research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of p-substituted derivatives of 2,6-di­methyl­bromo­benzene with ½ ≤ Z′ ≤ 4

CROSSMARK_Color_square_no_text.svg

aCentro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Apartado Postal 1166, 222000 Tijuana, B.C., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: gaguirre@tectijuana.mx

Edited by H. Ishida, Okayama University, Japan (Received 20 October 2016; accepted 1 November 2016; online 8 November 2016)

The crystal structures of four bromo­arenes based on 2,6-di­methyl­bromo­benzene are reported, which are differentiated according the functional group X placed para to the Br atom: X = CN (4-bromo-3,5-di­methyl­benzo­nitrile, C9H8BrN), (1), X = NO2 (2-bromo-1,3-dimethyl-5-nitro­benzene, C8H8BrNO2), (2), X = NH2 (4-bromo-3,5-di­methyl­aniline, C8H10BrN), (3) and X = OH (4-bromo-3,5-di­methyl­phenol, C8H9BrO), (4). The content of the asymmetric unit is different in each crystal, Z′ = ½ (X = CN), Z′ = 1 (X = NO2), Z′ = 2 (X = NH2), and Z′ = 4 (X = OH), and is related to the mol­ecular symmetry and the propensity of X to be involved in hydrogen bonding. In none of the studied compounds does the crystal structure feature other non-covalent inter­actions, such as ππ, C—H⋯π or C—Br⋯Br contacts.

1. Chemical context

Our group is inter­ested in the design of chemical model systems for studying polar–π inter­actions (Cozzi et al., 2008[Cozzi, F., Annunziata, R., Benaglia, M., Baldridge, K. K., Aguirre, G., Estrada, J., Sritana-Anant, Y. & Siegel, J. S. (2008). Phys. Chem. Chem. Phys. 10, 2686-2694.]). In order to achieve this objective, it is necessary to prepare a variety of aryl­boronic esters as suitable substrates for Suzuki–Miyaura cross-coupling reactions (Ishiyama et al., 1995[Ishiyama, T., Murata, M. & Miyaura, N. (1995). J. Org. Chem. 60, 7508-7510.]; Kotha et al., 2002[Kotha, S., Lahiri, K. & Kashinath, D. (2002). Tetrahedron, 58, 9633-9695.]). We obtained these boronic derivatives starting from functionalized bromo­arenes. The present communication is about the synthesis and crystallography of a series of such bromo­arenes, namely, para-substituted derivatives of 2,6-di­methyl­bromo­benzene, for which the p-substituent is X = CN (1), X = NO2 (2), X = NH2 (3), or X = OH (4).

[Scheme 1]

The crystallized mol­ecules are closely related to one another from the chemical and structural points of view. However, very different crystal structures were obtained, with different compositions for the asymmetric units. Once again, this evidences that small chemical modifications for a given compound may induce dramatic changes in its crystal structure, even in the case of hydrogen/deuterium exchange, which is the smallest possible modification of a mol­ecule (Vasylyeva et al., 2010[Vasylyeva, V., Kedziorski, T., Metzler-Nolte, N., Schauerte, C. & Merz, K. (2010). Cryst. Growth Des. 10, 4224-4226.]). As a consequence, the blind tests of organic crystal-structure prediction hosted by the CCDC (Reilly et al., 2016[Reilly, A. M., Cooper, R. I., Adjiman, C. S., Bhattacharya, S., Boese, A. D., Brandenburg, J. G., Bygrave, P. J., Bylsma, R., Campbell, J. E., Car, R., Case, D. H., Chadha, R., Cole, J. C., Cosburn, K., Cuppen, H. M., Curtis, F., Day, G. M., DiStasio Jr, R. A., Dzyabchenko, A., van Eijck, B. P., Elking, D. M., van den Ende, J. A., Facelli, J. C., Ferraro, M. B., Fusti-Molnar, L., Gatsiou, C.-A., Gee, T. S., de Gelder, R., Ghiringhelli, L. M., Goto, H., Grimme, S., Guo, R., Hofmann, D. W. M., Hoja, J., Hylton, R. K., Iuzzolino, L., Jankiewicz, W., de Jong, D. T., Kendrick, J., de Klerk, N. J. J., Ko, H.-Y., Kuleshova, L. N., Li, X., Lohani, S., Leusen, F. J. J., Lund, A. M., Lv, J., Ma, Y., Marom, N., Masunov, A. E., McCabe, P., McMahon, D. P., Meekes, H., Metz, M. P., Misquitta, A. J., Mohamed, S., Monserrat, B., Needs, R. J., Neumann, M. A., Nyman, J., Obata, S., Oberhofer, H., Oganov, A. R., Orendt, A. M., Pagola, G. I., Pantelides, C. C., Pickard, C. J., Podeszwa, R., Price, L. S., Price, S. L., Pulido, A., Read, M. G., Reuter, K., Schneider, E., Schober, C., Shields, G. P., Singh, P., Sugden, I. J., Szalewicz, K., Taylor, C. R., Tkatchenko, A., Tuckerman, M. E., Vacarro, F., Vasileiadis, M., Vazquez-Mayagoitia, A., Vogt, L., Wang, Y., Watson, R. E., de Wijs, G. A., Yang, J., Zhu, Q. & Groom, C. R. (2016). Acta Cryst. B72, 439-459.]) certainly have a bright future ahead of them.

2. Structural commentary

No unusual bond lengths or angles are observed in the four mol­ecules (Figs. 1[link]–4[link][link][link]). For example, the C—Br bond lengths span a narrow range, from 1.900 (4) to 1.910 (2) Å. The substituent X in the position para to the C—Br bond thus has no influence on the geometry of the bromo­benzene core, even if very different X groups are used, namely, strongly electron-withdrawing groups (X = CN, NO2) and strongly electron-donating groups (X = NH2, OH). Another structural invariant over the studied series is the minimization of steric crowding effects between the Br atom and the methyl groups in ortho positions. The methyl groups are systematically rotated in such a way that the C—Br bond is staggered with a CH2 fragment of the methyl group. As a consequence, the endocyclic angle at the Br-bearing C atom is always the largest one in the benzene ring, varying from 121.8 (3)° in (3) to 123.9 (4)° in (1).

[Figure 1]
Figure 1
The mol­ecular structure of (1), with displacement ellipsoids for non-H atoms at the 50% probability level. Unlabelled atoms are generated by the symmetry operation (x, [{3\over 2}] − y, z).
[Figure 2]
Figure 2
The mol­ecular structure of (2), with displacement ellipsoids for non-H atoms at the 50% probability level.
[Figure 3]
Figure 3
The asymmetric unit of compound (3), with displacement ellipsoids for non-H atoms at the 30% probability level.
[Figure 4]
Figure 4
The asymmetric unit of compound (4), with displacement ellipsoids for non-H atoms at the 50% probability level.

The point of inter­est regarding the mol­ecular structures is that four different values of Z′ are obtained for the four compounds. Mol­ecule (1) (X = CN) has the highest potential mol­ecular symmetry, C2v, assuming a linear C—C≡N group. Omitting H atoms, this symmetry is actually reached, with the C—Br and C—C≡N fragments lying on the mirror plane in space group P21/m (Fig. 1[link]). The asymmetric unit then contains a half-mol­ecule, and Z′ = ½. In (2), with X = NO2, the latent symmetry C2v is broken because the nitro group is tilted slightly with respect to the benzene ring by an angle of 13.0 (4)°. For this crystal, Z′ = 1 in space group P[\overline{1}] (Fig. 2[link]). Finally, for (3) and (4), which are isoelectronic mol­ecules [X = NH2, (3) and X = OH, (4)], despite the mol­ecular symmetry being close to C2v, the asymmetric units contain more than one mol­ecule: Z′ = 2 for (3) (Fig. 3[link]) and Z′ = 4 for (4) (Fig. 4[link]), in space groups P21/n and Pbca, respectively.

The increasing size of the asymmetric unit, reflected in the increasing value of Z′, may be rationalized on the basis of two key parameters. First, a higher mol­ecular symmetry obviously favours the crystallization of low Z′ crystals, as in (1). This has been observed in many symmetrically substituted benzene derivatives, for example, in 4-bromo-benzo­nitrile in space group Cm (Britton et al., 1977[Britton, D., Konnert, J. & Lam, S. (1977). Cryst. Struct. Commun. 6, 45-48.]; see also Desiraju & Harlow, 1989[Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.]), or 2,6-di­bromo-4-chloro­benzo­nitrile in space group P21/m (Britton, 2005[Britton, D. (2005). Acta Cryst. E61, o1726-o1727.]). The standard asymmetric unit with Z′ = 1 is obtained for (2), for which the mol­ecular symmetry is lowered to C1. Secondly, the introduction of efficient donor groups for hydrogen bonding, such as NH2 and OH groups, is an enabling factor for crystal structures having Z′ > 1, as observed for (3) and (4). A search in the organic subset of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) reflects such a trend: for example, comparing nitro­benzene and aniline derivatives, the former class is characterized by 12.5% of crystals with Z′ > 1, and this fraction is increased to 15.6% in the latter. In the same way, phenol derivatives with Z′ = 4 are not uncommon (Dey et al., 2005[Dey, A., Kirchner, M. T., Vangala, V. R., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2005). J. Am. Chem. Soc. 127, 10545-10559.]; Mukherjee & Desiraju, 2011[Mukherjee, A. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 3735-3739.]).

3. Supra­molecular features

As expected, compound (1) is featureless regarding the packing of the mol­ecules. No short contacts such as halogen bonds are formed, and ππ inter­actions are insignificant, the shortest separation between benzene ring being defined by cell translations along the short cell axis, a = 4.0382 (1) Å.

For (2), two pairs of weak C—H⋯O hydrogen bonds link the mol­ecules to form two centrosymmetric first-level ring motifs of R22(10), with the participation of the nitro group as acceptor (Table 1[link]). The nitro group participates with two contacts to two rings, generating a chain of R motifs along [1[\overline{1}]0] (Fig. 5[link]). As for (1), slipped π-stacking inter­actions are insignificant, the benzene-to-benzene distance being, again, determined by the cell axis a = 4.0502 (5) Å.

Table 1
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1i 0.93 2.51 3.377 (5) 156
C6—H6A⋯O2ii 0.93 2.55 3.351 (5) 144
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+2, -z.
[Figure 5]
Figure 5
Part of the crystal structure of (2), showing C—H⋯O hydrogen bonds (dashed lines) forming R motifs in the crystals. Hydrogen bonds a (green) and b (red) correspond to entries 1 and 2 in Table 1[link]. Atoms belonging to the asymmetric unit are labelled.

Although compounds (3) and (4) are isoelectronic, they present different crystal structures. This is because their donor groups for hydrogen bonding are of a different nature: the N—H bond is a poorer donor compared to the O—H bond, on the basis of the polarity of these bonds, estimated with the differences of electronegativity χN − χH = 0.84 and χO − χH = 1.24 (Pauling's scale is used for χ). Moreover, the NH2 group is potentially involved in two hydrogen bonds, while the OH group is expected to form a single, stronger contact, at least as long as bifurcated hydrogen bonds are not considered.

Both compounds (3) and (4) have a supra­molecular structure based on chains oriented along a screw 21 axis (Fig. 6[link]). For (3), two discrete contacts D(2) are formed between the two independent mol­ecules (Table 2[link]). These contacts involve only one N—H bond for a given NH2 group, and the acceptor atom is the N site of the connected mol­ecule, with the N—H⋯N contact oriented toward the lone pair of the acceptor N atom. A second level motif C22(4) is formed using the discrete contacts, and the chain of connected mol­ecules runs along [010] (Fig. 6[link], top).

Table 2
Hydrogen-bond geometry (Å, °) for (3)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N11i 0.88 (2) 2.41 (3) 3.212 (6) 152 (5)
N11—H11A⋯N1ii 0.90 (2) 2.52 (3) 3.365 (6) 157 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.
[Figure 6]
Figure 6
Part of the crystal structures of (3) (top) and (4) (bottom), showing N—H⋯N and O—H⋯O hydrogen bonds (red and blue dashed lines, respectively). In each case, the asymmetric unit comprises the mol­ecules with labelled atoms.

A similar framework of D and C motifs appears in (4), this time starting from a Z′ = 4 asymmetric unit: three discrete motifs D(2) are formed within the asymmetric unit, and a fourth D(2) motif connects the first independent mol­ecule with a symmetry-related mol­ecule in the crystal (Table 3[link]). As a consequence, C44(8) chains are formed, propagating parallel to [100] (Fig. 6[link], bottom). As mentioned above, the hydrogen bonds in (4) are much more efficient than those observed in (3): all O—H⋯O bonds have short H⋯O distances of ca 1.9 Å and O—H⋯O angles are close to 180° (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (4)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H11⋯O1 0.78 (3) 1.90 (3) 2.681 (3) 173 (4)
O21—H21⋯O11 0.76 (3) 1.92 (3) 2.682 (3) 176 (3)
O31—H31⋯O21 0.77 (3) 1.95 (3) 2.714 (2) 175 (3)
O1—H1⋯O31i 0.78 (3) 1.95 (3) 2.729 (3) 172 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

It is worth noting that none of the observed 1D supra­molecular structures in (2)–(4) include ππ or C—H⋯π contacts, nor C—Br⋯Br halogen bonds. The arrangement of the mol­ecules in the crystal over the studied series of compounds is thus mainly determined by the absence of, the presence of weak, or strong hydrogen bonds, respectively, in (1), (2) and (3), or (4).

4. Database survey

Polysubstituted benzene systems are ubiquitous in the crystallographic literature. Limiting a survey to 2,6-di­methyl­bromo­benzene, only two derivatives closely related to the series we have studied may be found, with X = tBu (Field et al., 2003[Field, J. E., Hill, T. J. & Venkataraman, D. (2003). J. Org. Chem. 68, 6071-6078.]) and X = I (Liu et al., 2008[Liu, R., Wu, W.-Y., Li, Y.-H., Deng, S.-P. & Zhu, H.-J. (2008). Acta Cryst. E64, o280.]), which do not present obvious supra­molecular features. Both form Z′ = ½ crystals, as for (1).

5. Synthesis and crystallization

Compound (3) was purchased from Oakwood Chemical Co. and was the starting material for the synthesis of (2) by oxidation with m-CPBA, and (1) and (4) via a Sandmeyer reaction. Single crystals of (3) were obtained by slow evaporation of a CH2Cl2 solution.

Compound (1) was prepared by modification of the reported procedure (Xu et al., 2000[Xu, Z., Kiang, Y.-H., Lee, S., Lobkovsky, E. B. & Emmott, N. (2000). J. Am. Chem. Soc. 122, 8376-8391.]). A solution of NaNO2 (0.36 g, 5.2 mmol) in water (5 ml) was added dropwise to a suspension of 4-bromo-3,5-di­methyl­aniline (1 g, 5 mmol) in aqueous HCl (2 ml, 12 M), and water (2 ml) at 273 K. The mixture was stirred at 273 K for 30 min and then neutralized with NaHCO3. Separately, a solution of CuCN (0.54 g, 6 mmol), and KCN (0.81 g, 12 mmol) in water (10 ml) was heated at 343 K. This solution was added dropwise to the diazo­tization solution previously prepared. The mixture was kept at 343 K for 30 min with stirring and then cooled at room temperature. The product was extracted with toluene (3 × 30 ml). The combined organic layers were dried over anh. Na2SO4 and concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (petroleum ether/EtOAc, 95:5) to obtain compound (1) as orange needles (0.77 g, 73%); m.p. 408–410 K; IR: 3022 (C—H Ar), 2354 (C≡N), 1498 (C=C) cm−1; 1H NMR (400 MHz, CDCl3): δ 7.34 (s, 2H), 2.44 (s, 6H) p.p.m.; 13C NMR (100 MHz, CDCl3) δ: 140.0, 133.2, 131.1, 118.4, 110.7, 23.8 p.p.m.; GC–MS (EI): m/z = 209 (100%) [M+], 211 (97%) [M+ + 2] amu. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a CH2Cl2 solution.

