research communications
Crystal structures of p-substituted derivatives of 2,6-dimethylbromobenzene with ½ ≤ Z′ ≤ 4
aCentro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Apartado Postal 1166, 222000 Tijuana, B.C., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: gaguirre@tectijuana.mx
The crystal structures of four bromoarenes based on 2,6-dimethylbromobenzene are reported, which are differentiated according the X placed para to the Br atom: X = CN (4-bromo-3,5-dimethylbenzonitrile, C9H8BrN), (1), X = NO2 (2-bromo-1,3-dimethyl-5-nitrobenzene, C8H8BrNO2), (2), X = NH2 (4-bromo-3,5-dimethylaniline, C8H10BrN), (3) and X = OH (4-bromo-3,5-dimethylphenol, C8H9BrO), (4). The content of the is different in each crystal, Z′ = ½ (X = CN), Z′ = 1 (X = NO2), Z′ = 2 (X = NH2), and Z′ = 4 (X = OH), and is related to the molecular symmetry and the propensity of X to be involved in hydrogen bonding. In none of the studied compounds does the feature other non-covalent interactions, such as π–π, C—H⋯π or C—Br⋯Br contacts.
Keywords: crystal structure; bromoarenes; Z′; hydrogen bond; molecular symmetry.
1. Chemical context
Our group is interested in the design of chemical model systems for studying polar–π interactions (Cozzi et al., 2008). In order to achieve this objective, it is necessary to prepare a variety of arylboronic as suitable substrates for Suzuki–Miyaura cross-coupling reactions (Ishiyama et al., 1995; Kotha et al., 2002). We obtained these boronic derivatives starting from functionalized bromoarenes. The present communication is about the synthesis and crystallography of a series of such bromoarenes, namely, para-substituted derivatives of 2,6-dimethylbromobenzene, for which the p-substituent is X = CN (1), X = NO2 (2), X = NH2 (3), or X = OH (4).
The crystallized molecules are closely related to one another from the chemical and structural points of view. However, very different crystal structures were obtained, with different compositions for the asymmetric units. Once again, this evidences that small chemical modifications for a given compound may induce dramatic changes in its et al., 2010). As a consequence, the blind tests of organic crystal-structure prediction hosted by the CCDC (Reilly et al., 2016) certainly have a bright future ahead of them.
even in the case of hydrogen/deuterium exchange, which is the smallest possible modification of a molecule (Vasylyeva2. Structural commentary
No unusual bond lengths or angles are observed in the four molecules (Figs. 1–4). For example, the C—Br bond lengths span a narrow range, from 1.900 (4) to 1.910 (2) Å. The substituent X in the position para to the C—Br bond thus has no influence on the geometry of the bromobenzene core, even if very different X groups are used, namely, strongly electron-withdrawing groups (X = CN, NO2) and strongly electron-donating groups (X = NH2, OH). Another structural invariant over the studied series is the minimization of steric crowding effects between the Br atom and the methyl groups in ortho positions. The methyl groups are systematically rotated in such a way that the C—Br bond is staggered with a CH2 fragment of the methyl group. As a consequence, the endocyclic angle at the Br-bearing C atom is always the largest one in the benzene ring, varying from 121.8 (3)° in (3) to 123.9 (4)° in (1).
The point of interest regarding the molecular structures is that four different values of Z′ are obtained for the four compounds. Molecule (1) (X = CN) has the highest potential molecular symmetry, C2v, assuming a linear C—C≡N group. Omitting H atoms, this symmetry is actually reached, with the C—Br and C—C≡N fragments lying on the mirror plane in P21/m (Fig. 1). The then contains a half-molecule, and Z′ = ½. In (2), with X = NO2, the latent symmetry C2v is broken because the nitro group is tilted slightly with respect to the benzene ring by an angle of 13.0 (4)°. For this crystal, Z′ = 1 in P (Fig. 2). Finally, for (3) and (4), which are isoelectronic molecules [X = NH2, (3) and X = OH, (4)], despite the molecular symmetry being close to C2v, the asymmetric units contain more than one molecule: Z′ = 2 for (3) (Fig. 3) and Z′ = 4 for (4) (Fig. 4), in space groups P21/n and Pbca, respectively.
The increasing size of the Z′, may be rationalized on the basis of two key parameters. First, a higher molecular symmetry obviously favours the crystallization of low Z′ crystals, as in (1). This has been observed in many symmetrically substituted benzene derivatives, for example, in 4-bromo-benzonitrile in Cm (Britton et al., 1977; see also Desiraju & Harlow, 1989), or 2,6-dibromo-4-chlorobenzonitrile in P21/m (Britton, 2005). The standard with Z′ = 1 is obtained for (2), for which the molecular symmetry is lowered to C1. Secondly, the introduction of efficient donor groups for hydrogen bonding, such as NH2 and OH groups, is an enabling factor for crystal structures having Z′ > 1, as observed for (3) and (4). A search in the organic subset of the CSD (Groom et al., 2016) reflects such a trend: for example, comparing nitrobenzene and aniline derivatives, the former class is characterized by 12.5% of crystals with Z′ > 1, and this fraction is increased to 15.6% in the latter. In the same way, phenol derivatives with Z′ = 4 are not uncommon (Dey et al., 2005; Mukherjee & Desiraju, 2011).
reflected in the increasing value of3. Supramolecular features
As expected, compound (1) is featureless regarding the packing of the molecules. No short contacts such as halogen bonds are formed, and π–π interactions are insignificant, the shortest separation between benzene ring being defined by cell translations along the short cell axis, a = 4.0382 (1) Å.
For (2), two pairs of weak C—H⋯O hydrogen bonds link the molecules to form two centrosymmetric first-level ring motifs of R22(10), with the participation of the nitro group as acceptor (Table 1). The nitro group participates with two contacts to two rings, generating a chain of R motifs along [10] (Fig. 5). As for (1), slipped π-stacking interactions are insignificant, the benzene-to-benzene distance being, again, determined by the cell axis a = 4.0502 (5) Å.
|
Although compounds (3) and (4) are isoelectronic, they present different crystal structures. This is because their donor groups for hydrogen bonding are of a different nature: the N—H bond is a poorer donor compared to the O—H bond, on the basis of the polarity of these bonds, estimated with the differences of χN − χH = 0.84 and χO − χH = 1.24 (Pauling's scale is used for χ). Moreover, the NH2 group is potentially involved in two hydrogen bonds, while the OH group is expected to form a single, stronger contact, at least as long as bifurcated hydrogen bonds are not considered.
Both compounds (3) and (4) have a supramolecular structure based on chains oriented along a screw 21 axis (Fig. 6). For (3), two discrete contacts D(2) are formed between the two independent molecules (Table 2). These contacts involve only one N—H bond for a given NH2 group, and the acceptor atom is the N site of the connected molecule, with the N—H⋯N contact oriented toward the lone pair of the acceptor N atom. A second level motif C22(4) is formed using the discrete contacts, and the chain of connected molecules runs along [010] (Fig. 6, top).
|
A similar framework of D and C motifs appears in (4), this time starting from a Z′ = 4 three discrete motifs D(2) are formed within the and a fourth D(2) motif connects the first independent molecule with a symmetry-related molecule in the crystal (Table 3). As a consequence, C44(8) chains are formed, propagating parallel to [100] (Fig. 6, bottom). As mentioned above, the hydrogen bonds in (4) are much more efficient than those observed in (3): all O—H⋯O bonds have short H⋯O distances of ca 1.9 Å and O—H⋯O angles are close to 180° (Table 3).
It is worth noting that none of the observed 1D supramolecular structures in (2)–(4) include π–π or C—H⋯π contacts, nor C—Br⋯Br halogen bonds. The arrangement of the molecules in the crystal over the studied series of compounds is thus mainly determined by the absence of, the presence of weak, or strong hydrogen bonds, respectively, in (1), (2) and (3), or (4).
4. Database survey
Polysubstituted benzene systems are ubiquitous in the crystallographic literature. Limiting a survey to 2,6-dimethylbromobenzene, only two derivatives closely related to the series we have studied may be found, with X = tBu (Field et al., 2003) and X = I (Liu et al., 2008), which do not present obvious supramolecular features. Both form Z′ = ½ crystals, as for (1).
5. Synthesis and crystallization
Compound (3) was purchased from Oakwood Chemical Co. and was the starting material for the synthesis of (2) by oxidation with m-CPBA, and (1) and (4) via a Sandmeyer reaction. Single crystals of (3) were obtained by slow evaporation of a CH2Cl2 solution.
Compound (1) was prepared by modification of the reported procedure (Xu et al., 2000). A solution of NaNO2 (0.36 g, 5.2 mmol) in water (5 ml) was added dropwise to a suspension of 4-bromo-3,5-dimethylaniline (1 g, 5 mmol) in aqueous HCl (2 ml, 12 M), and water (2 ml) at 273 K. The mixture was stirred at 273 K for 30 min and then neutralized with NaHCO3. Separately, a solution of CuCN (0.54 g, 6 mmol), and KCN (0.81 g, 12 mmol) in water (10 ml) was heated at 343 K. This solution was added dropwise to the diazotization solution previously prepared. The mixture was kept at 343 K for 30 min with stirring and then cooled at room temperature. The product was extracted with toluene (3 × 30 ml). The combined organic layers were dried over anh. Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica gel (petroleum ether/EtOAc, 95:5) to obtain compound (1) as orange needles (0.77 g, 73%); m.p. 408–410 K; IR: 3022 (C—H Ar), 2354 (C≡N), 1498 (C=C) cm−1; 1H NMR (400 MHz, CDCl3): δ 7.34 (s, 2H), 2.44 (s, 6H) p.p.m.; 13C NMR (100 MHz, CDCl3) δ: 140.0, 133.2, 131.1, 118.4, 110.7, 23.8 p.p.m.; GC–MS (EI): m/z = 209 (100%) [M+], 211 (97%) [M+ + 2] amu. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a CH2Cl2 solution.
Compound (2) was prepared by modification of the reported procedure (Gilbert & Borden, 1979). A solution of 4-bromo-3,5-dimethylaniline and 3-chloroperoxybenzoic acid (4 g, 23 mmol) in CH2Cl2 (35 ml) was heated at 323 K for 2 h. After cooling at room temperature, the precipitate was filtered off and the liquid phase was washed with NaOH (1 M, 3 × 50 ml). The organic layer was dried over anh. Na2SO4 and concentrated under reduced pressure. The residue was dissolved in glacial acetic acid (10 ml), and a solution of H2O2 (5 ml, 33% aq. solution) and glacial acetic acid (5 ml) was added at room temperature. Then, conc. HNO3 (0.5 ml) was slowly added and the mixture was heated to 363 K for 4 h. After cooling, the crude was treated with water (50 ml), and was extracted with CH2Cl2 (3 × 50 ml). The combined organic layers were dried over anh. Na2SO4 and concentrated under reduced pressure. The crude was purified on a silica gel (petroleum ether) to give compound (2) as bright-yellow crystals (0.51 g, 44%); m.p. 478–483 K; IR: 2988 (C—H Aliph), 1558, 1340 (N—O) cm−1; 1H NMR (400 MHz, CDCl3): δ 7.92 (s, 2H), 2.51 (s, 6H) p.p.m.; 13C NMR (100 MHz, CDCl3): δ 146.3, 140.1, 134.8, 122.5, 24.1 p.p.m.; GC–MS (EI): m/z = 229 (100%) [M+], 231 (97%) [M++2] amu. Crystals suitable for single crystal X-ray diffraction were obtained by slow evaporation of an ether solution.
Preparation of (4): A solution of 4-bromo-3,5-dimethylaniline (1 g, 5 mmol) in conc. H2SO4 (25 ml) and water (5 ml) was cooled to 273 K. Then a solution of NaNO2 (0.35 g, 5 mmol) in water (10 ml) was added dropwise under stirring. After additional 30 min the solution was refluxed for 30 min. The mixture was cooled and extracted with EtOAc (3 × 50 ml). The combined organic phases were dried over anh. Na2SO4 and concentrated under reduced pressure. The crude was purified by silica gel (petroleum ether/EtOAc, 9:1) to provide the product (4) as pale-orange crystals (0.56 g, 55%); m.p. 386–388 K; IR: 3620 (O—H), 2987 (C—H aliph), 1590 (C=C Ar), 1120 (C—O) cm−1; 1H NMR (400 MHz, CDCl3): δ 6.57 (s, 2H), 4.99 (s, 1H), 2.34 (s, 6H) p.p.m.; 13C NMR (100 MHz, CDCl3): δ 153.9, 139.5, 118.3, 115.2, 23.8 p.p.m.; GC–MS (EI): m/z = 200 (100%) [M+], 202 (97%) [M+ + 2] amu. Crystals suitable for diffraction were obtained by slow evaporation of an EtOAc solution.
6. Refinement
Crystal data, data collection and structure . At room temperature, compound (3) decomposes after a few minutes under Mo Kα irradiation, but is stable for hours under Cu Kα irradiation. For compound (3), H atoms of NH2 groups were located in a difference Fourier map and were refined with restraints of N—H = 0.89 (2) Å and H⋯H = 1.52 (2) Å. For (4), H atoms of OH groups were found in a difference map and refined freely. All other H atoms in (1)–(4) were refined as riding.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989016017485/is5462sup1.cif
contains datablocks 1, 2, 3, 4, global. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989016017485/is54621sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989016017485/is54622sup3.hkl
Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S2056989016017485/is54623sup4.hkl
Structure factors: contains datablock 4. DOI: https://doi.org/10.1107/S2056989016017485/is54624sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016017485/is54621sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989016017485/is54622sup7.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989016017485/is54623sup8.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989016017485/is54624sup9.cml
For all compounds, data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CifTab (Sheldrick, 2008).C9H8BrN | Dx = 1.601 Mg m−3 |
Mr = 210.07 | Melting point: 408 K |
Monoclinic, P21/m | Cu Kα radiation, λ = 1.54184 Å |
a = 4.0382 (1) Å | Cell parameters from 1415 reflections |
b = 8.9362 (4) Å | θ = 3.7–71.2° |
c = 12.1015 (4) Å | µ = 5.87 mm−1 |
β = 93.763 (3)° | T = 296 K |
V = 435.76 (3) Å3 | Needle, orange |
Z = 2 | 0.21 × 0.15 × 0.12 mm |
F(000) = 208 |
Rigaku OD SuperNova AtlasS2 diffractometer | 883 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 771 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.027 |
Detector resolution: 5.1980 pixels mm-1 | θmax = 71.4°, θmin = 3.7° |
φ and ω scans | h = −3→4 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −10→10 |
Tmin = 0.615, Tmax = 1.000 | l = −14→13 |
2457 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.147 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0947P)2 + 0.0077P] where P = (Fo2 + 2Fc2)/3 |
883 reflections | (Δ/σ)max < 0.001 |
59 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.46 e Å−3 |
0 constraints |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.11810 (14) | 0.7500 | 0.05285 (4) | 0.0896 (4) | |
C2 | 0.3504 (11) | 0.7500 | 0.1947 (4) | 0.0588 (10) | |
C3 | 0.4270 (8) | 0.6133 (4) | 0.2438 (3) | 0.0616 (8) | |
C4 | 0.6007 (9) | 0.6158 (3) | 0.3467 (3) | 0.0615 (7) | |
H4A | 0.6616 | 0.5261 | 0.3814 | 0.074* | |
C5 | 0.6843 (12) | 0.7500 | 0.3980 (4) | 0.0592 (10) | |
C6 | 0.8701 (14) | 0.7500 | 0.5047 (4) | 0.0697 (12) | |
N7 | 1.0181 (16) | 0.7500 | 0.5880 (5) | 0.0920 (15) | |
C8 | 0.3447 (12) | 0.4662 (5) | 0.1894 (4) | 0.0890 (12) | |
H8A | 0.4147 | 0.4671 | 0.1151 | 0.133* | |
H8B | 0.1095 | 0.4499 | 0.1878 | 0.133* | |
H8C | 0.4573 | 0.3873 | 0.2305 | 0.133* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0749 (5) | 0.1338 (7) | 0.0588 (5) | 0.000 | −0.0053 (3) | 0.000 |
C2 | 0.053 (2) | 0.072 (3) | 0.052 (2) | 0.000 | 0.0056 (17) | 0.000 |
C3 | 0.0654 (18) | 0.0579 (17) | 0.0622 (18) | −0.0049 (13) | 0.0085 (14) | −0.0070 (13) |
C4 | 0.0739 (19) | 0.0499 (15) | 0.0613 (17) | 0.0023 (13) | 0.0087 (14) | 0.0037 (12) |
C5 | 0.067 (3) | 0.058 (2) | 0.053 (2) | 0.000 | 0.006 (2) | 0.000 |
C6 | 0.077 (3) | 0.075 (3) | 0.056 (3) | 0.000 | −0.001 (2) | 0.000 |
N7 | 0.104 (4) | 0.104 (4) | 0.066 (3) | 0.000 | −0.012 (3) | 0.000 |
C8 | 0.107 (3) | 0.068 (2) | 0.092 (3) | −0.015 (2) | 0.007 (2) | −0.026 (2) |
Br1—C2 | 1.902 (5) | C5—C6 | 1.450 (7) |
C2—C3 | 1.384 (4) | C6—N7 | 1.138 (7) |
C3—C4 | 1.389 (5) | C8—H8A | 0.9600 |
C3—C8 | 1.498 (5) | C8—H8B | 0.9600 |
C4—C5 | 1.383 (4) | C8—H8C | 0.9600 |
C4—H4A | 0.9300 | ||
C3i—C2—C3 | 123.9 (4) | C4—C5—C6 | 119.8 (2) |
C3—C2—Br1 | 118.1 (2) | N7—C6—C5 | 179.5 (6) |
C2—C3—C4 | 117.2 (3) | C3—C8—H8A | 109.5 |
C2—C3—C8 | 123.3 (3) | C3—C8—H8B | 109.5 |
C4—C3—C8 | 119.5 (3) | H8A—C8—H8B | 109.5 |
C5—C4—C3 | 120.7 (3) | C3—C8—H8C | 109.5 |
C5—C4—H4A | 119.6 | H8A—C8—H8C | 109.5 |
C3—C4—H4A | 119.6 | H8B—C8—H8C | 109.5 |
C4i—C5—C4 | 120.3 (4) | ||
C3i—C2—C3—C4 | −2.2 (7) | C2—C3—C4—C5 | 1.6 (5) |
Br1—C2—C3—C4 | 179.1 (3) | C8—C3—C4—C5 | 179.1 (4) |
C3i—C2—C3—C8 | −179.6 (4) | C3—C4—C5—C4i | −1.1 (7) |
Br1—C2—C3—C8 | 1.8 (5) | C3—C4—C5—C6 | −179.1 (4) |
Symmetry code: (i) x, −y+3/2, z. |
C8H8BrNO2 | F(000) = 228 |
Mr = 230.06 | Dx = 1.716 Mg m−3 |
Triclinic, P1 | Melting point: 478 K |
a = 4.0502 (5) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 9.3817 (6) Å | Cell parameters from 2941 reflections |
c = 12.1823 (5) Å | θ = 3.7–71.5° |
α = 93.498 (4)° | µ = 5.98 mm−1 |
β = 99.284 (4)° | T = 296 K |
γ = 101.722 (5)° | Block, pale yellow |
V = 445.20 (7) Å3 | 0.80 × 0.60 × 0.10 mm |
Z = 2 |
Rigaku OD SuperNova AtlasS2 diffractometer | 1697 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 1503 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.038 |
Detector resolution: 5.1980 pixels mm-1 | θmax = 71.7°, θmin = 3.7° |
φ and ω scans | h = −4→4 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −11→11 |
Tmin = 0.304, Tmax = 1.000 | l = −14→14 |
5640 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0686P)2 + 0.2116P] where P = (Fo2 + 2Fc2)/3 |
1697 reflections | (Δ/σ)max < 0.001 |
111 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
0 constraints |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.11600 (12) | 0.72052 (5) | 0.45994 (3) | 0.0787 (2) | |
N1 | 0.2977 (9) | 0.7622 (4) | −0.0226 (3) | 0.0628 (8) | |
O1 | 0.4131 (11) | 0.6691 (4) | −0.0677 (3) | 0.0899 (10) | |
O2 | 0.2182 (11) | 0.8634 (4) | −0.0707 (3) | 0.0947 (11) | |
C1 | 0.1468 (9) | 0.8635 (4) | 0.2627 (3) | 0.0565 (8) | |
C2 | 0.1714 (9) | 0.7332 (4) | 0.3086 (3) | 0.0534 (8) | |
C3 | 0.2324 (9) | 0.6117 (4) | 0.2500 (3) | 0.0548 (8) | |
C4 | 0.2752 (9) | 0.6237 (4) | 0.1406 (3) | 0.0530 (8) | |
H4A | 0.3211 | 0.5459 | 0.0991 | 0.064* | |
C5 | 0.2495 (9) | 0.7520 (4) | 0.0932 (3) | 0.0533 (8) | |
C6 | 0.1846 (10) | 0.8718 (4) | 0.1517 (3) | 0.0571 (8) | |
H6A | 0.1667 | 0.9564 | 0.1173 | 0.069* | |
C7 | 0.0874 (12) | 0.9962 (5) | 0.3270 (4) | 0.0779 (12) | |
H7A | −0.1068 | 0.9678 | 0.3630 | 0.117* | |
H7B | 0.0445 | 1.0676 | 0.2765 | 0.117* | |
H7C | 0.2867 | 1.0373 | 0.3824 | 0.117* | |
C8 | 0.2502 (13) | 0.4705 (5) | 0.3008 (4) | 0.0724 (11) | |
H8A | 0.4026 | 0.4907 | 0.3716 | 0.109* | |
H8B | 0.3335 | 0.4077 | 0.2517 | 0.109* | |
H8C | 0.0257 | 0.4232 | 0.3114 | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0850 (4) | 0.0998 (4) | 0.0536 (3) | 0.0207 (3) | 0.0197 (2) | 0.0041 (2) |
N1 | 0.073 (2) | 0.0602 (17) | 0.0567 (17) | 0.0151 (15) | 0.0126 (15) | 0.0087 (14) |
O1 | 0.132 (3) | 0.093 (2) | 0.0637 (18) | 0.051 (2) | 0.0380 (19) | 0.0117 (16) |
O2 | 0.147 (3) | 0.084 (2) | 0.071 (2) | 0.049 (2) | 0.031 (2) | 0.0291 (17) |
C1 | 0.0481 (17) | 0.060 (2) | 0.059 (2) | 0.0150 (15) | 0.0028 (14) | −0.0057 (16) |
C2 | 0.0472 (17) | 0.066 (2) | 0.0475 (17) | 0.0139 (14) | 0.0087 (13) | 0.0035 (15) |
C3 | 0.0521 (18) | 0.0584 (19) | 0.0536 (18) | 0.0132 (15) | 0.0070 (14) | 0.0044 (15) |
C4 | 0.0570 (19) | 0.0500 (17) | 0.0541 (19) | 0.0158 (14) | 0.0103 (14) | 0.0044 (14) |
C5 | 0.0533 (18) | 0.0539 (18) | 0.0513 (18) | 0.0103 (14) | 0.0069 (14) | 0.0040 (14) |
C6 | 0.061 (2) | 0.0497 (18) | 0.061 (2) | 0.0169 (15) | 0.0044 (16) | 0.0045 (15) |
C7 | 0.084 (3) | 0.072 (3) | 0.078 (3) | 0.027 (2) | 0.010 (2) | −0.016 (2) |
C8 | 0.090 (3) | 0.068 (2) | 0.064 (2) | 0.023 (2) | 0.016 (2) | 0.0195 (19) |
Br1—C2 | 1.900 (4) | C4—C5 | 1.382 (5) |
N1—O1 | 1.214 (4) | C4—H4A | 0.9300 |
N1—O2 | 1.217 (4) | C5—C6 | 1.388 (5) |
N1—C5 | 1.460 (5) | C6—H6A | 0.9300 |
C1—C6 | 1.389 (6) | C7—H7A | 0.9600 |
C1—C2 | 1.390 (5) | C7—H7B | 0.9600 |
C1—C7 | 1.512 (5) | C7—H7C | 0.9600 |
C2—C3 | 1.394 (5) | C8—H8A | 0.9600 |
C3—C4 | 1.379 (5) | C8—H8B | 0.9600 |
C3—C8 | 1.506 (5) | C8—H8C | 0.9600 |
O1—N1—O2 | 122.2 (4) | C6—C5—N1 | 118.9 (3) |
O1—N1—C5 | 119.0 (3) | C5—C6—C1 | 118.9 (3) |
O2—N1—C5 | 118.7 (3) | C5—C6—H6A | 120.5 |
C6—C1—C2 | 117.7 (3) | C1—C6—H6A | 120.5 |
C6—C1—C7 | 118.6 (4) | C1—C7—H7A | 109.5 |
C2—C1—C7 | 123.7 (4) | C1—C7—H7B | 109.5 |
C1—C2—C3 | 123.8 (3) | H7A—C7—H7B | 109.5 |
C1—C2—Br1 | 117.9 (3) | C1—C7—H7C | 109.5 |
C3—C2—Br1 | 118.4 (3) | H7A—C7—H7C | 109.5 |
C4—C3—C2 | 117.4 (3) | H7B—C7—H7C | 109.5 |
C4—C3—C8 | 119.8 (3) | C3—C8—H8A | 109.5 |
C2—C3—C8 | 122.8 (4) | C3—C8—H8B | 109.5 |
C3—C4—C5 | 119.7 (3) | H8A—C8—H8B | 109.5 |
C3—C4—H4A | 120.2 | C3—C8—H8C | 109.5 |
C5—C4—H4A | 120.2 | H8A—C8—H8C | 109.5 |
C4—C5—C6 | 122.5 (3) | H8B—C8—H8C | 109.5 |
C4—C5—N1 | 118.6 (3) | ||
C6—C1—C2—C3 | 0.2 (5) | C3—C4—C5—C6 | 0.6 (6) |
C7—C1—C2—C3 | −178.8 (4) | C3—C4—C5—N1 | 179.7 (3) |
C6—C1—C2—Br1 | −179.5 (3) | O1—N1—C5—C4 | −12.0 (5) |
C7—C1—C2—Br1 | 1.6 (5) | O2—N1—C5—C4 | 167.5 (4) |
C1—C2—C3—C4 | 1.0 (5) | O1—N1—C5—C6 | 167.1 (4) |
Br1—C2—C3—C4 | −179.4 (3) | O2—N1—C5—C6 | −13.4 (5) |
C1—C2—C3—C8 | −178.6 (4) | C4—C5—C6—C1 | 0.6 (6) |
Br1—C2—C3—C8 | 1.1 (5) | N1—C5—C6—C1 | −178.5 (3) |
C2—C3—C4—C5 | −1.3 (5) | C2—C1—C6—C5 | −0.9 (5) |
C8—C3—C4—C5 | 178.2 (3) | C7—C1—C6—C5 | 178.1 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O1i | 0.93 | 2.51 | 3.377 (5) | 156 |
C6—H6A···O2ii | 0.93 | 2.55 | 3.351 (5) | 144 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+2, −z. |
C8H10BrN | Dx = 1.585 Mg m−3 |
Mr = 200.08 | Melting point: 346 K |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 10.48314 (15) Å | Cell parameters from 14036 reflections |
b = 6.10173 (10) Å | θ = 3.4–71.4° |
c = 26.6195 (5) Å | µ = 6.06 mm−1 |
β = 100.0731 (16)° | T = 296 K |
V = 1676.48 (5) Å3 | Needle, colourless |
Z = 8 | 0.30 × 0.12 × 0.10 mm |
F(000) = 800 |
Rigaku OD SuperNova AtlasS2 diffractometer | 3276 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 2716 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.093 |
Detector resolution: 5.1980 pixels mm-1 | θmax = 72.8°, θmin = 3.4° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −7→7 |
Tmin = 0.593, Tmax = 1.000 | l = −32→32 |
39830 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: mixed |
wR(F2) = 0.165 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0779P)2 + 1.0194P] where P = (Fo2 + 2Fc2)/3 |
3276 reflections | (Δ/σ)max < 0.001 |
197 parameters | Δρmax = 0.44 e Å−3 |
6 restraints | Δρmin = −1.11 e Å−3 |
0 constraints |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.24694 (5) | 0.23484 (10) | 0.15702 (3) | 0.1038 (3) | |
N1 | −0.1935 (4) | 0.7889 (7) | 0.20733 (16) | 0.0868 (12) | |
H1A | −0.201 (5) | 0.787 (7) | 0.2398 (9) | 0.104* | |
H1B | −0.202 (5) | 0.918 (5) | 0.1918 (15) | 0.104* | |
C1 | 0.0703 (3) | 0.5931 (7) | 0.14294 (14) | 0.0673 (9) | |
C2 | 0.1125 (3) | 0.4160 (6) | 0.17418 (14) | 0.0618 (8) | |
C3 | 0.0613 (3) | 0.3673 (6) | 0.21759 (14) | 0.0616 (8) | |
C4 | −0.0384 (3) | 0.4981 (6) | 0.22843 (12) | 0.0601 (8) | |
H4A | −0.0745 | 0.4684 | 0.2572 | 0.072* | |
C5 | −0.0852 (3) | 0.6715 (7) | 0.19735 (13) | 0.0608 (8) | |
C6 | −0.0292 (4) | 0.7188 (6) | 0.15532 (15) | 0.0673 (9) | |
H6A | −0.0593 | 0.8382 | 0.1349 | 0.081* | |
C7 | 0.1289 (6) | 0.6536 (10) | 0.0969 (2) | 0.1049 (17) | |
H7A | 0.2212 | 0.6663 | 0.1067 | 0.157* | |
H7B | 0.0938 | 0.7910 | 0.0834 | 0.157* | |
H7C | 0.1091 | 0.5419 | 0.0713 | 0.157* | |
C8 | 0.1109 (5) | 0.1815 (8) | 0.2535 (2) | 0.0951 (14) | |
H8A | 0.1029 | 0.0456 | 0.2351 | 0.143* | |
H8B | 0.0611 | 0.1745 | 0.2805 | 0.143* | |
H8C | 0.2003 | 0.2068 | 0.2678 | 0.143* | |
Br11 | 0.72828 (6) | −0.22871 (10) | −0.00212 (2) | 0.0996 (3) | |
N11 | 0.6186 (4) | 0.3496 (7) | 0.17122 (14) | 0.0816 (10) | |
H11A | 0.658 (4) | 0.480 (5) | 0.1713 (19) | 0.098* | |
H11B | 0.536 (2) | 0.356 (7) | 0.1745 (18) | 0.098* | |
C11 | 0.5864 (3) | −0.0934 (7) | 0.07484 (15) | 0.0681 (9) | |
C12 | 0.6933 (3) | −0.0488 (7) | 0.05224 (13) | 0.0652 (9) | |
C13 | 0.7753 (3) | 0.1285 (7) | 0.06764 (13) | 0.0652 (9) | |
C14 | 0.7478 (4) | 0.2596 (6) | 0.10694 (14) | 0.0648 (9) | |
H14A | 0.8018 | 0.3773 | 0.1180 | 0.078* | |
C15 | 0.6412 (4) | 0.2187 (7) | 0.13007 (14) | 0.0649 (9) | |
C16 | 0.5626 (3) | 0.0413 (7) | 0.11379 (14) | 0.0688 (10) | |
H16A | 0.4918 | 0.0122 | 0.1295 | 0.083* | |
C17 | 0.4956 (5) | −0.2818 (8) | 0.0571 (2) | 0.0917 (14) | |
H17A | 0.4340 | −0.2971 | 0.0796 | 0.138* | |
H17B | 0.5447 | −0.4147 | 0.0572 | 0.138* | |
H17C | 0.4507 | −0.2530 | 0.0231 | 0.138* | |
C18 | 0.8907 (5) | 0.1869 (9) | 0.04352 (18) | 0.0884 (13) | |
H18A | 0.8643 | 0.1973 | 0.0072 | 0.133* | |
H18B | 0.9558 | 0.0755 | 0.0513 | 0.133* | |
H18C | 0.9254 | 0.3251 | 0.0567 | 0.133* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0617 (3) | 0.1074 (5) | 0.1481 (6) | 0.0103 (2) | 0.0348 (3) | −0.0438 (3) |
N1 | 0.066 (2) | 0.117 (3) | 0.082 (2) | 0.034 (2) | 0.0268 (18) | 0.008 (2) |
C1 | 0.0627 (19) | 0.081 (2) | 0.066 (2) | −0.0104 (18) | 0.0315 (16) | −0.0087 (18) |
C2 | 0.0408 (14) | 0.068 (2) | 0.080 (2) | 0.0016 (14) | 0.0206 (14) | −0.0159 (18) |
C3 | 0.0466 (16) | 0.065 (2) | 0.072 (2) | −0.0036 (14) | 0.0078 (14) | 0.0020 (17) |
C4 | 0.0478 (16) | 0.079 (2) | 0.0569 (17) | −0.0032 (15) | 0.0185 (13) | 0.0057 (17) |
C5 | 0.0479 (16) | 0.079 (2) | 0.0584 (18) | 0.0061 (16) | 0.0183 (14) | −0.0009 (17) |
C6 | 0.071 (2) | 0.077 (2) | 0.0575 (19) | 0.0061 (18) | 0.0207 (16) | 0.0090 (17) |
C7 | 0.122 (4) | 0.118 (4) | 0.093 (3) | −0.022 (3) | 0.070 (3) | −0.009 (3) |
C8 | 0.099 (3) | 0.079 (3) | 0.104 (4) | 0.014 (3) | 0.008 (3) | 0.018 (3) |
Br11 | 0.1085 (5) | 0.1057 (5) | 0.0899 (4) | 0.0198 (3) | 0.0326 (3) | −0.0249 (3) |
N11 | 0.075 (2) | 0.105 (3) | 0.073 (2) | 0.000 (2) | 0.0369 (17) | −0.018 (2) |
C11 | 0.0536 (17) | 0.077 (2) | 0.072 (2) | 0.0145 (17) | 0.0074 (15) | 0.0043 (19) |
C12 | 0.0644 (19) | 0.078 (2) | 0.0551 (17) | 0.0193 (18) | 0.0154 (15) | 0.0002 (17) |
C13 | 0.0575 (18) | 0.086 (3) | 0.0557 (18) | 0.0144 (18) | 0.0199 (15) | 0.0073 (18) |
C14 | 0.059 (2) | 0.081 (3) | 0.059 (2) | 0.0026 (16) | 0.0219 (16) | 0.0020 (17) |
C15 | 0.0562 (19) | 0.085 (3) | 0.0566 (18) | 0.0134 (17) | 0.0197 (15) | 0.0017 (17) |
C16 | 0.0485 (17) | 0.090 (3) | 0.072 (2) | 0.0096 (17) | 0.0224 (15) | 0.006 (2) |
C17 | 0.072 (3) | 0.089 (3) | 0.114 (4) | −0.003 (2) | 0.014 (3) | −0.007 (3) |
C18 | 0.084 (3) | 0.115 (4) | 0.078 (3) | 0.003 (3) | 0.046 (2) | 0.001 (3) |
Br1—C2 | 1.908 (3) | Br11—C12 | 1.902 (3) |
N1—C5 | 1.407 (5) | N11—C15 | 1.409 (5) |
N1—H1A | 0.881 (18) | N11—H11A | 0.897 (18) |
N1—H1B | 0.886 (18) | N11—H11B | 0.884 (18) |
C1—C6 | 1.380 (5) | C11—C16 | 1.380 (5) |
C1—C2 | 1.388 (6) | C11—C12 | 1.389 (5) |
C1—C7 | 1.510 (5) | C11—C17 | 1.514 (6) |
C2—C3 | 1.389 (5) | C12—C13 | 1.398 (6) |
C3—C4 | 1.385 (5) | C13—C14 | 1.387 (5) |
C3—C8 | 1.515 (6) | C13—C18 | 1.508 (5) |
C4—C5 | 1.379 (5) | C14—C15 | 1.390 (5) |
C4—H4A | 0.9300 | C14—H14A | 0.9300 |
C5—C6 | 1.382 (5) | C15—C16 | 1.383 (6) |
C6—H6A | 0.9300 | C16—H16A | 0.9300 |
C7—H7A | 0.9600 | C17—H17A | 0.9600 |
C7—H7B | 0.9600 | C17—H17B | 0.9600 |
C7—H7C | 0.9600 | C17—H17C | 0.9600 |
C8—H8A | 0.9600 | C18—H18A | 0.9600 |
C8—H8B | 0.9600 | C18—H18B | 0.9600 |
C8—H8C | 0.9600 | C18—H18C | 0.9600 |
C5—N1—H1A | 113 (3) | C15—N11—H11A | 111 (3) |
C5—N1—H1B | 113 (3) | C15—N11—H11B | 114 (3) |
H1A—N1—H1B | 117 (3) | H11A—N11—H11B | 115 (3) |
C6—C1—C2 | 117.7 (3) | C16—C11—C12 | 118.3 (4) |
C6—C1—C7 | 119.3 (4) | C16—C11—C17 | 120.0 (4) |
C2—C1—C7 | 123.0 (4) | C12—C11—C17 | 121.6 (4) |
C1—C2—C3 | 122.4 (3) | C11—C12—C13 | 121.8 (3) |
C1—C2—Br1 | 118.6 (3) | C11—C12—Br11 | 119.6 (3) |
C3—C2—Br1 | 119.0 (3) | C13—C12—Br11 | 118.6 (3) |
C4—C3—C2 | 117.8 (3) | C14—C13—C12 | 118.0 (3) |
C4—C3—C8 | 119.2 (4) | C14—C13—C18 | 118.2 (4) |
C2—C3—C8 | 123.0 (4) | C12—C13—C18 | 123.8 (4) |
C5—C4—C3 | 121.3 (3) | C13—C14—C15 | 121.3 (4) |
C5—C4—H4A | 119.4 | C13—C14—H14A | 119.3 |
C3—C4—H4A | 119.4 | C15—C14—H14A | 119.3 |
C4—C5—C6 | 119.3 (3) | C16—C15—C14 | 118.9 (3) |
C4—C5—N1 | 119.5 (3) | C16—C15—N11 | 121.0 (3) |
C6—C5—N1 | 121.2 (4) | C14—C15—N11 | 120.0 (4) |
C1—C6—C5 | 121.5 (4) | C11—C16—C15 | 121.7 (3) |
C1—C6—H6A | 119.2 | C11—C16—H16A | 119.2 |
C5—C6—H6A | 119.2 | C15—C16—H16A | 119.2 |
C1—C7—H7A | 109.5 | C11—C17—H17A | 109.5 |
C1—C7—H7B | 109.5 | C11—C17—H17B | 109.5 |
H7A—C7—H7B | 109.5 | H17A—C17—H17B | 109.5 |
C1—C7—H7C | 109.5 | C11—C17—H17C | 109.5 |
H7A—C7—H7C | 109.5 | H17A—C17—H17C | 109.5 |
H7B—C7—H7C | 109.5 | H17B—C17—H17C | 109.5 |
C3—C8—H8A | 109.5 | C13—C18—H18A | 109.5 |
C3—C8—H8B | 109.5 | C13—C18—H18B | 109.5 |
H8A—C8—H8B | 109.5 | H18A—C18—H18B | 109.5 |
C3—C8—H8C | 109.5 | C13—C18—H18C | 109.5 |
H8A—C8—H8C | 109.5 | H18A—C18—H18C | 109.5 |
H8B—C8—H8C | 109.5 | H18B—C18—H18C | 109.5 |
C6—C1—C2—C3 | −2.1 (6) | C16—C11—C12—C13 | −0.6 (5) |
C7—C1—C2—C3 | 177.4 (4) | C17—C11—C12—C13 | 178.3 (4) |
C6—C1—C2—Br1 | 178.4 (3) | C16—C11—C12—Br11 | −179.3 (3) |
C7—C1—C2—Br1 | −2.1 (5) | C17—C11—C12—Br11 | −0.4 (5) |
C1—C2—C3—C4 | 2.1 (5) | C11—C12—C13—C14 | 0.7 (5) |
Br1—C2—C3—C4 | −178.4 (3) | Br11—C12—C13—C14 | 179.3 (3) |
C1—C2—C3—C8 | −176.8 (4) | C11—C12—C13—C18 | −178.5 (4) |
Br1—C2—C3—C8 | 2.6 (5) | Br11—C12—C13—C18 | 0.2 (5) |
C2—C3—C4—C5 | −0.2 (5) | C12—C13—C14—C15 | −0.8 (6) |
C8—C3—C4—C5 | 178.8 (4) | C18—C13—C14—C15 | 178.4 (4) |
C3—C4—C5—C6 | −1.7 (6) | C13—C14—C15—C16 | 0.9 (6) |
C3—C4—C5—N1 | 174.7 (4) | C13—C14—C15—N11 | 177.6 (4) |
C2—C1—C6—C5 | 0.1 (6) | C12—C11—C16—C15 | 0.8 (6) |
C7—C1—C6—C5 | −179.4 (4) | C17—C11—C16—C15 | −178.2 (4) |
C4—C5—C6—C1 | 1.7 (6) | C14—C15—C16—C11 | −0.9 (6) |
N1—C5—C6—C1 | −174.6 (4) | N11—C15—C16—C11 | −177.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N11i | 0.88 (2) | 2.41 (3) | 3.212 (6) | 152 (5) |
N11—H11A···N1ii | 0.90 (2) | 2.52 (3) | 3.365 (6) | 157 (4) |
Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2; (ii) x+1, y, z. |
C8H9BrO | Dx = 1.692 Mg m−3 |
Mr = 201.06 | Melting point: 386 K |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.54184 Å |
a = 14.65213 (17) Å | Cell parameters from 10448 reflections |
b = 17.9520 (2) Å | θ = 3.7–71.4° |
c = 24.0079 (3) Å | µ = 6.50 mm−1 |
V = 6314.94 (12) Å3 | T = 100 K |
Z = 32 | Block, yellow |
F(000) = 3200 | 0.23 × 0.20 × 0.18 mm |
Rigaku OD SuperNova AtlasS2 diffractometer | 6110 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source | 5342 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.033 |
Detector resolution: 5.1980 pixels mm-1 | θmax = 71.6°, θmin = 3.7° |
φ and ω scans | h = −17→13 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2015) | k = −21→22 |
Tmin = 0.601, Tmax = 1.000 | l = −29→28 |
22136 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: mixed |
wR(F2) = 0.065 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.031P)2 + 3.051P] where P = (Fo2 + 2Fc2)/3 |
6110 reflections | (Δ/σ)max = 0.002 |
381 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
0 constraints |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.22468 (2) | 0.59654 (2) | 0.78001 (2) | 0.02219 (7) | |
O1 | 0.46483 (12) | 0.75860 (10) | 0.61587 (8) | 0.0196 (4) | |
H1 | 0.436 (2) | 0.7751 (18) | 0.5913 (14) | 0.029* | |
C1 | 0.25870 (16) | 0.69235 (13) | 0.68779 (10) | 0.0161 (5) | |
C2 | 0.30052 (17) | 0.65022 (13) | 0.72925 (10) | 0.0162 (5) | |
C3 | 0.39536 (17) | 0.64366 (13) | 0.73399 (10) | 0.0159 (5) | |
C4 | 0.44884 (16) | 0.68140 (13) | 0.69532 (10) | 0.0151 (5) | |
H4A | 0.5135 | 0.6785 | 0.6976 | 0.018* | |
C5 | 0.40869 (16) | 0.72306 (13) | 0.65365 (10) | 0.0145 (5) | |
C6 | 0.31470 (16) | 0.72865 (13) | 0.64976 (10) | 0.0164 (5) | |
H6A | 0.2882 | 0.7576 | 0.6208 | 0.020* | |
C7 | 0.15740 (17) | 0.69908 (16) | 0.68248 (11) | 0.0234 (6) | |
H7A | 0.1318 | 0.7172 | 0.7177 | 0.035* | |
H7B | 0.1313 | 0.6502 | 0.6737 | 0.035* | |
H7C | 0.1427 | 0.7342 | 0.6526 | 0.035* | |
C8 | 0.44007 (18) | 0.59541 (14) | 0.77743 (11) | 0.0219 (5) | |
H8A | 0.5061 | 0.5944 | 0.7711 | 0.033* | |
H8B | 0.4157 | 0.5447 | 0.7749 | 0.033* | |
H8C | 0.4274 | 0.6157 | 0.8145 | 0.033* | |
Br11 | 0.90409 (2) | 0.88537 (2) | 0.75012 (2) | 0.02282 (7) | |
O11 | 0.64155 (12) | 0.73224 (11) | 0.59470 (8) | 0.0230 (4) | |
H11 | 0.590 (2) | 0.7371 (19) | 0.6026 (14) | 0.034* | |
C11 | 0.72728 (16) | 0.84371 (13) | 0.71234 (10) | 0.0159 (5) | |
C12 | 0.81977 (16) | 0.83541 (13) | 0.70215 (10) | 0.0151 (5) | |
C13 | 0.85456 (16) | 0.79230 (13) | 0.65883 (10) | 0.0152 (5) | |
C14 | 0.79235 (16) | 0.75794 (14) | 0.62345 (10) | 0.0164 (5) | |
H14A | 0.8137 | 0.7281 | 0.5935 | 0.020* | |
C15 | 0.69938 (16) | 0.76692 (13) | 0.63161 (10) | 0.0146 (5) | |
C16 | 0.66644 (16) | 0.80871 (13) | 0.67584 (10) | 0.0145 (5) | |
H16A | 0.6025 | 0.8136 | 0.6814 | 0.017* | |
C17 | 0.69077 (19) | 0.88894 (15) | 0.76024 (11) | 0.0230 (6) | |
H17A | 0.7141 | 0.8687 | 0.7954 | 0.034* | |
H17B | 0.6239 | 0.8867 | 0.7603 | 0.034* | |
H17C | 0.7105 | 0.9408 | 0.7563 | 0.034* | |
C18 | 0.95504 (16) | 0.78010 (15) | 0.65044 (11) | 0.0207 (5) | |
H18A | 0.9646 | 0.7475 | 0.6182 | 0.031* | |
H18B | 0.9810 | 0.7567 | 0.6838 | 0.031* | |
H18C | 0.9851 | 0.8281 | 0.6439 | 0.031* | |
Br21 | 0.42678 (2) | 0.47389 (2) | 0.39094 (2) | 0.02459 (7) | |
O21 | 0.69191 (12) | 0.69370 (10) | 0.49124 (7) | 0.0175 (4) | |
H21 | 0.677 (2) | 0.7063 (18) | 0.5200 (13) | 0.026* | |
C21 | 0.47716 (16) | 0.59328 (14) | 0.46321 (10) | 0.0167 (5) | |
C22 | 0.51005 (17) | 0.54353 (13) | 0.42327 (10) | 0.0175 (5) | |
C23 | 0.60053 (17) | 0.54233 (13) | 0.40577 (10) | 0.0167 (5) | |
C24 | 0.66009 (17) | 0.59418 (13) | 0.42934 (10) | 0.0163 (5) | |
H24A | 0.7221 | 0.5953 | 0.4179 | 0.020* | |
C25 | 0.62964 (16) | 0.64384 (13) | 0.46920 (10) | 0.0144 (5) | |
C26 | 0.53944 (16) | 0.64363 (13) | 0.48600 (10) | 0.0158 (5) | |
H26A | 0.5195 | 0.6782 | 0.5134 | 0.019* | |
C27 | 0.37892 (17) | 0.59441 (16) | 0.48179 (11) | 0.0233 (6) | |
H27A | 0.3712 | 0.6316 | 0.5113 | 0.035* | |
H27B | 0.3620 | 0.5452 | 0.4960 | 0.035* | |
H27C | 0.3397 | 0.6072 | 0.4501 | 0.035* | |
C28 | 0.63566 (19) | 0.48676 (14) | 0.36405 (11) | 0.0221 (5) | |
H28A | 0.6999 | 0.4974 | 0.3558 | 0.033* | |
H28B | 0.5998 | 0.4903 | 0.3297 | 0.033* | |
H28C | 0.6302 | 0.4364 | 0.3794 | 0.033* | |
Br31 | 1.07251 (2) | 0.46757 (2) | 0.62030 (2) | 0.02168 (7) | |
O31 | 0.87558 (12) | 0.69132 (10) | 0.47660 (7) | 0.0176 (4) | |
H31 | 0.823 (2) | 0.6897 (17) | 0.4800 (13) | 0.026* | |
C31 | 0.91446 (17) | 0.53218 (13) | 0.57080 (10) | 0.0154 (5) | |
C32 | 1.00912 (17) | 0.53671 (13) | 0.57385 (10) | 0.0155 (5) | |
C33 | 1.06015 (16) | 0.59008 (14) | 0.54511 (10) | 0.0158 (5) | |
C34 | 1.01266 (16) | 0.64133 (13) | 0.51263 (10) | 0.0152 (5) | |
H34A | 1.0451 | 0.6784 | 0.4925 | 0.018* | |
C35 | 0.91818 (16) | 0.63854 (13) | 0.50948 (10) | 0.0139 (5) | |
C36 | 0.86927 (16) | 0.58457 (13) | 0.53791 (10) | 0.0147 (5) | |
H36A | 0.8046 | 0.5832 | 0.5350 | 0.018* | |
C37 | 0.86046 (18) | 0.47289 (13) | 0.60069 (11) | 0.0200 (5) | |
H37A | 0.8724 | 0.4760 | 0.6408 | 0.030* | |
H37B | 0.8787 | 0.4237 | 0.5870 | 0.030* | |
H37C | 0.7952 | 0.4804 | 0.5937 | 0.030* | |
C38 | 1.16258 (16) | 0.59329 (15) | 0.54722 (11) | 0.0217 (5) | |
H38A | 1.1841 | 0.6362 | 0.5256 | 0.033* | |
H38B | 1.1879 | 0.5474 | 0.5314 | 0.033* | |
H38C | 1.1825 | 0.5984 | 0.5860 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02410 (15) | 0.02111 (14) | 0.02136 (14) | −0.00353 (10) | 0.00837 (10) | 0.00205 (10) |
O1 | 0.0138 (9) | 0.0259 (10) | 0.0191 (9) | −0.0019 (7) | −0.0014 (7) | 0.0086 (7) |
C1 | 0.0150 (12) | 0.0148 (11) | 0.0187 (12) | 0.0004 (9) | 0.0032 (9) | −0.0035 (9) |
C2 | 0.0195 (12) | 0.0137 (11) | 0.0155 (11) | −0.0036 (9) | 0.0044 (9) | −0.0027 (9) |
C3 | 0.0212 (13) | 0.0125 (11) | 0.0139 (11) | −0.0008 (9) | −0.0033 (9) | −0.0019 (9) |
C4 | 0.0115 (11) | 0.0152 (11) | 0.0187 (12) | −0.0007 (9) | −0.0012 (9) | −0.0021 (9) |
C5 | 0.0134 (11) | 0.0144 (11) | 0.0156 (11) | −0.0028 (9) | 0.0013 (9) | 0.0000 (9) |
C6 | 0.0189 (12) | 0.0161 (12) | 0.0141 (11) | 0.0021 (9) | −0.0019 (9) | 0.0009 (9) |
C7 | 0.0162 (13) | 0.0303 (15) | 0.0238 (13) | 0.0005 (11) | 0.0036 (10) | −0.0007 (11) |
C8 | 0.0244 (14) | 0.0216 (13) | 0.0198 (13) | −0.0047 (10) | −0.0062 (10) | 0.0041 (11) |
Br11 | 0.02236 (14) | 0.02426 (14) | 0.02183 (14) | −0.00606 (10) | −0.00779 (10) | −0.00253 (11) |
O11 | 0.0123 (9) | 0.0369 (11) | 0.0197 (9) | −0.0031 (8) | −0.0010 (7) | −0.0103 (8) |
C11 | 0.0207 (13) | 0.0113 (11) | 0.0158 (11) | 0.0024 (9) | 0.0002 (9) | 0.0014 (9) |
C12 | 0.0164 (12) | 0.0145 (11) | 0.0145 (11) | −0.0021 (9) | −0.0044 (9) | 0.0016 (9) |
C13 | 0.0131 (12) | 0.0169 (12) | 0.0156 (11) | −0.0007 (9) | −0.0017 (9) | 0.0033 (9) |
C14 | 0.0166 (12) | 0.0189 (12) | 0.0136 (11) | 0.0009 (9) | 0.0013 (9) | −0.0036 (9) |
C15 | 0.0142 (12) | 0.0157 (11) | 0.0139 (11) | −0.0030 (9) | −0.0023 (9) | −0.0004 (9) |
C16 | 0.0121 (11) | 0.0150 (11) | 0.0163 (11) | 0.0013 (9) | 0.0000 (9) | 0.0019 (9) |
C17 | 0.0261 (14) | 0.0223 (13) | 0.0205 (13) | 0.0005 (11) | 0.0016 (11) | −0.0068 (10) |
C18 | 0.0141 (12) | 0.0274 (13) | 0.0206 (13) | 0.0002 (10) | 0.0011 (10) | 0.0021 (10) |
Br21 | 0.02642 (15) | 0.02282 (14) | 0.02452 (15) | −0.00989 (11) | −0.00721 (11) | −0.00050 (11) |
O21 | 0.0134 (8) | 0.0209 (9) | 0.0182 (9) | −0.0034 (7) | 0.0007 (7) | −0.0071 (7) |
C21 | 0.0153 (12) | 0.0186 (12) | 0.0163 (12) | −0.0024 (9) | −0.0006 (9) | 0.0057 (10) |
C22 | 0.0196 (13) | 0.0158 (11) | 0.0170 (12) | −0.0046 (9) | −0.0050 (10) | 0.0043 (9) |
C23 | 0.0235 (13) | 0.0142 (11) | 0.0122 (11) | 0.0005 (10) | −0.0019 (10) | 0.0014 (9) |
C24 | 0.0164 (12) | 0.0174 (12) | 0.0151 (11) | −0.0016 (9) | 0.0005 (9) | 0.0020 (9) |
C25 | 0.0157 (12) | 0.0133 (11) | 0.0142 (11) | −0.0024 (9) | −0.0050 (9) | 0.0015 (9) |
C26 | 0.0145 (12) | 0.0174 (11) | 0.0156 (11) | 0.0011 (9) | −0.0008 (9) | −0.0009 (9) |
C27 | 0.0140 (13) | 0.0306 (14) | 0.0252 (14) | −0.0046 (10) | 0.0000 (10) | 0.0023 (11) |
C28 | 0.0299 (15) | 0.0174 (12) | 0.0191 (13) | −0.0002 (11) | 0.0006 (11) | −0.0035 (10) |
Br31 | 0.02599 (15) | 0.02241 (14) | 0.01663 (13) | 0.00797 (10) | −0.00221 (10) | 0.00384 (10) |
O31 | 0.0120 (8) | 0.0197 (9) | 0.0211 (9) | 0.0029 (7) | 0.0013 (7) | 0.0071 (7) |
C31 | 0.0226 (13) | 0.0134 (11) | 0.0101 (11) | −0.0013 (9) | 0.0026 (9) | −0.0020 (9) |
C32 | 0.0206 (12) | 0.0155 (12) | 0.0104 (11) | 0.0045 (9) | −0.0003 (9) | −0.0011 (9) |
C33 | 0.0163 (12) | 0.0178 (12) | 0.0133 (11) | 0.0002 (9) | −0.0008 (9) | −0.0031 (9) |
C34 | 0.0148 (12) | 0.0147 (11) | 0.0160 (11) | 0.0003 (9) | 0.0028 (9) | 0.0002 (9) |
C35 | 0.0156 (12) | 0.0142 (11) | 0.0119 (11) | 0.0009 (9) | −0.0009 (9) | −0.0001 (9) |
C36 | 0.0139 (12) | 0.0168 (12) | 0.0133 (11) | −0.0010 (9) | 0.0005 (9) | −0.0006 (9) |
C37 | 0.0249 (14) | 0.0173 (12) | 0.0178 (12) | −0.0030 (10) | 0.0026 (10) | 0.0033 (10) |
C38 | 0.0135 (12) | 0.0265 (14) | 0.0252 (14) | 0.0020 (10) | −0.0009 (10) | −0.0016 (11) |
Br1—C2 | 1.910 (2) | Br21—C22 | 1.912 (2) |
O1—C5 | 1.381 (3) | O21—C25 | 1.383 (3) |
O1—H1 | 0.78 (3) | O21—H21 | 0.76 (3) |
C1—C6 | 1.390 (3) | C21—C22 | 1.396 (4) |
C1—C2 | 1.392 (3) | C21—C26 | 1.396 (3) |
C1—C7 | 1.495 (3) | C21—C27 | 1.507 (3) |
C2—C3 | 1.399 (3) | C22—C23 | 1.391 (4) |
C3—C4 | 1.391 (3) | C23—C24 | 1.396 (3) |
C3—C8 | 1.506 (3) | C23—C28 | 1.504 (3) |
C4—C5 | 1.381 (3) | C24—C25 | 1.382 (3) |
C4—H4A | 0.9500 | C24—H24A | 0.9500 |
C5—C6 | 1.384 (3) | C25—C26 | 1.382 (3) |
C6—H6A | 0.9500 | C26—H26A | 0.9500 |
C7—H7A | 0.9800 | C27—H27A | 0.9800 |
C7—H7B | 0.9800 | C27—H27B | 0.9800 |
C7—H7C | 0.9800 | C27—H27C | 0.9800 |
C8—H8A | 0.9800 | C28—H28A | 0.9800 |
C8—H8B | 0.9800 | C28—H28B | 0.9800 |
C8—H8C | 0.9800 | C28—H28C | 0.9800 |
Br11—C12 | 1.912 (2) | Br31—C32 | 1.910 (2) |
O11—C15 | 1.375 (3) | O31—C35 | 1.382 (3) |
O11—H11 | 0.78 (3) | O31—H31 | 0.77 (3) |
C11—C12 | 1.385 (3) | C31—C32 | 1.391 (3) |
C11—C16 | 1.399 (3) | C31—C36 | 1.395 (3) |
C11—C17 | 1.506 (3) | C31—C37 | 1.508 (3) |
C12—C13 | 1.393 (3) | C32—C33 | 1.398 (3) |
C13—C14 | 1.391 (3) | C33—C34 | 1.392 (3) |
C13—C18 | 1.502 (3) | C33—C38 | 1.503 (3) |
C14—C15 | 1.386 (3) | C34—C35 | 1.387 (3) |
C14—H14A | 0.9500 | C34—H34A | 0.9500 |
C15—C16 | 1.387 (3) | C35—C36 | 1.385 (3) |
C16—H16A | 0.9500 | C36—H36A | 0.9500 |
C17—H17A | 0.9800 | C37—H37A | 0.9800 |
C17—H17B | 0.9800 | C37—H37B | 0.9800 |
C17—H17C | 0.9800 | C37—H37C | 0.9800 |
C18—H18A | 0.9800 | C38—H38A | 0.9800 |
C18—H18B | 0.9800 | C38—H38B | 0.9800 |
C18—H18C | 0.9800 | C38—H38C | 0.9800 |
C5—O1—H1 | 110 (2) | C25—O21—H21 | 111 (2) |
C6—C1—C2 | 117.7 (2) | C22—C21—C26 | 117.2 (2) |
C6—C1—C7 | 119.5 (2) | C22—C21—C27 | 122.8 (2) |
C2—C1—C7 | 122.8 (2) | C26—C21—C27 | 120.0 (2) |
C1—C2—C3 | 122.7 (2) | C23—C22—C21 | 123.1 (2) |
C1—C2—Br1 | 118.31 (18) | C23—C22—Br21 | 118.39 (19) |
C3—C2—Br1 | 118.90 (18) | C21—C22—Br21 | 118.48 (18) |
C4—C3—C2 | 117.7 (2) | C22—C23—C24 | 117.6 (2) |
C4—C3—C8 | 119.8 (2) | C22—C23—C28 | 122.5 (2) |
C2—C3—C8 | 122.5 (2) | C24—C23—C28 | 119.9 (2) |
C5—C4—C3 | 120.5 (2) | C25—C24—C23 | 120.6 (2) |
C5—C4—H4A | 119.8 | C25—C24—H24A | 119.7 |
C3—C4—H4A | 119.8 | C23—C24—H24A | 119.7 |
C4—C5—O1 | 118.2 (2) | C26—C25—C24 | 120.6 (2) |
C4—C5—C6 | 120.8 (2) | C26—C25—O21 | 121.4 (2) |
O1—C5—C6 | 121.0 (2) | C24—C25—O21 | 118.0 (2) |
C5—C6—C1 | 120.6 (2) | C25—C26—C21 | 120.8 (2) |
C5—C6—H6A | 119.7 | C25—C26—H26A | 119.6 |
C1—C6—H6A | 119.7 | C21—C26—H26A | 119.6 |
C1—C7—H7A | 109.5 | C21—C27—H27A | 109.5 |
C1—C7—H7B | 109.5 | C21—C27—H27B | 109.5 |
H7A—C7—H7B | 109.5 | H27A—C27—H27B | 109.5 |
C1—C7—H7C | 109.5 | C21—C27—H27C | 109.5 |
H7A—C7—H7C | 109.5 | H27A—C27—H27C | 109.5 |
H7B—C7—H7C | 109.5 | H27B—C27—H27C | 109.5 |
C3—C8—H8A | 109.5 | C23—C28—H28A | 109.5 |
C3—C8—H8B | 109.5 | C23—C28—H28B | 109.5 |
H8A—C8—H8B | 109.5 | H28A—C28—H28B | 109.5 |
C3—C8—H8C | 109.5 | C23—C28—H28C | 109.5 |
H8A—C8—H8C | 109.5 | H28A—C28—H28C | 109.5 |
H8B—C8—H8C | 109.5 | H28B—C28—H28C | 109.5 |
C15—O11—H11 | 113 (3) | C35—O31—H31 | 111 (2) |
C12—C11—C16 | 117.7 (2) | C32—C31—C36 | 117.6 (2) |
C12—C11—C17 | 122.7 (2) | C32—C31—C37 | 122.6 (2) |
C16—C11—C17 | 119.6 (2) | C36—C31—C37 | 119.7 (2) |
C11—C12—C13 | 123.3 (2) | C31—C32—C33 | 123.2 (2) |
C11—C12—Br11 | 118.38 (18) | C31—C32—Br31 | 118.53 (18) |
C13—C12—Br11 | 118.27 (18) | C33—C32—Br31 | 118.27 (18) |
C14—C13—C12 | 117.6 (2) | C34—C33—C32 | 117.5 (2) |
C14—C13—C18 | 119.7 (2) | C34—C33—C38 | 119.5 (2) |
C12—C13—C18 | 122.7 (2) | C32—C33—C38 | 123.0 (2) |
C15—C14—C13 | 120.4 (2) | C35—C34—C33 | 120.4 (2) |
C15—C14—H14A | 119.8 | C35—C34—H34A | 119.8 |
C13—C14—H14A | 119.8 | C33—C34—H34A | 119.8 |
O11—C15—C14 | 117.5 (2) | O31—C35—C36 | 121.8 (2) |
O11—C15—C16 | 121.6 (2) | O31—C35—C34 | 117.2 (2) |
C14—C15—C16 | 120.9 (2) | C36—C35—C34 | 121.0 (2) |
C15—C16—C11 | 120.0 (2) | C35—C36—C31 | 120.3 (2) |
C15—C16—H16A | 120.0 | C35—C36—H36A | 119.8 |
C11—C16—H16A | 120.0 | C31—C36—H36A | 119.8 |
C11—C17—H17A | 109.5 | C31—C37—H37A | 109.5 |
C11—C17—H17B | 109.5 | C31—C37—H37B | 109.5 |
H17A—C17—H17B | 109.5 | H37A—C37—H37B | 109.5 |
C11—C17—H17C | 109.5 | C31—C37—H37C | 109.5 |
H17A—C17—H17C | 109.5 | H37A—C37—H37C | 109.5 |
H17B—C17—H17C | 109.5 | H37B—C37—H37C | 109.5 |
C13—C18—H18A | 109.5 | C33—C38—H38A | 109.5 |
C13—C18—H18B | 109.5 | C33—C38—H38B | 109.5 |
H18A—C18—H18B | 109.5 | H38A—C38—H38B | 109.5 |
C13—C18—H18C | 109.5 | C33—C38—H38C | 109.5 |
H18A—C18—H18C | 109.5 | H38A—C38—H38C | 109.5 |
H18B—C18—H18C | 109.5 | H38B—C38—H38C | 109.5 |
C6—C1—C2—C3 | 0.3 (4) | C26—C21—C22—C23 | 0.0 (4) |
C7—C1—C2—C3 | 179.6 (2) | C27—C21—C22—C23 | 179.8 (2) |
C6—C1—C2—Br1 | −177.41 (17) | C26—C21—C22—Br21 | −179.83 (17) |
C7—C1—C2—Br1 | 1.9 (3) | C27—C21—C22—Br21 | −0.1 (3) |
C1—C2—C3—C4 | 0.2 (4) | C21—C22—C23—C24 | −0.6 (4) |
Br1—C2—C3—C4 | 177.91 (17) | Br21—C22—C23—C24 | 179.23 (17) |
C1—C2—C3—C8 | −177.3 (2) | C21—C22—C23—C28 | 178.0 (2) |
Br1—C2—C3—C8 | 0.4 (3) | Br21—C22—C23—C28 | −2.2 (3) |
C2—C3—C4—C5 | −0.6 (3) | C22—C23—C24—C25 | 1.0 (3) |
C8—C3—C4—C5 | 177.0 (2) | C28—C23—C24—C25 | −177.7 (2) |
C3—C4—C5—O1 | −179.1 (2) | C23—C24—C25—C26 | −0.7 (4) |
C3—C4—C5—C6 | 0.6 (4) | C23—C24—C25—O21 | 179.7 (2) |
C4—C5—C6—C1 | 0.0 (4) | C24—C25—C26—C21 | 0.1 (4) |
O1—C5—C6—C1 | 179.6 (2) | O21—C25—C26—C21 | 179.6 (2) |
C2—C1—C6—C5 | −0.4 (3) | C22—C21—C26—C25 | 0.3 (3) |
C7—C1—C6—C5 | −179.7 (2) | C27—C21—C26—C25 | −179.5 (2) |
C16—C11—C12—C13 | −2.2 (4) | C36—C31—C32—C33 | −1.0 (4) |
C17—C11—C12—C13 | 178.4 (2) | C37—C31—C32—C33 | 178.1 (2) |
C16—C11—C12—Br11 | 178.05 (17) | C36—C31—C32—Br31 | 178.17 (17) |
C17—C11—C12—Br11 | −1.4 (3) | C37—C31—C32—Br31 | −2.7 (3) |
C11—C12—C13—C14 | 1.9 (4) | C31—C32—C33—C34 | 0.8 (4) |
Br11—C12—C13—C14 | −178.34 (18) | Br31—C32—C33—C34 | −178.28 (17) |
C11—C12—C13—C18 | −176.2 (2) | C31—C32—C33—C38 | −178.1 (2) |
Br11—C12—C13—C18 | 3.6 (3) | Br31—C32—C33—C38 | 2.7 (3) |
C12—C13—C14—C15 | 0.0 (4) | C32—C33—C34—C35 | 0.0 (3) |
C18—C13—C14—C15 | 178.2 (2) | C38—C33—C34—C35 | 179.0 (2) |
C13—C14—C15—O11 | 179.2 (2) | C33—C34—C35—O31 | 179.8 (2) |
C13—C14—C15—C16 | −1.6 (4) | C33—C34—C35—C36 | −0.7 (4) |
O11—C15—C16—C11 | −179.5 (2) | O31—C35—C36—C31 | −179.9 (2) |
C14—C15—C16—C11 | 1.3 (4) | C34—C35—C36—C31 | 0.6 (4) |
C12—C11—C16—C15 | 0.6 (3) | C32—C31—C36—C35 | 0.2 (3) |
C17—C11—C16—C15 | −180.0 (2) | C37—C31—C36—C35 | −178.9 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···O1 | 0.78 (3) | 1.90 (3) | 2.681 (3) | 173 (4) |
O21—H21···O11 | 0.76 (3) | 1.92 (3) | 2.682 (3) | 176 (3) |
O31—H31···O21 | 0.77 (3) | 1.95 (3) | 2.714 (2) | 175 (3) |
O1—H1···O31i | 0.78 (3) | 1.95 (3) | 2.729 (3) | 172 (3) |
Symmetry code: (i) x−1/2, −y+3/2, −z+1. |
Acknowledgements
We gratefully acknowledge support for this project by the Dirección General de Educación Superior Tecnológica (DGEST grants 5637.15-P) and CONACyT: Proyecto Infra-2014-224405.
References
Britton, D. (2005). Acta Cryst. E61, o1726–o1727. Web of Science CSD CrossRef IUCr Journals Google Scholar
Britton, D., Konnert, J. & Lam, S. (1977). Cryst. Struct. Commun. 6, 45–48. CAS Google Scholar
Cozzi, F., Annunziata, R., Benaglia, M., Baldridge, K. K., Aguirre, G., Estrada, J., Sritana-Anant, Y. & Siegel, J. S. (2008). Phys. Chem. Chem. Phys. 10, 2686–2694. Web of Science CSD CrossRef CAS Google Scholar
Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757–6764. CSD CrossRef CAS Web of Science Google Scholar
Dey, A., Kirchner, M. T., Vangala, V. R., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2005). J. Am. Chem. Soc. 127, 10545–10559. Web of Science CSD CrossRef PubMed CAS Google Scholar
Field, J. E., Hill, T. J. & Venkataraman, D. (2003). J. Org. Chem. 68, 6071–6078. Web of Science CSD CrossRef CAS Google Scholar
Gilbert, K. E. & Borden, W. T. (1979). J. Org. Chem. 44, 659–661. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ishiyama, T., Murata, M. & Miyaura, N. (1995). J. Org. Chem. 60, 7508–7510. CrossRef CAS Web of Science Google Scholar
Kotha, S., Lahiri, K. & Kashinath, D. (2002). Tetrahedron, 58, 9633–9695. Web of Science CrossRef CAS Google Scholar
Liu, R., Wu, W.-Y., Li, Y.-H., Deng, S.-P. & Zhu, H.-J. (2008). Acta Cryst. E64, o280. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Mukherjee, A. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 3735–3739. Web of Science CSD CrossRef CAS Google Scholar
Reilly, A. M., Cooper, R. I., Adjiman, C. S., Bhattacharya, S., Boese, A. D., Brandenburg, J. G., Bygrave, P. J., Bylsma, R., Campbell, J. E., Car, R., Case, D. H., Chadha, R., Cole, J. C., Cosburn, K., Cuppen, H. M., Curtis, F., Day, G. M., DiStasio Jr, R. A., Dzyabchenko, A., van Eijck, B. P., Elking, D. M., van den Ende, J. A., Facelli, J. C., Ferraro, M. B., Fusti-Molnar, L., Gatsiou, C.-A., Gee, T. S., de Gelder, R., Ghiringhelli, L. M., Goto, H., Grimme, S., Guo, R., Hofmann, D. W. M., Hoja, J., Hylton, R. K., Iuzzolino, L., Jankiewicz, W., de Jong, D. T., Kendrick, J., de Klerk, N. J. J., Ko, H.-Y., Kuleshova, L. N., Li, X., Lohani, S., Leusen, F. J. J., Lund, A. M., Lv, J., Ma, Y., Marom, N., Masunov, A. E., McCabe, P., McMahon, D. P., Meekes, H., Metz, M. P., Misquitta, A. J., Mohamed, S., Monserrat, B., Needs, R. J., Neumann, M. A., Nyman, J., Obata, S., Oberhofer, H., Oganov, A. R., Orendt, A. M., Pagola, G. I., Pantelides, C. C., Pickard, C. J., Podeszwa, R., Price, L. S., Price, S. L., Pulido, A., Read, M. G., Reuter, K., Schneider, E., Schober, C., Shields, G. P., Singh, P., Sugden, I. J., Szalewicz, K., Taylor, C. R., Tkatchenko, A., Tuckerman, M. E., Vacarro, F., Vasileiadis, M., Vazquez-Mayagoitia, A., Vogt, L., Wang, Y., Watson, R. E., de Wijs, G. A., Yang, J., Zhu, Q. & Groom, C. R. (2016). Acta Cryst. B72, 439–459. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vasylyeva, V., Kedziorski, T., Metzler-Nolte, N., Schauerte, C. & Merz, K. (2010). Cryst. Growth Des. 10, 4224–4226. Web of Science CSD CrossRef CAS Google Scholar
Xu, Z., Kiang, Y.-H., Lee, S., Lobkovsky, E. B. & Emmott, N. (2000). J. Am. Chem. Soc. 122, 8376–8391. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.