research communications
H-chromen-2-one
of 7-hydroxy-8-[(4-methylpiperazin-1-yl)methyl]-2aDivision of Natural Sciences, Osaka Kyoiku University, Kashiwara, Osaka 582-8582, Japan, and bOsaka Municipal Technical Research Institute, Osaka 536-8553, Japan
*Correspondence e-mail: kubono@cc.osaka-kyoiku.ac.jp
In the title compound, C15H18N2O3, the coumarin ring is essentially planar, with an r.m.s. deviation of 0.012 Å. An intramolecular O—H⋯N hydrogen bond forms an S(6) ring motif. The piperazine ring adopts a chair conformation. In the crystal, a C—H⋯O hydrogen bond generates a C(4) chain motif running along the c axis. The chain structure is stabilized by a C—H⋯π interaction. The chains are linked by π–π interactions [centroid–centroid distance of 3.5745 (11) Å], forming a sheet structure parallel to the bc plane.
Keywords: crystal structure; coumarin; piperazine; hydrogen bonding; π–π interactions.
CCDC reference: 1511659
1. Chemical context
Coumarin (2H-chromen-2-one) derivatives have wide applications in diverse areas such as pharmaceuticals (Neyts et al., 2009), dyes (Hara et al., 2003) and (Schadt et al., 1996). Since piperazine is a heterocyclic and aliphatic diamine, having a flexible structure and a high solubility not only in organic solvents but also in water, its derivatives form complexes with various metal ions in chair and boat conformations. For example, the piperazine ring in a dinuclear zinc(II) complex with a piperazine-based Schiff base adopts a chair form, whereas that in a mononuclear cobalt(III) complex with the same ligand is in a boat form (Cretu et al., 2015). Moreover, the piperazine ring has recently been utilized as a proton-recognition site in pH-sensitive fluorescent probes (Lee et al., 2014) and a linker bridging two chromophores in fluorescent ion-sensors (Srivastava et al., 2014; Jiang et al., 2011). We are attempting to develop water-soluble chemosensors based on coumarin, and report here the molecular and of the title compound.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The coumarin ring is almost planar with a maximum deviation of 0.023 (2) Å for atom C6. There is an intramolecular O—H⋯N hydrogen bond involving the hydroxy group (O1—H1) and a piperazine N atom (N4), generating an S(6) ring motif (Fig. 1 and Table 1). The piperazine ring adopts a chair conformation with puckering parameters: Q = 0.582 (2) Å, θ = 1.9 (2)° and φ = 22 (7)°. The C16—N4—C15—C14 and C19—N4—C15—C14 torsion angles are −78.8 (2) and 158.52 (16)°, respectively. The bond lengths and angles of the title compound are normal and agree with those values in other Mannich bases of 7-hydroxycoumarin (Leong & Vittal, 2010; Kobayashi et al., 2014).
3. Supramolecular features
In the crystal, molecules are linked by a C—H⋯O hydrogen bond (C11—H11⋯O2i; symmetry code in Table 1), forming a C(4) chain motif running parallel to the c axis. A C—H⋯π interaction (C15—H15B⋯Cg1ii; Cg1 is the centroid of the O3/C9–C13 ring; symmetry code in Table 1) is also observed in the chain (Fig. 2). The chains are linked through slipped parallel π–π interactions [Cg1⋯Cg1iii = 3.5745 (11) Å, inter-planar distance = 3.404 Å and slippage = 1.090 Å; symmetry code: (iii) −x, −y, −z + 1], forming a supramolecular sheet parallel to the bc plane.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.37; Groom et al., 2016) gave 1700 and 85 structures containing coumarin and 7-hydroxycoumarin, respectively. Of these structures, the compounds that resemble the title compound are N-(7-hydroxy-4-methyl-8-coumarinyl)-L-alanine (Leong & Vittal, 2010) and 8-{[bis(pyridin-2-ylmethyl)amino]methyl}-7-hydroxy-2H-chromen-2-one (Kobayashi et al., 2014). A search for the fragment methylpiperazine gave 666 hits, but none contained coumarin.
5. Synthesis and crystallization
The title compound was prepared by modification of the reported procedure (Mazzei et al., 2008). 1-Methylpiperazine (0.64 g, 6.4 mmol) and formaldehyde (37% aqueous solution 0.64 mL, 0.64 mmol) in 50 ml of acetonitrile was stirred for 30 min at 333 K. To the product obtained was added 7-hydroxycoumarin (1.04 g, 0.64 mmol), and the mixture was heated for 3 h at 338 K. After the completion of the reaction, as indicated by TLC, the solvent was removed under vacuum. The residue was suspended in water and extracted with chloroform, and the extract was washed with a saturated sodium chloride aqueous solution. The organic phase was separated, dried with anhydrous sodium sulfate, and the solvent was removed under vacuum to yield a yellow product. The product was recrystallized from acetonitrile solution to obtained colorless crystals of the title compound (yield: 76%). MS (m/z): [M + H]+, 275.1. Analysis calculated for C15H18N2O3: C 65.68, H 6.61, N 10.21%; found: C 65.40, H 6.45, N 10.06%.
6. Refinement
Crystal data, data collection and structure . The hydroxy H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1511659
https://doi.org/10.1107/S2056989016017217/is5461sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016017217/is5461Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016017217/is5461Isup3.cml
Data collection: RAPID-AUTO (Rigaku, 2006); cell
RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2015); software used to prepare material for publication: CrystalStructure (Rigaku, 2016).C15H18N2O3 | F(000) = 584.00 |
Mr = 274.31 | Dx = 1.324 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 15.3519 (6) Å | Cell parameters from 6828 reflections |
b = 9.4005 (4) Å | θ = 3.0–27.4° |
c = 9.9702 (4) Å | µ = 0.09 mm−1 |
β = 106.954 (1)° | T = 296 K |
V = 1376.32 (10) Å3 | Block, colorless |
Z = 4 | 0.20 × 0.10 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 1566 reflections with F2 > 2.0σ(F2) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.037 |
ω scans | θmax = 27.4°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −19→19 |
Tmin = 0.823, Tmax = 0.991 | k = −12→12 |
13237 measured reflections | l = −12→11 |
3136 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0829P)2 + 0.0112P] where P = (Fo2 + 2Fc2)/3 |
3136 reflections | (Δ/σ)max < 0.001 |
186 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.30930 (10) | −0.15085 (16) | 0.50405 (16) | 0.0643 (4) | |
O2 | −0.04527 (10) | 0.32032 (16) | 0.48480 (15) | 0.0652 (5) | |
O3 | 0.06794 (9) | 0.17001 (13) | 0.49705 (13) | 0.0516 (4) | |
N4 | 0.26991 (10) | 0.05030 (17) | 0.31592 (15) | 0.0490 (4) | |
N5 | 0.41058 (11) | 0.13494 (18) | 0.19673 (17) | 0.0570 (5) | |
C6 | 0.24973 (13) | −0.0902 (2) | 0.5650 (2) | 0.0506 (5) | |
C7 | 0.25092 (14) | −0.1386 (2) | 0.6984 (2) | 0.0552 (5) | |
H7 | 0.2931 | −0.2072 | 0.7432 | 0.066* | |
C8 | 0.19055 (13) | −0.0858 (2) | 0.7631 (2) | 0.0535 (5) | |
H8 | 0.1917 | −0.1194 | 0.8513 | 0.064* | |
C9 | 0.12716 (12) | 0.0182 (2) | 0.69801 (18) | 0.0471 (5) | |
C10 | 0.06032 (14) | 0.0772 (2) | 0.7567 (2) | 0.0525 (5) | |
H10 | 0.0575 | 0.0456 | 0.8438 | 0.063* | |
C11 | 0.00197 (14) | 0.1765 (2) | 0.6887 (2) | 0.0530 (5) | |
H11 | −0.0407 | 0.2128 | 0.7294 | 0.064* | |
C12 | 0.00365 (13) | 0.2289 (2) | 0.5539 (2) | 0.0507 (5) | |
C13 | 0.12898 (12) | 0.0672 (2) | 0.56609 (19) | 0.0455 (5) | |
C14 | 0.18880 (12) | 0.0155 (2) | 0.49655 (18) | 0.0484 (5) | |
C15 | 0.18271 (13) | 0.0648 (2) | 0.3490 (2) | 0.0588 (6) | |
H15A | 0.1365 | 0.0094 | 0.2822 | 0.071* | |
H15B | 0.1639 | 0.1637 | 0.3387 | 0.071* | |
C16 | 0.33329 (15) | 0.1654 (2) | 0.3767 (2) | 0.0638 (6) | |
H16A | 0.3430 | 0.1690 | 0.4772 | 0.077* | |
H16B | 0.3077 | 0.2557 | 0.3370 | 0.077* | |
C17 | 0.42259 (15) | 0.1407 (3) | 0.3465 (2) | 0.0698 (7) | |
H17A | 0.4645 | 0.2169 | 0.3876 | 0.084* | |
H17B | 0.4490 | 0.0520 | 0.3893 | 0.084* | |
C18 | 0.34652 (13) | 0.0235 (2) | 0.1345 (2) | 0.0565 (5) | |
H18A | 0.3716 | −0.0678 | 0.1719 | 0.068* | |
H18B | 0.3370 | 0.0222 | 0.0340 | 0.068* | |
C19 | 0.25631 (13) | 0.0457 (2) | 0.16373 (19) | 0.0558 (5) | |
H19A | 0.2291 | 0.1341 | 0.1214 | 0.067* | |
H19B | 0.2152 | −0.0314 | 0.1227 | 0.067* | |
C20 | 0.49746 (16) | 0.1123 (3) | 0.1694 (3) | 0.0822 (8) | |
H20A | 0.5379 | 0.1894 | 0.2085 | 0.099* | |
H20B | 0.4883 | 0.1082 | 0.0700 | 0.099* | |
H20C | 0.5236 | 0.0245 | 0.2115 | 0.099* | |
H1 | 0.3043 (18) | −0.092 (3) | 0.417 (3) | 0.107 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0681 (10) | 0.0675 (10) | 0.0633 (10) | 0.0177 (7) | 0.0287 (8) | 0.0060 (7) |
O2 | 0.0673 (10) | 0.0717 (10) | 0.0621 (10) | 0.0164 (8) | 0.0276 (8) | 0.0063 (8) |
O3 | 0.0511 (8) | 0.0612 (9) | 0.0469 (8) | 0.0076 (6) | 0.0210 (6) | 0.0021 (6) |
N4 | 0.0470 (9) | 0.0617 (10) | 0.0418 (9) | −0.0007 (8) | 0.0184 (7) | −0.0019 (7) |
N5 | 0.0529 (10) | 0.0658 (11) | 0.0559 (10) | −0.0037 (8) | 0.0217 (8) | 0.0024 (8) |
C6 | 0.0502 (11) | 0.0537 (12) | 0.0499 (11) | −0.0005 (9) | 0.0179 (9) | −0.0016 (9) |
C7 | 0.0526 (11) | 0.0600 (13) | 0.0510 (12) | 0.0015 (10) | 0.0119 (10) | 0.0065 (10) |
C8 | 0.0566 (12) | 0.0598 (12) | 0.0434 (10) | −0.0070 (10) | 0.0137 (9) | 0.0040 (9) |
C9 | 0.0488 (10) | 0.0532 (11) | 0.0408 (10) | −0.0086 (9) | 0.0155 (9) | −0.0037 (8) |
C10 | 0.0577 (12) | 0.0604 (12) | 0.0420 (10) | −0.0081 (10) | 0.0186 (9) | −0.0039 (9) |
C11 | 0.0557 (12) | 0.0601 (13) | 0.0489 (11) | −0.0047 (10) | 0.0242 (10) | −0.0075 (10) |
C12 | 0.0495 (11) | 0.0562 (12) | 0.0496 (11) | −0.0030 (10) | 0.0197 (10) | −0.0065 (9) |
C13 | 0.0437 (10) | 0.0484 (11) | 0.0441 (11) | −0.0007 (8) | 0.0126 (9) | −0.0013 (8) |
C14 | 0.0460 (10) | 0.0572 (12) | 0.0437 (10) | 0.0004 (9) | 0.0159 (9) | −0.0001 (9) |
C15 | 0.0518 (12) | 0.0777 (15) | 0.0508 (12) | 0.0094 (10) | 0.0210 (10) | 0.0095 (10) |
C16 | 0.0708 (14) | 0.0702 (15) | 0.0533 (12) | −0.0131 (11) | 0.0226 (11) | −0.0149 (10) |
C17 | 0.0592 (13) | 0.0911 (18) | 0.0593 (14) | −0.0175 (12) | 0.0176 (11) | −0.0095 (12) |
C18 | 0.0616 (12) | 0.0662 (13) | 0.0461 (11) | 0.0004 (11) | 0.0227 (10) | −0.0011 (9) |
C19 | 0.0546 (12) | 0.0709 (14) | 0.0426 (11) | −0.0024 (10) | 0.0153 (9) | −0.0028 (9) |
C20 | 0.0641 (15) | 0.105 (2) | 0.0864 (18) | −0.0046 (14) | 0.0366 (14) | 0.0032 (15) |
O1—C6 | 1.361 (2) | C10—H10 | 0.9300 |
O1—H1 | 1.02 (3) | C11—C12 | 1.438 (3) |
O2—C12 | 1.215 (2) | C11—H11 | 0.9300 |
O3—C13 | 1.382 (2) | C13—C14 | 1.390 (2) |
O3—C12 | 1.389 (2) | C14—C15 | 1.519 (2) |
N4—C16 | 1.463 (2) | C15—H15A | 0.9700 |
N4—C19 | 1.471 (2) | C15—H15B | 0.9700 |
N4—C15 | 1.475 (2) | C16—C17 | 1.505 (3) |
N5—C18 | 1.447 (2) | C16—H16A | 0.9700 |
N5—C17 | 1.451 (3) | C16—H16B | 0.9700 |
N5—C20 | 1.453 (3) | C17—H17A | 0.9700 |
C6—C14 | 1.399 (3) | C17—H17B | 0.9700 |
C6—C7 | 1.401 (3) | C18—C19 | 1.511 (2) |
C7—C8 | 1.368 (3) | C18—H18A | 0.9700 |
C7—H7 | 0.9300 | C18—H18B | 0.9700 |
C8—C9 | 1.399 (3) | C19—H19A | 0.9700 |
C8—H8 | 0.9300 | C19—H19B | 0.9700 |
C9—C13 | 1.401 (2) | C20—H20A | 0.9600 |
C9—C10 | 1.433 (3) | C20—H20B | 0.9600 |
C10—C11 | 1.334 (3) | C20—H20C | 0.9600 |
C6—O1—H1 | 105.1 (15) | N4—C15—H15A | 109.1 |
C13—O3—C12 | 122.33 (15) | C14—C15—H15A | 109.1 |
C16—N4—C19 | 109.05 (15) | N4—C15—H15B | 109.1 |
C16—N4—C15 | 112.12 (15) | C14—C15—H15B | 109.1 |
C19—N4—C15 | 111.59 (15) | H15A—C15—H15B | 107.8 |
C18—N5—C17 | 109.58 (15) | N4—C16—C17 | 109.76 (16) |
C18—N5—C20 | 111.11 (17) | N4—C16—H16A | 109.7 |
C17—N5—C20 | 110.52 (18) | C17—C16—H16A | 109.7 |
O1—C6—C14 | 121.37 (17) | N4—C16—H16B | 109.7 |
O1—C6—C7 | 117.59 (18) | C17—C16—H16B | 109.7 |
C14—C6—C7 | 121.03 (18) | H16A—C16—H16B | 108.2 |
C8—C7—C6 | 120.47 (19) | N5—C17—C16 | 111.21 (18) |
C8—C7—H7 | 119.8 | N5—C17—H17A | 109.4 |
C6—C7—H7 | 119.8 | C16—C17—H17A | 109.4 |
C7—C8—C9 | 120.69 (18) | N5—C17—H17B | 109.4 |
C7—C8—H8 | 119.7 | C16—C17—H17B | 109.4 |
C9—C8—H8 | 119.7 | H17A—C17—H17B | 108.0 |
C8—C9—C13 | 117.62 (17) | N5—C18—C19 | 111.37 (16) |
C8—C9—C10 | 124.42 (17) | N5—C18—H18A | 109.4 |
C13—C9—C10 | 117.96 (18) | C19—C18—H18A | 109.4 |
C11—C10—C9 | 121.20 (18) | N5—C18—H18B | 109.4 |
C11—C10—H10 | 119.4 | C19—C18—H18B | 109.4 |
C9—C10—H10 | 119.4 | H18A—C18—H18B | 108.0 |
C10—C11—C12 | 121.47 (18) | N4—C19—C18 | 109.93 (15) |
C10—C11—H11 | 119.3 | N4—C19—H19A | 109.7 |
C12—C11—H11 | 119.3 | C18—C19—H19A | 109.7 |
O2—C12—O3 | 116.46 (17) | N4—C19—H19B | 109.7 |
O2—C12—C11 | 126.57 (18) | C18—C19—H19B | 109.7 |
O3—C12—C11 | 116.97 (18) | H19A—C19—H19B | 108.2 |
O3—C13—C14 | 116.53 (16) | N5—C20—H20A | 109.5 |
O3—C13—C9 | 120.07 (16) | N5—C20—H20B | 109.5 |
C14—C13—C9 | 123.38 (18) | H20A—C20—H20B | 109.5 |
C13—C14—C6 | 116.77 (16) | N5—C20—H20C | 109.5 |
C13—C14—C15 | 120.91 (17) | H20A—C20—H20C | 109.5 |
C6—C14—C15 | 122.18 (16) | H20B—C20—H20C | 109.5 |
N4—C15—C14 | 112.61 (16) | ||
O1—C6—C7—C8 | −177.60 (18) | O3—C13—C14—C15 | −3.3 (3) |
C14—C6—C7—C8 | 1.8 (3) | C9—C13—C14—C15 | 175.31 (17) |
C6—C7—C8—C9 | −0.6 (3) | O1—C6—C14—C13 | 178.06 (17) |
C7—C8—C9—C13 | −1.0 (3) | C7—C6—C14—C13 | −1.3 (3) |
C7—C8—C9—C10 | 178.61 (19) | O1—C6—C14—C15 | 2.5 (3) |
C8—C9—C10—C11 | 179.86 (19) | C7—C6—C14—C15 | −176.87 (18) |
C13—C9—C10—C11 | −0.6 (3) | C16—N4—C15—C14 | −78.8 (2) |
C9—C10—C11—C12 | −0.1 (3) | C19—N4—C15—C14 | 158.52 (16) |
C13—O3—C12—O2 | 178.67 (16) | C13—C14—C15—N4 | 155.52 (18) |
C13—O3—C12—C11 | −0.9 (3) | C6—C14—C15—N4 | −29.1 (3) |
C10—C11—C12—O2 | −178.7 (2) | C19—N4—C16—C17 | −59.0 (2) |
C10—C11—C12—O3 | 0.8 (3) | C15—N4—C16—C17 | 176.87 (17) |
C12—O3—C13—C14 | 179.00 (16) | C18—N5—C17—C16 | −57.7 (2) |
C12—O3—C13—C9 | 0.3 (3) | C20—N5—C17—C16 | 179.51 (18) |
C8—C9—C13—O3 | −179.94 (16) | N4—C16—C17—N5 | 59.5 (2) |
C10—C9—C13—O3 | 0.4 (3) | C17—N5—C18—C19 | 57.0 (2) |
C8—C9—C13—C14 | 1.5 (3) | C20—N5—C18—C19 | 179.46 (18) |
C10—C9—C13—C14 | −178.15 (17) | C16—N4—C19—C18 | 58.4 (2) |
O3—C13—C14—C6 | −178.98 (16) | C15—N4—C19—C18 | −177.23 (16) |
C9—C13—C14—C6 | −0.3 (3) | N5—C18—C19—N4 | −58.1 (2) |
Cg1 is the centroid of the O3/C9–C13 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N4 | 1.02 (3) | 1.66 (3) | 2.607 (2) | 153 (3) |
C11—H11···O2i | 0.93 | 2.59 | 3.239 (2) | 128 |
C15—H15B···Cg1ii | 0.97 | 2.99 | 3.802 (2) | 142 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y−1/2, z−3/2. |
Acknowledgements
This study was supported financially in part by JSPS KAKENHI grant No. JP15K05539.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Cretu, C., Tudose, R., Cseh, L., Linert, W., Halevas, E., Hatzidimitriou, A., Costisor, O. & Salifoglou, A. (2015). Polyhedron, 85, 48–59. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hara, K., Kurashige, M., Dan-oh, Y., Kasada, C., Shinpo, A., Suga, S., Sayama, K. & Arakawa, H. (2003). New J. Chem. 27, 783–785. Web of Science CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Jiang, J., Jiang, H., Tang, X., Yang, L., Dou, W., Liu, W., Fang, R. & Liu, W. (2011). Dalton Trans. 40, 6367–6370. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kobayashi, H., Katano, K., Hashimoto, T. & Hayashita, T. (2014). Anal. Sci. 30, 1045–1050. CSD CrossRef CAS PubMed Google Scholar
Lee, M. H., Park, N., Yi, C., Han, J. H., Hong, J. H., Kim, K. P., Kang, D. H., Sessler, J. L., Kang, C. & Kim, J. S. (2014). J. Am. Chem. Soc. 136, 14136–14142. Web of Science CrossRef CAS PubMed Google Scholar
Leong, W. L. & Vittal, J. J. (2010). New J. Chem. 34, 2145–2152. Web of Science CSD CrossRef CAS Google Scholar
Mazzei, M., Nieddu, E., Miele, M., Balbi, A., Ferrone, M., Fermeglia, M., Mazzei, M. T., Pricl, S., La Colla, P., Marongiu, F., Ibba, C. & Loddo, R. (2008). Bioorg. Med. Chem. 16, 2591–2605. Web of Science CrossRef PubMed CAS Google Scholar
Neyts, J., De Clercq, E., Singha, R., Chang, Y. H., Das, A. R., Chakraborty, S. K., Hong, S. C., Tsay, S.-C., Hsu, M.-H. & Hwu, J. R. (2009). J. Med. Chem. 52, 1486–1490. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2016). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Schadt, M., Seiberle, H. & Schuster, A. (1996). Nature, 381, 212–215. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2015). Acta Cryst. C71, 9–18. Web of Science CrossRef IUCr Journals Google Scholar
Srivastava, P., Razi, S. S., Ali, R., Gupta, R. C., Yadav, S. S., Narayan, G. & Misra, A. (2014). Anal. Chem. 86, 8693–8699. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.