Compound (2) was prepared by modification of the reported procedure (Gilbert & Borden, 1979[Gilbert, K. E. & Borden, W. T. (1979). J. Org. Chem. 44, 659-661.]). A solution of 4-bromo-3,5-di­methyl­aniline and 3-chloro­per­oxy­benzoic acid (4 g, 23 mmol) in CH2Cl2 (35 ml) was heated at 323 K for 2 h. After cooling at room temperature, the precipitate was filtered off and the liquid phase was washed with NaOH (1 M, 3 × 50 ml). The organic layer was dried over anh. Na2SO4 and concentrated under reduced pressure. The residue was dissolved in glacial acetic acid (10 ml), and a solution of H2O2 (5 ml, 33% aq. solution) and glacial acetic acid (5 ml) was added at room temperature. Then, conc. HNO3 (0.5 ml) was slowly added and the mixture was heated to 363 K for 4 h. After cooling, the crude was treated with water (50 ml), and was extracted with CH2Cl2 (3 × 50 ml). The combined organic layers were dried over anh. Na2SO4 and concentrated under reduced pressure. The crude was purified on a silica gel column chromatography (petroleum ether) to give compound (2) as bright-yellow crystals (0.51 g, 44%); m.p. 478–483 K; IR: 2988 (C—H Aliph), 1558, 1340 (N—O) cm−1; 1H NMR (400 MHz, CDCl3): δ 7.92 (s, 2H), 2.51 (s, 6H) p.p.m.; 13C NMR (100 MHz, CDCl3): δ 146.3, 140.1, 134.8, 122.5, 24.1 p.p.m.; GC–MS (EI): m/z = 229 (100%) [M+], 231 (97%) [M++2] amu. Crystals suitable for single crystal X-ray diffraction were obtained by slow evaporation of an ether solution.

Preparation of (4): A solution of 4-bromo-3,5-di­methyl­aniline (1 g, 5 mmol) in conc. H2SO4 (25 ml) and water (5 ml) was cooled to 273 K. Then a solution of NaNO2 (0.35 g, 5 mmol) in water (10 ml) was added dropwise under stirring. After additional 30 min the solution was refluxed for 30 min. The mixture was cooled and extracted with EtOAc (3 × 50 ml). The combined organic phases were dried over anh. Na2SO4 and concentrated under reduced pressure. The crude was purified by silica gel column chromatography (petroleum ether/EtOAc, 9:1) to provide the product (4) as pale-orange crystals (0.56 g, 55%); m.p. 386–388 K; IR: 3620 (O—H), 2987 (C—H aliph), 1590 (C=C Ar), 1120 (C—O) cm−1; 1H NMR (400 MHz, CDCl3): δ 6.57 (s, 2H), 4.99 (s, 1H), 2.34 (s, 6H) p.p.m.; 13C NMR (100 MHz, CDCl3): δ 153.9, 139.5, 118.3, 115.2, 23.8 p.p.m.; GC–MS (EI): m/z = 200 (100%) [M+], 202 (97%) [M+ + 2] amu. Crystals suitable for diffraction were obtained by slow evaporation of an EtOAc solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. At room temperature, compound (3) decomposes after a few minutes under Mo Kα irradiation, but is stable for hours under Cu Kα irradiation. For compound (3), H atoms of NH2 groups were located in a difference Fourier map and were refined with restraints of N—H = 0.89 (2) Å and H⋯H = 1.52 (2) Å. For (4), H atoms of OH groups were found in a difference map and refined freely. All other H atoms in (1)–(4) were refined as riding.

Table 4
Experimental details

  (1) (2) (3) (4)
Crystal data
Chemical formula C9H8BrN C8H8BrNO2 C8H10BrN C8H9BrO
Mr 210.07 230.06 200.08 201.06
Crystal system, space group Monoclinic, P21/m Triclinic, P[\overline{1}] Monoclinic, P21/n Orthorhombic, Pbca
Temperature (K) 296 296 296 100
a, b, c (Å) 4.0382 (1), 8.9362 (4), 12.1015 (4) 4.0502 (5), 9.3817 (6), 12.1823 (5) 10.48314 (15), 6.10173 (10), 26.6195 (5) 14.65213 (17), 17.9520 (2), 24.0079 (3)
α, β, γ (°) 90, 93.763 (3), 90 93.498 (4), 99.284 (4), 101.722 (5) 90, 100.0731 (16), 90 90, 90, 90
V3) 435.76 (3) 445.20 (7) 1676.48 (5) 6314.94 (12)
Z 2 2 8 32
Radiation type Cu Kα Cu Kα Cu Kα Cu Kα
μ (mm−1) 5.87 5.98 6.06 6.50
Crystal size (mm) 0.21 × 0.15 × 0.12 0.80 × 0.60 × 0.10 0.30 × 0.12 × 0.10 0.23 × 0.20 × 0.18
 
Data collection
Diffractometer Rigaku OD SuperNova AtlasS2 Rigaku OD SuperNova AtlasS2 Rigaku OD SuperNova AtlasS2 Rigaku OD SuperNova AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.])
Tmin, Tmax 0.615, 1.000 0.304, 1.000 0.593, 1.000 0.601, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 2457, 883, 771 5640, 1697, 1503 39830, 3276, 2716 22136, 6110, 5342
Rint 0.027 0.038 0.093 0.033
(sin θ/λ)max−1) 0.615 0.616 0.620 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.147, 1.08 0.045, 0.128, 1.07 0.054, 0.165, 1.11 0.026, 0.065, 1.02
No. of reflections 883 1697 3276 6110
No. of parameters 59 111 197 381
No. of restraints 0 0 6 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.51, −0.46 0.63, −0.59 0.44, −1.11 0.56, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and CifTab (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

For all compounds, data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CifTab (Sheldrick, 2008).

(1) top
Crystal data top
C9H8BrNDx = 1.601 Mg m3
Mr = 210.07Melting point: 408 K
Monoclinic, P21/mCu Kα radiation, λ = 1.54184 Å
a = 4.0382 (1) ÅCell parameters from 1415 reflections
b = 8.9362 (4) Åθ = 3.7–71.2°
c = 12.1015 (4) ŵ = 5.87 mm1
β = 93.763 (3)°T = 296 K
V = 435.76 (3) Å3Needle, orange
Z = 20.21 × 0.15 × 0.12 mm
F(000) = 208
Data collection top
Rigaku OD SuperNova AtlasS2
diffractometer
883 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source771 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 5.1980 pixels mm-1θmax = 71.4°, θmin = 3.7°
φ and ω scansh = 34
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1010
Tmin = 0.615, Tmax = 1.000l = 1413
2457 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0947P)2 + 0.0077P]
where P = (Fo2 + 2Fc2)/3
883 reflections(Δ/σ)max < 0.001
59 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.46 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11810 (14)0.75000.05285 (4)0.0896 (4)
C20.3504 (11)0.75000.1947 (4)0.0588 (10)
C30.4270 (8)0.6133 (4)0.2438 (3)0.0616 (8)
C40.6007 (9)0.6158 (3)0.3467 (3)0.0615 (7)
H4A0.66160.52610.38140.074*
C50.6843 (12)0.75000.3980 (4)0.0592 (10)
C60.8701 (14)0.75000.5047 (4)0.0697 (12)
N71.0181 (16)0.75000.5880 (5)0.0920 (15)
C80.3447 (12)0.4662 (5)0.1894 (4)0.0890 (12)
H8A0.41470.46710.11510.133*
H8B0.10950.44990.18780.133*
H8C0.45730.38730.23050.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0749 (5)0.1338 (7)0.0588 (5)0.0000.0053 (3)0.000
C20.053 (2)0.072 (3)0.052 (2)0.0000.0056 (17)0.000
C30.0654 (18)0.0579 (17)0.0622 (18)0.0049 (13)0.0085 (14)0.0070 (13)
C40.0739 (19)0.0499 (15)0.0613 (17)0.0023 (13)0.0087 (14)0.0037 (12)
C50.067 (3)0.058 (2)0.053 (2)0.0000.006 (2)0.000
C60.077 (3)0.075 (3)0.056 (3)0.0000.001 (2)0.000
N70.104 (4)0.104 (4)0.066 (3)0.0000.012 (3)0.000
C80.107 (3)0.068 (2)0.092 (3)0.015 (2)0.007 (2)0.026 (2)
Geometric parameters (Å, º) top
Br1—C21.902 (5)C5—C61.450 (7)
C2—C31.384 (4)C6—N71.138 (7)
C3—C41.389 (5)C8—H8A0.9600
C3—C81.498 (5)C8—H8B0.9600
C4—C51.383 (4)C8—H8C0.9600
C4—H4A0.9300
C3i—C2—C3123.9 (4)C4—C5—C6119.8 (2)
C3—C2—Br1118.1 (2)N7—C6—C5179.5 (6)
C2—C3—C4117.2 (3)C3—C8—H8A109.5
C2—C3—C8123.3 (3)C3—C8—H8B109.5
C4—C3—C8119.5 (3)H8A—C8—H8B109.5
C5—C4—C3120.7 (3)C3—C8—H8C109.5
C5—C4—H4A119.6H8A—C8—H8C109.5
C3—C4—H4A119.6H8B—C8—H8C109.5
C4i—C5—C4120.3 (4)
C3i—C2—C3—C42.2 (7)C2—C3—C4—C51.6 (5)
Br1—C2—C3—C4179.1 (3)C8—C3—C4—C5179.1 (4)
C3i—C2—C3—C8179.6 (4)C3—C4—C5—C4i1.1 (7)
Br1—C2—C3—C81.8 (5)C3—C4—C5—C6179.1 (4)
Symmetry code: (i) x, y+3/2, z.
(2) 2-Bromo-1,3-dimethyl-5-nitrobenzene top
Crystal data top
C8H8BrNO2F(000) = 228
Mr = 230.06Dx = 1.716 Mg m3
Triclinic, P1Melting point: 478 K
a = 4.0502 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.3817 (6) ÅCell parameters from 2941 reflections
c = 12.1823 (5) Åθ = 3.7–71.5°
α = 93.498 (4)°µ = 5.98 mm1
β = 99.284 (4)°T = 296 K
γ = 101.722 (5)°Block, pale yellow
V = 445.20 (7) Å30.80 × 0.60 × 0.10 mm
Z = 2
Data collection top
Rigaku OD SuperNova AtlasS2
diffractometer
1697 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1503 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 5.1980 pixels mm-1θmax = 71.7°, θmin = 3.7°
φ and ω scansh = 44
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1111
Tmin = 0.304, Tmax = 1.000l = 1414
5640 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.2116P]
where P = (Fo2 + 2Fc2)/3
1697 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.59 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11600 (12)0.72052 (5)0.45994 (3)0.0787 (2)
N10.2977 (9)0.7622 (4)0.0226 (3)0.0628 (8)
O10.4131 (11)0.6691 (4)0.0677 (3)0.0899 (10)
O20.2182 (11)0.8634 (4)0.0707 (3)0.0947 (11)
C10.1468 (9)0.8635 (4)0.2627 (3)0.0565 (8)
C20.1714 (9)0.7332 (4)0.3086 (3)0.0534 (8)
C30.2324 (9)0.6117 (4)0.2500 (3)0.0548 (8)
C40.2752 (9)0.6237 (4)0.1406 (3)0.0530 (8)
H4A0.32110.54590.09910.064*
C50.2495 (9)0.7520 (4)0.0932 (3)0.0533 (8)
C60.1846 (10)0.8718 (4)0.1517 (3)0.0571 (8)
H6A0.16670.95640.11730.069*
C70.0874 (12)0.9962 (5)0.3270 (4)0.0779 (12)
H7A0.10680.96780.36300.117*
H7B0.04451.06760.27650.117*
H7C0.28671.03730.38240.117*
C80.2502 (13)0.4705 (5)0.3008 (4)0.0724 (11)
H8A0.40260.49070.37160.109*
H8B0.33350.40770.25170.109*
H8C0.02570.42320.31140.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0850 (4)0.0998 (4)0.0536 (3)0.0207 (3)0.0197 (2)0.0041 (2)
N10.073 (2)0.0602 (17)0.0567 (17)0.0151 (15)0.0126 (15)0.0087 (14)
O10.132 (3)0.093 (2)0.0637 (18)0.051 (2)0.0380 (19)0.0117 (16)
O20.147 (3)0.084 (2)0.071 (2)0.049 (2)0.031 (2)0.0291 (17)
C10.0481 (17)0.060 (2)0.059 (2)0.0150 (15)0.0028 (14)0.0057 (16)
C20.0472 (17)0.066 (2)0.0475 (17)0.0139 (14)0.0087 (13)0.0035 (15)
C30.0521 (18)0.0584 (19)0.0536 (18)0.0132 (15)0.0070 (14)0.0044 (15)
C40.0570 (19)0.0500 (17)0.0541 (19)0.0158 (14)0.0103 (14)0.0044 (14)
C50.0533 (18)0.0539 (18)0.0513 (18)0.0103 (14)0.0069 (14)0.0040 (14)
C60.061 (2)0.0497 (18)0.061 (2)0.0169 (15)0.0044 (16)0.0045 (15)
C70.084 (3)0.072 (3)0.078 (3)0.027 (2)0.010 (2)0.016 (2)
C80.090 (3)0.068 (2)0.064 (2)0.023 (2)0.016 (2)0.0195 (19)
Geometric parameters (Å, º) top
Br1—C21.900 (4)C4—C51.382 (5)
N1—O11.214 (4)C4—H4A0.9300
N1—O21.217 (4)C5—C61.388 (5)
N1—C51.460 (5)C6—H6A0.9300
C1—C61.389 (6)C7—H7A0.9600
C1—C21.390 (5)C7—H7B0.9600
C1—C71.512 (5)C7—H7C0.9600
C2—C31.394 (5)C8—H8A0.9600
C3—C41.379 (5)C8—H8B0.9600
C3—C81.506 (5)C8—H8C0.9600
O1—N1—O2122.2 (4)C6—C5—N1118.9 (3)
O1—N1—C5119.0 (3)C5—C6—C1118.9 (3)
O2—N1—C5118.7 (3)C5—C6—H6A120.5
C6—C1—C2117.7 (3)C1—C6—H6A120.5
C6—C1—C7118.6 (4)C1—C7—H7A109.5
C2—C1—C7123.7 (4)C1—C7—H7B109.5
C1—C2—C3123.8 (3)H7A—C7—H7B109.5
C1—C2—Br1117.9 (3)C1—C7—H7C109.5
C3—C2—Br1118.4 (3)H7A—C7—H7C109.5
C4—C3—C2117.4 (3)H7B—C7—H7C109.5
C4—C3—C8119.8 (3)C3—C8—H8A109.5
C2—C3—C8122.8 (4)C3—C8—H8B109.5
C3—C4—C5119.7 (3)H8A—C8—H8B109.5
C3—C4—H4A120.2C3—C8—H8C109.5
C5—C4—H4A120.2H8A—C8—H8C109.5
C4—C5—C6122.5 (3)H8B—C8—H8C109.5
C4—C5—N1118.6 (3)
C6—C1—C2—C30.2 (5)C3—C4—C5—C60.6 (6)
C7—C1—C2—C3178.8 (4)C3—C4—C5—N1179.7 (3)
C6—C1—C2—Br1179.5 (3)O1—N1—C5—C412.0 (5)
C7—C1—C2—Br11.6 (5)O2—N1—C5—C4167.5 (4)
C1—C2—C3—C41.0 (5)O1—N1—C5—C6167.1 (4)
Br1—C2—C3—C4179.4 (3)O2—N1—C5—C613.4 (5)
C1—C2—C3—C8178.6 (4)C4—C5—C6—C10.6 (6)
Br1—C2—C3—C81.1 (5)N1—C5—C6—C1178.5 (3)
C2—C3—C4—C51.3 (5)C2—C1—C6—C50.9 (5)
C8—C3—C4—C5178.2 (3)C7—C1—C6—C5178.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O1i0.932.513.377 (5)156
C6—H6A···O2ii0.932.553.351 (5)144
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+2, z.
(3) top
Crystal data top
C8H10BrNDx = 1.585 Mg m3
Mr = 200.08Melting point: 346 K
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.48314 (15) ÅCell parameters from 14036 reflections
b = 6.10173 (10) Åθ = 3.4–71.4°
c = 26.6195 (5) ŵ = 6.06 mm1
β = 100.0731 (16)°T = 296 K
V = 1676.48 (5) Å3Needle, colourless
Z = 80.30 × 0.12 × 0.10 mm
F(000) = 800
Data collection top
Rigaku OD SuperNova AtlasS2
diffractometer
3276 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source2716 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.093
Detector resolution: 5.1980 pixels mm-1θmax = 72.8°, θmin = 3.4°
φ and ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 77
Tmin = 0.593, Tmax = 1.000l = 3232
39830 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: mixed
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0779P)2 + 1.0194P]
where P = (Fo2 + 2Fc2)/3
3276 reflections(Δ/σ)max < 0.001
197 parametersΔρmax = 0.44 e Å3
6 restraintsΔρmin = 1.11 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24694 (5)0.23484 (10)0.15702 (3)0.1038 (3)
N10.1935 (4)0.7889 (7)0.20733 (16)0.0868 (12)
H1A0.201 (5)0.787 (7)0.2398 (9)0.104*
H1B0.202 (5)0.918 (5)0.1918 (15)0.104*
C10.0703 (3)0.5931 (7)0.14294 (14)0.0673 (9)
C20.1125 (3)0.4160 (6)0.17418 (14)0.0618 (8)
C30.0613 (3)0.3673 (6)0.21759 (14)0.0616 (8)
C40.0384 (3)0.4981 (6)0.22843 (12)0.0601 (8)
H4A0.07450.46840.25720.072*
C50.0852 (3)0.6715 (7)0.19735 (13)0.0608 (8)
C60.0292 (4)0.7188 (6)0.15532 (15)0.0673 (9)
H6A0.05930.83820.13490.081*
C70.1289 (6)0.6536 (10)0.0969 (2)0.1049 (17)
H7A0.22120.66630.10670.157*
H7B0.09380.79100.08340.157*
H7C0.10910.54190.07130.157*
C80.1109 (5)0.1815 (8)0.2535 (2)0.0951 (14)
H8A0.10290.04560.23510.143*
H8B0.06110.17450.28050.143*
H8C0.20030.20680.26780.143*
Br110.72828 (6)0.22871 (10)0.00212 (2)0.0996 (3)
N110.6186 (4)0.3496 (7)0.17122 (14)0.0816 (10)
H11A0.658 (4)0.480 (5)0.1713 (19)0.098*
H11B0.536 (2)0.356 (7)0.1745 (18)0.098*
C110.5864 (3)0.0934 (7)0.07484 (15)0.0681 (9)
C120.6933 (3)0.0488 (7)0.05224 (13)0.0652 (9)
C130.7753 (3)0.1285 (7)0.06764 (13)0.0652 (9)
C140.7478 (4)0.2596 (6)0.10694 (14)0.0648 (9)
H14A0.80180.37730.11800.078*
C150.6412 (4)0.2187 (7)0.13007 (14)0.0649 (9)
C160.5626 (3)0.0413 (7)0.11379 (14)0.0688 (10)
H16A0.49180.01220.12950.083*
C170.4956 (5)0.2818 (8)0.0571 (2)0.0917 (14)
H17A0.43400.29710.07960.138*
H17B0.54470.41470.05720.138*
H17C0.45070.25300.02310.138*
C180.8907 (5)0.1869 (9)0.04352 (18)0.0884 (13)
H18A0.86430.19730.00720.133*
H18B0.95580.07550.05130.133*
H18C0.92540.32510.05670.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0617 (3)0.1074 (5)0.1481 (6)0.0103 (2)0.0348 (3)0.0438 (3)
N10.066 (2)0.117 (3)0.082 (2)0.034 (2)0.0268 (18)0.008 (2)
C10.0627 (19)0.081 (2)0.066 (2)0.0104 (18)0.0315 (16)0.0087 (18)
C20.0408 (14)0.068 (2)0.080 (2)0.0016 (14)0.0206 (14)0.0159 (18)
C30.0466 (16)0.065 (2)0.072 (2)0.0036 (14)0.0078 (14)0.0020 (17)
C40.0478 (16)0.079 (2)0.0569 (17)0.0032 (15)0.0185 (13)0.0057 (17)
C50.0479 (16)0.079 (2)0.0584 (18)0.0061 (16)0.0183 (14)0.0009 (17)
C60.071 (2)0.077 (2)0.0575 (19)0.0061 (18)0.0207 (16)0.0090 (17)
C70.122 (4)0.118 (4)0.093 (3)0.022 (3)0.070 (3)0.009 (3)
C80.099 (3)0.079 (3)0.104 (4)0.014 (3)0.008 (3)0.018 (3)
Br110.1085 (5)0.1057 (5)0.0899 (4)0.0198 (3)0.0326 (3)0.0249 (3)
N110.075 (2)0.105 (3)0.073 (2)0.000 (2)0.0369 (17)0.018 (2)
C110.0536 (17)0.077 (2)0.072 (2)0.0145 (17)0.0074 (15)0.0043 (19)
C120.0644 (19)0.078 (2)0.0551 (17)0.0193 (18)0.0154 (15)0.0002 (17)
C130.0575 (18)0.086 (3)0.0557 (18)0.0144 (18)0.0199 (15)0.0073 (18)
C140.059 (2)0.081 (3)0.059 (2)0.0026 (16)0.0219 (16)0.0020 (17)
C150.0562 (19)0.085 (3)0.0566 (18)0.0134 (17)0.0197 (15)0.0017 (17)
C160.0485 (17)0.090 (3)0.072 (2)0.0096 (17)0.0224 (15)0.006 (2)
C170.072 (3)0.089 (3)0.114 (4)0.003 (2)0.014 (3)0.007 (3)
C180.084 (3)0.115 (4)0.078 (3)0.003 (3)0.046 (2)0.001 (3)
Geometric parameters (Å, º) top
Br1—C21.908 (3)Br11—C121.902 (3)
N1—C51.407 (5)N11—C151.409 (5)
N1—H1A0.881 (18)N11—H11A0.897 (18)
N1—H1B0.886 (18)N11—H11B0.884 (18)
C1—C61.380 (5)C11—C161.380 (5)
C1—C21.388 (6)C11—C121.389 (5)
C1—C71.510 (5)C11—C171.514 (6)
C2—C31.389 (5)C12—C131.398 (6)
C3—C41.385 (5)C13—C141.387 (5)
C3—C81.515 (6)C13—C181.508 (5)
C4—C51.379 (5)C14—C151.390 (5)
C4—H4A0.9300C14—H14A0.9300
C5—C61.382 (5)C15—C161.383 (6)
C6—H6A0.9300C16—H16A0.9300
C7—H7A0.9600C17—H17A0.9600
C7—H7B0.9600C17—H17B0.9600
C7—H7C0.9600C17—H17C0.9600
C8—H8A0.9600C18—H18A0.9600
C8—H8B0.9600C18—H18B0.9600
C8—H8C0.9600C18—H18C0.9600
C5—N1—H1A113 (3)C15—N11—H11A111 (3)
C5—N1—H1B113 (3)C15—N11—H11B114 (3)
H1A—N1—H1B117 (3)H11A—N11—H11B115 (3)
C6—C1—C2117.7 (3)C16—C11—C12118.3 (4)
C6—C1—C7119.3 (4)C16—C11—C17120.0 (4)
C2—C1—C7123.0 (4)C12—C11—C17121.6 (4)
C1—C2—C3122.4 (3)C11—C12—C13121.8 (3)
C1—C2—Br1118.6 (3)C11—C12—Br11119.6 (3)
C3—C2—Br1119.0 (3)C13—C12—Br11118.6 (3)
C4—C3—C2117.8 (3)C14—C13—C12118.0 (3)
C4—C3—C8119.2 (4)C14—C13—C18118.2 (4)
C2—C3—C8123.0 (4)C12—C13—C18123.8 (4)
C5—C4—C3121.3 (3)C13—C14—C15121.3 (4)
C5—C4—H4A119.4C13—C14—H14A119.3
C3—C4—H4A119.4C15—C14—H14A119.3
C4—C5—C6119.3 (3)C16—C15—C14118.9 (3)
C4—C5—N1119.5 (3)C16—C15—N11121.0 (3)
C6—C5—N1121.2 (4)C14—C15—N11120.0 (4)
C1—C6—C5121.5 (4)C11—C16—C15121.7 (3)
C1—C6—H6A119.2C11—C16—H16A119.2
C5—C6—H6A119.2C15—C16—H16A119.2
C1—C7—H7A109.5C11—C17—H17A109.5
C1—C7—H7B109.5C11—C17—H17B109.5
H7A—C7—H7B109.5H17A—C17—H17B109.5
C1—C7—H7C109.5C11—C17—H17C109.5
H7A—C7—H7C109.5H17A—C17—H17C109.5
H7B—C7—H7C109.5H17B—C17—H17C109.5
C3—C8—H8A109.5C13—C18—H18A109.5
C3—C8—H8B109.5C13—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
C3—C8—H8C109.5C13—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5
C6—C1—C2—C32.1 (6)C16—C11—C12—C130.6 (5)
C7—C1—C2—C3177.4 (4)C17—C11—C12—C13178.3 (4)
C6—C1—C2—Br1178.4 (3)C16—C11—C12—Br11179.3 (3)
C7—C1—C2—Br12.1 (5)C17—C11—C12—Br110.4 (5)
C1—C2—C3—C42.1 (5)C11—C12—C13—C140.7 (5)
Br1—C2—C3—C4178.4 (3)Br11—C12—C13—C14179.3 (3)
C1—C2—C3—C8176.8 (4)C11—C12—C13—C18178.5 (4)
Br1—C2—C3—C82.6 (5)Br11—C12—C13—C180.2 (5)
C2—C3—C4—C50.2 (5)C12—C13—C14—C150.8 (6)
C8—C3—C4—C5178.8 (4)C18—C13—C14—C15178.4 (4)
C3—C4—C5—C61.7 (6)C13—C14—C15—C160.9 (6)
C3—C4—C5—N1174.7 (4)C13—C14—C15—N11177.6 (4)
C2—C1—C6—C50.1 (6)C12—C11—C16—C150.8 (6)
C7—C1—C6—C5179.4 (4)C17—C11—C16—C15178.2 (4)
C4—C5—C6—C11.7 (6)C14—C15—C16—C110.9 (6)
N1—C5—C6—C1174.6 (4)N11—C15—C16—C11177.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N11i0.88 (2)2.41 (3)3.212 (6)152 (5)
N11—H11A···N1ii0.90 (2)2.52 (3)3.365 (6)157 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z.
(4) 4-Bromo-3,5-dimethylphenol top
Crystal data top
C8H9BrODx = 1.692 Mg m3
Mr = 201.06Melting point: 386 K
Orthorhombic, PbcaCu Kα radiation, λ = 1.54184 Å
a = 14.65213 (17) ÅCell parameters from 10448 reflections
b = 17.9520 (2) Åθ = 3.7–71.4°
c = 24.0079 (3) ŵ = 6.50 mm1
V = 6314.94 (12) Å3T = 100 K
Z = 32Block, yellow
F(000) = 32000.23 × 0.20 × 0.18 mm
Data collection top
Rigaku OD SuperNova AtlasS2
diffractometer
6110 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source5342 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 5.1980 pixels mm-1θmax = 71.6°, θmin = 3.7°
φ and ω scansh = 1713
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 2122
Tmin = 0.601, Tmax = 1.000l = 2928
22136 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: mixed
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.031P)2 + 3.051P]
where P = (Fo2 + 2Fc2)/3
6110 reflections(Δ/σ)max = 0.002
381 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.43 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22468 (2)0.59654 (2)0.78001 (2)0.02219 (7)
O10.46483 (12)0.75860 (10)0.61587 (8)0.0196 (4)
H10.436 (2)0.7751 (18)0.5913 (14)0.029*
C10.25870 (16)0.69235 (13)0.68779 (10)0.0161 (5)
C20.30052 (17)0.65022 (13)0.72925 (10)0.0162 (5)
C30.39536 (17)0.64366 (13)0.73399 (10)0.0159 (5)
C40.44884 (16)0.68140 (13)0.69532 (10)0.0151 (5)
H4A0.51350.67850.69760.018*
C50.40869 (16)0.72306 (13)0.65365 (10)0.0145 (5)
C60.31470 (16)0.72865 (13)0.64976 (10)0.0164 (5)
H6A0.28820.75760.62080.020*
C70.15740 (17)0.69908 (16)0.68248 (11)0.0234 (6)
H7A0.13180.71720.71770.035*
H7B0.13130.65020.67370.035*
H7C0.14270.73420.65260.035*
C80.44007 (18)0.59541 (14)0.77743 (11)0.0219 (5)
H8A0.50610.59440.77110.033*
H8B0.41570.54470.77490.033*
H8C0.42740.61570.81450.033*
Br110.90409 (2)0.88537 (2)0.75012 (2)0.02282 (7)
O110.64155 (12)0.73224 (11)0.59470 (8)0.0230 (4)
H110.590 (2)0.7371 (19)0.6026 (14)0.034*
C110.72728 (16)0.84371 (13)0.71234 (10)0.0159 (5)
C120.81977 (16)0.83541 (13)0.70215 (10)0.0151 (5)
C130.85456 (16)0.79230 (13)0.65883 (10)0.0152 (5)
C140.79235 (16)0.75794 (14)0.62345 (10)0.0164 (5)
H14A0.81370.72810.59350.020*
C150.69938 (16)0.76692 (13)0.63161 (10)0.0146 (5)
C160.66644 (16)0.80871 (13)0.67584 (10)0.0145 (5)
H16A0.60250.81360.68140.017*
C170.69077 (19)0.88894 (15)0.76024 (11)0.0230 (6)
H17A0.71410.86870.79540.034*
H17B0.62390.88670.76030.034*
H17C0.71050.94080.75630.034*
C180.95504 (16)0.78010 (15)0.65044 (11)0.0207 (5)
H18A0.96460.74750.61820.031*
H18B0.98100.75670.68380.031*
H18C0.98510.82810.64390.031*
Br210.42678 (2)0.47389 (2)0.39094 (2)0.02459 (7)
O210.69191 (12)0.69370 (10)0.49124 (7)0.0175 (4)
H210.677 (2)0.7063 (18)0.5200 (13)0.026*
C210.47716 (16)0.59328 (14)0.46321 (10)0.0167 (5)
C220.51005 (17)0.54353 (13)0.42327 (10)0.0175 (5)
C230.60053 (17)0.54233 (13)0.40577 (10)0.0167 (5)
C240.66009 (17)0.59418 (13)0.42934 (10)0.0163 (5)
H24A0.72210.59530.41790.020*
C250.62964 (16)0.64384 (13)0.46920 (10)0.0144 (5)
C260.53944 (16)0.64363 (13)0.48600 (10)0.0158 (5)
H26A0.51950.67820.51340.019*
C270.37892 (17)0.59441 (16)0.48179 (11)0.0233 (6)
H27A0.37120.63160.51130.035*
H27B0.36200.54520.49600.035*
H27C0.33970.60720.45010.035*
C280.63566 (19)0.48676 (14)0.36405 (11)0.0221 (5)
H28A0.69990.49740.35580.033*
H28B0.59980.49030.32970.033*
H28C0.63020.43640.37940.033*
Br311.07251 (2)0.46757 (2)0.62030 (2)0.02168 (7)
O310.87558 (12)0.69132 (10)0.47660 (7)0.0176 (4)
H310.823 (2)0.6897 (17)0.4800 (13)0.026*
C310.91446 (17)0.53218 (13)0.57080 (10)0.0154 (5)
C321.00912 (17)0.53671 (13)0.57385 (10)0.0155 (5)
C331.06015 (16)0.59008 (14)0.54511 (10)0.0158 (5)
C341.01266 (16)0.64133 (13)0.51263 (10)0.0152 (5)
H34A1.04510.67840.49250.018*
C350.91818 (16)0.63854 (13)0.50948 (10)0.0139 (5)
C360.86927 (16)0.58457 (13)0.53791 (10)0.0147 (5)
H36A0.80460.58320.53500.018*
C370.86046 (18)0.47289 (13)0.60069 (11)0.0200 (5)
H37A0.87240.47600.64080.030*
H37B0.87870.42370.58700.030*
H37C0.79520.48040.59370.030*
C381.16258 (16)0.59329 (15)0.54722 (11)0.0217 (5)
H38A1.18410.63620.52560.033*
H38B1.18790.54740.53140.033*
H38C1.18250.59840.58600.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02410 (15)0.02111 (14)0.02136 (14)0.00353 (10)0.00837 (10)0.00205 (10)
O10.0138 (9)0.0259 (10)0.0191 (9)0.0019 (7)0.0014 (7)0.0086 (7)
C10.0150 (12)0.0148 (11)0.0187 (12)0.0004 (9)0.0032 (9)0.0035 (9)
C20.0195 (12)0.0137 (11)0.0155 (11)0.0036 (9)0.0044 (9)0.0027 (9)
C30.0212 (13)0.0125 (11)0.0139 (11)0.0008 (9)0.0033 (9)0.0019 (9)
C40.0115 (11)0.0152 (11)0.0187 (12)0.0007 (9)0.0012 (9)0.0021 (9)
C50.0134 (11)0.0144 (11)0.0156 (11)0.0028 (9)0.0013 (9)0.0000 (9)
C60.0189 (12)0.0161 (12)0.0141 (11)0.0021 (9)0.0019 (9)0.0009 (9)
C70.0162 (13)0.0303 (15)0.0238 (13)0.0005 (11)0.0036 (10)0.0007 (11)
C80.0244 (14)0.0216 (13)0.0198 (13)0.0047 (10)0.0062 (10)0.0041 (11)
Br110.02236 (14)0.02426 (14)0.02183 (14)0.00606 (10)0.00779 (10)0.00253 (11)
O110.0123 (9)0.0369 (11)0.0197 (9)0.0031 (8)0.0010 (7)0.0103 (8)
C110.0207 (13)0.0113 (11)0.0158 (11)0.0024 (9)0.0002 (9)0.0014 (9)
C120.0164 (12)0.0145 (11)0.0145 (11)0.0021 (9)0.0044 (9)0.0016 (9)
C130.0131 (12)0.0169 (12)0.0156 (11)0.0007 (9)0.0017 (9)0.0033 (9)
C140.0166 (12)0.0189 (12)0.0136 (11)0.0009 (9)0.0013 (9)0.0036 (9)
C150.0142 (12)0.0157 (11)0.0139 (11)0.0030 (9)0.0023 (9)0.0004 (9)
C160.0121 (11)0.0150 (11)0.0163 (11)0.0013 (9)0.0000 (9)0.0019 (9)
C170.0261 (14)0.0223 (13)0.0205 (13)0.0005 (11)0.0016 (11)0.0068 (10)
C180.0141 (12)0.0274 (13)0.0206 (13)0.0002 (10)0.0011 (10)0.0021 (10)
Br210.02642 (15)0.02282 (14)0.02452 (15)0.00989 (11)0.00721 (11)0.00050 (11)
O210.0134 (8)0.0209 (9)0.0182 (9)0.0034 (7)0.0007 (7)0.0071 (7)
C210.0153 (12)0.0186 (12)0.0163 (12)0.0024 (9)0.0006 (9)0.0057 (10)
C220.0196 (13)0.0158 (11)0.0170 (12)0.0046 (9)0.0050 (10)0.0043 (9)
C230.0235 (13)0.0142 (11)0.0122 (11)0.0005 (10)0.0019 (10)0.0014 (9)
C240.0164 (12)0.0174 (12)0.0151 (11)0.0016 (9)0.0005 (9)0.0020 (9)
C250.0157 (12)0.0133 (11)0.0142 (11)0.0024 (9)0.0050 (9)0.0015 (9)
C260.0145 (12)0.0174 (11)0.0156 (11)0.0011 (9)0.0008 (9)0.0009 (9)
C270.0140 (13)0.0306 (14)0.0252 (14)0.0046 (10)0.0000 (10)0.0023 (11)
C280.0299 (15)0.0174 (12)0.0191 (13)0.0002 (11)0.0006 (11)0.0035 (10)
Br310.02599 (15)0.02241 (14)0.01663 (13)0.00797 (10)0.00221 (10)0.00384 (10)
O310.0120 (8)0.0197 (9)0.0211 (9)0.0029 (7)0.0013 (7)0.0071 (7)
C310.0226 (13)0.0134 (11)0.0101 (11)0.0013 (9)0.0026 (9)0.0020 (9)
C320.0206 (12)0.0155 (12)0.0104 (11)0.0045 (9)0.0003 (9)0.0011 (9)
C330.0163 (12)0.0178 (12)0.0133 (11)0.0002 (9)0.0008 (9)0.0031 (9)
C340.0148 (12)0.0147 (11)0.0160 (11)0.0003 (9)0.0028 (9)0.0002 (9)
C350.0156 (12)0.0142 (11)0.0119 (11)0.0009 (9)0.0009 (9)0.0001 (9)
C360.0139 (12)0.0168 (12)0.0133 (11)0.0010 (9)0.0005 (9)0.0006 (9)
C370.0249 (14)0.0173 (12)0.0178 (12)0.0030 (10)0.0026 (10)0.0033 (10)
C380.0135 (12)0.0265 (14)0.0252 (14)0.0020 (10)0.0009 (10)0.0016 (11)
Geometric parameters (Å, º) top
Br1—C21.910 (2)Br21—C221.912 (2)
O1—C51.381 (3)O21—C251.383 (3)
O1—H10.78 (3)O21—H210.76 (3)
C1—C61.390 (3)C21—C221.396 (4)
C1—C21.392 (3)C21—C261.396 (3)
C1—C71.495 (3)C21—C271.507 (3)
C2—C31.399 (3)C22—C231.391 (4)
C3—C41.391 (3)C23—C241.396 (3)
C3—C81.506 (3)C23—C281.504 (3)
C4—C51.381 (3)C24—C251.382 (3)
C4—H4A0.9500C24—H24A0.9500
C5—C61.384 (3)C25—C261.382 (3)
C6—H6A0.9500C26—H26A0.9500
C7—H7A0.9800C27—H27A0.9800
C7—H7B0.9800C27—H27B0.9800
C7—H7C0.9800C27—H27C0.9800
C8—H8A0.9800C28—H28A0.9800
C8—H8B0.9800C28—H28B0.9800
C8—H8C0.9800C28—H28C0.9800
Br11—C121.912 (2)Br31—C321.910 (2)
O11—C151.375 (3)O31—C351.382 (3)
O11—H110.78 (3)O31—H310.77 (3)
C11—C121.385 (3)C31—C321.391 (3)
C11—C161.399 (3)C31—C361.395 (3)
C11—C171.506 (3)C31—C371.508 (3)
C12—C131.393 (3)C32—C331.398 (3)
C13—C141.391 (3)C33—C341.392 (3)
C13—C181.502 (3)C33—C381.503 (3)
C14—C151.386 (3)C34—C351.387 (3)
C14—H14A0.9500C34—H34A0.9500
C15—C161.387 (3)C35—C361.385 (3)
C16—H16A0.9500C36—H36A0.9500
C17—H17A0.9800C37—H37A0.9800
C17—H17B0.9800C37—H37B0.9800
C17—H17C0.9800C37—H37C0.9800
C18—H18A0.9800C38—H38A0.9800
C18—H18B0.9800C38—H38B0.9800
C18—H18C0.9800C38—H38C0.9800
C5—O1—H1110 (2)C25—O21—H21111 (2)
C6—C1—C2117.7 (2)C22—C21—C26117.2 (2)
C6—C1—C7119.5 (2)C22—C21—C27122.8 (2)
C2—C1—C7122.8 (2)C26—C21—C27120.0 (2)
C1—C2—C3122.7 (2)C23—C22—C21123.1 (2)
C1—C2—Br1118.31 (18)C23—C22—Br21118.39 (19)
C3—C2—Br1118.90 (18)C21—C22—Br21118.48 (18)
C4—C3—C2117.7 (2)C22—C23—C24117.6 (2)
C4—C3—C8119.8 (2)C22—C23—C28122.5 (2)
C2—C3—C8122.5 (2)C24—C23—C28119.9 (2)
C5—C4—C3120.5 (2)C25—C24—C23120.6 (2)
C5—C4—H4A119.8C25—C24—H24A119.7
C3—C4—H4A119.8C23—C24—H24A119.7
C4—C5—O1118.2 (2)C26—C25—C24120.6 (2)
C4—C5—C6120.8 (2)C26—C25—O21121.4 (2)
O1—C5—C6121.0 (2)C24—C25—O21118.0 (2)
C5—C6—C1120.6 (2)C25—C26—C21120.8 (2)
C5—C6—H6A119.7C25—C26—H26A119.6
C1—C6—H6A119.7C21—C26—H26A119.6
C1—C7—H7A109.5C21—C27—H27A109.5
C1—C7—H7B109.5C21—C27—H27B109.5
H7A—C7—H7B109.5H27A—C27—H27B109.5
C1—C7—H7C109.5C21—C27—H27C109.5
H7A—C7—H7C109.5H27A—C27—H27C109.5
H7B—C7—H7C109.5H27B—C27—H27C109.5
C3—C8—H8A109.5C23—C28—H28A109.5
C3—C8—H8B109.5C23—C28—H28B109.5
H8A—C8—H8B109.5H28A—C28—H28B109.5
C3—C8—H8C109.5C23—C28—H28C109.5
H8A—C8—H8C109.5H28A—C28—H28C109.5
H8B—C8—H8C109.5H28B—C28—H28C109.5
C15—O11—H11113 (3)C35—O31—H31111 (2)
C12—C11—C16117.7 (2)C32—C31—C36117.6 (2)
C12—C11—C17122.7 (2)C32—C31—C37122.6 (2)
C16—C11—C17119.6 (2)C36—C31—C37119.7 (2)
C11—C12—C13123.3 (2)C31—C32—C33123.2 (2)
C11—C12—Br11118.38 (18)C31—C32—Br31118.53 (18)
C13—C12—Br11118.27 (18)C33—C32—Br31118.27 (18)
C14—C13—C12117.6 (2)C34—C33—C32117.5 (2)
C14—C13—C18119.7 (2)C34—C33—C38119.5 (2)
C12—C13—C18122.7 (2)C32—C33—C38123.0 (2)
C15—C14—C13120.4 (2)C35—C34—C33120.4 (2)
C15—C14—H14A119.8C35—C34—H34A119.8
C13—C14—H14A119.8C33—C34—H34A119.8
O11—C15—C14117.5 (2)O31—C35—C36121.8 (2)
O11—C15—C16121.6 (2)O31—C35—C34117.2 (2)
C14—C15—C16120.9 (2)C36—C35—C34121.0 (2)
C15—C16—C11120.0 (2)C35—C36—C31120.3 (2)
C15—C16—H16A120.0C35—C36—H36A119.8
C11—C16—H16A120.0C31—C36—H36A119.8
C11—C17—H17A109.5C31—C37—H37A109.5
C11—C17—H17B109.5C31—C37—H37B109.5
H17A—C17—H17B109.5H37A—C37—H37B109.5
C11—C17—H17C109.5C31—C37—H37C109.5
H17A—C17—H17C109.5H37A—C37—H37C109.5
H17B—C17—H17C109.5H37B—C37—H37C109.5
C13—C18—H18A109.5C33—C38—H38A109.5
C13—C18—H18B109.5C33—C38—H38B109.5
H18A—C18—H18B109.5H38A—C38—H38B109.5
C13—C18—H18C109.5C33—C38—H38C109.5
H18A—C18—H18C109.5H38A—C38—H38C109.5
H18B—C18—H18C109.5H38B—C38—H38C109.5
C6—C1—C2—C30.3 (4)C26—C21—C22—C230.0 (4)
C7—C1—C2—C3179.6 (2)C27—C21—C22—C23179.8 (2)
C6—C1—C2—Br1177.41 (17)C26—C21—C22—Br21179.83 (17)
C7—C1—C2—Br11.9 (3)C27—C21—C22—Br210.1 (3)
C1—C2—C3—C40.2 (4)C21—C22—C23—C240.6 (4)
Br1—C2—C3—C4177.91 (17)Br21—C22—C23—C24179.23 (17)
C1—C2—C3—C8177.3 (2)C21—C22—C23—C28178.0 (2)
Br1—C2—C3—C80.4 (3)Br21—C22—C23—C282.2 (3)
C2—C3—C4—C50.6 (3)C22—C23—C24—C251.0 (3)
C8—C3—C4—C5177.0 (2)C28—C23—C24—C25177.7 (2)
C3—C4—C5—O1179.1 (2)C23—C24—C25—C260.7 (4)
C3—C4—C5—C60.6 (4)C23—C24—C25—O21179.7 (2)
C4—C5—C6—C10.0 (4)C24—C25—C26—C210.1 (4)
O1—C5—C6—C1179.6 (2)O21—C25—C26—C21179.6 (2)
C2—C1—C6—C50.4 (3)C22—C21—C26—C250.3 (3)
C7—C1—C6—C5179.7 (2)C27—C21—C26—C25179.5 (2)
C16—C11—C12—C132.2 (4)C36—C31—C32—C331.0 (4)
C17—C11—C12—C13178.4 (2)C37—C31—C32—C33178.1 (2)
C16—C11—C12—Br11178.05 (17)C36—C31—C32—Br31178.17 (17)
C17—C11—C12—Br111.4 (3)C37—C31—C32—Br312.7 (3)
C11—C12—C13—C141.9 (4)C31—C32—C33—C340.8 (4)
Br11—C12—C13—C14178.34 (18)Br31—C32—C33—C34178.28 (17)
C11—C12—C13—C18176.2 (2)C31—C32—C33—C38178.1 (2)
Br11—C12—C13—C183.6 (3)Br31—C32—C33—C382.7 (3)
C12—C13—C14—C150.0 (4)C32—C33—C34—C350.0 (3)
C18—C13—C14—C15178.2 (2)C38—C33—C34—C35179.0 (2)
C13—C14—C15—O11179.2 (2)C33—C34—C35—O31179.8 (2)
C13—C14—C15—C161.6 (4)C33—C34—C35—C360.7 (4)
O11—C15—C16—C11179.5 (2)O31—C35—C36—C31179.9 (2)
C14—C15—C16—C111.3 (4)C34—C35—C36—C310.6 (4)
C12—C11—C16—C150.6 (3)C32—C31—C36—C350.2 (3)
C17—C11—C16—C15180.0 (2)C37—C31—C36—C35178.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O10.78 (3)1.90 (3)2.681 (3)173 (4)
O21—H21···O110.76 (3)1.92 (3)2.682 (3)176 (3)
O31—H31···O210.77 (3)1.95 (3)2.714 (2)175 (3)
O1—H1···O31i0.78 (3)1.95 (3)2.729 (3)172 (3)
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Acknowledgements

We gratefully acknowledge support for this project by the Dirección General de Educación Superior Tecnológica (DGEST grants 5637.15-P) and CONACyT: Proyecto Infra-2014-224405.

References

First citationBritton, D. (2005). Acta Cryst. E61, o1726–o1727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBritton, D., Konnert, J. & Lam, S. (1977). Cryst. Struct. Commun. 6, 45–48.  CAS Google Scholar
First citationCozzi, F., Annunziata, R., Benaglia, M., Baldridge, K. K., Aguirre, G., Estrada, J., Sritana-Anant, Y. & Siegel, J. S. (2008). Phys. Chem. Chem. Phys. 10, 2686–2694.  Web of Science CSD CrossRef CAS Google Scholar
First citationDesiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757–6764.  CSD CrossRef CAS Web of Science Google Scholar
First citationDey, A., Kirchner, M. T., Vangala, V. R., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2005). J. Am. Chem. Soc. 127, 10545–10559.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationField, J. E., Hill, T. J. & Venkataraman, D. (2003). J. Org. Chem. 68, 6071–6078.  Web of Science CSD CrossRef CAS Google Scholar
First citationGilbert, K. E. & Borden, W. T. (1979). J. Org. Chem. 44, 659–661.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIshiyama, T., Murata, M. & Miyaura, N. (1995). J. Org. Chem. 60, 7508–7510.  CrossRef CAS Web of Science Google Scholar
First citationKotha, S., Lahiri, K. & Kashinath, D. (2002). Tetrahedron, 58, 9633–9695.  Web of Science CrossRef CAS Google Scholar
First citationLiu, R., Wu, W.-Y., Li, Y.-H., Deng, S.-P. & Zhu, H.-J. (2008). Acta Cryst. E64, o280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2011). Cryst. Growth Des. 11, 3735–3739.  Web of Science CSD CrossRef CAS Google Scholar
First citationReilly, A. M., Cooper, R. I., Adjiman, C. S., Bhattacharya, S., Boese, A. D., Brandenburg, J. G., Bygrave, P. J., Bylsma, R., Campbell, J. E., Car, R., Case, D. H., Chadha, R., Cole, J. C., Cosburn, K., Cuppen, H. M., Curtis, F., Day, G. M., DiStasio Jr, R. A., Dzyabchenko, A., van Eijck, B. P., Elking, D. M., van den Ende, J. A., Facelli, J. C., Ferraro, M. B., Fusti-Molnar, L., Gatsiou, C.-A., Gee, T. S., de Gelder, R., Ghiringhelli, L. M., Goto, H., Grimme, S., Guo, R., Hofmann, D. W. M., Hoja, J., Hylton, R. K., Iuzzolino, L., Jankiewicz, W., de Jong, D. T., Kendrick, J., de Klerk, N. J. J., Ko, H.-Y., Kuleshova, L. N., Li, X., Lohani, S., Leusen, F. J. J., Lund, A. M., Lv, J., Ma, Y., Marom, N., Masunov, A. E., McCabe, P., McMahon, D. P., Meekes, H., Metz, M. P., Misquitta, A. J., Mohamed, S., Monserrat, B., Needs, R. J., Neumann, M. A., Nyman, J., Obata, S., Oberhofer, H., Oganov, A. R., Orendt, A. M., Pagola, G. I., Pantelides, C. C., Pickard, C. J., Podeszwa, R., Price, L. S., Price, S. L., Pulido, A., Read, M. G., Reuter, K., Schneider, E., Schober, C., Shields, G. P., Singh, P., Sugden, I. J., Szalewicz, K., Taylor, C. R., Tkatchenko, A., Tuckerman, M. E., Vacarro, F., Vasileiadis, M., Vazquez-Mayagoitia, A., Vogt, L., Wang, Y., Watson, R. E., de Wijs, G. A., Yang, J., Zhu, Q. & Groom, C. R. (2016). Acta Cryst. B72, 439–459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Americas Corporation, The Woodlands, TX, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVasylyeva, V., Kedziorski, T., Metzler-Nolte, N., Schauerte, C. & Merz, K. (2010). Cryst. Growth Des. 10, 4224–4226.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, Z., Kiang, Y.-H., Lee, S., Lobkovsky, E. B. & Emmott, N. (2000). J. Am. Chem. Soc. 122, 8376–8391.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds