research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a 2:1 co-crystal of meloxicam with acetyl­endi­carb­­oxy­lic acid

CROSSMARK_Color_square_no_text.svg

aNovosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation, bInstitute of Solid State Chemistry and Mechanochemistry SB RAS, Kutateladze str. 18, Novosibirsk, 630128, Russian Federation, and cN. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentiev str. 9, Novosibirsk, 630090, Russian Federation
*Correspondence e-mail: christiantantardini@ymail.com, arksergey@gmail.com, eboldyreva@yahoo.com

Edited by A. J. Lough, University of Toronto, Canada (Received 8 November 2016; accepted 26 November 2016; online 29 November 2016)

The pharmaceutical 2:1 co-crystal of meloxicam [MXM; systematic name: 4-hy­droxy-2-methyl-N-(5-methyl­thia­zol-2-yl)-2H-1,2-benzo­thia­zine-3-carboxamide 1,1-dioxide] with acetyl­enedi­carb­oxy­lic acid (ACA; systematic name: but-2-ynedioic acid), crystallizes with one MXM mol­ecule and half an ACA mol­ecule in the asymmetric unit, C14H13N3O4S2·0.5C4H2O4. The mid-point of the triple bond of ACA is located on an inversion centre. In the crystal, the two stereoisomers of MXM with respect to the N atom of the sulfonamide group are related by the inversion centre. The carbonyl and hy­droxy groups belonging to the MXM mol­ecule are involved in an intra­molecular O—H⋯O hydrogen bond. The structure-forming motif includes two MXM mol­ecules linked via an ACA conformer through N—H⋯O and O—H⋯N hydrogen bonds, similar to MXM co-crystals with other di­carb­oxy­lic acids.

1. Chemical context

In recent years, crystal engineering has focused on finding new crystalline forms based on the multi-component crystallization of an active pharmaceutical ingredient (API) with a biologic­ally inactive compound. These complexes are ultimately aimed at being employed in the pharmaceutical industry as tablets, suspensions, powders and any other solid forms for oral administration (Shakhtshneider et al., 2007a[Shakhtshneider, T. P., Danède, F., Capet, F., Willart, J. F., Descamps, M., Paccou, L., Surov, E. V., Boldyreva, E. V. & Boldyrev, V. V. (2007a). J. Therm. Anal. Calorim. 89, 709-715.],b[Shakhtshneider, T. P., Danède, F., Capet, F. J. F., Willart, J. F., Descamps, M., Myz, S. A., Boldyreva, E. V. & Boldyrev, V. V. (2007b). J. Therm. Anal. Calorim. 89, 699-707.]; Crowley & Zografi, 2002[Crowley, K. J. & Zografi, G. (2002). J. Pharm. Sci. 91, 492-507.]; Hancock & Parks, 2000[Hancock, B. C. & Parks, M. (2000). Pharm. Res. 17, 397-404.]; Shakhtshneider & Boldyrev, 1993[Shakhtshneider, T. P. & Boldyrev, V. V. (1993). Drug Dev. Ind. Pharm. 19, 2055-2067.]; Willart & Descamps, 2008[Willart, J. F. & Descamps, M. (2008). Mol. Pharm. 5, 905-920.]; Shakhtshneider et al., 2011[Shakhtshneider, T. P., Myz, S. A., Dyakonova, M. A., Boldyrev, V. V., Boldyreva, E. V., Nizovskii, A. I., Kalinkin, A. V. & Kumar, R. (2011). Acta Phys. Pol. A, 120, 272-278.]; Stephenson et al., 2011[Stephenson, G. A., Aburub, A. & Woods, T. A. (2011). J. Pharm. Sci. 100, 1607-1617.]). Co-formers are typically chosen from among the di­carb­oxy­lic acids due to their favourable mol­ecular shape and the presence of functional groups capable of forming multiple hydrogen bonds, combined with their affordability and availability. Meloxicam (MXM), 4-hy­droxy-2-methyl-N-(5-methyl-2-thia­zol­yl)-2H-1,2-benzo­thia­zine-3-carboxamide-1,1-dioxide, belongs to the oxicam family of APIs and is commonly used in the treatment of rheumatoid arthritis (Myz et al., 2012[Myz, S. A., Shakhtshneider, T. P., Tumanov, N. A. & Boldyreva, E. V. (2012). Russ. Chem. Bull. 61, 1798-1809.]; Tumanov et al., 2012[Tumanov, N. A., Myz, S. A., Shakhtshneider, T. P. & Boldyreva, E. V. (2012). CrystEngComm, 14, 305-313.]; Weyna et al. 2012[Weyna, D. R., Cheney, M. L., Shan, N., Hanna, M., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2012). Mol. Pharm. 9, 2094-2102.]). MXM is known to co-crystallize with numerous aliphatic and aromatic di­carb­oxy­lic acids under various conditions (temperature, pressure, solvents). In particular, MXM is known to co-crystallize with di­carb­oxy­lic acids of C—C bond order 1 (succinic acid) and 2 (fumaric and maleic acids). The aim of this study was to obtain a co-crystal of MXM with a di­carb­oxy­lic acid of bond order 3: acetyl­enedi­carb­oxy­lic acid (ACA).

[Scheme 1]

2. Structural commentary

The crystal structure of MXM:ACA 2:1 is triclinic with an asymmetric unit that contains one MXM mol­ecule and half of an ACA mol­ecule. The formula unit is generated by an inversion centre which is located at the midpoint of the triple bond of the ACA mol­ecule (Fig. 1[link]). The two stereoisomers of MXM, which differ with respect to the nitro­gen atom of the sulfonamide group, are related by an inversion centre in the crystal structure. The dihedral angles between the mean planes of the thia­zole and benzene rings of MXM form an almost planar arrangement in terms of the following torsion angles: S2—C11—N2—H2 = −174.0°, S2—C11—N2—C10 = 6.0 (3)°, H2—N2—C10—O4 = 176.5°, O4—C10—C8—C7 = 10.0 (3)°, C8—C7—O3—H3 = −2.2°. The presence of an intra­molecular O—H⋯O hydrogen bond between the carbonyl and hy­droxy groups belonging to MXM may account for the near planarity and the trans position of the N2—H2 group with respect to the carbonyl group C10—O4. The S1/N1/C1/C6/C7/C8 ring is non-planar because of the presence of the sulfonamide group with nitro­gen atom N1 in sp3 hybridization, with angles S1—N1—C8 = 112.79 (12)°, S1—N1—C9 = 117.11 (14)° and C9—N1—C8 = 115.41 (17)° (bond-angle sum = 345.3°). The overall conformation of this ring is half-chair with atoms S1 and N1 being the out-of-plane atoms.

[Figure 1]
Figure 1
Meloxicam (MXM) and acetyl­enedi­carb­oxy­lic acid (ACA) mol­ecules of the 2:1 co-crystal, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only half of the ACA mol­ecule belongs to the asymmetric unit, as the mol­ecule lies across an inversion centre.

3. Database survey

The crystal structures of pure MXM [CCDC ref. code: SEDZOQ (Fabiola et al., 1998[Fabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001-2003.])] and its co-crystals with SUCC (MXM–SUCC) (CCDC ref. code: ENICOUM; Cheney et al., 2010[Cheney, M. L., Weyna, D. R., Shan, N., Hanna, M., Wojtas, L. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 4401-4413.]) and FUM (MXM–FUM) (CCDC ref. code: ENICIO; Cheney et al., 2010[Cheney, M. L., Weyna, D. R., Shan, N., Hanna, M., Wojtas, L. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 4401-4413.]) have the same space group (P[\overline1]). The mol­ecular packing in the title compound is shown in Fig. 2[link]. It is similar to that in the crystal structures of pure MXM, as well as of MXM–FUM, MXM–SUCC and MXM–ACA (also shown in Fig. 2[link]). In the co-crystals, some MXM mol­ecules are substituted by the coformer species, maintaining the general packing patterns. The co-crystals MXM–FUM, MXM–SUCC and MXM–ACA have similar structural motifs: two MXM mol­ecules linked by a di­carb­oxy­lic acid mol­ecule (Fig. 3[link]).

[Figure 2]
Figure 2
The mol­ecular packing in the crystal structures of (a) pure MXM and its co-crystals (b) MXM–SUCC, (c) MXM–FUM and (d) MXM–ACA.
[Figure 3]
Figure 3
Part of the MXM–ACA 2:1 co-crystal structure showing hydrogen bonds (1, 2 and 3) leading to a trimer. The inter­actions are classified as hydrogen bonds based on the geometric criteria (see text) (Arunan et al., 2011[Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B., Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1637-1641.]).

4. Supra­molecular features

In the crystal, the components of the structure are linked by N—H⋯O and O—H⋯N hydrogen bonds between MXM and ACA, in addition to a long O—H⋯O inter­action, forming chains along [011] which incorporates both R22(8) and R22(12) rings. Similar structural motifs have been documented for other MXM co-crystals and in other crystal structures including pure MXM, MXM co-crystals and MXM salts. The structure-forming unit includes two mol­ecules of MXM connected through a di­carb­oxy­lic acid mol­ecule acting as a bridge, similar to what has been reported for other MXM co-crystals (Tumanov et al., 2012[Tumanov, N. A., Myz, S. A., Shakhtshneider, T. P. & Boldyreva, E. V. (2012). CrystEngComm, 14, 305-313.]). Intra- and inter­molecular hydrogen bonds are shown in Fig. 3[link] and their geometrical parameters are summarized in Table 1[link]. The centroid-to-centroid distance between symmetry-related benzene and thia­zole rings is 3.7383 (12) Å. These connect the chains into a three-dimensional network.

Table 1
Geometrical parameters (Å, °) for the O—H⋯O (1), O—H⋯N (2) and N—H⋯O (3) inter­actions in the MXM:ACA 2:1 co-crystal (see also Fig. 3[link])

D—H⋯A D—H H⋯A D⋯A D—H⋯A
O3—H3⋯O4 (1) 0.82 1.91 2.622 (2) 145
O6—H6⋯N3 (2) 0.82 1.80 2.615 (3) 174
N2—H2⋯O5 (3) 0.86 2.09 2.922 (3) 164
O3—H3⋯O4i 0.82 2.51 2.944 (2) 114
Symmetry code: (i) −x + 1, −y + 1, −z.

5. Synthesis and crystallization

MXM was purchased from Sigma Aldrich Co Ltd and acetone from Reaktiv. ACA was synthesized through a two-step process from fumaric acid. Fumaric acid was brominated in boiling water (Rhinesmith, 1938[Rhinesmith, H. (1938). Org. Synth. 18, 17.]) and the resulting 2,3-di­bromo­succinic acid was refluxed in potassium hydroxide methano­lic solution. ACA was precipitated by adding a concentrated sulfuric acid solution and dried in vacuo (Rhinesmith, 1938[Rhinesmith, H. (1938). Org. Synth. 18, 17.]). The purity of ACA and the absence of its monohydrate were checked by comparing its experimental powder X-ray diffraction powder (XRPD) pattern with the calculated XRPD patterns of ACA and ACA monohydrate (see S1 in Supporting information). Two polycrystalline samples were obtained by dry and slurry (with acetone) grinding of 1:2 molar mixture of reactants (0.035g, 0.1mmol MXM; 0.023g, 0.2mmol ACA). The 2:1 ratio would correspond to the target stoichiometry and is usually used for obtaining other MXM co-crystals with aliphatic di­carb­oxy­lic acids (Myz et al., 2012[Myz, S. A., Shakhtshneider, T. P., Tumanov, N. A. & Boldyreva, E. V. (2012). Russ. Chem. Bull. 61, 1798-1809.]; Tumanov et al., 2012[Tumanov, N. A., Myz, S. A., Shakhtshneider, T. P. & Boldyreva, E. V. (2012). CrystEngComm, 14, 305-313.]; Weyna et al. 2012[Weyna, D. R., Cheney, M. L., Shan, N., Hanna, M., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2012). Mol. Pharm. 9, 2094-2102.]). However, to obtain MXM–ACA 2:1 co-crystals we used a 1:2 MXM:ACA ratio because ACA is highly hygroscopic and converts to its monohydrate form on grinding, not participating then in the co-crystallization. Acetone was used for slurry grinding because it completely dissolves the two starting components (Myz et al., 2012[Myz, S. A., Shakhtshneider, T. P., Tumanov, N. A. & Boldyreva, E. V. (2012). Russ. Chem. Bull. 61, 1798-1809.]; Tumanov et al., 2012[Tumanov, N. A., Myz, S. A., Shakhtshneider, T. P. & Boldyreva, E. V. (2012). CrystEngComm, 14, 305-313.]; Weyna et al. 2012[Weyna, D. R., Cheney, M. L., Shan, N., Hanna, M., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2012). Mol. Pharm. 9, 2094-2102.]). All powder samples were characterized by XRPD using a Stoe Stadi-MP diffractometer with Cu Kα1 radiation (λ = 1.54060 Å) at operating potential of 40 kV and electric current of 40 mA, and a Mythen 1K detector. All data were processed using WinXPOW (Stoe & Cie, 1999[Stoe & Cie (1999). WinXPOW. Stoe & Cie, Darmstadt, Germany.]). Powder diffraction patterns for the samples obtained by grinding and slurry grinding were similar, confirming the possibility to obtain the same product both in the presence and in the absence of a specially added solvent (see S2 in Supporting information); the XRPD patterns of the co-crystal sample were compared with the patterns of the starting reactants, MXM and ACA (see S3 in Supporting information) to prove that a new phase (or a mixture of new phases) had been formed. The ground powder samples were subsequently dissolved in acetone and single crystals were obtained by slow evaporation. Selected crystals were investigated using single-crystal X-ray diffraction.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H13N3O4S2·0.5C4H2O4
Mr 408.42
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.3861 (3), 8.5629 (3), 15.1619 (6)
α, β, γ (°) 75.839 (3), 79.196 (3), 70.100 (3)
V3) 868.55 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.4 × 0.25 × 0.1
 
Data collection
Diffractometer Agilent Xcalibur (Ruby, Gemini ultra)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO, Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.982, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10893, 3564, 2940
Rint 0.025
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.05
No. of reflections 3564
No. of parameters 248
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −0.30
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO, Agilent Technologies, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.] and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

All H atoms were initially located in a difference Fourier map. The positions of all H atoms were subsequently optimized geometrically and refined using a riding model, with the following assumptions and restraints: N—H = 0.86 Å and Uiso(H)=1.2Ueq(N) for —N(H)– group, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for all C—H groups, O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O) for all OH groups, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3 groups.

For single crystals of MXM:ACA (2:1), two data sets were collected. The first dataset was obtained from a crystal containing four domains, and the second from a single crystal. Unfortunately, the single crystal was very small and at dhkl ≥ 0.80 Å, Rint was 10.2% and F2/σ(F2) was 3.6. This was significantly worse than the data from the crystal that contained four domains [for the largest domain at dhkl ≥ 0.80 Å, Rint was 2.50% and F2/σ(F2) was 28.3]. Data obtained from the crystal that contained four domains were processed in three different ways: (1) taking into account the reflections from the largest domain only (one orientation matrix and 74.3% of all reflections); (2) processing the diffraction data as from multiple crystals (four different orientation matrices) using the hklf5-file; (3) processing the diffraction data as from multiple crystals (4 different orientation matrixes) using the. hklf4-file from the largest domain (74.3% of all reflections). The first and the third processing methods gave approximately the same results, while the first methodology yielded the best results: Rint = 0.025. This method was therefore chosen for the final structure solution and refinement.

The powder diffraction patterns calculated based on the X-ray single crystal diffraction data were compared with the experimental powder diffraction pattern measured for the sample obtained on grinding, to show that the latter contained a mixture of the MXM:ACA 2:1 co-crystal with some other phases, different from ACA, MXM, or ACA hydrate (see S4 in Supporting information).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008; software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

4-Hydroxy-2-methyl-N-(5-methyl-1,3-thiazol-2-yl)-2H-1,2-benzothiazine-3-carboxamide–2-butynedioic acid (2/1) top
Crystal data top
C14H13N3O4S2·0.5C4H2O4Z = 2
Mr = 408.42F(000) = 422
Triclinic, P1Dx = 1.562 Mg m3
a = 7.3861 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5629 (3) ÅCell parameters from 4820 reflections
c = 15.1619 (6) Åθ = 2.6–28.0°
α = 75.839 (3)°µ = 0.35 mm1
β = 79.196 (3)°T = 293 K
γ = 70.100 (3)°Prism, clear light colourless
V = 868.55 (6) Å30.4 × 0.25 × 0.1 mm
Data collection top
Agilent Xcalibur (Ruby, Gemini ultra)
diffractometer
3564 independent reflections
Radiation source: Enhance (Mo) X-ray Source2940 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.3457 pixels mm-1θmax = 26.4°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1010
Tmin = 0.982, Tmax = 1.000l = 1818
10893 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.2383P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3564 reflectionsΔρmax = 0.35 e Å3
248 parametersΔρmin = 0.30 e Å3
0 restraints
Special details top

Experimental. Suitable-quality crystals were selected using polarised light under the microscope and mounted by means of MiTiGenMicroGrippers using MiTiGen LV Cryo Oil (LVCO-1) onto an Agilent Xcalibur (Ruby, Gemini Ultra) diffractometer.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.26125 (7)0.95843 (6)0.03447 (3)0.03606 (14)
S10.83244 (8)0.38866 (6)0.33477 (3)0.04072 (15)
O40.4415 (2)0.61781 (17)0.08344 (9)0.0447 (4)
O30.6628 (2)0.30130 (18)0.10423 (10)0.0463 (4)
H30.5914990.3891310.0771000.069*
O60.3828 (2)1.10848 (17)0.32189 (10)0.0439 (4)
H60.3671531.0888610.2740230.066*
N20.4321 (2)0.76888 (19)0.18889 (11)0.0350 (4)
H20.4577470.7640770.2427140.042*
N30.3138 (2)1.06452 (19)0.16821 (11)0.0353 (4)
C100.4825 (3)0.6209 (2)0.15831 (13)0.0336 (4)
C110.3423 (3)0.9263 (2)0.13860 (12)0.0308 (4)
C130.1832 (3)1.1746 (2)0.03060 (13)0.0339 (4)
N10.6110 (2)0.48326 (19)0.30707 (10)0.0375 (4)
O20.9585 (2)0.46318 (19)0.26770 (11)0.0517 (4)
C120.2232 (3)1.2058 (2)0.10662 (13)0.0372 (4)
H120.1918411.3150710.1169620.045*
C80.5911 (3)0.4690 (2)0.21752 (12)0.0334 (4)
C60.7971 (3)0.1699 (2)0.24281 (13)0.0320 (4)
O50.4837 (2)0.82648 (18)0.36346 (10)0.0529 (4)
C70.6775 (3)0.3215 (2)0.18691 (13)0.0331 (4)
C10.8718 (3)0.1834 (2)0.31771 (13)0.0337 (4)
C150.4507 (3)0.9670 (2)0.37751 (13)0.0355 (4)
C160.4862 (3)0.9913 (2)0.46450 (13)0.0379 (4)
O10.8318 (3)0.3844 (2)0.42935 (10)0.0621 (5)
C20.9717 (3)0.0418 (3)0.37611 (14)0.0423 (5)
H2A1.0188600.0531790.4261490.051*
C50.8338 (3)0.0088 (2)0.22541 (16)0.0419 (5)
H50.7910050.0035250.1743570.050*
C140.0890 (3)1.2967 (3)0.04937 (14)0.0443 (5)
H14A0.1534151.2587320.1049790.066*
H14B0.0980951.4068020.0515160.066*
H14C0.0449631.3028100.0428130.066*
C31.0008 (3)0.1169 (3)0.35939 (16)0.0506 (6)
H3A1.0654830.2130320.3990230.061*
C40.9342 (3)0.1333 (3)0.28424 (17)0.0492 (6)
H40.9566970.2405310.2727480.059*
C90.4499 (3)0.4608 (3)0.37857 (15)0.0503 (6)
H9A0.4567120.3435010.3942500.075*
H9B0.3283770.5272690.3557850.075*
H9C0.4604360.4971530.4319690.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0495 (3)0.0272 (3)0.0303 (3)0.0048 (2)0.0144 (2)0.00641 (19)
S10.0582 (3)0.0324 (3)0.0323 (3)0.0072 (2)0.0181 (2)0.0080 (2)
O40.0633 (9)0.0325 (7)0.0356 (8)0.0010 (6)0.0228 (7)0.0089 (6)
O30.0660 (10)0.0363 (8)0.0350 (8)0.0000 (7)0.0215 (7)0.0148 (6)
O60.0624 (9)0.0372 (8)0.0364 (8)0.0121 (7)0.0180 (7)0.0106 (6)
N20.0472 (9)0.0265 (8)0.0282 (8)0.0024 (7)0.0135 (7)0.0055 (6)
N30.0457 (9)0.0275 (8)0.0322 (9)0.0066 (7)0.0112 (7)0.0066 (7)
C100.0408 (10)0.0284 (10)0.0299 (10)0.0046 (8)0.0096 (8)0.0071 (8)
C110.0357 (10)0.0264 (9)0.0285 (10)0.0046 (7)0.0073 (8)0.0067 (7)
C130.0396 (10)0.0265 (9)0.0321 (10)0.0052 (8)0.0080 (8)0.0036 (8)
N10.0532 (10)0.0279 (8)0.0258 (8)0.0002 (7)0.0103 (7)0.0086 (6)
O20.0613 (10)0.0429 (9)0.0583 (10)0.0217 (7)0.0158 (8)0.0085 (7)
C120.0489 (11)0.0239 (9)0.0365 (11)0.0056 (8)0.0104 (9)0.0054 (8)
C80.0432 (10)0.0270 (9)0.0275 (10)0.0040 (8)0.0097 (8)0.0065 (7)
C60.0355 (10)0.0252 (9)0.0323 (10)0.0057 (7)0.0031 (8)0.0060 (7)
O50.0811 (11)0.0372 (9)0.0457 (9)0.0123 (8)0.0245 (8)0.0130 (7)
C70.0420 (10)0.0295 (10)0.0289 (10)0.0082 (8)0.0095 (8)0.0075 (7)
C10.0382 (10)0.0279 (10)0.0296 (10)0.0049 (8)0.0042 (8)0.0035 (7)
C150.0373 (10)0.0382 (11)0.0335 (11)0.0104 (8)0.0060 (8)0.0117 (8)
C160.0454 (11)0.0360 (11)0.0353 (10)0.0126 (9)0.0092 (9)0.0085 (9)
O10.0908 (13)0.0541 (10)0.0382 (9)0.0004 (9)0.0318 (8)0.0160 (7)
C20.0427 (11)0.0398 (12)0.0330 (11)0.0022 (9)0.0064 (9)0.0002 (9)
C50.0437 (11)0.0300 (10)0.0509 (13)0.0066 (8)0.0056 (9)0.0131 (9)
C140.0556 (13)0.0324 (11)0.0392 (12)0.0047 (9)0.0152 (10)0.0020 (9)
C30.0471 (12)0.0329 (11)0.0521 (14)0.0017 (9)0.0045 (10)0.0064 (10)
C40.0489 (12)0.0241 (10)0.0668 (16)0.0041 (9)0.0028 (11)0.0078 (10)
C90.0668 (15)0.0407 (12)0.0338 (12)0.0061 (10)0.0005 (10)0.0099 (9)
Geometric parameters (Å, º) top
S2—C111.7196 (18)C8—C71.359 (2)
S2—C131.7306 (18)C6—C71.464 (3)
S1—N11.6422 (17)C6—C11.397 (3)
S1—O21.4284 (16)C6—C51.394 (3)
S1—C11.7567 (19)O5—C151.208 (2)
S1—O11.4246 (15)C1—C21.382 (3)
O4—C101.237 (2)C15—C161.467 (3)
O3—H30.8200C16—C16i1.185 (4)
O3—C71.335 (2)C2—H2A0.9300
O6—H60.8200C2—C31.381 (3)
O6—C151.294 (2)C5—H50.9300
N2—H20.8600C5—C41.389 (3)
N2—C101.364 (2)C14—H14A0.9600
N2—C111.384 (2)C14—H14B0.9600
N3—C111.304 (2)C14—H14C0.9600
N3—C121.383 (2)C3—H3A0.9300
C10—C81.459 (2)C3—C41.376 (3)
C13—C121.349 (3)C4—H40.9300
C13—C141.500 (3)C9—H9A0.9600
N1—C81.431 (2)C9—H9B0.9600
N1—C91.482 (3)C9—H9C0.9600
C12—H120.9300
C11—S2—C1389.50 (9)O3—C7—C8123.70 (17)
N1—S1—C1100.92 (9)O3—C7—C6114.19 (16)
O2—S1—N1107.52 (9)C8—C7—C6122.11 (17)
O2—S1—C1108.23 (9)C6—C1—S1117.03 (14)
O1—S1—N1108.86 (9)C2—C1—S1121.39 (16)
O1—S1—O2119.90 (11)C2—C1—C6121.57 (18)
O1—S1—C1109.73 (10)O6—C15—C16112.85 (17)
C7—O3—H3109.5O5—C15—O6126.38 (18)
C15—O6—H6109.5O5—C15—C16120.77 (18)
C10—N2—H2118.0C16i—C16—C15178.9 (3)
C10—N2—C11124.02 (16)C1—C2—H2A120.4
C11—N2—H2118.0C3—C2—C1119.3 (2)
C11—N3—C12110.79 (16)C3—C2—H2A120.4
O4—C10—N2121.31 (16)C6—C5—H5120.0
O4—C10—C8122.38 (16)C4—C5—C6120.1 (2)
N2—C10—C8116.29 (16)C4—C5—H5120.0
N2—C11—S2124.41 (13)C13—C14—H14A109.5
N3—C11—S2114.56 (13)C13—C14—H14B109.5
N3—C11—N2121.03 (16)C13—C14—H14C109.5
C12—C13—S2109.53 (14)H14A—C14—H14B109.5
C12—C13—C14129.41 (17)H14A—C14—H14C109.5
C14—C13—S2121.06 (14)H14B—C14—H14C109.5
C8—N1—S1112.79 (12)C2—C3—H3A119.9
C8—N1—C9115.41 (17)C4—C3—C2120.20 (19)
C9—N1—S1117.11 (14)C4—C3—H3A119.9
N3—C12—H12122.2C5—C4—H4119.7
C13—C12—N3115.61 (17)C3—C4—C5120.6 (2)
C13—C12—H12122.2C3—C4—H4119.7
N1—C8—C10117.67 (15)N1—C9—H9A109.5
C7—C8—C10120.92 (16)N1—C9—H9B109.5
C7—C8—N1121.34 (16)N1—C9—H9C109.5
C1—C6—C7120.26 (16)H9A—C9—H9B109.5
C5—C6—C7121.56 (18)H9A—C9—H9C109.5
C5—C6—C1118.14 (17)H9B—C9—H9C109.5
S2—C13—C12—N30.0 (2)O2—S1—C1—C2105.81 (18)
S1—N1—C8—C10135.40 (16)C12—N3—C11—S20.1 (2)
S1—N1—C8—C741.7 (2)C12—N3—C11—N2179.66 (17)
S1—C1—C2—C3179.35 (15)C6—C1—C2—C30.9 (3)
O4—C10—C8—N1172.87 (18)C6—C5—C4—C30.9 (3)
O4—C10—C8—C710.0 (3)C7—C6—C1—S15.1 (2)
N2—C10—C8—N18.8 (3)C7—C6—C1—C2174.63 (18)
N2—C10—C8—C7168.30 (18)C7—C6—C5—C4174.64 (18)
C10—N2—C11—S26.0 (3)C1—S1—N1—C854.93 (15)
C10—N2—C11—N3173.71 (17)C1—S1—N1—C982.64 (15)
C10—C8—C7—O33.3 (3)C1—C6—C7—O3161.27 (17)
C10—C8—C7—C6176.22 (18)C1—C6—C7—C818.3 (3)
C11—S2—C13—C120.05 (15)C1—C6—C5—C43.0 (3)
C11—S2—C13—C14179.40 (17)C1—C2—C3—C41.3 (3)
C11—N2—C10—O43.5 (3)O1—S1—N1—C8170.34 (14)
C11—N2—C10—C8174.84 (17)O1—S1—N1—C932.77 (17)
C11—N3—C12—C130.0 (3)O1—S1—C1—C6153.05 (15)
C13—S2—C11—N2179.64 (17)O1—S1—C1—C226.7 (2)
C13—S2—C11—N30.07 (15)C2—C3—C4—C51.3 (3)
N1—S1—C1—C638.29 (16)C5—C6—C7—O321.1 (3)
N1—S1—C1—C2141.46 (17)C5—C6—C7—C8159.28 (19)
N1—C8—C7—O3179.69 (18)C5—C6—C1—S1177.20 (15)
N1—C8—C7—C60.8 (3)C5—C6—C1—C23.0 (3)
O2—S1—N1—C858.34 (15)C14—C13—C12—N3179.36 (19)
O2—S1—N1—C9164.09 (14)C9—N1—C8—C1086.3 (2)
O2—S1—C1—C674.44 (16)C9—N1—C8—C796.7 (2)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.821.912.6221 (18)145
O6—H6···N30.821.802.615 (2)174
N2—H2···O50.862.092.922 (2)164
O3—H3···O4ii0.822.512.944 (2)114
Symmetry code: (ii) x+1, y+1, z.
Geometrical parameters (Å, °) for the O—H···O (1), O—H···N (2) and N—H···O (3) interactions in the MXM:ACA 2:1 co-crystal (see also Fig. 3) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4 (1)0.821.912.622 (2)145
O6—H6···N3 (2)0.821.802.615 (3)174
N2—H2···O5 (3)0.862.092.922 (3)164
O3—H3···O4i0.822.512.944 (2)114
Symmetry code: (i) -x + 1, -y + 1, -z.
 

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian Federation (project No. 1828).

References

First citationAgilent (2013). CrysAlis PRO, Agilent Technologies, Yarnton, England.  Google Scholar
First citationArunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B., Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1637–1641.  CAS Google Scholar
First citationCheney, M. L., Weyna, D. R., Shan, N., Hanna, M., Wojtas, L. & Zaworotko, M. J. (2010). Cryst. Growth Des. 10, 4401–4413.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrowley, K. J. & Zografi, G. (2002). J. Pharm. Sci. 91, 492–507.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFabiola, G. F., Pattabhi, V., Manjunatha, S. G., Rao, G. V. & Nagarajan, K. (1998). Acta Cryst. C54, 2001–2003.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHancock, B. C. & Parks, M. (2000). Pharm. Res. 17, 397–404.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMyz, S. A., Shakhtshneider, T. P., Tumanov, N. A. & Boldyreva, E. V. (2012). Russ. Chem. Bull. 61, 1798–1809.  CAS Google Scholar
First citationRhinesmith, H. (1938). Org. Synth. 18, 17.  Google Scholar
First citationShakhtshneider, T. P. & Boldyrev, V. V. (1993). Drug Dev. Ind. Pharm. 19, 2055–2067.  CAS Google Scholar
First citationShakhtshneider, T. P., Danède, F., Capet, F. J. F., Willart, J. F., Descamps, M., Myz, S. A., Boldyreva, E. V. & Boldyrev, V. V. (2007b). J. Therm. Anal. Calorim. 89, 699–707.  CAS Google Scholar
First citationShakhtshneider, T. P., Danède, F., Capet, F., Willart, J. F., Descamps, M., Paccou, L., Surov, E. V., Boldyreva, E. V. & Boldyrev, V. V. (2007a). J. Therm. Anal. Calorim. 89, 709–715.  CAS Google Scholar
First citationShakhtshneider, T. P., Myz, S. A., Dyakonova, M. A., Boldyrev, V. V., Boldyreva, E. V., Nizovskii, A. I., Kalinkin, A. V. & Kumar, R. (2011). Acta Phys. Pol. A, 120, 272–278.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStephenson, G. A., Aburub, A. & Woods, T. A. (2011). J. Pharm. Sci. 100, 1607–1617.  CAS Google Scholar
First citationStoe & Cie (1999). WinXPOW. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTumanov, N. A., Myz, S. A., Shakhtshneider, T. P. & Boldyreva, E. V. (2012). CrystEngComm, 14, 305–313.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeyna, D. R., Cheney, M. L., Shan, N., Hanna, M., Zaworotko, M. J., Sava, V., Song, S. & Sanchez-Ramos, J. R. (2012). Mol. Pharm. 9, 2094–2102.  CAS Google Scholar
First citationWillart, J. F. & Descamps, M. (2008). Mol. Pharm. 5, 905–920.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds