—C71.4659 (17)C9—C101.5215 (18)
C2—C31.3811 (17)C10—C111.5025 (18)
C2—H20.9500C10—H10A0.9900
C3—C41.3923 (17)C10—H10B0.9900
C3—N31.4645 (17)C11—C121.3705 (18)
C4—C51.3839 (19)C11—S11.7256 (12)
C4—H40.9500C12—C131.4306 (19)
C5—C61.3883 (18)C12—H120.9500
C5—H50.9500C13—C141.3630 (18)
C6—H60.9500C13—H130.9500
C7—N11.2829 (16)C14—S11.7134 (14)
C7—H70.9500C14—H140.9500
C8—N21.4573 (16)N1—N21.3747 (14)
C8—H8A0.9800N3—O31.2297 (14)
C8—H8B0.9800N3—O21.2321 (14)
C8—H8C0.9800
C2—C1—C6119.43 (11)O1—C9—C10121.63 (11)
C2—C1—C7121.93 (11)N2—C9—C10117.35 (11)
C6—C1—C7118.58 (12)C11—C10—C9114.54 (11)
C3—C2—C1118.24 (11)C11—C10—H10A108.6
C3—C2—H2120.9C9—C10—H10A108.6
C1—C2—H2120.9C11—C10—H10B108.6
C2—C3—C4123.26 (12)C9—C10—H10B108.6
C2—C3—N3118.13 (11)H10A—C10—H10B107.6
C4—C3—N3118.62 (11)C12—C11—C10126.76 (11)
C5—C4—C3117.93 (12)C12—C11—S1110.59 (10)
C5—C4—H4121.0C10—C11—S1122.55 (9)
C3—C4—H4121.0C11—C12—C13113.09 (12)
C4—C5—C6120.32 (11)C11—C12—H12123.5
C4—C5—H5119.8C13—C12—H12123.5
C6—C5—H5119.8C14—C13—C12112.11 (12)
C5—C6—C1120.80 (12)C14—C13—H13123.9
C5—C6—H6119.6C12—C13—H13123.9
C1—C6—H6119.6C13—C14—S1111.86 (11)
N1—C7—C1120.14 (12)C13—C14—H14124.1
N1—C7—H7119.9S1—C14—H14124.1
C1—C7—H7119.9C7—N1—N2117.82 (11)
N2—C8—H8A109.5N1—N2—C9117.31 (11)
N2—C8—H8B109.5N1—N2—C8121.56 (10)
H8A—C8—H8B109.5C9—N2—C8121.11 (10)
N2—C8—H8C109.5O3—N3—O2122.93 (11)
H8A—C8—H8C109.5O3—N3—C3118.52 (10)
H8B—C8—H8C109.5O2—N3—C3118.55 (10)
O1—C9—N2121.03 (12)C14—S1—C1192.35 (6)
C6—C1—C2—C30.08 (18)S1—C11—C12—C130.83 (15)
C7—C1—C2—C3177.02 (12)C11—C12—C13—C140.49 (18)
C1—C2—C3—C41.15 (19)C12—C13—C14—S10.08 (16)
C1—C2—C3—N3178.86 (11)C1—C7—N1—N2177.17 (11)
C2—C3—C4—C51.5 (2)C7—N1—N2—C9179.26 (11)
N3—C3—C4—C5178.49 (12)C7—N1—N2—C82.03 (17)
C3—C4—C5—C60.64 (19)O1—C9—N2—N1179.67 (11)
C4—C5—C6—C10.5 (2)C10—C9—N2—N10.78 (16)
C2—C1—C6—C50.90 (19)O1—C9—N2—C80.95 (19)
C7—C1—C6—C5176.30 (12)C10—C9—N2—C8179.50 (11)
C2—C1—C7—N15.17 (19)C2—C3—N3—O31.60 (18)
C6—C1—C7—N1171.96 (12)C4—C3—N3—O3178.39 (12)
O1—C9—C10—C1195.28 (14)C2—C3—N3—O2178.30 (11)
N2—C9—C10—C1185.18 (14)C4—C3—N3—O21.70 (17)
C9—C10—C11—C12108.80 (15)C13—C14—S1—C110.47 (12)
C9—C10—C11—S175.20 (14)C12—C11—S1—C140.74 (11)
C10—C11—C12—C13175.57 (13)C10—C11—S1—C14175.84 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.393.2879 (16)157
C8—H8B···O2ii0.982.503.3468 (16)144
C8—H8C···O3iii0.982.523.4356 (17)156
C13—H13···O3iv0.952.523.1874 (16)127
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+2, y+1, z+1.
(III) (E)-N-Methyl-N'-(4-nitrobenzylidene)-2-(thiophen-2-yl)acetohydrazide top
Crystal data top
C14H13N3O3SZ = 4
Mr = 303.33F(000) = 632
Triclinic, P1Dx = 1.461 Mg m3
a = 6.1893 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.9177 (9) ÅCell parameters from 15464 reflections
c = 17.3828 (12) Åθ = 3.2–27.6°
α = 93.995 (7)°µ = 0.25 mm1
β = 90.386 (6)°T = 100 K
γ = 95.963 (7)°Cut block, yellow
V = 1378.77 (16) Å30.20 × 0.18 × 0.16 mm
Data collection top
Rigaku Mercury CCD
diffractometer
Rint = 0.078
ω scansθmax = 27.5°, θmin = 3.2°
18534 measured reflectionsh = 78
6279 independent reflectionsk = 1616
4868 reflections with I > 2σ(I)l = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.080P)2 + 0.2939P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
6279 reflectionsΔρmax = 0.67 e Å3
383 parametersΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3947 (3)0.10043 (14)0.12117 (11)0.0207 (4)
C20.3601 (3)0.01607 (15)0.16786 (12)0.0252 (4)
H20.23970.01150.20150.030*
C30.5005 (4)0.06029 (15)0.16500 (12)0.0271 (5)
H30.47840.11760.19650.033*
C40.6747 (3)0.05157 (14)0.11517 (12)0.0226 (4)
C50.7135 (3)0.03028 (14)0.06866 (11)0.0218 (4)
H50.83450.03440.03530.026*
C60.5712 (3)0.10625 (14)0.07199 (11)0.0210 (4)
H60.59450.16320.04020.025*
C70.2465 (3)0.18208 (14)0.12183 (11)0.0213 (4)
H70.26600.23560.08690.026*
C80.0467 (4)0.32516 (15)0.10527 (12)0.0255 (4)
H8A0.04620.28460.05550.038*
H8B0.08450.37480.11040.038*
H8C0.17550.36340.10810.038*
C90.2093 (3)0.25364 (14)0.22263 (11)0.0220 (4)
C100.2139 (3)0.17041 (14)0.28040 (12)0.0235 (4)
H10A0.36600.15020.29500.028*
H10B0.15530.10770.25620.028*
C110.0820 (3)0.20882 (14)0.35164 (11)0.0223 (4)
C120.1921 (3)0.21642 (9)0.43327 (7)0.0459 (5)0.673 (3)
H120.33810.19940.44830.055*0.673 (3)
S1A0.1921 (3)0.21642 (9)0.43327 (7)0.0459 (5)0.327 (3)
C130.0169 (4)0.26112 (17)0.48174 (13)0.0325 (5)
H130.01110.27620.53590.039*
C140.2039 (4)0.27710 (16)0.44338 (13)0.0318 (5)
H140.33610.30480.46870.038*
N10.0911 (3)0.18039 (12)0.16982 (9)0.0207 (4)
N20.0509 (3)0.25508 (12)0.16718 (10)0.0214 (4)
N30.8213 (3)0.13383 (13)0.11193 (11)0.0282 (4)
O10.3402 (2)0.31816 (11)0.22537 (9)0.0288 (3)
O20.9584 (2)0.13473 (11)0.06134 (9)0.0323 (4)
O30.7993 (3)0.19851 (13)0.16061 (11)0.0489 (5)
S10.18984 (12)0.24543 (5)0.34894 (4)0.0275 (2)0.673 (3)
C12A0.18984 (12)0.24543 (5)0.34894 (4)0.0275 (2)0.327 (3)
H12A0.29360.24710.30890.033*0.327 (3)
C150.1307 (3)0.45425 (14)0.76584 (11)0.0204 (4)
C160.3149 (3)0.50824 (13)0.77270 (11)0.0211 (4)
H160.33950.55850.73710.025*
C170.4611 (3)0.48896 (14)0.83085 (11)0.0213 (4)
H170.58690.52520.83550.026*
C180.4209 (3)0.41575 (14)0.88233 (11)0.0215 (4)
C190.2380 (3)0.36200 (15)0.87768 (12)0.0237 (4)
H190.21350.31220.91360.028*
C200.0932 (3)0.38266 (14)0.81973 (12)0.0228 (4)
H200.03440.34770.81630.027*
C210.0221 (3)0.47259 (14)0.70286 (11)0.0211 (4)
H210.01290.52920.67130.025*
C220.3281 (4)0.52050 (16)0.59201 (12)0.0302 (5)
H22A0.32990.58230.62810.045*
H22B0.20120.51670.55750.045*
H22C0.46090.52520.56150.045*
C230.4675 (3)0.35588 (14)0.62403 (11)0.0216 (4)
C240.4422 (3)0.26350 (14)0.67397 (12)0.0235 (4)
H24A0.47410.28900.72830.028*
H24B0.28930.23220.67080.028*
C250.5867 (4)0.18068 (14)0.65165 (12)0.0247 (4)
C260.8082 (3)0.17391 (11)0.67653 (9)0.0332 (5)0.832 (3)
H260.89330.22460.70930.040*0.832 (3)
S2A0.8082 (3)0.17391 (11)0.67653 (9)0.0332 (5)0.168 (3)
C270.8783 (4)0.07846 (18)0.64370 (14)0.0363 (5)
H271.01820.05790.65360.044*
C280.7311 (5)0.02082 (17)0.59807 (15)0.0452 (7)
H280.75520.04410.57220.054*
N40.1678 (3)0.41024 (12)0.69164 (9)0.0204 (4)
N50.3168 (3)0.42739 (12)0.63490 (9)0.0218 (4)
N60.5754 (3)0.39473 (13)0.94419 (10)0.0249 (4)
O40.6102 (2)0.36793 (11)0.57669 (8)0.0279 (3)
O50.7216 (2)0.45094 (11)0.95462 (9)0.0296 (3)
O60.5498 (3)0.32116 (12)0.98361 (10)0.0373 (4)
S20.49917 (12)0.07608 (5)0.59164 (4)0.0380 (3)0.832 (3)
C26A0.49917 (12)0.07608 (5)0.59164 (4)0.0380 (3)0.168 (3)
H26A0.36650.05590.56420.046*0.168 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (10)0.0193 (8)0.0186 (9)0.0028 (7)0.0027 (8)0.0026 (7)
C20.0270 (11)0.0258 (9)0.0235 (11)0.0057 (8)0.0055 (9)0.0022 (8)
C30.0359 (12)0.0220 (9)0.0246 (11)0.0063 (8)0.0024 (9)0.0041 (8)
C40.0258 (10)0.0205 (9)0.0218 (10)0.0078 (8)0.0022 (8)0.0041 (7)
C50.0230 (10)0.0210 (9)0.0204 (10)0.0014 (7)0.0008 (8)0.0040 (7)
C60.0253 (10)0.0167 (8)0.0202 (10)0.0009 (7)0.0023 (8)0.0014 (7)
C70.0246 (10)0.0188 (8)0.0203 (10)0.0017 (7)0.0008 (8)0.0004 (7)
C80.0341 (12)0.0223 (9)0.0207 (10)0.0079 (8)0.0023 (9)0.0008 (8)
C90.0240 (10)0.0216 (9)0.0197 (10)0.0035 (8)0.0025 (8)0.0049 (7)
C100.0255 (10)0.0202 (9)0.0245 (11)0.0035 (8)0.0015 (9)0.0025 (8)
C110.0297 (11)0.0175 (8)0.0203 (10)0.0056 (8)0.0037 (8)0.0012 (7)
C120.0713 (10)0.0336 (7)0.0324 (7)0.0083 (6)0.0152 (7)0.0034 (5)
S1A0.0713 (10)0.0336 (7)0.0324 (7)0.0083 (6)0.0152 (7)0.0034 (5)
C130.0431 (13)0.0343 (11)0.0211 (11)0.0075 (10)0.0028 (10)0.0031 (9)
C140.0384 (13)0.0269 (10)0.0296 (12)0.0031 (9)0.0000 (10)0.0002 (9)
N10.0234 (9)0.0196 (7)0.0191 (8)0.0052 (6)0.0032 (7)0.0040 (6)
N20.0245 (9)0.0209 (7)0.0193 (8)0.0065 (6)0.0011 (7)0.0016 (6)
N30.0332 (10)0.0259 (8)0.0266 (10)0.0110 (7)0.0013 (8)0.0009 (7)
O10.0329 (8)0.0276 (7)0.0272 (8)0.0124 (6)0.0013 (7)0.0037 (6)
O20.0324 (9)0.0300 (7)0.0359 (9)0.0111 (6)0.0100 (7)0.0013 (7)
O30.0667 (13)0.0449 (10)0.0436 (11)0.0335 (9)0.0174 (9)0.0205 (8)
S10.0339 (4)0.0253 (4)0.0227 (4)0.0008 (3)0.0028 (3)0.0004 (3)
C12A0.0339 (4)0.0253 (4)0.0227 (4)0.0008 (3)0.0028 (3)0.0004 (3)
C150.0249 (10)0.0169 (8)0.0184 (10)0.0020 (7)0.0025 (8)0.0046 (7)
C160.0288 (10)0.0152 (8)0.0194 (10)0.0040 (7)0.0029 (8)0.0002 (7)
C170.0243 (10)0.0190 (8)0.0206 (10)0.0051 (7)0.0019 (8)0.0038 (7)
C180.0262 (10)0.0197 (8)0.0178 (10)0.0021 (8)0.0016 (8)0.0043 (7)
C190.0304 (11)0.0232 (9)0.0186 (10)0.0076 (8)0.0003 (8)0.0011 (7)
C200.0252 (10)0.0227 (9)0.0214 (10)0.0091 (8)0.0005 (8)0.0026 (7)
C210.0275 (11)0.0184 (8)0.0171 (9)0.0032 (7)0.0017 (8)0.0003 (7)
C220.0442 (13)0.0246 (10)0.0232 (11)0.0080 (9)0.0080 (10)0.0046 (8)
C230.0264 (11)0.0205 (9)0.0167 (9)0.0013 (8)0.0009 (8)0.0040 (7)
C240.0294 (11)0.0211 (9)0.0203 (10)0.0044 (8)0.0043 (8)0.0000 (7)
C250.0356 (12)0.0198 (9)0.0190 (10)0.0045 (8)0.0075 (9)0.0000 (7)
C260.0387 (10)0.0257 (7)0.0347 (9)0.0027 (6)0.0045 (7)0.0006 (6)
S2A0.0387 (10)0.0257 (7)0.0347 (9)0.0027 (6)0.0045 (7)0.0006 (6)
C270.0370 (13)0.0357 (12)0.0393 (14)0.0140 (10)0.0097 (11)0.0088 (10)
C280.079 (2)0.0235 (10)0.0347 (14)0.0187 (12)0.0072 (13)0.0043 (9)
N40.0248 (9)0.0193 (7)0.0160 (8)0.0004 (6)0.0015 (7)0.0036 (6)
N50.0284 (9)0.0202 (7)0.0167 (8)0.0032 (7)0.0041 (7)0.0002 (6)
N60.0270 (9)0.0254 (8)0.0218 (9)0.0028 (7)0.0010 (7)0.0011 (7)
O40.0335 (8)0.0285 (7)0.0224 (8)0.0056 (6)0.0096 (7)0.0022 (6)
O50.0285 (8)0.0346 (8)0.0266 (8)0.0100 (6)0.0057 (6)0.0021 (6)
O60.0451 (10)0.0363 (8)0.0334 (9)0.0107 (7)0.0114 (8)0.0138 (7)
S20.0456 (5)0.0264 (3)0.0403 (4)0.0086 (3)0.0115 (3)0.0154 (3)
C26A0.0456 (5)0.0264 (3)0.0403 (4)0.0086 (3)0.0115 (3)0.0154 (3)
Geometric parameters (Å, º) top
C1—C61.391 (3)C15—C201.396 (3)
C1—C21.403 (3)C15—C161.398 (3)
C1—C71.467 (3)C15—C211.467 (3)
C2—C31.379 (3)C16—C171.380 (3)
C2—H20.9500C16—H160.9500
C3—C41.388 (3)C17—C181.386 (3)
C3—H30.9500C17—H170.9500
C4—C51.378 (3)C18—C191.388 (3)
C4—N31.466 (2)C18—N61.464 (3)
C5—C61.384 (3)C19—C201.375 (3)
C5—H50.9500C19—H190.9500
C6—H60.9500C20—H200.9500
C7—N11.277 (3)C21—N41.277 (2)
C7—H70.9500C21—H210.9500
C8—N21.452 (3)C22—N51.454 (2)
C8—H8A0.9800C22—H22A0.9800
C8—H8B0.9800C22—H22B0.9800
C8—H8C0.9800C22—H22C0.9800
C9—O11.220 (2)C23—O41.217 (2)
C9—N21.380 (3)C23—N51.384 (2)
C9—C101.520 (3)C23—C241.520 (3)
C10—C111.504 (3)C24—C251.497 (3)
C10—H10A0.9900C24—H24A0.9900
C10—H10B0.9900C24—H24B0.9900
C11—S1A1.579 (2)C25—S2A1.448 (3)
C11—C121.579 (2)C25—C261.448 (3)
C11—C12A1.702 (2)C25—C26A1.689 (2)
C11—S11.702 (2)C25—S21.689 (2)
C12—C131.575 (3)C26—C271.432 (3)
C12—H120.9500C26—H260.9500
S1A—C131.575 (3)S2A—C271.432 (3)
C13—C141.344 (3)C27—C281.334 (4)
C13—H130.9500C27—H270.9500
C14—C12A1.663 (2)C28—C26A1.675 (3)
C14—S11.663 (2)C28—S21.675 (3)
C14—H140.9500C28—H280.9500
N1—N21.373 (2)N4—N51.368 (2)
N3—O21.227 (2)N6—O51.224 (2)
N3—O31.228 (2)N6—O61.232 (2)
C12A—H12A0.9500C26A—H26A0.9500
C6—C1—C2119.49 (18)C20—C15—C16119.30 (18)
C6—C1—C7118.95 (17)C20—C15—C21120.19 (18)
C2—C1—C7121.55 (18)C16—C15—C21120.51 (17)
C3—C2—C1120.15 (19)C17—C16—C15120.39 (17)
C3—C2—H2119.9C17—C16—H16119.8
C1—C2—H2119.9C15—C16—H16119.8
C2—C3—C4118.57 (18)C16—C17—C18118.71 (18)
C2—C3—H3120.7C16—C17—H17120.6
C4—C3—H3120.7C18—C17—H17120.6
C5—C4—C3122.75 (18)C17—C18—C19122.23 (18)
C5—C4—N3119.17 (18)C17—C18—N6119.07 (17)
C3—C4—N3118.08 (17)C19—C18—N6118.70 (17)
C4—C5—C6118.10 (18)C20—C19—C18118.32 (18)
C4—C5—H5121.0C20—C19—H19120.8
C6—C5—H5121.0C18—C19—H19120.8
C5—C6—C1120.95 (17)C19—C20—C15121.02 (18)
C5—C6—H6119.5C19—C20—H20119.5
C1—C6—H6119.5C15—C20—H20119.5
N1—C7—C1119.28 (17)N4—C21—C15118.09 (17)
N1—C7—H7120.4N4—C21—H21121.0
C1—C7—H7120.4C15—C21—H21121.0
N2—C8—H8A109.5N5—C22—H22A109.5
N2—C8—H8B109.5N5—C22—H22B109.5
H8A—C8—H8B109.5H22A—C22—H22B109.5
N2—C8—H8C109.5N5—C22—H22C109.5
H8A—C8—H8C109.5H22A—C22—H22C109.5
H8B—C8—H8C109.5H22B—C22—H22C109.5
O1—C9—N2120.65 (18)O4—C23—N5120.73 (17)
O1—C9—C10121.28 (18)O4—C23—C24123.10 (17)
N2—C9—C10118.07 (16)N5—C23—C24116.17 (17)
C11—C10—C9111.36 (15)C25—C24—C23113.87 (17)
C11—C10—H10A109.4C25—C24—H24A108.8
C9—C10—H10A109.4C23—C24—H24A108.8
C11—C10—H10B109.4C25—C24—H24B108.8
C9—C10—H10B109.4C23—C24—H24B108.8
H10A—C10—H10B108.0H24A—C24—H24B107.7
C10—C11—S1A120.81 (16)S2A—C25—C24128.30 (17)
C10—C11—C12120.81 (16)C26—C25—C24128.30 (17)
C10—C11—C12A122.36 (15)S2A—C25—C26A110.16 (13)
S1A—C11—C12A116.83 (13)C24—C25—C26A121.52 (16)
C10—C11—S1122.36 (15)C26—C25—S2110.16 (13)
C12—C11—S1116.83 (13)C24—C25—S2121.52 (16)
C13—C12—C1197.55 (14)C27—C26—C25108.93 (16)
C13—C12—H12131.2C27—C26—H26125.5
C11—C12—H12131.2C25—C26—H26125.5
C13—S1A—C1197.55 (14)C27—S2A—C25108.93 (16)
C14—C13—C12117.32 (19)C28—C27—C26114.6 (2)
C14—C13—S1A117.32 (19)C28—C27—S2A114.6 (2)
C14—C13—H13121.3C28—C27—H27122.7
C12—C13—H13121.3C26—C27—H27122.7
C13—C14—C12A115.93 (18)C27—C28—C26A112.26 (17)
C13—C14—S1115.93 (18)C27—C28—S2112.26 (17)
C13—C14—H14122.0C27—C28—H28123.9
S1—C14—H14122.0S2—C28—H28123.9
C7—N1—N2118.20 (16)C21—N4—N5119.36 (16)
N1—N2—C9116.20 (16)N4—N5—C23116.86 (15)
N1—N2—C8121.72 (16)N4—N5—C22121.80 (16)
C9—N2—C8121.84 (16)C23—N5—C22121.17 (17)
O2—N3—O3123.55 (17)O5—N6—O6123.34 (18)
O2—N3—C4118.83 (17)O5—N6—C18118.89 (16)
O3—N3—C4117.62 (18)O6—N6—C18117.76 (17)
C14—S1—C1192.35 (11)C28—S2—C2594.06 (11)
C14—C12A—C1192.35 (11)C28—C26A—C2594.06 (11)
C14—C12A—H12A133.8C28—C26A—H26A133.0
C11—C12A—H12A133.8C25—C26A—H26A133.0
C6—C1—C2—C30.1 (3)C20—C15—C16—C171.7 (3)
C7—C1—C2—C3178.96 (18)C21—C15—C16—C17178.39 (16)
C1—C2—C3—C40.1 (3)C15—C16—C17—C180.4 (3)
C2—C3—C4—C50.2 (3)C16—C17—C18—C190.6 (3)
C2—C3—C4—N3179.27 (18)C16—C17—C18—N6179.94 (16)
C3—C4—C5—C60.3 (3)C17—C18—C19—C200.1 (3)
N3—C4—C5—C6179.15 (17)N6—C18—C19—C20179.61 (17)
C4—C5—C6—C10.3 (3)C18—C19—C20—C151.3 (3)
C2—C1—C6—C50.2 (3)C16—C15—C20—C192.2 (3)
C7—C1—C6—C5179.11 (17)C21—C15—C20—C19177.92 (17)
C6—C1—C7—N1176.17 (17)C20—C15—C21—N411.1 (3)
C2—C1—C7—N15.0 (3)C16—C15—C21—N4169.05 (17)
O1—C9—C10—C1187.5 (2)O4—C23—C24—C258.7 (3)
N2—C9—C10—C1191.7 (2)N5—C23—C24—C25171.09 (17)
C9—C10—C11—S1A118.60 (17)C23—C24—C25—S2A87.0 (2)
C9—C10—C11—C12118.60 (17)C23—C24—C25—C2687.0 (2)
C9—C10—C11—C12A61.7 (2)C23—C24—C25—C26A94.5 (2)
C9—C10—C11—S161.7 (2)C23—C24—C25—S294.5 (2)
C10—C11—C12—C13179.11 (16)C24—C25—C26—C27176.91 (19)
S1—C11—C12—C131.14 (15)S2—C25—C26—C271.77 (19)
C10—C11—S1A—C13179.11 (16)C24—C25—S2A—C27176.91 (19)
C12A—C11—S1A—C131.14 (15)C26A—C25—S2A—C271.77 (19)
C11—C12—C13—C140.1 (2)C25—C26—C27—C281.4 (3)
C11—S1A—C13—C140.1 (2)C25—S2A—C27—C281.4 (3)
S1A—C13—C14—C12A0.9 (3)S2A—C27—C28—C26A0.3 (3)
C12—C13—C14—S10.9 (3)C26—C27—C28—S20.3 (3)
C1—C7—N1—N2177.33 (15)C15—C21—N4—N5177.94 (15)
C7—N1—N2—C9176.72 (16)C21—N4—N5—C23178.41 (16)
C7—N1—N2—C88.8 (3)C21—N4—N5—C226.3 (3)
O1—C9—N2—N1178.83 (16)O4—C23—N5—N4177.20 (16)
C10—C9—N2—N10.5 (2)C24—C23—N5—N43.0 (2)
O1—C9—N2—C86.7 (3)O4—C23—N5—C221.9 (3)
C10—C9—N2—C8174.00 (16)C24—C23—N5—C22178.24 (17)
C5—C4—N3—O28.9 (3)C17—C18—N6—O58.7 (3)
C3—C4—N3—O2170.54 (18)C19—C18—N6—O5170.78 (17)
C5—C4—N3—O3171.05 (19)C17—C18—N6—O6171.80 (17)
C3—C4—N3—O39.5 (3)C19—C18—N6—O68.7 (3)
C13—C14—S1—C111.36 (18)C27—C28—S2—C250.6 (2)
C10—C11—S1—C14178.76 (16)C26—C25—S2—C281.42 (16)
C12—C11—S1—C141.49 (14)C24—C25—S2—C28177.37 (18)
C13—C14—C12A—C111.36 (18)C27—C28—C26A—C250.6 (2)
C10—C11—C12A—C14178.76 (16)S2A—C25—C26A—C281.42 (16)
S1A—C11—C12A—C141.49 (14)C24—C25—C26A—C28177.37 (18)
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C15–C20 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.483.312 (3)147
C6—H6···O6ii0.952.563.412 (2)149
C7—H7···O6ii0.952.413.281 (3)153
C14—H14···O40.952.553.464 (3)160
C17—H17···O1iii0.952.433.104 (2)128
C20—H20···O3iv0.952.333.176 (2)147
C8—H8B···Cg6v0.982.773.634 (2)147
C24—H24A···Cg6vi0.982.773.628 (2)145
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z1; (iii) x1, y+1, z+1; (iv) x+1, y, z+1; (v) x, y+1, z+1; (vi) x+1, y, z.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton) for X-ray data collection.

References

First citationCao, X.-Y., Harrowfield, J., Nitschke, J., Ramirez, J., Stadler, A.-M., Kyritsakas-Gruber, N., Madalan, A., Rissanen, K., Russo, L., Vaughan, G. & Lehn, J.-M. (2007). Eur. J. Inorg. Chem. pp. 2944–2965.  Web of Science CSD CrossRef Google Scholar
First citationCardoso, L. N. F., Bispo, M. L. F., Kaiser, C. R., Wardell, J. L., Wardell, S. M. S. V., Lourenço, M. C. S. S., Bezerra, F. A. F., Soares, R. P. P., Rocha, M. N. & de Souza, M. V. N. (2014). Arch. Pharm. Chem. Life Sci. 347, 432–448.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamirez, J., Brelot, L., Osinska, I. & Stadler, A.-M. (2009b). J. Mol. Struct. 931, 20–24.  CAS Google Scholar
First citationRamirez, J., Stadler, A.-M., Rogez, G., Drillon, M. & Lehn, J.-M. (2009a). Inorg. Chem. 48, 2456–2463.  Web of Science PubMed CAS Google Scholar
First citationRigaku (2012). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonar, V. N., Parkin, S. & Crooks, P. A. (2005). Acta Cryst. E61, o933–o935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Ferreira, M. L., Nogueira, T. C. M., Golçalves, R. S. B., Peralta, M. A., Lourenço, M. S. C. F. R. & Vicente, F. R. (2008). Lett. Drug Des. Discov. 5, 221–224.  Google Scholar
First citationWagner, P., Officer, D. L. & Kubicki, M. (2006). Acta Cryst. E62, o5931–o5932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds