research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Anthracen-9-yl)carbon­yl]-2,7-di­meth­­oxy­naphthalene: a chain-like structure composed of face-to-face type dimeric mol­ecular aggregates

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 9 October 2016; accepted 10 November 2016; online 18 November 2016)

The asymmetric unit of the title compound, C27H20O3, contains two independent mol­ecules (A and B). The anthracene ring system is connected to the 2,7-di­meth­oxy­naphthalene core in a twisted manner, with dihedral angles of 86.38 (5) and 79.36 (8)°, respectively, for conformers A and B. In the crystal, face-to-face type dimeric mol­ecular aggregates of each conformer are observed. The dimer of conformer A is formed by two pairs of C—H⋯π inter­actions, and that of conformer B by a pair of (sp2)C—H⋯O hydrogen bonds. The dimers of conformer A are linked to each other via a ππ stacking inter­action between the anthracene rings to form a chain along the b axis and the chains are aligned along the c axis, forming a sheet structure. The dimers of conformer B are connected to each other via a couple of C—H⋯π inter­actions to form a chain along the b axis. The chains are aligned along the c axis through (sp2)C—H⋯O=C hydrogen bonds, forming a sheet parallel to the bc plane. The sheets of conformers A and B are alternately stacked along the a axis via two kinds of inter­molecular (sp2)C—H⋯O=C hydrogen bonds.

1. Chemical context

Compounds of coplanar aggregation of π-conjugated aromatic rings have received attention from a wide range of material chemists and organic ones because of their excellent conductivity properties (Lu et al., 2010[Lu, B., Yan, J., Xu, J., Zhou, S. & Hu, X. (2010). Macromolecules, 43, 4599-4608.]). Recently, uniquely shaped π-conjugated aromatic aggregation compounds have moved into the limelight as promising mol­ecular frameworks in nano­electronics, e.g. bucky bowls (Schmidt et al., 2013[Schmidt, B. M., Topolinski, B., Higashibayashi, S., Kojima, T., Kawano, M., Lentz, D. & Sakurai, H. (2013). Chem. Eur. J. 19, 3282-3286.]), coannulene (Yoshimoto et al., 2010[Yoshimoto, S. & Kobayashi, N. (2010). Struct. Bonding (Berlin), 135, 137-168.]) and cyclo­para­phenyl­ene (Bunz et al., 2012[Bunz, U. H. F., Menning, S. & Martín, N. (2012). Angew. Chem. Int. Ed. 51, 7094-7101.]). These compounds can be regarded as mol­ecules of partial structure and motif of fullerene and carbon nanotubes. On the other hand, aromatic aggregate compounds bearing a non-consecutive π-conjugated structure have also started to garner attention. For example, the mol­ecular geometry of 9-aryl­anthracene compounds is of photochemical and photophysical inter­est because a coplanar spatial arrangement of the anthracene and the aryl substituent π-systems is precluded due to intra­molecular hindrance involving the hydrogen atoms (Becker et al., 1992[Becker, H.-D., Langer, V., Sieler, J. & Becker, H.-D. (1992). J. Org. Chem. 57, 1883-1887.]). In such mol­ecules, the π-conjugation is weakened and deviations from mol­ecular planarity are borne out in electronic absorption and emission spectra. In partic­ular, the fluorescence spectra of non-coplanarly situated bichromophoric compounds, characterized by large Stokes shifts, are indicative of differences between the geometry of the ground state and that of the more planar emitting excited state (Becker et al., 1990[Becker, H.-D. (1990). Advances in Photochemistry, Vol. 15, edited by D. H. Volman, G. S. Hammond & K. Gollinick, p. 139. New York: Wiley & Sons.]).

[Scheme 1]

The present authors have studied the synthesis and structure analysis of peri(1,8)-aroylated naphthalene compounds in which aromatic rings accumulate non-coplanarly, giving highly congested intra­molecular circumstances (Okamoto & Yonezawa, 2015[Okamoto, A. & Yonezawa, N. (2015). J. Synth. Org. Chem. Jpn, 73, 339-360.]; Okamoto et al., 2016[Okamoto, A., Tsumuki, T., Sasagawa, K., Siqingaowa & Yonezawa, N. (2016). Eur. Chem. Bull. 5, 211-220.]). As one of the categories of the accumulated π-conjugated aromatic ring compounds, peri-aroyl­naphthalene compounds have some distinguishable structural characteristics. peri-Aroyl­naphthalene compounds belong to the class of poly(aromatic ring) mol­ecules where aromatic rings are linked by ketonic carbonyl groups. Furthermore, the two aroyl groups at peri-positions of the naphthalene ring core are situated in positions very close to each other. Accordingly, a coplanar alignment of the aromatic rings in a mol­ecule is not possible in peri-aroyl­naphthalene compounds because of their highly congested mol­ecular arrangement. On the other hand, the spatial organization around the ketonic carbonyl groups of a diaryl ketone structure is supposed to be rather loose compared to that of directly combined aromatic ring systems, as shown in the rotation barrier for an analogous compound in solution (Okamoto et al., 2012[Okamoto, A., Watanabe, S., Nakaema, K. & Yonezawa, N. (2012). Cryst. Struct. Theory Appl. 1, 121-127.]). In this regard, the expected flexibility of the aromatic ketone compound probably shows great variation in the mol­ecular and packing structures in the crystal. Such a situation offers a good opportunity to reveal the hitherto unknown inter­actions that determine the structure of aromatic rings of accumulated mol­ecules in the crystalline state. This article reports the synthesis and crystal structure of the title 1-anthroylated naphthalene compound.

2. Structural commentary

There are two independent mol­ecules in the asymmetric unit of the title compound. The conformers, labeled A and B, are shown in Fig. 1[link]. Each conformer has essentially the same non-coplanar structure, with the meth­oxy group adjacent to the anthroyl group being oriented to the endo side against the naphthalene ring core. The main difference between the conformers is in the orientation of the anthracene ring with respect to the naphthalene ring core. Conformer A shows a dihedral angle of 86.38 (5)° between the anthracene and naphthalene ring systems, which is slightly larger than that of 79.36 (8)° for conformer B.

[Figure 1]
Figure 1
The structure of the independent mol­ecules A and B, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.

3. Supra­molecular features

Observed non-covalent bonding inter­actions are summarized in Table 1[link]. In the crystal structure, each conformer forms an inversion dimer with a face-to-face type mol­ecular aggregate by complementary hydrogen bonds. In the dimer of conformer A, a pair of (naphthalene)C—H⋯π (anthracene) inter­actions and another pair of (meth­oxy)C—H⋯π (naphthalene) ones are observed (C3—H3⋯Cg1iv and C26—H26ACg2iv; symmetry code in Table 1[link]; Fig. 2[link]). The dimeric aggregates of conformers A are connected into a chain along the b axis through a ππ stacking inter­action between the anthracene rings [centroid-centroid distance of 3.8198 (10) Å between the C12–C13/C18–C20/C25 and C13–C18 rings]. The chains of conformer A are aligned along the c axis by weak van der Waals inter­actions, forming a sheet structure parallel to the bc plane. In the dimer of conformer B, a pair of (anthracene)C—H⋯O(meth­oxy) hydrogen bonds are observed (C50—H50⋯O6iii; Table 1[link] and Fig. 3[link]). Furthermore, a pair of (naphthalene)C—H⋯π(anthracene) inter­actions connect the dimeric aggregates into a chain along the b axis (C30—H30⋯Cg3v; Table 1[link] and Fig. 3[link]). The chains of conformer B are linked by inter­molecular (anthracene)C—H⋯O=C hydrogen bonds (C49—H49⋯O4ii; Table 1[link]) along the c axis, forming a sheet parallel to the bc plane. The two sheets of conformers A and B are stacked alternately along the a axis by (naphthalene)C—H⋯O=C and (anthracene)C—H⋯O=C hydrogen bonds (C46—H46⋯O1 and C7—H7⋯O4i; Table 1[link] and Figs. 4[link] and 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C20–C25, C1–C5/C10 and C47–C52 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.95 2.54 3.419 (3) 154
C46—H46⋯O1 0.95 2.57 3.2925 (19) 133
C49—H49⋯O4ii 0.95 2.57 3.2515 (19) 128
C50—H50⋯O6iii 0.95 2.56 3.368 (2) 143
C3—H3⋯Cg1iv 0.95 2.68 3.557 (2) 153
C26—H26ACg2iv 0.98 2.87 3.730 (2) 147
C30—H30⋯Cg3v 0.95 2.71 3.602 (2) 157
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y, -z; (iv) -x+1, -y+2, -z; (v) -x, -y+1, -z.
[Figure 2]
Figure 2
Dimeric mol­ecular aggregates of conformer A. Two types of complementary C—H⋯π inter­actions are shown as dashed lines. [Symmetry code: (iv) −x + 1, −y + 2, −z.]
[Figure 3]
Figure 3
Dimeric mol­ecular aggregates of conformer B and the chain-like mol­ecular alignments. Two kinds of complementary C—H⋯π inter­actions and (sp2)C—H⋯OMe hydrogen bonds are shown as orange and pink dashed lines. C—H⋯O=C hydrogen bonds between the chains are expressed as blue dashed lines. [Symmetry codes: (ii) x, −y + [{1\over 2}], z − [{1\over 2}]; (iii) −x, −y, -z; (v) −x, −y + 1, −z.]
[Figure 4]
Figure 4
Two kinds of (sp2)C—H⋯O=C hydrogen bonds between conformers A and B are shown as red broken lines. [Symmetry code: (i) x, y − 1, z.]
[Figure 5]
Figure 5
The arrangement of the mol­ecules in the crystal structure, viewed down the b axis.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.37, update 2 February 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) showed 278 structures of 1-substituted naphthalene compounds containing 1-benzoyl­ated 2,7-di­alk­oxy­naphthalene and 1-naphtho­ylated 2,7-di­alk­oxy­naphthalene (including α-naphtho­ylated and β-naphtho­ylated homologues). The title compound is closely related to (2,7-di­meth­oxy­naphthalen-1-yl)(naphthalen-1-yl)methanone, (I)[link] (Tsumuki et al., 2013[Tsumuki, T., Isogai, A., Kawano, H., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. E69, o663.]), (2,7-di­meth­oxy­naph­thalen-1-yl)(phen­yl)methanone, (II) (Kato et al., 2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]), and 2,7-dimeth­oxy-1-(2-naphtho­yl)naphthalene, (III) (Tsumuki et al., 2012[Tsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595.]). These homologues have two, three and one independent mol­ecules, respectively, in the asymmetric units of (I)[link], (II) and (III). The dihedral angles between the aromatic ring of the aroyl group and the 2,7-di­meth­oxy­naphthalene ring core are each 79.07 (4) and 88.19 (4)° for homologue (I)[link], 75.34 (7), 86.47 (7) and 76.55 (6)° for homologue (II), and 80.44 (4)° for homologue (III), which are close to those in the title compound [79.36 (8) and 86.38 (5)°].

5. Synthesis and crystallization

To a solution of 9-anthroyl chloride (7.8 mmol, 1.88 g) and CH2Cl2 (9.0 mL), AlCl3 (7.8 mmol, 1.04 g) was gradually added. After stirring for 10 min, 2,7-di­meth­oxy­naphthalene (3.6 mmol, 0.67 g) was added to the CH2Cl2 solution. The reaction mixture was stirred in ice-bath for 6 h, then poured into ice-cold water. The aqueous layer was extracted with chloro­form (30 ml × 3) and the combined extracts were washed with 2 M aqueous NaOH solution (30 ml × 3) followed by washing with brine (20 ml × 3). The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The title compound was separated from the crude product by column chromatography (eluent: toluene); isolated yield 42%. Yellow needle single crystals suitable for X-ray diffraction were obtained by repeated crystallization from ethyl acetate solution.

1H NMR (500 MHz, CDCl3) δ: 3.00 (3H, s), 3.86 (3H, s), 6.90 (1H, d, J = 9.0 Hz), 7.14 (1H, dd, J = 2.5, 9.0 Hz), 7.42 (2H, dt, J = 2.0, 7.0 Hz), 7.45 (2H, dt, J = 2.0, 7.0 Hz), 7.76 (1H, d, J = 9.0 Hz), 7.87 (1H, d, J = 9.0 Hz), 8.0–8.02 (4H, m), 8.12 (1H, d, J = 2.0 Hz), 8.49 (1H, s) p.p.m. 13C NMR (125 MHz, CDCl3) δ: 55.281, 56.178, 102.94, 111.11, 117.38, 124.07, 124.88, 125.08, 125.46, 126.15, 128.44, 128.51, 130.14, 131,11, 133.42, 134.32, 138.67, 138.76, 159.36, 160.43, 201.25 p.p.m. IR (KBr): 1640(C=O), 1618(Ar), 1511(Ar), 1250(OMe) cm−1. HRMS (m/z): [M + H]+ calculated for C27H21O3, 393.1491, found, 393.1494. m.p. = 444.8–446.9 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (meth­yl) Å, and with Uiso(H) = 1.2 Ueq(C). Rigid bond restraints (DELU) were applied to O3—C8, C1—C2, C2—C3, C4—C5, C5—C6, C7—C8 and C9—C10 in the naphthalene moiety.

Table 2
Experimental details

Crystal data
Chemical formula C27H20O3
Mr 392.43
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 18.5975 (3), 12.9604 (2), 16.8900 (3)
β (°) 96.3650 (7)
V3) 4045.92 (12)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.60 × 0.30 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.692, 0.937
No. of measured, independent and observed [I > 2σ(I)] reflections 59215, 7401, 4629
Rint 0.070
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 0.97
No. of reflections 7401
No. of parameters 546
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.22
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]).

Supporting information


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

1-[(Anthracen-9-yl)carbonyl]-2,7-dimethoxynaphthalene top
Crystal data top
C27H20O3F(000) = 1648
Mr = 392.43Dx = 1.289 Mg m3
Monoclinic, P21/cMelting point = 444.8–446.9 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 18.5975 (3) ÅCell parameters from 45896 reflections
b = 12.9604 (2) Åθ = 3.4–68.2°
c = 16.8900 (3) ŵ = 0.66 mm1
β = 96.3650 (7)°T = 193 K
V = 4045.92 (12) Å3Platelet, yellow
Z = 80.60 × 0.30 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7401 independent reflections
Radiation source: rotating anode4629 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.2°
ω scansh = 2222
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1515
Tmin = 0.692, Tmax = 0.937l = 2020
59215 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0601P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
7401 reflectionsΔρmax = 0.31 e Å3
546 parametersΔρmin = 0.22 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00184 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30526 (6)0.71806 (9)0.04126 (8)0.0649 (4)
O20.43048 (7)0.88098 (9)0.07348 (7)0.0650 (4)
O30.19308 (8)0.91363 (15)0.23930 (9)0.0919 (5)
O40.10679 (6)0.23802 (9)0.22905 (6)0.0524 (3)
O50.03957 (6)0.49125 (9)0.15600 (7)0.0621 (3)
O60.03644 (7)0.05271 (10)0.09642 (8)0.0709 (4)
C10.35478 (8)0.88485 (13)0.02904 (10)0.0504 (4)
C20.39295 (9)0.93766 (14)0.02605 (11)0.0551 (4)
C30.38780 (11)1.04614 (15)0.03283 (13)0.0708 (6)
H30.41311.08190.07030.085*
C40.34683 (12)1.09827 (16)0.01425 (13)0.0748 (6)
H40.34401.17120.00880.090*
C50.30795 (10)1.05116 (15)0.07093 (12)0.0655 (5)
C60.26594 (12)1.10606 (18)0.11951 (15)0.0829 (7)
H60.26351.17900.11390.099*
C70.22837 (12)1.06117 (19)0.17422 (14)0.0807 (7)
H70.20021.10120.20640.097*
C80.23233 (11)0.95147 (18)0.18221 (12)0.0741 (5)
C90.27245 (9)0.89312 (15)0.13665 (10)0.0589 (5)
H90.27460.82040.14380.071*
C100.31102 (9)0.94020 (14)0.07859 (11)0.0564 (4)
C110.35854 (9)0.77030 (13)0.03250 (10)0.0483 (4)
C120.42958 (8)0.71828 (12)0.02502 (10)0.0446 (4)
C130.43721 (9)0.65382 (13)0.04057 (9)0.0475 (4)
C140.37884 (10)0.62973 (14)0.10021 (10)0.0583 (5)
H140.33240.65890.09690.070*
C150.38916 (12)0.56528 (15)0.16185 (11)0.0671 (5)
H150.34960.54910.20040.081*
C160.45763 (12)0.52246 (16)0.16906 (11)0.0676 (5)
H160.46360.47710.21200.081*
C170.51455 (11)0.54500 (15)0.11592 (11)0.0614 (5)
H170.56050.51610.12220.074*
C180.50708 (9)0.61207 (13)0.04985 (10)0.0497 (4)
C190.56517 (9)0.63494 (13)0.00600 (10)0.0536 (4)
H190.61180.61020.00220.064*
C200.55731 (9)0.69286 (13)0.07348 (10)0.0499 (4)
C210.61593 (10)0.70988 (14)0.13398 (12)0.0618 (5)
H210.66270.68520.12620.074*
C220.60641 (11)0.76003 (15)0.20167 (12)0.0706 (6)
H220.64620.77010.24130.085*
C230.53746 (11)0.79769 (15)0.21381 (11)0.0668 (5)
H230.53070.83080.26260.080*
C240.48051 (9)0.78739 (13)0.15684 (10)0.0549 (5)
H240.43500.81580.16560.066*
C250.48758 (8)0.73474 (12)0.08406 (10)0.0450 (4)
C260.47145 (10)0.93094 (16)0.12941 (12)0.0746 (6)
H26A0.50620.97870.10110.090*
H26B0.43870.96930.16820.090*
H26C0.49760.87900.15720.090*
C270.19236 (14)0.8052 (2)0.25240 (14)0.1039 (8)
H27A0.24170.78120.26920.125*
H27B0.17360.77020.20300.125*
H27C0.16130.78950.29410.125*
C280.01998 (8)0.31643 (13)0.13395 (9)0.0427 (4)
C290.00418 (8)0.41658 (14)0.12093 (9)0.0493 (4)
C300.07104 (9)0.43797 (15)0.07641 (11)0.0598 (5)
H300.08690.50720.06790.072*
C310.11253 (9)0.35791 (17)0.04575 (10)0.0615 (5)
H310.15720.37240.01480.074*
C320.09160 (8)0.25468 (15)0.05827 (10)0.0511 (4)
C330.13472 (9)0.17240 (18)0.02490 (11)0.0632 (5)
H330.17890.18720.00690.076*
C340.11440 (9)0.07300 (18)0.03721 (11)0.0642 (5)
H340.14360.01880.01340.077*
C350.04946 (9)0.05029 (15)0.08581 (11)0.0560 (5)
C360.00565 (8)0.12704 (14)0.11868 (9)0.0488 (4)
H360.03810.11020.15060.059*
C370.02517 (8)0.23192 (13)0.10545 (9)0.0453 (4)
C380.09465 (8)0.29910 (13)0.17421 (9)0.0417 (4)
C390.15548 (7)0.35787 (12)0.14272 (9)0.0392 (4)
C400.19892 (8)0.42532 (12)0.19288 (9)0.0423 (4)
C410.19107 (9)0.43916 (14)0.27562 (10)0.0545 (5)
H410.15530.40100.29900.065*
C420.23375 (10)0.50569 (15)0.32078 (11)0.0647 (5)
H420.22820.51220.37580.078*
C430.28638 (10)0.56567 (15)0.28822 (11)0.0635 (5)
H430.31570.61220.32110.076*
C440.29504 (9)0.55677 (14)0.20990 (10)0.0559 (5)
H440.33030.59780.18810.067*
C450.25198 (8)0.48675 (12)0.15987 (9)0.0441 (4)
C460.25969 (8)0.47903 (12)0.07897 (9)0.0451 (4)
H460.29390.52180.05710.054*
C470.21865 (8)0.41046 (12)0.02949 (9)0.0399 (4)
C480.22752 (8)0.40196 (13)0.05310 (9)0.0468 (4)
H480.26020.44680.07560.056*
C490.19020 (8)0.33104 (14)0.09977 (9)0.0507 (4)
H490.19680.32630.15460.061*
C500.14141 (8)0.26408 (13)0.06721 (10)0.0471 (4)
H500.11670.21290.10000.057*
C510.12934 (8)0.27177 (12)0.01032 (9)0.0425 (4)
H510.09560.22660.03070.051*
C520.16631 (7)0.34640 (11)0.06179 (9)0.0377 (4)
C530.01975 (11)0.59695 (14)0.14541 (13)0.0739 (6)
H53A0.02580.60950.16800.089*
H53B0.01350.61340.08840.089*
H53C0.05790.64060.17250.089*
C540.02583 (11)0.08217 (15)0.14738 (13)0.0743 (6)
H54A0.06920.05610.12590.089*
H54B0.02820.15760.15090.089*
H54C0.02320.05320.20060.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0497 (7)0.0481 (8)0.0986 (10)0.0031 (6)0.0160 (6)0.0040 (7)
O20.0689 (8)0.0554 (8)0.0714 (8)0.0007 (7)0.0113 (7)0.0108 (7)
O30.0797 (10)0.1155 (14)0.0815 (10)0.0306 (10)0.0133 (7)0.0171 (10)
O40.0528 (7)0.0567 (8)0.0466 (6)0.0016 (6)0.0000 (5)0.0105 (6)
O50.0507 (7)0.0469 (8)0.0862 (9)0.0097 (6)0.0033 (6)0.0042 (6)
O60.0615 (8)0.0577 (9)0.0931 (10)0.0130 (7)0.0064 (7)0.0037 (7)
C10.0421 (9)0.0431 (11)0.0622 (11)0.0046 (7)0.0106 (7)0.0029 (8)
C20.0519 (10)0.0444 (9)0.0644 (11)0.0027 (8)0.0145 (8)0.0071 (9)
C30.0748 (13)0.0473 (9)0.0867 (14)0.0002 (11)0.0073 (11)0.0039 (11)
C40.0799 (14)0.0458 (12)0.0927 (15)0.0021 (11)0.0176 (11)0.0017 (11)
C50.0575 (11)0.0570 (13)0.0759 (13)0.0140 (9)0.0194 (8)0.0129 (9)
C60.0759 (14)0.0768 (16)0.0895 (16)0.0238 (12)0.0191 (12)0.0249 (12)
C70.0665 (13)0.0909 (13)0.0795 (15)0.0388 (13)0.0140 (11)0.0362 (13)
C80.0559 (11)0.0943 (13)0.0690 (12)0.0231 (11)0.0064 (8)0.0194 (11)
C90.0476 (10)0.0622 (13)0.0636 (11)0.0168 (9)0.0091 (8)0.0148 (9)
C100.0451 (9)0.0512 (12)0.0673 (11)0.0077 (8)0.0180 (7)0.0071 (9)
C110.0436 (9)0.0449 (11)0.0547 (10)0.0011 (8)0.0016 (8)0.0019 (8)
C120.0440 (9)0.0386 (10)0.0511 (9)0.0005 (7)0.0045 (7)0.0058 (8)
C130.0540 (10)0.0425 (10)0.0458 (9)0.0050 (8)0.0043 (8)0.0057 (8)
C140.0630 (11)0.0551 (12)0.0554 (11)0.0042 (9)0.0006 (9)0.0037 (9)
C150.0831 (14)0.0661 (14)0.0499 (11)0.0146 (12)0.0027 (10)0.0033 (10)
C160.0927 (16)0.0626 (13)0.0500 (11)0.0108 (12)0.0181 (11)0.0042 (10)
C170.0749 (13)0.0582 (12)0.0546 (11)0.0043 (10)0.0228 (10)0.0013 (10)
C180.0569 (10)0.0462 (11)0.0480 (10)0.0024 (8)0.0146 (8)0.0037 (8)
C190.0497 (10)0.0526 (11)0.0602 (11)0.0027 (9)0.0138 (8)0.0003 (9)
C200.0463 (9)0.0455 (10)0.0577 (10)0.0012 (8)0.0053 (8)0.0022 (9)
C210.0479 (10)0.0583 (12)0.0771 (13)0.0071 (9)0.0028 (9)0.0041 (10)
C220.0633 (12)0.0682 (14)0.0748 (14)0.0114 (11)0.0169 (10)0.0125 (11)
C230.0733 (13)0.0635 (13)0.0603 (11)0.0150 (11)0.0070 (10)0.0131 (10)
C240.0542 (10)0.0513 (11)0.0585 (11)0.0115 (9)0.0027 (9)0.0043 (9)
C250.0452 (9)0.0378 (10)0.0519 (10)0.0019 (7)0.0043 (7)0.0023 (8)
C260.0636 (12)0.0801 (15)0.0802 (14)0.0126 (11)0.0081 (10)0.0194 (12)
C270.0995 (19)0.131 (3)0.0864 (17)0.0015 (18)0.0328 (14)0.0037 (17)
C280.0360 (8)0.0505 (11)0.0423 (9)0.0027 (8)0.0074 (7)0.0028 (8)
C290.0413 (9)0.0532 (12)0.0538 (10)0.0047 (8)0.0066 (8)0.0006 (9)
C300.0466 (10)0.0613 (13)0.0708 (12)0.0145 (9)0.0029 (9)0.0057 (10)
C310.0378 (9)0.0843 (15)0.0610 (11)0.0096 (10)0.0002 (8)0.0039 (11)
C320.0354 (8)0.0676 (13)0.0507 (10)0.0008 (9)0.0070 (7)0.0005 (9)
C330.0403 (9)0.0884 (16)0.0601 (11)0.0058 (10)0.0023 (8)0.0046 (11)
C340.0465 (10)0.0803 (16)0.0659 (12)0.0181 (10)0.0065 (9)0.0113 (11)
C350.0487 (10)0.0583 (13)0.0626 (11)0.0070 (9)0.0135 (8)0.0020 (9)
C360.0403 (9)0.0555 (12)0.0513 (10)0.0040 (8)0.0075 (7)0.0002 (8)
C370.0356 (8)0.0575 (12)0.0439 (9)0.0011 (8)0.0090 (7)0.0022 (8)
C380.0413 (9)0.0434 (10)0.0407 (9)0.0030 (7)0.0054 (7)0.0006 (8)
C390.0337 (7)0.0410 (9)0.0424 (8)0.0061 (7)0.0021 (6)0.0020 (7)
C400.0361 (8)0.0475 (10)0.0427 (9)0.0067 (7)0.0016 (7)0.0000 (8)
C410.0502 (10)0.0685 (13)0.0443 (9)0.0011 (9)0.0031 (8)0.0048 (9)
C420.0596 (11)0.0867 (15)0.0463 (10)0.0019 (11)0.0004 (9)0.0124 (10)
C430.0547 (11)0.0728 (13)0.0599 (12)0.0031 (10)0.0076 (9)0.0160 (10)
C440.0461 (9)0.0594 (12)0.0603 (11)0.0049 (9)0.0031 (8)0.0075 (9)
C450.0377 (8)0.0462 (10)0.0472 (9)0.0024 (7)0.0010 (7)0.0028 (8)
C460.0368 (8)0.0458 (10)0.0530 (10)0.0016 (7)0.0059 (7)0.0017 (8)
C470.0341 (8)0.0408 (9)0.0444 (9)0.0052 (7)0.0031 (7)0.0005 (7)
C480.0396 (8)0.0560 (11)0.0458 (9)0.0012 (8)0.0085 (7)0.0041 (8)
C490.0443 (9)0.0664 (12)0.0422 (9)0.0018 (9)0.0075 (7)0.0054 (9)
C500.0399 (8)0.0532 (11)0.0483 (10)0.0018 (8)0.0057 (7)0.0097 (8)
C510.0345 (8)0.0442 (10)0.0486 (9)0.0010 (7)0.0045 (7)0.0012 (8)
C520.0323 (7)0.0382 (9)0.0424 (9)0.0055 (7)0.0026 (6)0.0015 (7)
C530.0721 (13)0.0509 (13)0.0974 (15)0.0119 (10)0.0038 (11)0.0021 (11)
C540.0737 (14)0.0528 (13)0.0964 (15)0.0027 (11)0.0094 (12)0.0021 (11)
Geometric parameters (Å, º) top
O1—C111.2226 (18)C26—H26B0.9800
O2—C21.339 (2)C26—H26C0.9800
O2—C261.432 (2)C27—H27A0.9800
O3—C81.364 (2)C27—H27B0.9800
O3—C271.423 (3)C27—H27C0.9800
O4—C381.2203 (17)C28—C291.383 (2)
O5—C291.3574 (19)C28—C371.431 (2)
O5—C531.425 (2)C28—C381.494 (2)
O6—C351.365 (2)C29—C301.407 (2)
O6—C541.417 (2)C30—C311.361 (3)
C1—C21.409 (2)C30—H300.9500
C1—C101.424 (2)C31—C321.403 (2)
C1—C111.487 (2)C31—H310.9500
C2—C31.413 (3)C32—C331.414 (2)
C3—C41.343 (3)C32—C371.425 (2)
C3—H30.9500C33—C341.352 (3)
C4—C51.402 (3)C33—H330.9500
C4—H40.9500C34—C351.414 (2)
C5—C61.390 (3)C34—H340.9500
C5—C101.444 (3)C35—C361.364 (2)
C6—C71.350 (3)C36—C371.418 (2)
C6—H60.9500C36—H360.9500
C7—C81.429 (3)C38—C391.509 (2)
C7—H70.9500C39—C401.408 (2)
C8—C91.359 (2)C39—C521.4113 (19)
C9—C101.416 (2)C40—C451.428 (2)
C9—H90.9500C40—C411.432 (2)
C11—C121.501 (2)C41—C421.350 (2)
C12—C251.402 (2)C41—H410.9500
C12—C131.407 (2)C42—C431.409 (3)
C13—C141.431 (2)C42—H420.9500
C13—C181.432 (2)C43—C441.355 (2)
C14—C151.365 (2)C43—H430.9500
C14—H140.9500C44—C451.424 (2)
C15—C161.407 (3)C44—H440.9500
C15—H150.9500C45—C461.393 (2)
C16—C171.342 (3)C46—C471.389 (2)
C16—H160.9500C46—H460.9500
C17—C181.433 (2)C47—C481.427 (2)
C17—H170.9500C47—C521.433 (2)
C18—C191.385 (2)C48—C491.351 (2)
C19—C201.386 (2)C48—H480.9500
C19—H190.9500C49—C501.410 (2)
C20—C211.426 (2)C49—H490.9500
C20—C251.435 (2)C50—C511.357 (2)
C21—C221.344 (2)C50—H500.9500
C21—H210.9500C51—C521.425 (2)
C22—C231.408 (3)C51—H510.9500
C22—H220.9500C53—H53A0.9800
C23—C241.356 (2)C53—H53B0.9800
C23—H230.9500C53—H53C0.9800
C24—C251.425 (2)C54—H54A0.9800
C24—H240.9500C54—H54B0.9800
C26—H26A0.9800C54—H54C0.9800
C2—O2—C26119.82 (15)H27A—C27—H27C109.5
C8—O3—C27118.70 (17)H27B—C27—H27C109.5
C29—O5—C53119.77 (14)C29—C28—C37119.79 (14)
C35—O6—C54117.68 (14)C29—C28—C38118.86 (15)
C2—C1—C10120.40 (16)C37—C28—C38121.28 (14)
C2—C1—C11119.08 (16)O5—C29—C28115.55 (14)
C10—C1—C11120.47 (16)O5—C29—C30122.95 (16)
O2—C2—C1117.57 (15)C28—C29—C30121.47 (17)
O2—C2—C3122.18 (17)C31—C30—C29118.89 (17)
C1—C2—C3120.15 (18)C31—C30—H30120.6
C4—C3—C2119.4 (2)C29—C30—H30120.6
C4—C3—H3120.3C30—C31—C32122.25 (16)
C2—C3—H3120.3C30—C31—H31118.9
C3—C4—C5123.7 (2)C32—C31—H31118.9
C3—C4—H4118.2C31—C32—C33121.58 (16)
C5—C4—H4118.2C31—C32—C37119.39 (16)
C6—C5—C4123.1 (2)C33—C32—C37119.03 (17)
C6—C5—C10118.4 (2)C34—C33—C32121.39 (17)
C4—C5—C10118.46 (18)C34—C33—H33119.3
C7—C6—C5123.4 (2)C32—C33—H33119.3
C7—C6—H6118.3C33—C34—C35119.60 (18)
C5—C6—H6118.3C33—C34—H34120.2
C6—C7—C8117.9 (2)C35—C34—H34120.2
C6—C7—H7121.0C36—C35—O6124.78 (16)
C8—C7—H7121.0C36—C35—C34121.17 (18)
C9—C8—O3124.8 (2)O6—C35—C34114.05 (17)
C9—C8—C7121.7 (2)C35—C36—C37120.26 (16)
O3—C8—C7113.5 (2)C35—C36—H36119.9
C8—C9—C10120.29 (19)C37—C36—H36119.9
C8—C9—H9119.9C36—C37—C32118.52 (15)
C10—C9—H9119.9C36—C37—C28123.39 (14)
C9—C10—C1123.81 (17)C32—C37—C28118.02 (15)
C9—C10—C5118.23 (17)O4—C38—C28121.83 (14)
C1—C10—C5117.93 (17)O4—C38—C39120.82 (13)
O1—C11—C1121.49 (15)C28—C38—C39117.33 (13)
O1—C11—C12119.62 (15)C40—C39—C52120.94 (13)
C1—C11—C12118.89 (14)C40—C39—C38120.26 (13)
C25—C12—C13120.90 (14)C52—C39—C38118.78 (13)
C25—C12—C11119.13 (14)C39—C40—C45119.09 (14)
C13—C12—C11119.97 (14)C39—C40—C41123.44 (14)
C12—C13—C14123.29 (15)C45—C40—C41117.42 (14)
C12—C13—C18118.84 (15)C42—C41—C40120.96 (17)
C14—C13—C18117.85 (15)C42—C41—H41119.5
C15—C14—C13120.70 (18)C40—C41—H41119.5
C15—C14—H14119.6C41—C42—C43121.50 (17)
C13—C14—H14119.6C41—C42—H42119.3
C14—C15—C16120.85 (18)C43—C42—H42119.3
C14—C15—H15119.6C44—C43—C42119.81 (17)
C16—C15—H15119.6C44—C43—H43120.1
C17—C16—C15120.71 (18)C42—C43—H43120.1
C17—C16—H16119.6C43—C44—C45120.90 (17)
C15—C16—H16119.6C43—C44—H44119.5
C16—C17—C18121.03 (19)C45—C44—H44119.5
C16—C17—H17119.5C46—C45—C44121.03 (15)
C18—C17—H17119.5C46—C45—C40119.57 (14)
C19—C18—C13119.55 (15)C44—C45—C40119.39 (15)
C19—C18—C17121.62 (16)C47—C46—C45121.78 (14)
C13—C18—C17118.80 (16)C47—C46—H46119.1
C18—C19—C20122.03 (16)C45—C46—H46119.1
C18—C19—H19119.0C46—C47—C48121.48 (14)
C20—C19—H19119.0C46—C47—C52119.53 (14)
C19—C20—C21122.07 (16)C48—C47—C52118.99 (14)
C19—C20—C25119.11 (15)C49—C48—C47121.00 (15)
C21—C20—C25118.80 (16)C49—C48—H48119.5
C22—C21—C20121.47 (17)C47—C48—H48119.5
C22—C21—H21119.3C48—C49—C50120.14 (15)
C20—C21—H21119.3C48—C49—H49119.9
C21—C22—C23119.97 (18)C50—C49—H49119.9
C21—C22—H22120.0C51—C50—C49120.90 (15)
C23—C22—H22120.0C51—C50—H50119.6
C24—C23—C22120.98 (18)C49—C50—H50119.6
C24—C23—H23119.5C50—C51—C52121.23 (14)
C22—C23—H23119.5C50—C51—H51119.4
C23—C24—C25121.32 (16)C52—C51—H51119.4
C23—C24—H24119.3C39—C52—C51123.45 (13)
C25—C24—H24119.3C39—C52—C47118.93 (13)
C12—C25—C24123.32 (14)C51—C52—C47117.59 (13)
C12—C25—C20119.25 (15)O5—C53—H53A109.5
C24—C25—C20117.36 (14)O5—C53—H53B109.5
O2—C26—H26A109.5H53A—C53—H53B109.5
O2—C26—H26B109.5O5—C53—H53C109.5
H26A—C26—H26B109.5H53A—C53—H53C109.5
O2—C26—H26C109.5H53B—C53—H53C109.5
H26A—C26—H26C109.5O6—C54—H54A109.5
H26B—C26—H26C109.5O6—C54—H54B109.5
O3—C27—H27A109.5H54A—C54—H54B109.5
O3—C27—H27B109.5O6—C54—H54C109.5
H27A—C27—H27B109.5H54A—C54—H54C109.5
O3—C27—H27C109.5H54B—C54—H54C109.5
C26—O2—C2—C1178.71 (14)C53—O5—C29—C28179.33 (15)
C26—O2—C2—C34.7 (2)C53—O5—C29—C302.8 (2)
C10—C1—C2—O2176.99 (14)C37—C28—C29—O5174.52 (13)
C11—C1—C2—O20.7 (2)C38—C28—C29—O58.5 (2)
C10—C1—C2—C30.3 (2)C37—C28—C29—C303.4 (2)
C11—C1—C2—C3177.33 (15)C38—C28—C29—C30173.60 (14)
O2—C2—C3—C4177.20 (17)O5—C29—C30—C31177.69 (16)
C1—C2—C3—C40.7 (3)C28—C29—C30—C310.1 (3)
C2—C3—C4—C50.0 (3)C29—C30—C31—C321.3 (3)
C3—C4—C5—C6179.76 (19)C30—C31—C32—C33178.92 (16)
C3—C4—C5—C101.0 (3)C30—C31—C32—C370.8 (3)
C4—C5—C6—C7179.99 (19)C31—C32—C33—C34179.90 (16)
C10—C5—C6—C70.7 (3)C37—C32—C33—C340.4 (2)
C5—C6—C7—C80.0 (3)C32—C33—C34—C351.4 (3)
C27—O3—C8—C91.0 (3)C54—O6—C35—C362.2 (2)
C27—O3—C8—C7179.54 (18)C54—O6—C35—C34177.12 (16)
C6—C7—C8—C90.1 (3)C33—C34—C35—C362.0 (3)
C6—C7—C8—O3179.52 (17)C33—C34—C35—O6177.34 (15)
O3—C8—C9—C10179.69 (16)O6—C35—C36—C37178.40 (14)
C7—C8—C9—C100.9 (3)C34—C35—C36—C370.9 (2)
C8—C9—C10—C1179.38 (15)C35—C36—C37—C320.8 (2)
C8—C9—C10—C51.6 (2)C35—C36—C37—C28176.15 (14)
C2—C1—C10—C9178.42 (15)C31—C32—C37—C36178.80 (15)
C11—C1—C10—C94.0 (2)C33—C32—C37—C361.5 (2)
C2—C1—C10—C50.7 (2)C31—C32—C37—C284.0 (2)
C11—C1—C10—C5178.28 (14)C33—C32—C37—C28175.70 (14)
C6—C5—C10—C91.5 (2)C29—C28—C37—C36177.69 (14)
C4—C5—C10—C9179.16 (16)C38—C28—C37—C365.4 (2)
C6—C5—C10—C1179.42 (16)C29—C28—C37—C325.3 (2)
C4—C5—C10—C11.3 (2)C38—C28—C37—C32171.61 (13)
C2—C1—C11—O1139.85 (17)C29—C28—C38—O4132.66 (16)
C10—C1—C11—O137.8 (2)C37—C28—C38—O450.4 (2)
C2—C1—C11—C1240.1 (2)C29—C28—C38—C3949.21 (19)
C10—C1—C11—C12142.21 (15)C37—C28—C38—C39127.73 (15)
O1—C11—C12—C25115.57 (18)O4—C38—C39—C4061.2 (2)
C1—C11—C12—C2564.4 (2)C28—C38—C39—C40120.68 (15)
O1—C11—C12—C1364.3 (2)O4—C38—C39—C52120.84 (16)
C1—C11—C12—C13115.69 (17)C28—C38—C39—C5257.30 (19)
C25—C12—C13—C14176.42 (15)C52—C39—C40—C453.4 (2)
C11—C12—C13—C143.4 (2)C38—C39—C40—C45174.59 (13)
C25—C12—C13—C185.3 (2)C52—C39—C40—C41179.19 (14)
C11—C12—C13—C18174.81 (14)C38—C39—C40—C412.9 (2)
C12—C13—C14—C15178.89 (16)C39—C40—C41—C42179.32 (16)
C18—C13—C14—C152.8 (2)C45—C40—C41—C421.8 (2)
C13—C14—C15—C161.1 (3)C40—C41—C42—C431.5 (3)
C14—C15—C16—C170.8 (3)C41—C42—C43—C440.2 (3)
C15—C16—C17—C180.8 (3)C42—C43—C44—C450.5 (3)
C12—C13—C18—C190.7 (2)C43—C44—C45—C46178.61 (16)
C14—C13—C18—C19179.03 (15)C43—C44—C45—C400.1 (2)
C12—C13—C18—C17178.94 (14)C39—C40—C45—C460.1 (2)
C14—C13—C18—C172.7 (2)C41—C40—C45—C46177.49 (14)
C16—C17—C18—C19179.17 (17)C39—C40—C45—C44178.65 (14)
C16—C17—C18—C130.9 (3)C41—C40—C45—C441.0 (2)
C13—C18—C19—C203.5 (3)C44—C45—C46—C47179.37 (15)
C17—C18—C19—C20174.67 (15)C40—C45—C46—C472.1 (2)
C18—C19—C20—C21175.16 (16)C45—C46—C47—C48179.13 (14)
C18—C19—C20—C253.1 (2)C45—C46—C47—C520.7 (2)
C19—C20—C21—C22175.28 (18)C46—C47—C48—C49176.31 (15)
C25—C20—C21—C223.0 (3)C52—C47—C48—C493.5 (2)
C20—C21—C22—C230.4 (3)C47—C48—C49—C500.2 (2)
C21—C22—C23—C242.3 (3)C48—C49—C50—C512.2 (2)
C22—C23—C24—C252.5 (3)C49—C50—C51—C521.1 (2)
C13—C12—C25—C24171.16 (15)C40—C39—C52—C51173.22 (14)
C11—C12—C25—C248.7 (2)C38—C39—C52—C518.8 (2)
C13—C12—C25—C205.8 (2)C40—C39—C52—C474.8 (2)
C11—C12—C25—C20174.35 (15)C38—C39—C52—C47173.18 (13)
C23—C24—C25—C12177.12 (17)C50—C51—C52—C39179.70 (14)
C23—C24—C25—C200.1 (3)C50—C51—C52—C472.3 (2)
C19—C20—C25—C121.6 (2)C46—C47—C52—C392.8 (2)
C21—C20—C25—C12179.88 (15)C48—C47—C52—C39177.42 (13)
C19—C20—C25—C24175.54 (15)C46—C47—C52—C51175.36 (13)
C21—C20—C25—C242.8 (2)C48—C47—C52—C514.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C20–C25, C1–C5/C10 and C47–C52 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.952.543.419 (3)154
C46—H46···O10.952.573.2925 (19)133
C49—H49···O4ii0.952.573.2515 (19)128
C50—H50···O6iii0.952.563.368 (2)143
C3—H3···Cg1iv0.952.683.557 (2)153
C26—H26A···Cg2iv0.982.873.730 (2)147
C30—H30···Cg3v0.952.713.602 (2)157
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z1/2; (iii) x, y, z; (iv) x+1, y+2, z; (v) x, y+1, z.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for his technical advice.

References

First citationBecker, H.-D. (1990). Advances in Photochemistry, Vol. 15, edited by D. H. Volman, G. S. Hammond & K. Gollinick, p. 139. New York: Wiley & Sons.  Google Scholar
First citationBecker, H.-D., Langer, V., Sieler, J. & Becker, H.-D. (1992). J. Org. Chem. 57, 1883–1887.  CrossRef CAS Google Scholar
First citationBunz, U. H. F., Menning, S. & Martín, N. (2012). Angew. Chem. Int. Ed. 51, 7094–7101.  CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, B., Yan, J., Xu, J., Zhou, S. & Hu, X. (2010). Macromolecules, 43, 4599–4608.  CrossRef CAS Google Scholar
First citationOkamoto, A., Tsumuki, T., Sasagawa, K., Siqingaowa & Yonezawa, N. (2016). Eur. Chem. Bull. 5, 211–220.  Google Scholar
First citationOkamoto, A., Watanabe, S., Nakaema, K. & Yonezawa, N. (2012). Cryst. Struct. Theory Appl. 1, 121–127.  CSD CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2015). J. Synth. Org. Chem. Jpn, 73, 339–360.  CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchmidt, B. M., Topolinski, B., Higashibayashi, S., Kojima, T., Kawano, M., Lentz, D. & Sakurai, H. (2013). Chem. Eur. J. 19, 3282–3286.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Isogai, A., Kawano, H., Yonezawa, N. & Okamoto, A. (2013). Acta Cryst. E69, o663.  CSD CrossRef IUCr Journals Google Scholar
First citationTsumuki, T., Isogai, A., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o2595.  CSD CrossRef IUCr Journals Google Scholar
First citationYoshimoto, S. & Kobayashi, N. (2010). Struct. Bonding (Berlin), 135, 137–168.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds