research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[di­ammonium [di-μ-oxalato-cuprate(II)]]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Chemical Biology, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131, USA, and bAdvanced Materials Laboratory, Sandia National Laboratories, 1001 University Blvd SE, Albuquerque, NM 87106, USA
*Correspondence e-mail: rakemp@unm.edu

Edited by T. J. Prior, University of Hull, England (Received 27 October 2016; accepted 4 November 2016; online 10 November 2016)

The structure of the title compound, {(NH4)2[Cu(C2O4)2]}n, at 100 K has monoclinic (P21/c) symmetry with the CuII atom on an inversion center. The compound has a polymeric structure due to long Cu⋯O inter­actions which create [Cu(C2O4)2] chains along the a axis. The structure also displays inter­molecular N—H⋯O hydrogen bonding, which links these chains into a three-dimensional network.

1. Chemical context

Metal oxalate salts are ubiquitous in nature (Baran, 2014[Baran, E. J. (2014). J. Coord. Chem. 67, 3734-3768.]) and are also of great inter­est to synthetic chemists and materials scientists because they often display unusual magnetic and conductive properties (Nenwa et al., 2015[Nenwa, J., Djomo, E. D., Nfor, E. N., Djonwouo, P. L., Mbarki, M. & Fokwa, B. P. T. (2015). Polyhedron, 99, 26-33.]; Robinson et al., 2015[Robinson, M. E., Mizzi, J. E., Staples, R. J. & LaDuca, R. L. (2015). Cryst. Growth Des. 15, 2260-2271.]; Zhang et al., 2012[Zhang, B., Zhang, Y. & Zhu, D. (2012). Dalton Trans. 41, 8509-8511.]; Clemente-León et al., 2011[Clemente-León, M., Coronado, E., Martí-Gastaldo, C. & Romero, F. M. (2011). Chem. Soc. Rev. 40, 473-497.]; Gruselle et al., 2006[Gruselle, M., Train, C., Boubekeur, K., Gredin, P. & Ovanesyan, N. (2006). Coord. Chem. Rev. 250, 2491-2500.]). Other areas of study for metal oxalates include, but are not limited to, metallogels (Feldner et al., 2016[Feldner, T., Häring, M., Saha, S., Esquena, J., Banerjee, R. & Díaz, D. D. (2016). Chem. Mater. 28, 3210-3217.]), coordination polymers and networks (Guo et al., 2016[Guo, F., Chen, C., Wang, K., Zhang, Q. & Lin, Z. (2016). Inorg. Chem. 55, 7817-7819.]; Mizzi & LaDuca, 2016[Mizzi, J. E. & LaDuca, R. L. (2016). Inorg. Chem. Commun. 70, 4-6.]; Yeşilel et al., 2010[Yeşilel, O. Z., Erer, H., Odabaşoğlu, M. & Büyükgüngör, O. (2010). J. Inorg. Organomet. Polym. 20, 78-82.]), and precursors for nanomaterials and metallic inks (Yadav et al., 2013[Yadav, G. G., David, A., Favaloro, T., Yang, H., Shakouri, A., Caruthers, J. & Wu, Y. (2013). J. Mater. Chem. A, 1, 11901-11908.]; Cheng et al., 2016[Cheng, G., Si, C., Zhang, J., Wang, Y., Yang, W., Dong, C. & Zhang, Z. (2016). J. Power Sources, 312, 184-191.]). The properties of metal oxalates are often tuned by using a combination of different cations. These may be simply metal cations, but often they are more complex, such as quaternary nitro­gen cations. Surprisingly, the structure of the simplest of the (NR4)2[Cu(C2O4)2] family, (NH4)2[Cu(C2O4)2], has not previously been reported.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/c with the copper atom on an inversion center (Fig. 1[link]). As is true for all but one copper oxalate complex (Gu & Xue, 2007[Gu, X. & Xue, D. (2007). Cryst. Growth Des. 7, 1726-1732.]) found in the CSD (Version 5.37, May 2016 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the copper atom is chelated by oxygen atoms from the adjacent carbon atoms to form a five membered ring, rather than oxygen atoms from the same carbon. The coordination environment of copper is nearly perfectly square planar, with the O1—Cu1—O2 bond angle measuring 85.44 (3)° within the asymmetric unit, and 94.56 (3)° across the inversion center. Within the plane of the oxalate ligand, O1 and O2 form bonds to Cu1 measuring 1.9326 (7) and 1.9301 (7) Å, respectively. O3 inter­acts weakly, at a distance of 2.7057 (8) Å, with the symmetry-related Cu atoms above and below the ligand plane, giving an elongated octa­hedron. O4 has no bonding inter­actions with Cu, but does engage in hydrogen bonding with the ammonium cation (see below). The different ways that the oxygen atoms do or do not inter­act with copper is reflected in the C—O bonds. The two oxygen atoms that are strongly bound to copper, O1 and O2, have slightly longer bonds to carbon of 1.2798 (11) and 1.2895 (12) Å for C1—O1 and C2—O2, respectively. The weakly inter­acting O3 and non-bonded O4 have shorter C—O bonds of 1.2355 (12) and 1.2249 (12) Å for C1—O3 and C2—O4, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with non-H atoms shown as displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

As noted above, the coordination sphere of the copper atoms is completed by a long inter­action of 2.7057 (8) Å between O3 and Cu1 in the planes above and below the ligand, giving rise to polymeric copper oxalate chains along the a axis (Fig. 2[link]). These chains do not inter­act directly with one another. Instead, they are linked into a three-dimensional network by partly bifurcated N—H⋯O hydrogen bonds (Fig. 3[link]) between all four protons of the ammonium cation and the oxalate oxygen atoms indicated by the symmetry operations in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.824 (17) 2.230 (17) 2.8667 (11) 134.2 (16)
N1—H1⋯O4ii 0.824 (17) 2.475 (17) 3.0503 (12) 127.8 (15)
N1—H2⋯O2iii 0.865 (18) 1.991 (18) 2.8507 (11) 172.5 (16)
N1—H3⋯O3iv 0.854 (19) 2.053 (19) 2.8884 (11) 165.7 (17)
N1—H4⋯O3 0.85 (2) 2.43 (2) 3.0015 (11) 124.7 (16)
N1—H4⋯O4 0.85 (2) 2.04 (2) 2.8330 (12) 155.1 (18)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1.
[Figure 2]
Figure 2
A single chain of the copper oxalate complex with the ammonium cation omitted.
[Figure 3]
Figure 3
Packing viewed along the a axis, showing the polymeric complex formed by hydrogen bonding between the ammonium cations and oxalate ligands.

4. Database survey

There are three published reports of hydrated ammonium copper oxalate but to the best of our knowledge, the anhydrous title compound has not been reported previously. The earliest report, for (NH4)4n[Cu2(C2O4)4(H2O)2]n·2nH2O (Viswamitra, 1962[Viswamitra, M. A. (1962). J. Chem. Phys. 37, 1408-1414.]) was re­inter­preted (Novosad et al., 2000[Novosad, J., Messimeri, A. C., Papadimitriou, C. D., Veltsistas, P. G. & Woollins, J. D. (2000). Transition Met. Chem. 25, 664-669.]) as a polymeric complex with the repeat unit consisting of two [Cu(C2O4)2] moieties. One copper atom forms long Cu—O bonds to the next unit, similar to the way in which the title compound forms its chains, while the other is capped by two water mol­ecules. A different hydrate, (NH4)8[Cu4(C2O4)8(H2O)2·4H2O, has also been reported (Kadir et al., 2006[Kadir, K., Mohammad Ahmed, T., Noreús, D. & Eriksson, L. (2006). Acta Cryst. E62, m1139-m1141.]), but it does not feature chains of polymeric copper oxalate. Instead, it exists as a discrete water-capped tetra­mer. In each case, these hydrates also display hydrogen bonding between the oxalate, ammonium and water molecules. Besides the simple hydrates, structures of ammonium copper oxalates with polyoxidometalates based on tungsten (Reinoso et al., 2005[Reinoso, S., Vitoria, P., Gutiérrez-Zorrilla, J. M., Lezama, L., San Felices, L. & Beitia, J. I. (2005). Inorg. Chem. 44, 9731-9742.], 2007[Reinoso, S., Vitoria, P., Gutiérrez-Zorrilla, J. M., Lezama, L., Madariaga, J. M., San Felices, L. & Iturrospe, A. (2007). Inorg. Chem. 46, 4010-4021.]) or molybdenum (Li et al., 2011[Li, J., Liu, Y., Luo, J., Zhao, J. W., Ma, P. T. & Niu, J. Y. (2011). Russ. J. Coord. Chem. 37, 849-853.]) have been reported.

5. Synthesis and crystallization

A solution of bis­(diiso­propyl­phosphan­yl)amine (0.25 g, 1.0 mmol) in 1 mL MeOH was added to a slurry of copper(II) oxalate hemihydrate (0.15 g, 1.0 mmol) in 1 mL MeOH. The mixture was heated to reflux for 5 min and then allowed to cool to room temperature. After three days, the blue supernatant solution was deca­nted from an insoluble powder and cooled to 248 K. Block-like blue crystals of the title compound were isolated after six weeks. The mechanism by which bis(diiso­propyl­phosphan­yl)amine decomposes into ammonium is under investigation.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (NH4)2[Cu(C2O4)2]
Mr 275.66
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 4.8564 (2), 13.5188 (5), 6.7205 (3)
β (°) 96.992 (2)
V3) 437.94 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.53
Crystal size (mm) 0.43 × 0.28 × 0.28
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). BIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.41, 0.54
No. of measured, independent and observed [I > 2σ(I)] reflections 8277, 1672, 1537
Rint 0.017
(sin θ/λ)max−1) 0.769
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.051, 1.08
No. of reflections 1672
No. of parameters 86
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.37, −0.51
Computer programs: BIS and SAINT (Bruker, 2015[Bruker (2015). BIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: BIS (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[diammonium [di-µ-oxalato-cuprate(II)]] top
Crystal data top
2(H4N+)·C4CuO82F(000) = 278
Mr = 275.66Dx = 2.090 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.8564 (2) ÅCell parameters from 5449 reflections
b = 13.5188 (5) Åθ = 3.0–33.1°
c = 6.7205 (3) ŵ = 2.53 mm1
β = 96.992 (2)°T = 100 K
V = 437.94 (3) Å3Block, blue
Z = 20.43 × 0.28 × 0.28 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1672 independent reflections
Radiation source: fine-focus tube1537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 8.3333 pixels mm-1θmax = 33.2°, θmin = 3.0°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 2018
Tmin = 0.41, Tmax = 0.54l = 910
8277 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018All H-atom parameters refined
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0263P)2 + 0.1971P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1672 reflectionsΔρmax = 0.37 e Å3
86 parametersΔρmin = 0.51 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu100.500.00661 (5)
O10.32614 (14)0.44779 (5)0.15885 (10)0.00795 (12)
O20.15437 (14)0.62834 (5)0.07337 (11)0.00968 (13)
O30.72392 (16)0.50253 (5)0.32622 (12)0.01101 (14)
O40.52948 (15)0.69388 (5)0.25066 (12)0.01245 (14)
C10.4930 (2)0.51573 (7)0.23064 (14)0.00716 (15)
C20.39072 (19)0.62308 (7)0.18343 (14)0.00800 (15)
N10.95132 (18)0.67395 (6)0.57854 (13)0.00966 (14)
H10.840 (3)0.6723 (13)0.662 (3)0.020 (4)*
H21.027 (3)0.7319 (13)0.582 (3)0.019 (4)*
H31.072 (4)0.6285 (14)0.607 (3)0.023 (4)*
H40.849 (4)0.6643 (14)0.468 (3)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00454 (8)0.00426 (8)0.01054 (8)0.00002 (5)0.00113 (5)0.00048 (5)
O10.0065 (3)0.0063 (3)0.0106 (3)0.0002 (2)0.0011 (2)0.0008 (2)
O20.0068 (3)0.0060 (3)0.0153 (3)0.0005 (2)0.0026 (2)0.0002 (2)
O30.0084 (3)0.0099 (3)0.0136 (3)0.0011 (2)0.0033 (2)0.0005 (2)
O40.0125 (3)0.0075 (3)0.0160 (3)0.0016 (2)0.0035 (2)0.0014 (2)
C10.0071 (3)0.0064 (3)0.0081 (3)0.0007 (3)0.0013 (3)0.0003 (3)
C20.0074 (3)0.0070 (4)0.0094 (3)0.0009 (3)0.0005 (3)0.0000 (3)
N10.0100 (3)0.0075 (3)0.0110 (3)0.0017 (3)0.0007 (3)0.0004 (3)
Geometric parameters (Å, º) top
Cu1—O2i1.9301 (7)O4—C21.2249 (12)
Cu1—O21.9301 (7)C1—C21.5541 (13)
Cu1—O1i1.9326 (7)N1—H10.824 (17)
Cu1—O11.9326 (7)N1—H20.865 (18)
O1—C11.2798 (11)N1—H30.854 (19)
O2—C21.2895 (12)N1—H40.85 (2)
O3—C11.2355 (12)
O2i—Cu1—O2180.00 (4)O1—C1—C2114.91 (8)
O2i—Cu1—O1i85.44 (3)O4—C2—O2125.44 (9)
O2—Cu1—O1i94.56 (3)O4—C2—C1120.44 (8)
O2i—Cu1—O194.57 (3)O2—C2—C1114.12 (8)
O2—Cu1—O185.43 (3)H1—N1—H2108.8 (16)
O1i—Cu1—O1180.0H1—N1—H3108.4 (16)
C1—O1—Cu1112.64 (6)H2—N1—H3111.5 (16)
C2—O2—Cu1112.83 (6)H1—N1—H4103.3 (16)
O3—C1—O1125.83 (9)H2—N1—H4111.1 (16)
O3—C1—C2119.23 (8)H3—N1—H4113.3 (17)
Cu1—O1—C1—O3175.08 (8)O3—C1—C2—O44.51 (14)
Cu1—O1—C1—C22.83 (9)O1—C1—C2—O4177.43 (9)
Cu1—O2—C2—O4179.39 (8)O3—C1—C2—O2176.24 (9)
Cu1—O2—C2—C10.18 (10)O1—C1—C2—O21.82 (12)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1ii0.824 (17)2.230 (17)2.8667 (11)134.2 (16)
N1—H1···O4iii0.824 (17)2.475 (17)3.0503 (12)127.8 (15)
N1—H2···O2iv0.865 (18)1.991 (18)2.8507 (11)172.5 (16)
N1—H3···O3v0.854 (19)2.053 (19)2.8884 (11)165.7 (17)
N1—H4···O30.85 (2)2.43 (2)3.0015 (11)124.7 (16)
N1—H4···O40.85 (2)2.04 (2)2.8330 (12)155.1 (18)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+3/2, z+1/2; (iv) x+1, y+3/2, z+1/2; (v) x+2, y+1, z+1.
 

Acknowledgements

This work was supported financially by the National Science Foundation (grant CHE12–13529). The Bruker X-ray diffractometer was purchased by a National Science Foundation CRIF:MU award to the University of New Mexico (CHE04–43580). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract DE-AC04–94-AL85000.

References

First citationBaran, E. J. (2014). J. Coord. Chem. 67, 3734–3768.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). BIS, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, G., Si, C., Zhang, J., Wang, Y., Yang, W., Dong, C. & Zhang, Z. (2016). J. Power Sources, 312, 184–191.  Web of Science CrossRef Google Scholar
First citationClemente-León, M., Coronado, E., Martí-Gastaldo, C. & Romero, F. M. (2011). Chem. Soc. Rev. 40, 473–497.  Web of Science PubMed Google Scholar
First citationFeldner, T., Häring, M., Saha, S., Esquena, J., Banerjee, R. & Díaz, D. D. (2016). Chem. Mater. 28, 3210–3217.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGruselle, M., Train, C., Boubekeur, K., Gredin, P. & Ovanesyan, N. (2006). Coord. Chem. Rev. 250, 2491–2500.  Web of Science CrossRef CAS Google Scholar
First citationGu, X. & Xue, D. (2007). Cryst. Growth Des. 7, 1726–1732.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuo, F., Chen, C., Wang, K., Zhang, Q. & Lin, Z. (2016). Inorg. Chem. 55, 7817–7819.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKadir, K., Mohammad Ahmed, T., Noreús, D. & Eriksson, L. (2006). Acta Cryst. E62, m1139–m1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J., Liu, Y., Luo, J., Zhao, J. W., Ma, P. T. & Niu, J. Y. (2011). Russ. J. Coord. Chem. 37, 849–853.  Web of Science CrossRef CAS Google Scholar
First citationMizzi, J. E. & LaDuca, R. L. (2016). Inorg. Chem. Commun. 70, 4–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationNenwa, J., Djomo, E. D., Nfor, E. N., Djonwouo, P. L., Mbarki, M. & Fokwa, B. P. T. (2015). Polyhedron, 99, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationNovosad, J., Messimeri, A. C., Papadimitriou, C. D., Veltsistas, P. G. & Woollins, J. D. (2000). Transition Met. Chem. 25, 664–669.  Web of Science CSD CrossRef CAS Google Scholar
First citationReinoso, S., Vitoria, P., Gutiérrez-Zorrilla, J. M., Lezama, L., Madariaga, J. M., San Felices, L. & Iturrospe, A. (2007). Inorg. Chem. 46, 4010–4021.  Web of Science CSD CrossRef CAS Google Scholar
First citationReinoso, S., Vitoria, P., Gutiérrez-Zorrilla, J. M., Lezama, L., San Felices, L. & Beitia, J. I. (2005). Inorg. Chem. 44, 9731–9742.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobinson, M. E., Mizzi, J. E., Staples, R. J. & LaDuca, R. L. (2015). Cryst. Growth Des. 15, 2260–2271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationViswamitra, M. A. (1962). J. Chem. Phys. 37, 1408–1414.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, G. G., David, A., Favaloro, T., Yang, H., Shakouri, A., Caruthers, J. & Wu, Y. (2013). J. Mater. Chem. A, 1, 11901–11908.  Web of Science CrossRef CAS Google Scholar
First citationYeşilel, O. Z., Erer, H., Odabaşoğlu, M. & Büyükgüngör, O. (2010). J. Inorg. Organomet. Polym. 20, 78–82.  Google Scholar
First citationZhang, B., Zhang, Y. & Zhu, D. (2012). Dalton Trans. 41, 8509–8511.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds