research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-bis­­(pyridin-3-ylmeth­yl)cyclo­hexane-1,4-di­ammonium dichloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, and bResearch institute of Natural Science and Department of Chemistry, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, kmpark@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 25 October 2016; accepted 26 October 2016; online 4 November 2016)

The title salt, C18H26N42+·2Cl, was obtained by the protonation of N,N-bis­(pyridin-4-ylmeth­yl)cyclo­hexane-1,4-di­amine with hydro­chloric acid in ethanol. The asymmetric unit consists of one half of an N,N-bis­(pyridin-3-ylmeth­yl)cyclo­hexane-1,4-di­ammonium dication, with a crystallographic inversion centre located at the centre of the cyclo­hexyl ring, and a chloride anion. The central cyclo­hexyl ring in the dication adopts a chair conformation. The two trans-(4-pyridine)–CH2–NH2– moieties at the 1- and 4-positions of the central cyclo­hexyl ring occupy equatorial sites. The terminal pyridine ring is tilted by 53.72 (6)° with respect to the mean plane of the central cyclo­hexyl ring (r.m.s. deviation = 0.2413 Å). In the crystal, N+—H⋯Cl hydrogen bonds between the dications and the chloride anions, and ππ stacking inter­actions between the pyridine rings of the dications afford a two-dimensional sheet extending parallel to the ab plane. These sheets are further connected through weak C—H⋯Cl hydrogen bonds, resulting in the formation of a three-dimensional supra­molecular network.

1. Chemical context

Several dipyridyl-type ligands with or without a central section between the terminal pyridine rings have contributed greatly to the development of metal–organic coordination polymers with intriguing topologies or potential applications (Silva et al., 2015[Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774-6803.]; Furukawa et al., 2014[Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700-5734.]; Robin & Fromm, 2006[Robin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127-2157.]; Robson, 2008[Robson, R. (2008). Dalton Trans. pp. 5113-5131.]; Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]). Our group has also tried to prepare extended dipyridyl-type ligands with a bulky central moiety for the construction of versatile coordination polymers. Recently, we prepared the dipyridyl-type ligand containing 4-pyridine terminal groups and a cyclo­hexyl ring as a bulky central moiety, namely N,N-bis­(pyridin-4-ylmeth­yl)cyclo­hexane-1,4-di­amine, and reported the crystal structure of its chloride salt (Moon et al., 2016[Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1453-1455.]). As an extension of our research, we have prepared a dipyridyl-type ligand with central cyclo­hexyl ring and 3-pyridine terminal groups, namely N,N-bis­(pyridin-3-ylmeth­yl)cyclo­hexane-1,4-di­amine, synthesized by a condensation reaction between 1,4-cyclo­hexa­ne­diamine and 3-pyridine­carboxaldehyde according to the literature procedure (Huh & Lee, 2007[Huh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244-1248.]). Herein we report on crystal structure of the title salt obtained by the protonation of both amine groups in this mol­ecule.

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of the title salt, which lies about an inversion centre located at the centre of the cyclo­hexyl ring. Therefore, the asymmetric unit comprises one half of the N,N-bis­(pyridin-3-ylmeth­yl)cyclo­hexane-1,4-di­ammo­nium dication and a chloride anion. In the dication, the central cyclo­hexyl ring displays a chair conformation and the two trans-(4-pyridine)–CH2–NH2– moieties occupy equatorial sites at the 1- and 4-positions of the central cyclo­hexyl ring. The terminal pyridine ring is tilted by 53.72 (6)° with respect to the mean plane of the cyclo­hexyl ring (r.m.s. deviation = 0.2413 Å). This tilting angle is larger than that [27.98 (5)°] of the similar dication with 4-pyridine rings as the terminal groups (Moon et al., 2016[Moon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1453-1455.]).

[Scheme 1]
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title salt, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius and yellow dashed lines represent the inter­molecular N+—H⋯Cl hydrogen bonds. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

3. Supra­molecular features

In the crystal, N+–H⋯Cl hydrogen bonds, Table 1[link] (yellow dashed lines in Figs. 2[link] and 3[link]), between the dications and the chloride anions lead to the formation of chains along the b axis. Adjacent chains are additionally connected through inter­molecular ππ stacking inter­actions [centroid-to-centroid distance = 3.8197 (8) Å] between the pyridine rings (red dashed lines in Figs. 2[link] and 3[link]), resulting in the formation of a sheet extending parallel to the ab plane. These sheets are linked by weak C–H⋯Cl hydrogen bonds, Table 1[link] (black dashed lines in Fig. 3[link]), between the dications and the chloride anions, forming a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.891 (15) 2.237 (15) 3.1215 (10) 171.7 (12)
N1—H1B⋯Cl1i 0.876 (16) 2.287 (16) 3.1588 (10) 173.8 (13)
C3—H3⋯Cl1ii 1.00 2.76 3.7106 (11) 158
C8—H8⋯Cl1iii 0.95 2.76 3.6020 (13) 148
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The two-dimensional sheet of the title salt formed through inter­molecular N+—H⋯Cl hydrogen bonds (yellow dashed lines) between the dications and the chloride anions and ππ stacking inter­actions (red dashed lines) between the pyridine rings of dications. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
The three-dimensional supra­molecular network of the title salt formed through inter­molecular C—H⋯Cl hydrogen bonds (black dashed lines) between the two-dimensional sheets constructed by inter­molecular N+—H⋯Cl hydrogen bonds (yellow dashed lines) and ππ stacking inter­actions (red dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed only a CoII complex with the dication of the title salt as a ligand, namely catena-[bis­(μ2-N,N′-bis­(pyridin-3-ylmeth­yl)cyclo­hexane-1,4-diaminium)(nitrato-O,O′)cobalt(II) penta­nitrate methanol solvate] (Lee & Lee, 2010[Lee, K.-E. & Lee, S. W. (2010). J. Mol. Struct. 975, 247-255.]). Each CoII ion in this complex is six-coordinated by two O atoms of one nitrate anion and four N atoms of four dipyridyl-type dication ligands to form a distorted octahedral geometry.

5. Synthesis and crystallization

N,N-bis­(pyridin-3-yl­methyl­ene)cyclo­hexane-1,4-di­amine, prepared according to a literature method (Huh & Lee, 2007[Huh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244-1248.]), was dissolved in ethanol, and then the pH was adjusted to 4–5 with 2 M hydro­chloric acid. The resultant mixture was left to evaporate slowly over several days, resulting in the formation of X-ray quality single crystals of the title salt.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The position of the pyridine nitro­gen atom was determined by the difference in the displacement parameters. All C-bound H atoms were positioned geometrically [with d(C—H) = 0.95 Å for Csp2—H, 0.99 Å for methyl­ene, 1.00 Å for methine H atoms] and were refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms involved in hydrogen bonds were located in difference Fourier maps and refined freely [N—H = 0.891 (15) and 0.876 (16) Å].

Table 2
Experimental details

Crystal data
Chemical formula C18H26N42+·2Cl
Mr 369.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 10.4637 (2), 8.1942 (2), 11.2797 (2)
β (°) 107.812 (1)
V3) 920.78 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.32 × 0.27 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.671, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8881, 2303, 2118
Rint 0.022
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.03
No. of reflections 2303
No. of parameters 117
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N,N'-Bis(pyridin-3-ylmethyl)cyclohexane-1,4-diammonium dichloride top
Crystal data top
C18H26N42+·2ClF(000) = 392
Mr = 369.33Dx = 1.332 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.4637 (2) ÅCell parameters from 4678 reflections
b = 8.1942 (2) Åθ = 2.3–28.4°
c = 11.2797 (2) ŵ = 0.36 mm1
β = 107.812 (1)°T = 173 K
V = 920.78 (3) Å3Block, colourless
Z = 20.32 × 0.27 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
2118 reflections with I > 2σ(I)
φ and ω scansRint = 0.022
Absorption correction: multi-scan
(SADABS; Bruker 2013)
θmax = 28.4°, θmin = 2.3°
Tmin = 0.671, Tmax = 0.746h = 1214
8881 measured reflectionsk = 910
2303 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.3189P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2303 reflectionsΔρmax = 0.29 e Å3
117 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40846 (3)0.04783 (3)0.28633 (2)0.02513 (10)
N10.63461 (9)0.19285 (11)0.51048 (9)0.01829 (19)
H1A0.5756 (14)0.1538 (18)0.4416 (13)0.021 (3)*
H1B0.6295 (14)0.1263 (19)0.5696 (14)0.026 (4)*
N20.83020 (13)0.19199 (14)0.33231 (10)0.0343 (3)
C10.54173 (12)0.64376 (14)0.44414 (11)0.0240 (2)
H1C0.60860.69370.51700.029*
H1D0.53520.71270.37040.029*
C20.58760 (13)0.47226 (14)0.42261 (11)0.0236 (2)
H2A0.52420.42540.34620.028*
H2B0.67730.47800.41060.028*
C30.59394 (11)0.36313 (13)0.53315 (10)0.0180 (2)
H30.66180.40830.60890.022*
C40.77439 (12)0.18178 (15)0.50226 (12)0.0265 (3)
H4A0.83810.22370.58040.032*
H4B0.78190.25150.43300.032*
C50.81211 (11)0.00954 (14)0.48115 (10)0.0207 (2)
C60.79449 (14)0.04487 (16)0.36097 (12)0.0298 (3)
H60.75410.02780.29440.036*
C70.88687 (13)0.29136 (15)0.42730 (12)0.0289 (3)
H70.91540.39590.40920.035*
C80.90643 (13)0.25138 (16)0.54997 (12)0.0299 (3)
H80.94540.32750.61440.036*
C90.86810 (13)0.09778 (16)0.57749 (11)0.0271 (3)
H90.88010.06670.66130.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02754 (17)0.02485 (16)0.02046 (15)0.00212 (10)0.00355 (11)0.00078 (9)
N10.0189 (5)0.0152 (4)0.0209 (4)0.0013 (3)0.0064 (4)0.0008 (3)
N20.0445 (7)0.0312 (6)0.0274 (5)0.0077 (5)0.0114 (5)0.0051 (4)
C10.0265 (6)0.0173 (5)0.0333 (6)0.0025 (4)0.0168 (5)0.0029 (4)
C20.0291 (6)0.0187 (5)0.0291 (6)0.0045 (4)0.0177 (5)0.0032 (4)
C30.0197 (5)0.0141 (5)0.0199 (5)0.0019 (4)0.0056 (4)0.0019 (4)
C40.0205 (6)0.0209 (6)0.0404 (7)0.0008 (4)0.0125 (5)0.0048 (5)
C50.0177 (5)0.0197 (5)0.0261 (5)0.0011 (4)0.0086 (4)0.0014 (4)
C60.0379 (7)0.0274 (6)0.0236 (6)0.0089 (5)0.0087 (5)0.0031 (4)
C70.0281 (6)0.0199 (6)0.0407 (7)0.0032 (5)0.0133 (5)0.0032 (5)
C80.0289 (6)0.0269 (6)0.0340 (6)0.0068 (5)0.0097 (5)0.0089 (5)
C90.0271 (6)0.0319 (7)0.0222 (5)0.0042 (5)0.0075 (4)0.0002 (5)
Geometric parameters (Å, º) top
N1—C41.4963 (14)C3—C1i1.5188 (15)
N1—C31.5033 (13)C3—H31.0000
N1—H1A0.891 (15)C4—C51.5040 (16)
N1—H1B0.876 (16)C4—H4A0.9900
N2—C61.3309 (17)C4—H4B0.9900
N2—C71.3319 (17)C5—C91.3813 (17)
C1—C3i1.5188 (15)C5—C61.3848 (16)
C1—C21.5283 (15)C6—H60.9500
C1—H1C0.9900C7—C81.3750 (18)
C1—H1D0.9900C7—H70.9500
C2—C31.5193 (15)C8—C91.3847 (18)
C2—H2A0.9900C8—H80.9500
C2—H2B0.9900C9—H90.9500
C4—N1—C3113.56 (9)C1i—C3—H3109.0
C4—N1—H1A110.8 (9)C2—C3—H3109.0
C3—N1—H1A109.0 (9)N1—C4—C5112.05 (9)
C4—N1—H1B107.3 (10)N1—C4—H4A109.2
C3—N1—H1B111.2 (10)C5—C4—H4A109.2
H1A—N1—H1B104.6 (13)N1—C4—H4B109.2
C6—N2—C7116.57 (11)C5—C4—H4B109.2
C3i—C1—C2110.35 (9)H4A—C4—H4B107.9
C3i—C1—H1C109.6C9—C5—C6117.55 (11)
C2—C1—H1C109.6C9—C5—C4122.80 (11)
C3i—C1—H1D109.6C6—C5—C4119.62 (11)
C2—C1—H1D109.6N2—C6—C5124.49 (12)
H1C—C1—H1D108.1N2—C6—H6117.8
C3—C2—C1110.35 (9)C5—C6—H6117.8
C3—C2—H2A109.6N2—C7—C8123.82 (12)
C1—C2—H2A109.6N2—C7—H7118.1
C3—C2—H2B109.6C8—C7—H7118.1
C1—C2—H2B109.6C7—C8—C9118.55 (11)
H2A—C2—H2B108.1C7—C8—H8120.7
N1—C3—C1i108.79 (9)C9—C8—H8120.7
N1—C3—C2110.50 (8)C5—C9—C8118.99 (11)
C1i—C3—C2110.60 (9)C5—C9—H9120.5
N1—C3—H3109.0C8—C9—H9120.5
C3i—C1—C2—C357.46 (14)C7—N2—C6—C50.2 (2)
C4—N1—C3—C1i172.97 (9)C9—C5—C6—N21.4 (2)
C4—N1—C3—C265.43 (12)C4—C5—C6—N2176.74 (13)
C1—C2—C3—N1178.12 (9)C6—N2—C7—C81.7 (2)
C1—C2—C3—C1i57.60 (14)N2—C7—C8—C91.5 (2)
C3—N1—C4—C5179.29 (9)C6—C5—C9—C81.50 (18)
N1—C4—C5—C988.08 (14)C4—C5—C9—C8176.57 (11)
N1—C4—C5—C693.89 (13)C7—C8—C9—C50.16 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.891 (15)2.237 (15)3.1215 (10)171.7 (12)
N1—H1B···Cl1ii0.876 (16)2.287 (16)3.1588 (10)173.8 (13)
C3—H3···Cl1iii1.002.763.7106 (11)158
C8—H8···Cl1iv0.952.763.6020 (13)148
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) project (grant Nos. 2012R1A4A1027750 and 2015R1D1A3A01020410).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFurukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. (2014). Chem. Soc. Rev. 43, 5700–5734.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuh, H. S. & Lee, S. W. (2007). Inorg. Chem. Commun. 10, 1244–1248.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, K.-E. & Lee, S. W. (2010). J. Mol. Struct. 975, 247–255.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMoon, S.-H., Kang, D. & Park, K.-M. (2016). Acta Cryst. E72, 1453–1455.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRobin, A. Y. & Fromm, K. M. (2006). Coord. Chem. Rev. 250, 2127–2157.  Web of Science CrossRef CAS Google Scholar
First citationRobson, R. (2008). Dalton Trans. pp. 5113–5131.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774–6803.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds